4. TITLE AND SUBTITLE
Synthesis and Properties of 1,2-Difluorodinitroethylene

6. AUTHOR(S)
Kurt Baum, Thomas G. Archibald, Dongjav Tzeng, Richard Gilardi, Judith L. Flippin-Anderson, and Clifford George

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Fluorochem, Inc. Laboratory for the Structure of Matter
680 S. Ayon Ave. Naval Research Laboratory
Azusa, CA 91702 Washington, D.C. 20375

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

11. SUPPLEMENTARY NOTES
The view, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)
1,2-Difluorodinitroethylene was synthesized by flash vacuum pyrolysis of 1,2-difluorotetranitroethane. X-ray crystallography showed that one of the two nitro groups is out of the plane of the rest of the molecule and that the C-C double-bond distance is unusually short at 1.284 Å. 1,2-Difluorotetranitroethane reacted with alcohols to give alkyl fluoronitroacetates and with anthracene and cyclopentadiene to give Diels-Alder adducts.

14. SUBJECT TERMS
nitro, fluorine, synthesis, crystallography

17. SECURITY CLASSIFICATION OF REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION OF ABSTRACT
UNCLASSIFIED

20. LIMITATION OF ABSTRACT
UL

Mccione 12/13/91

NSN 7540-01-280-5500 91328105
The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

Block 1.	Agency Use Only (Leave blank).
Block 2.	Report Date. Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year.
Block 3.	Type of Report and Dates Covered. State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 - 30 Jun 88).
Block 4.	Title and Subtitle. A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.
Block 5.	Funding Numbers. To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels: C - Contract PR - Project G - Grant TA - Task PE - Program WU - Work Unit Element Accession No.
Block 6.	Author(s). Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).
Block 7.	Performing Organization Name(s) and Address(es). Self-explanatory.
Block 8.	Performing Organization Report Number. Enter the unique alphanumeric report number(s) assigned by the organization performing the report.
Block 9.	Sponsoring/Monitoring Agency Name(s) and Address(es). Self-explanatory.
Block 10.	Sponsoring/Monitoring Agency Report Number. (If known)
Block 11.	Supplementary Notes. Enter information not included elsewhere such as: Prepared in cooperation with...; Trans. of...; To be published in.... When a report is revised, include a statement whether the new report supersedes or supplements the older report.
Block 12a.	Distribution/Availability Statement. Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).

- **DOD** - See DoDD 5230.24, "Distribution Statements on Technical Documents."
- **DOE** - See authorities.
- **NTIS** - Leave blank. |
| Block 12b. | Distribution Code. |

- **DOD** - Leave blank.
- **DOE** - Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports.
- **NASA** - Leave blank.
- **NTIS** - Leave blank. |
| Block 13. | Abstract. Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report. |
| Block 14. | Subject Terms. Keywords or phrases identifying major subjects in the report. |
| Block 15. | Number of Pages. Enter the total number of pages. |
| Block 16. | Price Code. Enter appropriate price code (NTIS only). |
| Block 20. | Limitation of Abstract. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited. |
Synthesis and Properties of 1,2-Difluorodinitroethylene

Kurt Baum,* Thomas G. Archibald, and Dongjaw Tzeng

Fluorochem, Inc., Azusa, California 91702

Richard Gilardi, Judith L. Flippen-Anderson, and Clifford George

Laboratory for the Structure of Matter, Naval Research Laboratory, Washington, D.C. 20375

Received June 5, 1990

1,2-Difluorodinitroethylene was synthesized by flash vacuum pyrolysis of 1,2-difluorotetranitroethane. X-ray crystallography showed that one of the two nitro groups is out of the plane of the rest of the molecule and that the C-C double-bond distance is unusually short at 1.284 Å. 1,2-Difluorodinitroethylene reacted with alcohols to give alkyl fluoronitroacetates and with anthracene and cyclopentadiene to give Diels-Alder adducts.

There has been recent interest in the effect of electronegative substituents such as nitro1 and fluorine2 on the structural properties of olefins. Tetranitroethylene, the most electronegatively substituted olefin reported, is not sufficiently stable for convenient structural studies.3 This compound could be stored only under vacuum, apparently N(1)0-(1B) 1.208 (5) C(2)-F(2) 1.327 (5) sufficient for convenient structural studies.

Table I. Bond Lengths (Å) and Angles (deg) for trans-1,2-Difluorodinitroethylene

<table>
<thead>
<tr>
<th>Bond Length</th>
<th>Bond Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)-F(1) 1.311 (5)</td>
<td>F(1)-C(1)-N(1) 112.3 (3)</td>
</tr>
<tr>
<td>C(1)-C(2) 1.284 (5)</td>
<td>C(1)-C(2) 1.476 (5)</td>
</tr>
<tr>
<td>N(1)-O(1A) 1.205 (5)</td>
<td>O(2A)-N(2)-O(2B) 127.0 (3)</td>
</tr>
</tbody>
</table>

The reaction of tetranitroethylene with alcohols to give alkyl dinitroacetates has been reported5. The products were explained on the basis of the initial formation of the unstable tetranitroethoxy ethers, which underwent loss of dinitro groups. 1,2-Difluorodinitroethylene reacted similarly with methanol, ethanol, and 2-propanol to give the corresponding fluoronitroacetates, reported previously from reactions of the alcohols with fluoronitromethy1 chloride5.
to be an extrt~incly reactive dienophile in Diels-Alder re-

Fluoro-5,6-dinitrobicyclo[2.2.1]hept-2-ene in 49% yield. (d

Temperature in methylene chloride gave

I,12-dinitro-9,10-dihydro-9,10-ethanoanthracene, isolated

Benzene monosolvate. The reaction of 1,2-di-

The abovc procedure gave methyl fluoronitroacetate (0.202

Methyl fluoronitroacetate. The reaction

Isopropyl fluoronitroacetate. A

This trap was found to contain

volatile,

This trap was found to contain

volatile,

Analyzed for C, H, N, F. Found: C, 46.4; H, 4.88; F, 11.51; N, 8.48.

Etetyl Fluoronitroacetate. The reaction of 1,2-difluoro-

methanol (100 mL) by the

procedure gave methyl fluoronitroacetate (0.202 g, 29%).

Methyl Fluoronitroacetate. The reaction

11,12-Difluoro-11,12-dinitro-9,10-dihydro-9,10-ethano-

A solution of 1,2-difluoro-

11,12-dinitro-9,10-dihydro-9,10-ethanoanthracene benzene monosolvate, mp 192–193 °C: IR 1590.
A solution of 1,2-difluorodinitroethylen (0.299 g, 1.94 mmol) and freshly distilled cyclopentadiene (1.5 g, 23 mmol) in CHCl₃ (10 mL) was stirred under nitrogen for 10 min at ambient temperature. The solvent was evaporated and the residual oil was chromatographed (silica gel, CH₂Cl₂) to give 0.299 g (49% of endo-5,exo-6-difluoro-5,6-dinitrobicyclo[2.2.1]hept-2-ene: a linear decay of -121.5 to -0.28 e \text{Å}^{-1} over data collection, \theta/20 mode, scan width [29(\theta)] to [29(\theta)] = 0.56 \text{Å}^{-1}; range of hkl, 0 \leq h \leq 6, 0 \leq k \leq 13, and 0 \leq l \leq 14. Standard reflections 400, 040, 006 measured every 100 reflections showed a linear decay of ±15% over data collection, \theta/20 mode, scan width [29(\theta)] to [29(\theta)] = 0.56 \text{Å}^{-1}. 2\theta scan rate 60.0° min⁻¹ (rapid due to volatile crystal, full data set collected in 4 h); 855 reflections measured, 841 unique, 736 observed with Fₐ > 3σ(Fₐ). Data was corrected for Lorentz and polarization, and an empirical absorption correction was applied. The maximum and minimum transmission values were 0.77 and 0.72. Structure was solved by direct methods. The least-squares refinement minimized the quantity \sum \sqrt{[F_{o}-|F_{c}|]^2}, where w = 1/[σ²(|F_{o}|) + g(|F_{c}|)^2], g = 0.00023. Secondary extinction parameter p = 0.012 (1) in Fₐ. There were 92 parameters refined: atom coordinates, anisotropic thermal parameters for non-hydrogen atoms; the hydrogen atoms bonded carbon atoms (C-H distance set at 0.96 Å and angles involving H atoms idealized at tetrahedral or trigonal values, as appropriate. (Δ/σ)max = 0.04, R = 0.045, wR = 0.047, S = 1.41. Final difference Fourier excursions 0.16 and -0.18 e \text{Å}^{-3}. Atomic scattering factors from International Tables for Crystallography. The programs used for structure solution, refining, and plotting are part of SHELXTL.8

Acknowledgment. This work was supported by the U.S. Army Research Office and the Office of Naval Research, Mechanics Division. We thank Dr. M. Coburn of Los Alamos National Laboratory for the 1H NMR spectrum.

(8) Tables of atom coordinates, bond distances and angles, structure factors, anisotropic thermal parameters, and hydrogen coordinates are included in the supplementary material.