Conditioned Taste Aversion and Cholinergic Drugs: Pharmacological Antagonism

Romano, James A., and King, James M.

Open Literature Publ

FROM TO

6

Pharmacology Biochemistry & Behavior, Vol. 27, pp.81-85

Anticholinesterase, Anticholinergic, conditioned taste aversion, Pharmacological Antagonism, Physostigmine salicylate, pyridostigmine bromide, atropine methyl nitrate, atropine sulfate

ROMANO, J. A. AND J. M. KING. Conditioned taste aversion and cholinergic drugs: Pharmacological antagonism. PHARMACOL BIOCHEM BEHAV 27(1) 81-85, 1987. The effectiveness of drugs as unconditioned stimuli (UCSs) in the conditioned taste aversion (CTA) procedure may be influenced by specific pharmacological antagonism. The present studies examined the UCS effects of two carbamates, physostigmine salicylate (PS) and pyridostigmine bromide (PB), and three anticholinergic compounds, atropine methyl nitrate (AMN), atropine sulfate (AS), and benzalkonium hydrochloride (BH). Individual drugs, as well as combinations of the carbamates and the anticholinergics, were studied in a two-bottle procedure in rats. The lowest effective doses for eliciting significant CTAs were PS, 0.32 mg/kg; PB, 1.00 mg/kg; AMN, 0.04 mg/kg; AS, 0.07 mg/kg and BH, 0.90 mg/kg. IP. Combinations of PS with either AMN or BH were mutually antagonistic as UCSs, whereas PS with AS was not. PB with AMN, but not with AS, also showed antagonism in the procedure. The present results suggest that the CTA procedure is well-suited for direct examination of cholinergic drug effects and may also be used to explore interactions of different classes of cholinergic drugs.
Conditioned Taste Aversion and Cholinergic Drugs: Pharmacological Antagonism

JAMES A. ROMANO AND JAMES M. KING

US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010-5425

Received 30 June 1986

ROMANO, J. A. AND J. M. KING. Conditioned taste aversion and cholinergic drugs. Pharmacological antagonism. PHARMACOL BIOCHEM BEHAV 27(1): 81-85. 1987.—The effectiveness of drugs as unconditioned stimuli (UCSs) in the conditioned taste aversion (CTA) procedure may be influenced by specific pharmacological antagonism. The present studies examined the UCS effects of two carbamates, physostigmine salicylate (PS), and pyridostigmine bromide (PB), and three anticholinergic compounds, atropine methyl nitrate (AMN), atropine sulfate (AS), and benactyzine hydrochloride (BH). Individual drugs, as well as combinations of the carbamates and the anticholinergics, were studied in a two-bottle procedure in rats. The lowest effective doses for eliciting significant CTAs were PS, 0.32 mg/kg; PB, 1.00 mg/kg; AMN, 0.04 mg/kg; AS, 0.07 mg/kg and BH, 0.90 mg/kg. IP. Combinations of PS with either AMN or BH were mutually antagonistic as UCSs, whereas PS with AS was not. PB with AMN, but not with AS, also showed antagonism in the procedure. The present results suggest that the CTA procedure is well-suited for direct examination of cholinergic drug effects and may also be used to explore interactions of different classes of cholinergic drugs.

Anticholinesterase Anticholinergic Conditioned taste aversion Antagonism
Physostigmine salicylate Pyridostigmine bromide Atropine methyl nitrate Atropine sulfate Benactyzine hydrochloride

THE conditioned taste aversion (CTA) procedure has been proposed as a possible element in a broad battery of screens for behavioral toxicity. The bases for this proposed usage are the facts that (1) most known toxins do reliably condition CTAs, (2) CTAs generally corroborate known toxicity, and (3) the procedure is moderately sensitive and cost effective [19]. In this procedure, an animal is exposed to a novel stimulus, such as saccharin, which serves as a conditioned stimulus (CS). A toxicosis is then induced in the animal through use of an unconditioned stimulus (UCS) which may be a drug, a chemical or ionizing radiation [2,7]. Often a rat will develop an enduring aversion to the CS taste after a single association with the UCS-induced toxicosis [23]. The essentiality of this illness to the formation of CTAs has been questioned [4,6]. From the list of toxins which have been demonstrated to produce CTAs, it appears that although illness may not be essential for formation of CTAs, it may well be sufficient. Thus, one may use the CTA as a gross index of the animal's ability to discern a drugged state [6].

Although some studies have been carried out using cholinergic agents in radiation-induced taste aversions [3], until recently few studies have been conducted employing cholinergic compounds as UCSs [5]. CTAs have been reported following administration of the anticholinergic scopolamine [10], atropine sulfate (AS) [18], and its quaternary analogue, atropine methyl nitrate (AMN) [18]. These studies, however, did not examine dose-effect relationships for these anticholinergic drugs. Physostigmine (PS), an anticholinesterase, was found to produce a weak CTA at a single dose of 0.50 mg/kg in the one-bottle procedure [18]. We have previously reported CTAs to the toxic organophosphorus compounds sarin [11], soman [21] and tabun [22] at doses ranging from 0.60 to 0.75 LD50, which were occasionally accompanied by overt signs of cholinergic intoxication. Similarly, MacPhail [15], using a two-bottle procedure, found no CTA to the anticholinesterase carbaryl but reported a CTA to another, Butagun, only at the highest dose employed, i.e., one accompanied by noticeable signs of peripheral cholinomimetic stimulation. MacPhail [15] concluded that the CTA procedure may not be a sensitive measure of anticholinesterase intoxication. In general, however, the sensitivity of rats to induction of CTAs by low doses of cholinergic drugs remains to be determined.

The CTA procedure may also be used to determine the

1The experiments reported here were conducted according to the Guide for Care and Use of Laboratory Animals (1978), as prepared by the Committee on Care and Use of Laboratory Animals, National Research Council, DHEW Publication No. (NIH) 80-23. The opinions or assertions contained herein are the private views of the authors, and are not to be construed as reflecting the views of the Department of the Army or the Department of Defense.

2Present address: US Army Human Engineering Laboratory, APG, MD 21005-5001.
pharmacological specificity of the UCS. Pharmacologic specificity in the CTA procedure has been demonstrated by a number of studies of agonist-antagonist pairs [12, 13, 25]. To a degree, anatomic specificity has also been demonstrated [1, 20]. However, these studies did not employ cholinergic agents. Thus, the purposes of the present study were to demonstrate (1) the utility of the conditioned taste aversion procedure in evaluating the discriminative stimulus properties of cholinergic drugs, particularly at low doses, and (2) blockade of the behavioral changes produced by cholinergic drugs through the use of pharmacologic antagonists.

METHOD

Subjects

Three hundred and ninety-one male albino rats (AMRI: (SD X WIDR)) weighing between 250 and 370 grams were used in this study. They were housed individually in plastic cages (25 x 46 x 20 cm) in temperature-controlled animal quarters, and maintained on a 12-hour light-dark cycle, with artificial light provided between 0600 and 1800 hours. The rats were allowed at least 3 days to become acclimated to the animal quarters and to daily handling prior to experimental use. Laboratory rat chow was available ad libitum throughout the studies. Group sizes are given in the figure legends.

Drugs

PS, pyridostigmine bromide (PB), AMN, and benzamidine hydrochloride (BH) were employed as UCSs. Drug doses were for the salt. Doses of PS used ranged from 0.20 to 0.65 mg/kg, PB from 0.40 to 2.00 mg/kg, AMN from 0.04 to 2.40 mg/kg, and BH from 0.29 to 9.00 mg/kg. The dosages varied by 0.16 log increments for PS, 0.20 for PB, 0.30 for AMN and AS, and 0.50 for BH. The vehicle for all drugs was water for injection, USP, with 0.2% methylparaben and 0.05% propylparaben added for stabilization and with pH adjusted to 2.8 using 0.1 N hydrochloric acid. All solutions were prepared so that injection volumes were proportional to 1.0 ml/kg. The drug solutions were prepared in lots and stored under refrigeration between drug tests. The vehicle was used for control injections and all drugs were given intraperitoneally.

TABLE 1

<table>
<thead>
<tr>
<th>Drug</th>
<th>Lowest Dose Yielding Significant CTA (p < 0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physostigmine Salicylate (PS)</td>
<td>0.32 mg/kg</td>
</tr>
<tr>
<td>Pyridostigmine Bromide (PB)</td>
<td>1.00 mg/kg</td>
</tr>
<tr>
<td>Atropine Methyl Nitrate (AMN)</td>
<td>0.04 mg/kg</td>
</tr>
<tr>
<td>Atropine Sulfate (AS)</td>
<td>0.07 mg/kg</td>
</tr>
<tr>
<td>Benzamidine Hydrochloride (BH)</td>
<td>0.90 mg/kg</td>
</tr>
</tbody>
</table>

CTA Procedure

After acclimation, animals were trained in the home cage for four days to drink on a 30 min access per day drinking schedule. On day 5, they were offered only a distinctively sweet-flavored 0.27% saccharin solution, the CS, during this drinking period. This exposure was followed shortly by an injection of the drugs or vehicle, whichever was to serve as the UCS. The animals were maintained on the 30 min daily water consumption schedule for three additional days. On the fourth day following the pairing of drugs and flavored solution, animals were offered a two-bottle choice between the sweetened saccharin solution and tap water during their 30 min drinking period. Test day consumption for each animal was expressed as percent saccharin preference (% saccharin solution consumed = (saccharin solution consumed - water consumed) x 100).

Design and Statistical Analysis

A series of dose-ranging studies with the individual drugs was conducted to determine minimally effective dosages for eliciting the CTA. Following these studies, a series of antagonism experiments were conducted. PS and PB were each paired with AMN and AS, respectively (Experiments I-IV). Finally, PS was studied in conjunction with BH (Experiment V). In Experiments I and II, AMN (vehicle, 1.2 and 2.4
RESULTS

Individually, all drugs produced dose-related CTAs without affecting total test day fluid intake. Use of the Newman-Keuls procedure allowed for the determination of the lowest drug dosage which would yield significant differences from the vehicle control (see Table 1 for summary). The dose-effect curves for AS and AMN were steep and parallel, whereas the dose-effect curves for BH, PS, and PB were relatively shallow and nearly parallel (data not shown here).

During the course of these experiments two animals at the vehicle-0.65 mg/kg PS group, one vehicle control animal, and one animal receiving 2.9 mg/kg BH 0.62% PS were lost. These deaths may not have been directly attributable to toxic drug effects, although 0.65 mg/kg PS was often accompanied by signs of cholinergic hyperstimulation.

Experiments I-V

The effects of pairing PS and AMN as UCSs are shown in Fig. 1A. Results of the analysis of variance indicated that flavor averisons were produced by PS, F(2.41)=16.6, p<0.001, and AMN, F(2.41)=49.0, p<0.001. Furthermore, there was a significant interaction between these drugs, F(4.41)=34.0, p<0.001. That is, the results of the Newman-Keuls analysis indicated that the vehicle control and the 2.4 mg/kg AMN-0.65 mg/kg PS dose groups did not differ from each other, although they were significantly different from all other treatment combinations. In addition, the 1.2 mg/kg AMN-0.65 mg/kg PS treatment combination, although resulting in greater flavor averisons than either of the two groups mentioned above, had significantly weaker flavor averisons than all but one of the remaining drug treatment combinations. Thus, the significant interaction indicates that PS and AMN were mutually antagonistic. However, the only statistically significant antagonism, as shown by Newman-Keuls analysis, was found in the 2.4 mg/kg AMN-0.65 mg/kg PS group.

The results of the PS and AS UCS pairings are presented in Fig. 1B. Results of the analysis of variance indicated that CTAs were produced by PS, F(2.45)=3.71, p<0.05, and AS, F(2.45)=5.5, p<0.01. No significant interaction was observed. All groups demonstrated significant CTAs when compared to the vehicle control condition. No other significant differences were detected among treatment combinations. The lack of a significant interaction indicates that PS and AS were not mutually antagonistic.

For Experiment III, in which PB was paired with AMN, significant differences were found among groups F(6.41)=7.51, p<0.01, with all groups being significantly different from control, with the exception of the 2.4 AMN-2.0 PB group. The lack of a statistically significant difference for the latter drug combination suggests that PB and AMN are mutually antagonistic, at least at one dose level (see Fig. 2A). In Experiment IV, pairing PB with AS resulted in significant differences among groups, F(6,43)=69.99, p<0.01. Application of the Newman-Keuls test demonstrated that all groups were significantly different from the vehicle-vehicle control (see Fig. 2B).
The use of this procedure resulted in lower effective doses than hitherto reported [18,23] and attests to its sensitivity in detecting the behavioral effects of the anticholinergic drugs. For example, in the rat BH was shown to affect schedule-controlled behavior or shuttle avoidance only at doses of 4.4 mg/kg or greater in our laboratory (unpublished observations). Conversely, the indirect cholinergic agonists PS and PB were shown to produce significant CTAs at doses of 0.32 or 1.00 mg/kg and above which, as stated above, were accompanied by some signs of cholinergic intoxication. Perhaps the CTA procedure is not as readily influenced by "sign-free" doses of the latter compounds as by the cholinergic antagonists (i.e., doses not otherwise accompanied by obvious signs of cholinergic stimulation). However, PB produced CTAs at doses which did not disrupt response rates in a rat operant procedure in this laboratory [16].

PS and AMN proved to be mutually antagonistic, at least at one dose combination, as were PS and BH. However, this was not true for PS and AS. Conversely, AS but not AMN has been shown to block PS-induced tail flick analgesia [17]. The reasons for the lack of interaction between AS, which has both central and peripheral actions, and the carbamates in our present CTA experiments are not clear at this time. It is well known that AMN is more potent than AS in its gastrointestinal effects [14]. Perhaps larger dosages of AS would have given results similar to those obtained with AMN. Alternatively, AMN, but not AS, has potent ganglionic blocking activity, being significantly more effective in that respect than tetraethylammonium [9]. This property may be shared with BH, and this common ganglionic blocking property may also explain the interactions with the carbamates PS and PB in the CTA procedure. Actions of cholinergic drugs at the area postrema (AP) may also be important. In an animal not capable of emesis, viz., the rat, the AP remains significant in formation of CTAs. Lesions of this area prevent formation of drug-induced CTAs including CTAs induced by the anticholinergic drug scopolamine methyl nitrate [20]. The AP is peripherally accessible as the blood-brain barrier is comparatively weak at this point. The present experiments were not designed to evaluate the role of AP vs. peripheral gastrointestinal factors in the formation of CTAs by cholinergic drugs. Nevertheless, these experiments indicate the feasibility of demonstrating antagonism with the CTA procedure. Thus, the present findings suggest that the CTA procedure may demonstrate blockade of the behavioral changes produced by cholinergic drugs through the use of pharmacologic antagonists. The locus of the pharmacological antagonism remains a matter of speculation.

As the present findings demonstrate, significant pharmacological antagonism can be obtained even when both UCS's produce substantial CTAs in their own right. Therefore, the CTA procedure appears useful in (1) detecting the aversive stimulus properties of cholinergic drugs, and (2) exploring the specificity of CTAs produced by cholinergic drugs through use of pharmacologic antagonists.

ACKNOWLEDGEMENTS

The authors wish to express their thanks to Renee Alvarez and Larry Moore for assisting with the experiments, to Dr. John McDonough for providing valuable editorial advice, and to Ms. Melanie Murrow for editorial and administrative assistance.
REFERENCES