Ar$^+$ LASER EXCITED FLUORESCENCE OF DIATOMIC COMBUSTION RADICALS IN A FLAME

JOHN A. VANDERHOF
M. WARFIELD TEAGUE

NOVEMBER 1990

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

U.S. ARMY LABORATORY COMMAND

BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND
NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>1. AGENCY USE ONLY (Leave blank)</th>
<th>2. REPORT DATE</th>
<th>3. REPORT TYPE AND DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>November 1990</td>
<td>Final November 1989 - August 1990</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5. FUNDING NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar⁺ LASER EXCITED FLUORESCENCE OF DIATOMIC COMBUSTION RADICALS IN A FLAME</td>
<td>1L161102AH43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>John A. Vanderhoff</td>
<td>Ballistic Research Laboratory</td>
</tr>
<tr>
<td>M. Warfield Teague</td>
<td>ATTN: SLCBR-DD-T</td>
</tr>
<tr>
<td></td>
<td>Aberdeen Proving Ground, MD 21005-5066</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRL-TR-3173</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSORING/MONITORING AGENCY REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballistic Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>ATTN: SLCBR-DD-T</td>
<td></td>
</tr>
<tr>
<td>Aberdeen Proving Ground, MD</td>
<td></td>
</tr>
<tr>
<td>21005-5066</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12a. DISTRIBUTION / AVAILABILITY STATEMENT</th>
<th>12b. DISTRIBUTION CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. ABSTRACT (Maximum 200 words)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The uv prism selected lines of an Ar⁺ laser have been investigated for excitation of diatomic combustion radicals in a flame. Fluorescence excitation has been observed for CN, NH, and OH using the laser lines 379.5, 335.6, and 302.4 nm, respectively.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. SUBJECT TERMS</th>
<th>15. NUMBER OF PAGES</th>
<th>16. PRICE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion Laser, Combustion, Fluorescence, Gas Phase, Diatomics, Flames</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. SECURITY CLASSIFICATION OF REPORT</th>
<th>18. SECURITY CLASSIFICATION OF THIS PAGE</th>
<th>19. SECURITY CLASSIFICATION OF ABSTRACT</th>
<th>20. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
<td>UL</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>vii</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. EXPERIMENT</td>
<td>1</td>
</tr>
<tr>
<td>III. RESULTS</td>
<td>2</td>
</tr>
<tr>
<td>IV. CONCLUDING REMARKS</td>
<td>5</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>7</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>9</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Experimental Setup Showing the Sample Placed at the Intracavity Focus of the Laser</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Experimental Setup Showing the Sample Placed at an Extracavity Focus of the Laser</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Fluorescence of CN from a CH$_4$/N$_2$O Flame</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Emission and Fluorescence of CN in a CH$_4$/N$_2$O Flame, Expanded Scale</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Fluorescence and Emission of NH in a CH$_4$/N$_2$O Flame</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Fluorescence and Emission of OH from a CH$_4$/N$_2$O Flame</td>
<td>5</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

We thank Dr. A.J. Kotlar for the program calculations to determine some of the fluorescence excitation transitions and Dr. W.R. Anderson for a critical reading of the manuscript.
I. INTRODUCTION

At various times over the past ten years we have encountered laser excited fluorescences during the course of performing spontaneous Raman spectroscopy on atmospheric pressure premixed flames. These fluorescences come from accidental coincidences of ro-vibrational electronic transitions with prism-selected lasing lines of Ar$^+$ or Kr$^+$ ion lasers. At the elevated temperatures of a flame the combustion radicals have many more populated states than at room temperature, increasing the chance for a coincidence with a laser line. The combustion diatomic radicals that have been excited in this manner in a CH$_4$/N$_2$O premixed flame are CN1,2, OH3, NH3 and C$_2^{2,4-6}$. Recently, ion laser technology has been improved to allow higher power ultraviolet lasing to be commercially available. We report here a further investigation of coincidental fluorescence excitation of combustion diatomics from ultraviolet lines of an Ar$^+$ ion laser.

II. EXPERIMENT

Two different experimental arrangements were used in this study due to the limitation of available focusing optics. Fig. 1 illustrates the previously used intracavity arrangement. The excitation source is a Coherent Innova 200-25/7 argon ion laser which is operated in an intracavity mode. That is, the output coupler is removed from its normal position in the laser frame and the lasing cavity is extended (focusing provided) with two concave mirrors having radii of curvature of 100 and 30 cm. Depending on the amount of absorption of the sample and the lasing line the intracavity lasing power can be more than two orders of magnitude larger than the extracavity power. These intracavity mirrors, however, are not highly reflective below 350 nm; thus for those laser lines the experimental arrangement for the excitation source is shown in Fig. 2. The laser output coupler is now in the normal position and the output laser radiation is focused and recollimated with 20 cm focal length convex lenses. A flat mirror returns the radiation through the same path effectively doubling the amount of radiation in the sampling region.
Raman and fluorescence signals are gathered at right angles to the direction of the excitation source for both arrangements shown in Figs. 1 and 2. An f1 10 cm focal length quartz convex lens is the collection optic and an f2 20 cm focal length quartz convex lens is used to interface the collection optic to the 0.25 m Jarrell-Ash spectrometer. These optics magnify the sample region by a factor of two which fills the 0.1 mm entrance slit. Spectra are detected and recorded with an EG&G Princeton Applied Research Model 1456 intensified photodiode array which is coupled to the spectrometer. This detection system captures spectra of differing wavelength range depending on the order and line spacing of the grating used in the spectrometer. As an example a 1200 groove/mm grating operating in first order will simultaneously disperse a wavelength increment of about 40 nm over the approximately 700 intensified pixels of the photodiode array. A premixed laminar CH\textsubscript{4}/N\textsubscript{2}O flame is used for the source of hot combustion radical species. The N\textsubscript{2}O oxidizer facilitates the production of radical species which contain single C and/or N atoms (e.g. CN). This flame is supported on a small multi-hole metal burner head of 0.4 cm diameter. Although the flow conditions were not well regulated the flame composition was lean with a flame temperature around 2400 K (as determined by absorption spectroscopy).

III. RESULTS

There are twelve commercially advertised uv lasing lines of the Ar+ laser used in this study; all except two (385.8 and 308 nm) were made to lase. It is unclear why these two lines did not lase; perhaps there were problems with mirror coatings. However, an unadvertised Ar+ line at 379.5 nm was found to lase. Bridges and Chester7 have previously

![Figure 3. Fluorescence of CN from a CH\textsubscript{4}/N\textsubscript{2}O flame. The Δν=0,1 CN transitions and the laser line can be readily observed.](image1)

![Figure 4. Emission and fluorescence of CN in a CH\textsubscript{4}/N\textsubscript{2}O flame, expanded scale. Only the Δν=0 sequence can be observed at this resolution.](image2)
Table 1. Ar$^+$ laser pumped fluorescence excitation of selected diatomic combustion radicals.

<table>
<thead>
<tr>
<th>Discrete Ar$^+$ Laser Lines (nm)</th>
<th>Species</th>
<th>Excitation Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>528.7</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
| 514.5 | C$_2$ | d$_3$$^3\pi_g$ - a$_3$$^3\pi_u$ (0,0)
 R$_2$(10) + Q$_1$ (20) |
| 501.7 | C$_2$ | d$_3$$^3\pi_g$ - a$_3$$^3\pi_u$ (1,1)R$_2$(46)
 and (0,0)R$_2$(54) |
| 496.3 | - | - |
| 488.0 | - | - |
| 476.5 | - | - |
| 472.7 | C$_2$ | d$_3$$^3\pi_g$ - a$_3$$^3\pi_u$ (1,0)R$_1$(5) |
| 465.8 | C$_2$ | d$_3$$^3\pi_g$ - a$_3$$^3\pi_u$ (2,1)
 R$_2$(34) + R$_3$(34) |
| 464.5 | CN | B$_2^2\Sigma^+ - X^2\Sigma^+$
 (1,3) R$_1$(20) + R$_2$(20) |
| ** 379.5 | CN | B$_2^2\Sigma^+ - X^2\Sigma^+$ (2,2) |
| ** 363.8 | - | - |
| ** 351.4 | - | - |
| ** 351.1 | - | - |
| ** 335.8 | NH | A$_3^3\pi$ - X$^3\Sigma$ (0,0) |
| ** 334.5 | - | - |
| ** 333.6 | - | - |
| ** 305.5 | - | - |
| ** 302.4 | OH | A$_2^2\Sigma$ - X$^2\Pi$ (0,0)
 S$_{21}$(12) |
| ** 300.2 | - | - |
| ** 275.4 | - | - |

* Rotational transitions are given in terms of the ground state rotational quantum number N.*

** Present work

made this line lase in a pulsed dc discharge of argon. It was found that this line excites CN; the fluorescence excitation spectra are shown in Figs. 3 and 4 and described in Table 1. Note that all of the fluorescence excitation spectra presented here have the flame
emission contribution subtracted; and when there are two spectra on the same graph the vertical axis for the dashed line is on the right. Table 1 contains the laser lines, the combustion diatomic species excited and the excitation transition. Fluorescence excitation of CN together with the laser excitation line are clearly seen on Fig. 3. The wavelength coverage is sufficient to show both the $\Delta v = 0$ and 1 transitions for CN. The grating in the monochromator was changed from 1200 to 2400 grooves/mm for the spectrum shown in Fig. 4 and the $\Delta v = 0$ region for CN is shown with better detail. The solid line represents only the CN flame emission whereas the dotted line represents only the laser excited fluorescence from CN. It can be clearly seen that the predominant P-branch fluorescence peaks for $\Delta v = 0$ and 1 occurs in the (2,2) and (2,1) bandheads of CN, respectively. The R-branch excitation can be observed for the $\Delta v = 1$ sequence but is hidden under the laser line in the $\Delta v = 0$ sequence. It is clear that the primary fluorescence is coming from the $v' = 2$ (excited electronic) state. The energy of the laser line (379.5 nm) suggests that some rotational line in $v'' = 2$ (ground electronic) state is being pumped. A program which generates CN spectra from spectral constants indicates that the laser excitation line pumps the $B^2Σ - X^2Σ (2,2) N = 55$ transition of CN. These results are not consistent. That is, although the calculation gives an R-branch transition within experimental error of the laser line, it gives a wavelength for the corresponding P-branch transition which should be resolvable from the P-bandhead; and this is not experimentally observed. Consequently, the rotational level being pumped has not been assigned. One explanation for the failure to determine the proper rotational quantum number is that the spectral constants used in the generation of CN line positions cannot be reliably extrapolated to such high N values.

The 335.8 nm Ar$^+$ laser line is very close to the $A^3Π - X^3Σ (0,0)$ bandhead of NH and thus it is not surprising that this line pumps NH. Computer generated NH spectra indicate that there are 16 transitions within 0.05 nm of this laser line. These are transitions where the value of N ranges from 1 - 8. The NH emission from the flame is shown as a solid line on Fig. 5 and the (0,0) and (1,1) vibrational bandheads are labelled. The laser induced fluorescence and laser line are shown as the dashed line. The peak shifted slightly to the blue of the (0,0) emission bandhead contains contributions from both fluorescence and the laser line. No fluorescence was observed for NH in the CH$_4$/N$_2$O flame when using either the 334.5 or the 333.6 nm laser lines. These results are tabulated in Table 1.

There are three prominent Ar$^+$ uv laser lines around 300 nm which we made lase simultaneously with properly coated mirrors. We could not, however, obtain prism selected single line lasing. Thus, for the OH fluorescence results, the excitation line is
inferred from the prominent fluorescence lines. Both OH flame emission and laser induced fluorescence can be seen in Fig. 6 where again the emission is a solid line and the fluorescence a dashed line. The wavelength range included in Fig. 6 shows only one of the laser lines, which is at 305.5 nm. The other two laser lines are at 300.25 and 302.40 nm. The line that appears to pump OH is the 302.40 line which matches closely with the $S_{21}(12)$ transition. This transition wavelength is given as 302.399 nm by Dieke and Crosswhite. Excitation here would produce fluorescence in the $R_2(13)$, $Q_2(14)$ and the $P_2(15)$ lines which occur at 306.97, 311.68 and 316.96 nm, respectively. The locations of these lines coincide very well with the observed fluorescence emission peaks which are shown by the dashed line in Fig. 6.

![Figure 6. Fluorescence and emission of OH from a CH$_4$/N$_2$O flame.](image)

Twelve out of the twenty lines listed in Table 1 produced no noticeable excitation of the hot combustion diatomics (C$_2$, CN, CH, OH and NH). None of the Ar$^+$ laser lines excited CH. It should again be mentioned that for the Ar$^+$ uv laser lines below 350 nm the experiment was conducted extracavity. This arrangement produces low laser power which results in weaker fluorescence signals.

IV. CONCLUDING REMARKS

When comparing fluorescence excitation sources, prism selected lines of ion lasers are much simpler to use than various forms of tunable dye lasers. With this in mind, two situations are envisioned in which incorporating ion laser excitation as described in this paper would be the preferred choice: (a) experiments where the most important criterion is to track a species by its fluorescence signature irrespective of what transition or transitions are pumped and (b) experiments where the coincidentally pumped transition is of importance in the study.

This technique has been previously used to detect CN1 in a propellant flame burning in room air and we have used the 379.5 nm laser line in attempts to spatially profile CN in a propellant flame burning at 1.5 MPa nitrogen pressure. Thus far a clean well-defined fluorescence signal has not been seen and changes such as lowering the pressure and/or incorporating optics up for intracavity lasing may be necessary.

This technique is not limited to diatomic species. For larger species the number of transitions dramatically increases, and for two triatomics, NCO10 and NH$_2$11 there have been coincidental excitations reported for Ar$^+$ prism selected lines.
REFERENCES

<table>
<thead>
<tr>
<th>No of Copies</th>
<th>Organization</th>
</tr>
</thead>
</table>
| 2 | Administrator
Defense Technical Info Center
ATTN: DTIC-DDA
Cameron Station
Alexandria, VA 22304-6145 |
| 1 | HQDA (SARD-TR)
WASH DC 20310-0001 |
| 1 | Commander
US Army Materiel Command
ATTN: AMCDRA-ST
5001 Eisenhower Avenue
Alexandria, VA 22333-0001 |
| 2 | Commander
US Army Laboratory Command
ATTN: AMSLC-DL
Adelphi, MD 20783-1145 |
| 2 | Commander
US Army, ARDEC
ATTN: SMCAR-IMI-I
Picatinny Arsenal, NJ 07806-5000 |
| 2 | Commander
US Army, ARDEC
ATTN: SMCAR-TDC
Picatinny Arsenal, NJ 07806-5000 |
| 1 | Director
Benet Weapons Laboratory
US Army, ARDEC
ATTN: SMCAR-CCB-TL
Watervliet, NY 12189-4050 |
| 1 | Commander
US Army Armament, Munitions
and Chemical Command
ATTN: SMCAR-ESP-L
Rock Island, IL 61299-5000 |
| 1 | Commander
US Army Aviation Systems Command
ATTN: AMSAV-DACL
4300 Goodfellow Blvd.
St. Louis, MO 63120-1798 |
<table>
<thead>
<tr>
<th>No of Copies</th>
<th>Organization</th>
</tr>
</thead>
</table>
| 1 | Director
US Army Aviation Research
and Technology Activity
ATTN: SAVRT-R (Library)
M/S 219-3
Ames Research Center
Moffett Field, CA 94035-1000 |
| 1 | Commander
US Army Missile Command
ATTN: AMSMI-RD-CS-R (DOC)
Redstone Arsenal, AL 35898-5010 |
| 1 | Commander
US Army Tank-Automotive Command
ATTN: AMSTA-TSL (Technical Library)
Warren, MI 48397-5000 |
| 1 | Director
US Army TRADOC Analysis Command
ATTN: ATRC-WSR
White Sands Missile Range, NM 88002-5502 |
| (Class. only) | 1 Commandant
US Army Infantry School
ATTN: ATSH-CD (Security Mgr.)
Fort Benning, GA 31905-5660 |
| (Unclass. only) | 1 Commandant
US Army Infantry School
ATTN: ATSH-CD-CSO-OR
Fort Benning, GA 31905-5660 |
| 1 | Air Force Armament Laboratory
ATTN: AFATL/DLODL
Eglin AFB, FL 32542-5000
Aberdeen Proving Gr: _.d |
| 2 | Dir, USAMSAA
ATTN: AMXSY-D
AMXSY-MP, H. Cohen |
| 1 | Cdr, USAECOM
ATTN: AMSTE-TD |
| 3 | Cdr, CRDEC, AMCCOM
ATTN: SMCCR-RSP-A
SMCCR-MU
SMCCR-MSI |
| 1 | Dir, VLAMO
ATTN: AMSLC-VL-D |
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Commander US Army Research Office ATTN: R. Ghirardelli, D. Mann, R. Singleton, R. Shaw P.O. Box 12211 Research Triangle Park, NC 27709-2211</td>
</tr>
<tr>
<td>1</td>
<td>Commander US Army, ARDEC ATTN: SMCAR-AEE-BR, L. Harris Picatinny Arsenal, NJ 07806-5000</td>
</tr>
<tr>
<td>2</td>
<td>Commander US Army Missile Command ATTN: AMSMI-RK, D.J. Ifshin, W. Wharton Redstone Arsenal, AL 35898</td>
</tr>
<tr>
<td>1</td>
<td>Commander US Army Missile Command ATTN: AMSMI-RKA, A.R. Maykut Redstone Arsenal, AL 35898-5249</td>
</tr>
<tr>
<td>1</td>
<td>Office of Naval Research Department of the Navy ATTN: R.S. Miller, Code 432 800 N. Quincy Street Arlington, VA 22217</td>
</tr>
<tr>
<td>1</td>
<td>Commander Naval Air Systems Command ATTN: J. Ramnarace, AIR-54111C Washington, DC 20360</td>
</tr>
<tr>
<td>1</td>
<td>Commander Naval Surface Warfare Center ATTN: J.L. East, Jr., G-23 Dahlgren, VA 22448-5000</td>
</tr>
<tr>
<td>2</td>
<td>Commander Naval Surface Warfare Center ATTN: R. Bernecker, R-13 G.B. Wilmot, R-16 Silver Spring, MD 20903-5000</td>
</tr>
<tr>
<td>5</td>
<td>Commander Naval Research Laboratory ATTN: M.C. Lin, J. McDonald, E. Oran, J. Shnur, R.J. Doyle, Code 6110 Washington, DC 20375</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer Naval Underwater Systems Center Weapons Dept. ATTN: R.S. Lazar/Code 36301 Newport, RI 02840</td>
</tr>
<tr>
<td>2</td>
<td>Commander Naval Weapons Center ATTN: T. Boggs, Code 388, T. Parr, Code 3895 China Lake, CA 93555-6001</td>
</tr>
<tr>
<td>1</td>
<td>Superintendent Naval Postgraduate School Dept. of Aeronautics ATTN: D.W. Netzer Monterey, CA 93940</td>
</tr>
<tr>
<td>3</td>
<td>AL/LSCF ATTN: R. Corley, R. Geisler, J. Levine Edwards AFB, CA 93523-5000</td>
</tr>
<tr>
<td>1</td>
<td>AL/MKPB ATTN: B. Goshgarian Edwards AFB, CA 93523-5000</td>
</tr>
<tr>
<td>1</td>
<td>AFOSR ATTN: J.M. Tishkoff Bolling Air Force Base Washington, DC 20332</td>
</tr>
<tr>
<td>1</td>
<td>OSD/SDIO/IST ATTN: L. Caveny Pentagon Washington, DC 20301-7100</td>
</tr>
<tr>
<td>1</td>
<td>Commandant USAFAS ATTN: ATSF-TSM-CN Fort Sill, OK 73503-5600</td>
</tr>
<tr>
<td>1</td>
<td>F.J. Seiler ATTN: S.A. Shackleford USAF Academy, CO 80840-6528</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| 1 | University of Dayton Research Institute
ATTN: D. Campbell
AL/PAP
Edwards AFB, CA 93523 |
| 1 | NASA
Langley Research Center
Langley Station
ATTN: G.B. Northam/MS 168
Hampton, VA 23665 |
| 4 | National Bureau of Standards
ATTN: J. Hastie
M. Jacox
T. Kashiwagi
H. Semerjian
US Department of Commerce
Washington, DC 20234 |
| 1 | Aerojet Solid Propulsion Co.
ATTN: P. Micheli
Sacramento, CA 95813 |
| 1 | Applied Combustion Technology, Inc.
ATTN: A.M. Varney
P.O. Box 607885
Orlando, FL 32860 |
| 2 | Applied Mechanics Reviews
The American Society of Mechanical Engineers
ATTN: R.E. White
A.B. Wenzel
345 E. 47th Street
New York, NY 10017 |
| 1 | Atlantic Research Corp.
ATTN: M.K. King
5390 Cherokee Avenue
Alexandria, VA 22314 |
| 1 | Atlantic Research Corp.
ATTN: R.H.W. Waesche
7511 Wellington Road
Gainesville, VA 22065 |
| 1 | AVCO Everett Research Laboratory Division
ATTN: D. Stickler
2385 Revere Beach Parkway
Everett, MA 02149 |
| 1 | Battelle Memorial Institute
Tactical Technology Center
ATTN: J. Huggins
505 King Avenue
Columbus, OH 43201 |
| 1 | Cohen Professional Services
ATTN: N.S. Cohen
141 Channing Street
Redlands, CA 92373 |
| 1 | Exxon Research & Eng. Co.
ATTN: A. Dean
Route 22E
Annandale, NJ 08801 |
| 1 | Ford Aerospace and Communications Corp.
DIVAD Division
Div. Hq., Irvine
ATTN: D. Williams
Main Street & Ford Road
Newport Beach, CA 92663 |
| 1 | General Applied Science Laboratories, Inc.
77 Raynor Avenue
Ronkonkama, NY 11779-6649 |
| 1 | General Electric Ordnance Systems
ATTN: J. Mandzy
100 Plastics Avenue
Pittsfield, MA 01203 |
| 2 | General Motors Res Labs
Physics Department
ATTN: T. Sloan
R. Teets
Warren, MI 48090 |
| 2 | Hercules, Inc.
Allegheny Ballistics Lab.
ATTN: W.B. Walkup
E.A. Yount
P.O. Box 210
Rocket Center, WV 26726 |
| 1 | Honeywell, Inc.
Government and Aerospace Products
ATTN: D.E. Broden/
MS MN50-2000
600 2nd Street NE
Hopkins, MN 55343 |
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Honeywell, Inc.</td>
<td>ATTN: R.E. Tompkins</td>
<td>2 Princeton Combustion Research Laboratories, Inc.</td>
<td>ATTN: M. Summerfield N.A. Messina</td>
</tr>
<tr>
<td>1 IBM Corporation</td>
<td>ATTN: A.C. Tam Research Division</td>
<td>1 Hughes Aircraft Company</td>
<td>ATTN: T.E. Ward 8433 Fallbrook Avenue Canoga Park, CA 91303</td>
</tr>
<tr>
<td>1 IIT Research Institute</td>
<td>ATTN: R.F. Remaly 10 West 35th Street Chicago, IL 60616</td>
<td>1 Rockwell International Corp. Rocketdyne Division</td>
<td>ATTN: J.E. Flanagan/HB02 6633 Canoga Avenue Canoga Park, CA 91304</td>
</tr>
<tr>
<td>1 Director Lawrence Livermore National Laboratory</td>
<td>ATTN: C. Westbrook M. Costantino</td>
<td>4 Sandia National Laboratories Division 8354</td>
<td>ATTN: R. Cattolica S. Johnston P. Mattner D. Stephenson Livermore, CA 94550</td>
</tr>
<tr>
<td>1 Lockheed Missiles & Space Co.</td>
<td>ATTN: George Lo 3251 Hanover Street Dept. 52-35/B204/2 Palo Alto, CA 94304</td>
<td>1 Science Applications, Inc.</td>
<td>ATTN: R.B. Edelman Dept. 52.35/B204/2 23146 Cumorah Crest Woodland Hills, CA 91364</td>
</tr>
<tr>
<td>1 Los Alamos National Lab</td>
<td>ATTN: B. Nichols T7, MS-B284</td>
<td>3 SRI International</td>
<td>ATTN: G. Smith D. Crosley D. Golden 333 Ravenswood Avenue Menlo Park, CA 94025</td>
</tr>
<tr>
<td>1 National Science Foundation</td>
<td>ATTN: A.B. Harvey Washington, DC 20550</td>
<td>1 Stevens Institute of Tech. Davidson Laboratory</td>
<td>ATTN: R. McAlevey, III Hoboken, NJ 07030</td>
</tr>
<tr>
<td>1 Olin Ordnance</td>
<td>ATTN: V. McDonald, Library P.O. Box 222 St. Marks, FL 32355-0222</td>
<td>1 Thiokol Corporation Elkton Division</td>
<td>ATTN: S.F. Palopoli P.O. Box 241 Elkton, MD 21921</td>
</tr>
<tr>
<td>1 Paul Gough Associates, Inc.</td>
<td>ATTN: P.S. Gough 1048 South Street Portsmouth, NH 03801-5423</td>
<td>1 Morton Thiokol, Inc. Huntsville Division</td>
<td>ATTN: J. Deur Huntsville, AL 35807-7501</td>
</tr>
<tr>
<td>Copies</td>
<td>Organization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 3 | Thiokol Corporation
Wasatch Division
ATTN: S.J. Bennett
P.O. Box 524
Brigham City, UT 84302 |
| 3 | United Technologies Corp.
Chemical Systems Division
ATTN: R.S. Brown
T.D. Myers (2 copies)
P.O. Box 49028
San Jose, CA 95161-9028 |
| 1 | United Technologies Research Center
ATTN: A.C. Eckbreth
East Hartford, CT 06108 |
| 1 | Universal Propulsion Company
ATTN: H.J. McSpadden
Black Canyon Stage 1
Box 1140
Phoenix, AZ 85029 |
| 1 | Verity Technology, Inc.
ATTN: E.B. Fisher
4845 Millersport Highway
P.O. Box 305
East Amherst, NY 14051-0305 |
| 1 | Brigham Young University
Dept. of Chemical Engineering
ATTN: M.W. Beckstead
Provo, UT 84058 |
| 1 | California Institute of Tech.
Jet Propulsion Laboratory
ATTN: L. Strand/MS 512/102
4800 Oak Grove Drive
Pasadena, CA 91009 |
| 1 | Case Western Reserve Univ.
Div. of Aerospace Sciences
ATTN: J. Tien
Cleveland, OH 44135 |
| 1 | Cornell University
Department of Chemistry
ATTN: T.A. Cool
Baker Laboratory
Ithaca, NY 14853 |
| 1 | University of California,
Los Alamos Scientific Lab.
P.O. Box 1663, Mail Stop B216
Los Alamos, NM 87545 |
| 1 | University of California,
San Diego
ATTN: F.A. Williams
AMES, B010
La Jolla, CA 92030 |
| 1 | University of Colorado at
Boulder
ATTN: J. Daily
Engineering Center
Campus Box 427
Boulder, CO 80309-0427 |
| 2 | University of Southern California
Dept. of Chemistry
ATTN: S. Benson
C. Wittig
Los Angeles, CA 90007 |
| 1 | University of Delaware
Chemistry Department
Newark, DE 19711 |
| 1 | University of Florida
Dept. of Chemistry
ATTN: J. Winefordner
Gainesville, FL 32611 |
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
</table>
| 3 | Georgia Institute of Technology
School of Aerospace Engineering
ATTN: E. Price
W.C. Strahle
B.T. Zinn
Atlanta, GA 30332 |
| 1 | University of Illinois
Dept. of Mech. Eng.
ATTN: H. Krier
144MEB, 1206 W. Green St.
Urbana, IL 61801 |
| 1 | Johns Hopkins University/APL
Chemical Propulsion Information Agency
ATTN: T.W. Christian
Johns Hopkins Road
Laurel, MD 20707 |
| 1 | University of Michigan
Gas Dynamics Lab
Aerospace Engineering Bldg.
ATTN: G.M. Faeth
Ann Arbor, MI 48109-2140 |
| 1 | University of Minnesota
Dept. of Mechanical Engineering
ATTN: E. Fletcher
Minneapolis, MN 55455 |
| 3 | Pennsylvania State University
Applied Research Laboratory
ATTN: K.K. Kuo
H. Palmer
M. Micci
University Park, PA 16802 |
| 1 | Pennsylvania State University
Dept. of Mechanical Engineering
ATTN: V. Yang
University Park, PA 16802 |
| 1 | Polytechnic Institute of NY
Graduate Center
ATTN: S. Lederman
Route 110
Farmingdale, NY 11735 |
| | Princeton University
Forrestal Campus Library
ATTN: K. Brezinsky
I. Glassman
P.O. Box 710
Princeton, NJ 08540 |
| 1 | Purdue University
School of Aeronautics and Astronautics
ATTN: J.R. Osborn
Griswold Hall
West Lafayette, IN 47906 |
| 1 | Purdue University
Department of Chemistry
ATTN: E. Grant
West Lafayette, IN 47906 |
| 2 | Purdue University
School of Mechanical Engineering
ATTN: N.M. Laurendeau
S.N.B. Murthy
TSPC Chaffee Hall
West Lafayette, IN 47906 |
| 1 | Rensselaer Polytechnic Inst.
Dept. of Chemical Engineering
ATTN: A. Fontijn
Troy, NY 12181 |
| 1 | Stanford University
Dept. of Mechanical Engineering
ATTN: R. Hanson
Stanford, CA 94305 |
| 1 | University of Texas
Dept. of Chemistry
ATTN: W. Gardiner
Austin, TX 78712 |
| 1 | University of Utah
Dept. of Chemical Engineering
ATTN: G. Flandro
Salt Lake City, UT 84112 |
| 1 | Virginia Polytechnic Institute and State University
ATTN: J.A. Schetz
Blacksburg, VA 24061 |
No. of Copies Organization

1 Freedman Associates
 ATTN: E. Freedman
 2411 Diana Road
 Baltimore, MD 21209-1525
Intentionally left blank.
USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts.

1. BRL Report Number BRL-TR-3173 Date of Report NOVEMBER 1990

2. Date Report Received ________________________________

3. Does this report satisfy a need? (Comment on purpose related project, or other area of interest for which the report will be used.) ________________________________

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.) ________________________________

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided, or efficiencies achieved, etc? If so, please elaborate. ________________________________

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.) ________________________________

Name

CURRENT
ADDRESS

Organization

Address

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the New or Correct Address in Block 6 above and the Old or Incorrect address below.

Name

OLD
ADDRESS

Organization

Address

City, State, Zip Code

(Remove this sheet, fold as indicated, staple or tape closed, and mail.)