Simulations of High-Rate Diamond Synthesis: Methyl as Growth Species

The results of numerical simulations of two high-rate diamond growth environments (oxygen-acetylene torch and DC arcjet) are reported. The calculations account in detail for boundary-layer transport, gas-phase chemistry, and gas-surface chemistry. Diamond growth rates are calculated self-consistently with the gas-phase concentrations, using a recently-proposed methyl growth mechanism. The calculated growth rates agree well with the measured values, indicating that this growth mechanism can account for both high- and low-rate diamond growth.
Simulations of High Rate Diamond Synthesis: Methyl as Growth Species

by

D. G. Goodwin

Prepared for Publication

in

Applied Physics Letters

Department of Mechanical Engineering
California Institute of Technology
Pasadena, California 91125

February 28, 1991

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited
Simulations of High-Rate Diamond Synthesis:
Methyl as Growth Species

D.G. Goodwin

Division of Engineering and Applied Science
California Institute of Technology
Pasadena, CA 91125

ABSTRACT

The results of numerical simulations of two high-rate diamond growth environments (oxygen-acetylene torch and DC arcjet) are reported. The calculations account in detail for boundary-layer transport, gas-phase chemistry, and gas-surface chemistry. Diamond growth rates are calculated self-consistently with the gas-phase concentrations, using a recently-proposed methyl growth mechanism. The calculated growth rates agree well with the measured values, indicating that this growth mechanism can account for both high- and low-rate diamond growth.
Diamond films are now routinely grown using a wide variety of techniques, at rates ranging from less than 1 μm/hr to nearly 1 mm/hr. The highest growth rates (typically on the order of 50–100 μm/hr) are obtained in atmospheric-pressure oxygen-acetylene flames1–4 and moderate pressure (200 Torr – 1 atm) DC arcjet plasmas.5–8 It is of considerable interest to determine whether a single mechanism can explain growth in all environments, or whether high- and low-rate CVD diamond synthesis techniques differ fundamentally.

Recent experiments in low-pressure hot-filament reactors9,10 and flowtubes11,12 provide evidence that the methyl radical CH\textsubscript{3} is the principal growth species for low-pressure, low-growth-rate conditions. Recently, Harris13 has presented a mechanism for growth from CH\textsubscript{3} on the (100) surface, and shown that the growth rates predicted by this mechanism for hot-filament conditions (0.06–0.6 μm/hr) are similar to those measured. More recently, Harris has shown that this mechanism explains well the relative dependence of growth rate on the CH\textsubscript{4}/H\textsubscript{2} ratio and on pressure for hot-filament conditions.14

It has not been clear whether this mechanism, or any methyl mechanism, could account for the high growth rates obtained in oxyacetylene torches and DC arcjets. Several other growth species have been proposed for these environments, including C, CH, C\textsubscript{2}, and C\textsubscript{2}H.3,15,16 In this letter, the results of detailed numerical simulations of two high-growth-rate experiments3,8 are presented, with the objective of determining whether a methyl growth mechanism can account for the measured growth rates.

The flow of interest here is a hot, axisymmetric gas jet impinging at normal incidence on a water-cooled substrate, as shown in Figure 1. We confine our attention to the boundary-layer region near the substrate on the axis of symmetry (i.e., at the stagnation point). The exact conservation equations17 for mass, radial momentum, energy, and species are solved, together with appropriate boundary conditions, for the boundary layer on the symmetry axis, to yield velocity, temperature, and species concentration profiles. An important feature of these calculations is that a detailed gas-surface chemistry mechanism is included, and the surface site coverages are calculated self-consistently with the gas-phase concentrations. Gas-phase chemistry is also taken into account, considering a total of 161 oxidation and pyrolysis reactions, with rates taken from the literature.18–21 The transport properties are all evaluated using the subroutine package of Kee \textit{et al.}22

Near the stagnation point, the velocity field above the boundary layer is governed by a parameter a, the stagnation-point velocity gradient parameter.23 Here we estimate a as...
\[a \approx 2\bar{u}/R, \] where \(\bar{u} \) is the mean axial jet velocity, and \(R \) the estimated jet radius at the substrate. The significance of this parameter for the flowfield near the substrate is that the boundary layer thickness is given approximately by \(\delta_{BL} \sim \sqrt{\mu_\infty/\rho_\infty a} \), where \(\mu_\infty \) and \(\rho_\infty \) are the gas viscosity and density, respectively, outside the boundary layer.

The diamond growth mechanism used is a slightly modified form of the methyl growth mechanism proposed by Harris. The rate coefficients describing adsorption of H atoms have been adjusted to yield unity sticking probability in the limit of large site coverage (a factor of two decrease for reactions (b), (e) and (g) of Ref. 13). We have also written the products of the final reaction steps so as to allow growth to continue on the next higher atomic level, rather than terminating with the unreactive structure B (in the notation of Ref. 13). This is done by recognizing that each B created is equivalent, on average, to one new hydrogen-saturated surface site ("HH") on the next atomic layer. Thus, the last step is assumed to generate one new HH site, and one bulk carbon atom buried below the surface.

Harris presents two limiting sets of rate constants, one for a "dilute" case, where the surface is atomically flat and thus surface carbons are bonded to two other carbons, and a "dense" case, where ledge sites dominate and most surface carbons are bonded to three other carbons. Both cases are considered in the present simulations. To this growth mechanism, 9 reactions describing radical recombination on the surface via H-atom abstraction (e.g., \(R + HH = RH + H^* \)) are added.

We have used our model to simulate two high-growth-rate experiments reported in the literature: the oxygen-acetylene flame experiments of Matsui et al. and the DC arcjet experiments of the group at SRI. While similar studies have been carried out by others, these two are distinguished by their relatively complete reporting of experimental conditions (gas flow rates, temperatures, and jet diameters), which makes possible the numerical simulation of the results.

Matsui et al. show, using laser-induced fluorescence and mass spectrometric techniques, that the gas composition in the acetylene feather region of their flame is consistent with the assumption of chemical equilibrium. Consequently, for the simulations the gas composition outside the boundary layer is assumed to be the equilibrium composition corresponding to the adiabatic flame temperature \(T_{ad} \). Based on their reported gas flow rates for the case \(C_2H_2/O_2 = 1.1 \) (3.2 slm \(C_2H_2 \), 2.9 slm \(O_2 \)) and jet diameter (\(\sim 1 \) cm), the velocity gradient parameter \(a \) is estimated to be approximately 5000 s\(^{-1}\).
The calculated temperature profile and several species profiles are shown in Fig. 2 for the case \(\text{C}_2\text{H}_2/\text{O}_2 = 1.1 \). The thermal boundary layer is seen to be approximately 1 mm thick. A notable feature of these results is the H atom profile, which drops off sharply near the surface. These results show that the transport of H to the substrate is diffusion-limited, due to the destruction of H atoms on the surface. The consumption of H at the surface is an intrinsic part of the diamond growth mechanism, resulting from abstraction of surface-bonded H by gas-phase H atoms (activating the surface), and recombination of H onto surface radical sites (reactions (a) and (b) of Ref. 13). These two reactions, taken together, describe a mechanism for surface-catalyzed recombination of H to \(\text{H}_2 \).

Methyl is predicted to be the most abundant hydrocarbon radical at the surface. Other radicals which have been proposed as growth species in flame environments are seen to decay sharply near the surface, making a role for these in diamond growth unlikely, with the possible exception of atomic carbon.

The calculated growth rates are compared in Fig. 3 to the growth rates measured by Matsui et al.\(^3\) for \(\text{C}_2\text{H}_2/\text{O}_2 \) ratios from 1.0 to 1.2. The results show that this methyl growth mechanism can predict the measured growth rates to within a factor of two using either set of rate constants. This is considerably better than expected, considering the significant uncertainties in the surface chemistry, as well as the fact that the mechanism of Harris considers only homoeptaxial growth on (100). In addition, the rate predictions are sensitive to both the calculated H and \(\text{CH}_3 \) concentrations at the surface, which we estimate to be uncertain by about a factor of two or three. In light of this, the agreement shown in Fig. 3 may be to some extent fortuitous. Nevertheless, it is worth noting that there are no adjustable parameters in either the surface mechanism or the gas-phase mechanism.

The same model has been used to simulate the DC arcjet experiments of Stalder and Sharpless\(^8\) and Raiche et al.\(^16\) These experiments were carried out at 220 Torr, with a gas composed of 0.5% \(\text{CH}_4 \) in \(\text{H}_2 \). For this case, the flow time from the anode to the substrate (8.5 \(\mu \text{s} \)) is too short for chemical equilibrium to be obtained; consequently, we follow here the same procedure used by Raiche et al.\(^16\) to estimate the plasma composition above the boundary layer: the composition is allowed to evolve for 1.5 \(\mu \text{s} \) at 5000 K, followed by a linear decrease to the measured gas temperature of 2100 K at 10 \(\mu \text{s} \). The \(a \) parameter is estimated to be \(\approx 10^8 \text{ s}^{-1} \), and the substrate temperature is taken to be 1200 K.

The predicted temperature and species profiles for this experiment are shown in Fig. 4. For this case, the thermal boundary layer is considerably thinner than in the flame ex-
periment, due to the much higher flow velocity (larger a). For this reason, the effects of chemistry on the concentration profiles are considerably less here than in the flame. While H atoms are still depleted near the surface due to catalytic surface recombination, the surface H mole fraction is still several percent. Again methyl appears at the surface at about the 100 ppm level.

Somewhat surprisingly, atomic carbon is predicted to have a large concentration at the surface. This is a consequence of the large superequilibrium of atomic hydrogen, and the fact that abstraction of a surface hydrogen by C is uphill by about 10 kcal/mole. Under conditions such as these, C atoms could conceivably play a role in diamond growth; in the present simulations, however, this possibility is neglected to focus on the question of whether CH$_3$ can explain the measured rates.

The growth rate calculated for this experiment using the Harris methyl mechanism is 118 μm/hr for the dense case, and 13 μm/hr for the dilute case. The measured rate is reported to be greater than 60 μm/hr8

These results indicate that a single methyl mechanism13 can explain growth both in low-rate environments, such as hot-filament systems, and high-rate flame and plasma jet environments. While a possible role for other radicals, in particular C atoms, should not be ruled out, these results show that there is no necessary reason to postulate them as growth species. The question remains why the simple mechanism of Ref. 13 should predict growth rates as well as it does. There are many reasons why it should not, including the large uncertainties in the thermochemistry of the highly crowded (100) surface, and that the experimental films are polycrystalline. Nevertheless, growth rates for (100) and (111) faces are known to be similar,24 and so a (100) mechanism may well predict correct polycrystalline rates. The fact that the dense rate constants produce consistently better agreement with experiment than those for the dilute case may indicate that tertiary surface carbons are most common, which suggests that even the (100) surface of CVD diamond is rough on an atomic scale.

The author would like to acknowledge Dr. Steven Harris for enlightening discussions regarding diamond growth kinetics. This work has been supported, in part, by the Office of Naval Research and the National Science Foundation.
REFERENCES

FIGURE CAPTIONS

Fig. 1 Relevant flow geometry. The simulations are limited to the stagnation-point boundary layer region.

Fig. 2 Temperature and selected species profiles for conditions simulating the experiments of Matsui et al. Substrate temperature = 1250 K, $\text{C}_2\text{H}_2/\text{O}_2 = 1.1$. Surface chemistry calculated with “dense” rate constants of Ref. 13.

Fig. 3 Comparison of growth rates calculated using the methyl mechanism of Harris with rates measured by Matsui et al. for varying flame stoichiometry.

Fig. 4 Temperature and selected species profiles for conditions simulating the experiments of Stalder and Sharpless and Raiche et al. Substrate temperature = 1200 K. Surface chemistry calculated with “dense” rate constants of Ref. 13.
Calculated, dense case

Calculated, dilute case

Measured (Ref. 3)

Growth Rate (μm/hr)

C₃H₂/O₂
DISTRIBUTION LIST

Mr. James Arendt
Hughes Aircraft Company
8433 Fallbrook Ave. 270/072
Canoga Park, CA 91304
(818) 702-2890

Mr. Larry Blow
General Dynamics
1525 Wilson Blvd., Suite 1200
Arlington, VA 22209
(703) 284-9107

Mr. Ellis Boudreaux
Code AGA
Air Force Armament Laboratory
Eglin AFB, FL 32542

Dr. Duncan Brown
Advanced Technology Materials, Inc.
520-B Danbury Road
New Milford, CT 06776

Dr. Mark A. Cappelli
Mechanical Engineering Dept.
Stanford University
Stanford, CA 94305
(4'5) 723-1745

Dr. R. P. H. Chang
Materials Science & Engineering Dept.
2145 Sheridan Road
Evanston, IL 60208
(312) 491-3598

Defense Documentation Center
Cameron Station
Alexandria, VA 22314
(12 copies)

Dr. Albert Feldman
Leader, Optical Materials Group
Ceramics Division
Materials Science & Engineering Laboratory
NIST
Gaithersburg, MD 20899
(301) 975-5740

Dr. John Field
Department of Physics
University of Cambridge
Cavendish Laboratory
Madingley Road
Cambridge CB3 OHE
England
44-223-337733, ext. 7318

Dr. David Goodwin
Mechanical Engineering Dept.
California Institute of Technology
Pasadena, CA 91125
(818) 356-4249

Dr. Kevin Gray
Norton Company
Goddard Road
Northboro, MA 01532
(508) 393-5968

Mr. Gordon Griffith
WRDC/MLPL
Wright-Patterson AFB, OH 45433

Dr. H. Guard
Office of Chief of Naval Research
Office of Naval Research (Code 1113PO)
800 North Quincy Street
Arlington, VA 22217

Dr. Alan Harker
Rockwell Int'l Science Center
1049 Camino Dos Rios
P.O. Box 1085
Thousand Oaks, CA 91360
(805) 373-4131

Mr. Stephen J. Harris
General Motors Research Laboratories
Physical Chemistry Department
30500 Mound Road
Warren, MI 48090-9055
(313) 986-1305
Dr. Rudolph A. Heinecke
STC Laboratories, Ltd.
London Road
Harlow, Essex CM17 9MA
England
44-279-29531, ext. 2284

Dr. J. J. Mecholsky, Jr.
256 Rhines Hall
Materials Science & Engineering Dept.
University of Florida
Gainesville, FL 32611
(904) 392-1454

Dr. Curt E. Johnson
Code 3854
Naval Weapons Center
China Lake, CA 93555-6001
(619) 939-1631

Dr. Russ Messier
Pennsylvania State University
Materials Research Laboratory
University Park, PA 16802
(814) 865-2262

Dr. Larry Kabacoff (Code R32)
Officer in Charge
Naval Surface Weapons Center
White Oak Laboratory
10901 New Hampshire
Silver Spring, MD 20903-5000

Mr. Mark Moran
Code 3817
Naval Weapons Center
China Lake, CA 93555-6001

Mr. M. Kinna
Office of Chief of Naval Research
Office of Naval Technology (Code 225)
800 North Quincy Street
Arlington, VA 22217

Mr. Ignacio Perez
Naval Air Development Center
Code 6063
Warminster, PA 18974
(215) 441-1681

Mr. C. Dale Perry
U.S. Army Missile Command
AMSMI-RD-ST-CM
Redstone Arsenal, AL 35898-5247

Mr. Bill Phillips
Crystallume
125 Constitution Drive
Menlo Park, CA 94025
(415) 324-9681

Dr. Paul Klocek
Texas Instruments
Manager Advanced Optical Materials Branch
13531 North Central Expressway
P.O. Box 655012, MS 72
Dallas, Texas 75268
(214) 995-6865

Ms. Carol R. Lewis
Jet Propulsion Laboratory
4800 Oak Grove Drive
Mail Stop 303-308
Pasadena, CA 91109
(818) 354-3767

Dr. Rishi Raj
Materials Science & Engineering Dept.
Cornell University
Ithaca, NY 14853
(607) 255-4040

Dr. M. Ross
Office of Chief of Naval Research
Office of Naval Research (Code 1113)
800 North Quincy Street
Arlington, VA 22217
Dr. Rustum Roy
Pennsylvania State University
Materials Research Laboratory
University Park, PA 16802
(814) 865-2262

Dr. Aaron Wold
Chemistry Department
Brown University
Providence, RI 02912
(401) 863-2857

Dr. J. Savage
Royal Signals and Radar Establishment
St. Andrews Road
Great Malvern, WORCS, WR14 3PS
England

Dr. Charles Willingham
Raytheon Co.
Research Division
131 Spring Street
Lexington, MA 02173
(617) 860-3061

Mr. David Siegel
Office of Chief of Naval Research
Office of Naval Research (Code 213)
800 North Quincy Street
Arlington, VA 22217

Dr. Robert E. Witkowski
Westinghouse Electric Corporation
1310 Beulah Road
Pittsburgh, PA 15235
(412) 256-1173

Mr. M. Yoder
Office of Chief of Naval Research
Office of Naval Research (Code 1114SS)
800 North Quincy Street
Arlington, VA 22217

Dr. Keith Snail
Code 6520
Naval Research Laboratory
Washington, D.C. 20375
(202) 767-0390

Dr. Y. T. Tzeng
Electrical Engineering Department
Auburn University
Auburn, AL 36849
(205) 884-1869

Dr. George Walrafen
Chemistry Department
Howard University
525 College Street, N.W.
Washington, D.C. 20054
(202) 806-6897/6564

Mr. Roger W. Whatmore
Plessey Research Caswell Ltd.
Towcester Northampton NN128EQ
England
(0327) 54760