Chemical Preparation Laboratory for IND Candidate Compounds

Final Report

E.M. Schubert, Ph.D.

August 10, 1990

(January 17, 1985 - January 16, 1990)

Supported by

U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND
Fort Detrick, Frederick, Maryland 21702-5012

Contract No. DAMD17-85-C-5071

Pharm-Eco Laboratories, Inc.
2355 Chain Drive, Simi Valley, California 93065

DOD DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.
Chemical Preparation Laboratory for IND Candidate Compounds

Ernst M. Schubert, Ph. D.

Final Report

FROM 1/17/85 TO 1/16/90

1990 August 10

69

During the reporting period several classes of compounds were prepared on scales ranging from several grams to kilogram quantities. These classes of IND candidate compounds can be subdivided into modified nucleosides, alkaloids with synthetically modified precursors and analogues, and miscellaneous heterocycles that possess biological activities. All compounds were submitted for antiviral testing.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Summary</td>
<td>3</td>
</tr>
<tr>
<td>II. Foreword</td>
<td>4</td>
</tr>
<tr>
<td>III. Cumulative list of compounds completed and delivered to U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) January 17, 1985 to January 16, 1990.</td>
<td>5</td>
</tr>
<tr>
<td>IV. Structures of Compounds Submitted</td>
<td>8</td>
</tr>
<tr>
<td>V. Overview and Discussion</td>
<td>31</td>
</tr>
<tr>
<td>VI. Synthetic Reaction Schemes</td>
<td>33</td>
</tr>
<tr>
<td>VII. Discussion of two compounds pending submission</td>
<td>44</td>
</tr>
<tr>
<td>VIII. Acknowledgements</td>
<td>45</td>
</tr>
<tr>
<td>IX. Appendix:</td>
<td>46</td>
</tr>
<tr>
<td>A. Presentations at Scientific Meetings</td>
<td>46</td>
</tr>
<tr>
<td>B. Reprints of Publications</td>
<td>48</td>
</tr>
<tr>
<td>Improved Synthesis of Lycoricidine Triacetate</td>
<td>49</td>
</tr>
<tr>
<td>Preparation and Antiviral Activity of Several Deoxygenated Ribavirin and Tiazofurin Derivatives</td>
<td>51</td>
</tr>
<tr>
<td>X. Distribution List</td>
<td>69</td>
</tr>
</tbody>
</table>
I. Summary

During the reporting period 55 submissions have been sent to the contracting agency, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland. The delivered compounds had been synthesized by the contractor according to published procedures while strictly following current Good Manufacturing Practice (CGMP). In addition exploratory research was executed for scale-up preparations to allow for the bulk synthesis of IND compounds as potential antiviral agents.

The compounds submitted for testing can be subdivided into three structural classes: modified nucleosides, alkaloid-type natural products, and miscellaneous heterocyclic aromatics and aliphatics. The complexities of the syntheses ranged from one-step procedures to 18-step intricate structural manipulations to yield from grams up to multi-kilo batches of final products.
II. Foreword

All information in this report is the property of the U.S. Army Medical Research and Development Command. The contractor retains no copyright or patent rights.

All target compounds reported herein were prepared in strict compliance with "Current Good Manufacturing Procedures" (CGMP) guidelines. All intermediates and final products unreported in the chemical literature were fully characterized by elemental and spectral analyses.
III. Cumulative list of compounds completed and delivered to U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) January 17, 1985 to January 16, 1990.

I.D. NO.	COMPOUND	AMOUNT	SYN. REFERENCE *
AVS 1	1-β-D-Ribofuranosyl-1,2,4-triazole-3-carboxamide (Ribavirin)	2.0 Kg	1985, p. 17
		571 g	1986, p. 12
AVS 52	3-β-D-ribofuranosyl-1(H)pyrazolo[4,3-d]-pyrimidin-7(6H)thione (Thioformycin-B)	10.2 g	1985, p. 6
		5.85 g	1989, p. 7
AVS 79	9-β-D-ribofuranosyl-purine-6-thiocarboxamide	20.0 g	1985, p. 8
		14.5 g	1988, p. 45
AVS 94	4-Hydroxy-1,2,3-triazole-5-carboxamide	12.5 g	1988, p. 39
AVS 206	1-β-D-Ribofuranosyl-1,2,4-triazole-3-carboxamidine hydrochloride	28.0 g	1986, p. 7
		70.0 g	1987, p. 8
		410.4 g	1988, p. 10
		1948 g	1988, p. 41
AVS 206 AE	1-β-D-Ribofuranosyl-1,2,4-triazole-3-methylamidate	1.15 g	
AVS 215	3-Deazaguanosine	24.0 g	1987, p. 29
AVS 222	3-Bromo-4-chloropyrazolo[3,4-d]pyrimidine	63.1 g	1985, p. 12
AVS 253	2-β-D-ribofuranosylselenazo-4-carboxamide	37.8 g	1985, p. 13
		36.8 g	1986, p. 25
AVS 253 TA	2',3',5'-Tri-O-acetyl-2-β-D-ribofuranosyl-selenazo-4-carboxamide	13.0 g	1986, p. 28
AVS 266	4-Iminopyrazolo[3,4-d]-1,3-thiazine-6(7H)thione	15.4 g	1986, p. 13
AVS 272	3-Deazaguanine	25.3 g	1987, p. 29
AVS 332	Methyl-4-chloro-5-(2,4-dichlorophenyl)-1(H)-pyrazole-3-carboxylate	25.0 g	1986, p. 9
AVS 353	Combretastatin	9.5 g	1987, p. 20
AVS 353 AC	Combretastatin acetate	1.0 g	1987, p. 23
AVS 360	Lycoricidine Triacetate	4.6 g	1986, p. 19
		7.1 g	1988, p. 14
AVS 360 DH	4αH-r,αii-trans,2H-cis,10bH-trans,1,2-Dihydroxy-8,9-methylenedioxy-1,2-4α,10b-tetrahydro-6(5H)phenanthridone	2.5 g	1986, p. 31
<table>
<thead>
<tr>
<th>I.D. NO.</th>
<th>COMPOUND</th>
<th>AMOUNT</th>
<th>SYN. REFERENCE * (ANN. CONT. RPT.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVS 360 HP</td>
<td>4H-r,1H-trans,2H-cis,10bH-trans-1-(2',Tetrahydropyranlyoxy)-2-hydroxy-8,9-methylenedioxy-1,2,4a,10b-tetrahydro-6(5H)phenanthridone</td>
<td>6.4 g</td>
<td>1986, p. 30</td>
</tr>
<tr>
<td>AVS 360 MA</td>
<td>1-Hydroxy-2-acetyl-lycoricidine</td>
<td>4.0 g</td>
<td>1987, p. 44</td>
</tr>
<tr>
<td>AVS 360 MA</td>
<td>4aH-r,1H-trans,2H-cis,3H-trans,4H-trans,10bH-trans-1,3,4,3-Trihydroxy-2-acetoxy-8,9-methylenedioxy-1,2,3,4,4a,10b-hexahydro-6(5H)phenanthridone</td>
<td>1.23 g</td>
<td>1988, p. 16</td>
</tr>
<tr>
<td>AVS 360 OH</td>
<td>4aH-r,1H-trans,2H-cis,3H-trans,4H-trans-1-Hydroxy,2,3,4-triacetoxy-8,9-methylenedioxy-1,2,3,4,4a,10b-hexahydro-6(5H)phenanthridone</td>
<td>450 mg</td>
<td>1987, p. 38</td>
</tr>
<tr>
<td>AVS 360 TA</td>
<td>4aH-r,1H-trans,2H-cis,3H-trans,4H-trans,10bH-trans-1,2,3,4-Tetraacetoxy-8,9-methylenedioxy-1,2,3,4,4a,10b-hexahydro-6(5H)phenanthridone</td>
<td>1.84 g</td>
<td>1987, p. 61</td>
</tr>
<tr>
<td>AVS 360 TH</td>
<td>4aH-r,1H-trans,2H-cis,3H-trans,4H-trans,10bH-trans-1,2,3,4-Tetrahydroxy-8,9-methylenedioxy-1,2,3,4,4a,10b-hexahydro-6(5H)phenanthridone</td>
<td>4.4 g</td>
<td>1987, p. 49</td>
</tr>
<tr>
<td>AVS 439</td>
<td>7-Carbamoyl-1-L-D-ribofuranosylimidazo-[1,2-b]pyrazol-6-yl-methyl sulfone</td>
<td>12.0 g</td>
<td>1986, p. 14</td>
</tr>
<tr>
<td>AVS 593</td>
<td>cis,trans 3,6-diethoxy-tetrazadiphosphorine-3,6-disulfide</td>
<td>10.15 g</td>
<td>1985, p. 16</td>
</tr>
<tr>
<td>AVS 4071</td>
<td>1-L-D-Ribofuranosyl-1,2,4-triazole-3-methylimidale</td>
<td>21.0 g</td>
<td>1988, p. 23</td>
</tr>
<tr>
<td>AVS 4600</td>
<td>1-(2,3-Dideoxy-ß-D-glycero-pent-2-enofuranosyl)1,2,4-triazole-3-carboxamide</td>
<td>1.5 g</td>
<td>1988, p. 30</td>
</tr>
<tr>
<td>AVS 4601</td>
<td>2',3'-Dideoxyribavirin</td>
<td>1.1 g</td>
<td>1988, p. 31</td>
</tr>
<tr>
<td>AVS 4602</td>
<td>3'-Deoxyribavirin</td>
<td>1.1 g</td>
<td>1988, p. 28</td>
</tr>
<tr>
<td>AVS 4603</td>
<td>1-(2,3'-Anhydro-ß-D-ribofuranosyl)-1,2,4-triazole-3-carboxamide</td>
<td>1.6 g</td>
<td>1988, p. 27</td>
</tr>
<tr>
<td>AVS 4604</td>
<td>2',3'-Dideoxytiazofurin</td>
<td>1.7 g</td>
<td>1988, p. 33</td>
</tr>
<tr>
<td>AVS 4605</td>
<td>2-(5'-Hydroxymethylfuran-2-yl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.D. NO.</td>
<td>COMPOUND</td>
<td>AMOUNT</td>
<td>SYN. REFERENCE * (ANN. CONT. RPT.)</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>AVS 4606</td>
<td>2',3'-Dideoxy-2',3'-didehydro-tiazofurin</td>
<td>1.2 g</td>
<td>1988, p. 35</td>
</tr>
<tr>
<td>AVS 5058</td>
<td>1-ß-D-Ribofuranosyl-1,2,4-triazole-N-methyl-carboximidate hydrochloride</td>
<td>15.1 g</td>
<td>1989, p. 13</td>
</tr>
<tr>
<td>ARA ADA</td>
<td>9-(2',3'-Di-O-acetyl-ß-D-arabinofuranosyl) adenine</td>
<td>23.0 g, 25.5 g</td>
<td>1987, p. 18, 1987, p. 18</td>
</tr>
<tr>
<td>AVS DAU</td>
<td>3-Deazauridine</td>
<td>45.0 g</td>
<td>1986, p. 11</td>
</tr>
<tr>
<td>AVS INT</td>
<td>4aH-r,1H-trans,1H-Hydroxy-1,9-methylenedioxy-1,4,4a,10b-tetrahydro-6(5H)phenanthridone</td>
<td>220 mg</td>
<td>1987, p. 34</td>
</tr>
<tr>
<td>AVS INT II</td>
<td>1-Hydroxy-8,9-methylene dioxy-1,4,4a,10b-tetrahydro-6(5H)-phenanthridone</td>
<td>2.08 g</td>
<td>1988, p. 22</td>
</tr>
<tr>
<td>AVS OCT</td>
<td>4-nitro-3-(octanoyloxy) benzoic acid</td>
<td>12.0 g</td>
<td>1989, p. 14</td>
</tr>
<tr>
<td>AVS RCOOH</td>
<td>1-ß-D-Ribofuranosyl-1,2,4-triazole-3-carboxylic acid</td>
<td>4.7 g</td>
<td>1988, p. 12</td>
</tr>
<tr>
<td>AVS TAE</td>
<td>Methyl-1,2,4-triazole-3-carboxylate</td>
<td>5.0 g</td>
<td>1989, p. 12</td>
</tr>
<tr>
<td>AVS TCA</td>
<td>1,2,4-triazole-3-carboxamide</td>
<td>4.0 g</td>
<td>1988, p. 11</td>
</tr>
<tr>
<td>AVS TCOOH</td>
<td>1,2,4-triazole-3-carboxylic acid</td>
<td>4.0 g</td>
<td>1988, p. 10</td>
</tr>
<tr>
<td>AVS TFN</td>
<td>Thiazofurin nitrile</td>
<td>380 mg</td>
<td>1987, p. 32</td>
</tr>
</tbody>
</table>

IV. Structures of Compounds Submitted
1-β-D-Ribofuranosyl-1,2,4-triazole-3-carboxamide (Ribavirin)

AVS 1

3-β-D-ribofuranosyl-1(H)pyrazolo[4,3-d]-pyrimidin-7(6H)thione (Thioformycin-B)

AVS 52
9-β-D-ribofuranosyl-purine-6-thiocarboxamide

AVS 79

4-Hydroxy-1,2,3-triazole-5-carboxamide

AVS 94
1-β-D-Ribofuranosyl-1,2,4-triazole-3-carboxamidine hydrochloride

AVS 206

1-β-D-Ribofuranosyl-1,2,4-triazole-3-methylamidate

AVS 206 AE
3-Deazaguanosine
AVS 215

3-Bromo-4-chloropyrazolo[3,4-d]pyrimidine
AVS 222
2-β-D-ribofuranosylselenazo-4-carboxamide

AVS 253

\[
\begin{array}{c}
\text{H}_2\text{N} \quad \text{N} \\
\text{HO} \quad \text{N} \\
\text{Se} \\
\text{HO} \quad \text{HO} \quad \text{OH}
\end{array}
\]

2′,3′,5′-Tri-O-acetyl-2-β-D-ribo-furanosyl-selenazo-4-carboxamide

AVS 253 TA

\[
\begin{array}{c}
\text{H}_2\text{N} \quad \text{O} \\
\text{AcO} \quad \text{N} \\
\text{Se} \\
\text{AcO} \quad \text{OAc}
\end{array}
\]
4-Iminopyrazolo[3,4-d]-1,3-thiazine-6(7H)thione

AVS 266

3-Deazaguanine

AVS 272
Methyl-4-chloro-5-(2,4-dichlorophenyl)-1 (H)-pyrazole-3-carboxylate

Combretastatin

AVS 332

AVS 353

15
Combretastatin acetate

Combi 335

AVS 353 AC

Lycoricidine Triacetate

AVS 360
4aH-r,1H-trans,2H-cis,10bH-trans,1,2-Dihydroxy-8,9-methylenedioxy-1,2-4a,10b-tetrahydro-6(5H)phenanthridone

AVS 360 DH

1-Hydroxy-2-acetyl-lycoricidine

AVS 360 MA
4H-r,1H-trans,2H-cis,10bH-trans-1-(2',Tetrahydropyranloxy)-2-hydroxy-8,9-methylenedioxy-1,2,4a,10b-tetra-hydro-6(5H)phenanthridone

AVS 360 HP

4aH-r,1H-trans,2H-cis,3H-trans,4H-trans,10bH-trans,1,2,3,4-Tetraacetoxy-8,9-methylenedioxy-1,2,3,4,4a,10b-hexahydro-6(5H)phenanthridone

AVS 360 TA
4aH-1H-trans,2H-cis,3H-trans,4H-trans,10bH-trans-1,2,3,4-Tetrahydroxy-8,9-methylenedioxy-1,2,3,4,4a,10b-hexahydro-6(5H)phenanthridone

AVS 360 TH

7-Carbamoyl-1-β-D-ribofuranosylimidazo-[1,2-b]pyrazol-6-yl-methylsulfone

AVS 439
cis, trans 3,6-diethoxy-tetrazadiphosphorine-3,6-disulfide

AVS 593

1-β-D-Ribofuranosyl-1,2,4-triazole-3-methylimidale

AVS 4071
1-(2,3-Dideoxy-β-D-glycero-pent-2-enofuranosyl)1,2,4-triazole-3-carboxamide

2',3'-Dideoxyribavirin
3'-Deoxyribavirin

AVS 4602

1-(2,3'-Anhydro-β-D-ribofuranosyl)-1,2,4-triazole-3-carboxamide

AVS 4603
2',3'-Dideoxytiazofurin

AVS 4604

2-(5'-Hydroxymethylfuran-2-yl)thiazole-4-carboxamide

AVS 4605
2',3'-Dideoxy-2',3'-didehydro-tiazofurin

AVS 4606

1-β-D-Ribofuranosyl-1,2,4-triazole-N-methyl-carboximidate hydrochloride

AVS 5058
9-(2',3'-Di-O-acetyl-β-D-arabinofuranosyl)adenine

ARA ADA

2(Tri-O-acetyl-β-D-ribofuranosyl)thiazole-4-carboxamide

AVS ATF

25
3-Deazaadenosine

$4aH\cdot r, 1H\cdot trans, 1H\cdot Hydroxy-1,9\cdot methylenedioxy-1,4,4a,10b\cdot tetrahydro-6(5H)\cdot phenanthridone$

AVS INT
4aH-r,1H-trans,1-(2'-Tetrahydropyranloxy)-8,9-methylenedioxy-1,4,4a,10b-tetrahydro-6(5H)-phenanthridone

AVS INT 12

4-nitro-3-(octanoyloxy) benzoic acid

AVS OCT
1-β-D-Ribofuranosyl-1,2,4-triazole-3-carboxylic acid

AVS RCOOH

Methyl-1,2,4-triazole-3-carboxylate

AVS TAE
1,2,4-triazole-3-carboxamide

AVS TCA

1,2,4-triazole-3-carboxylic acid

AVS TCOOH
Thiazofurin nitrile

AVS TFN

4aH-r,1H-trans,2H-cis,3H-trans,4H-trans,1-Hydroxy,2,3,4-triacetoxyc-8,9-methylenedioxy-1,2,3,4,4a,10b-hexahydro-6(5H)phenanthridone

AVS 360 OH
V. Overview and Discussion

During the contract period from January 17, 1985 to January 16, 1990 a total of 55 submissions had been sent to the U.S. Army Medical Research Institute of Infectious Disease (USAMRIID). The majority of the compounds had been previously reported in the literature of exhibiting various degrees of antiviral activities. Such compounds were prepared on scales ranging from several grams to up to 2kg bulk quantities. The structures of several known antiviral or antitumor compounds were modified synthetically to possibly yield novel analogues that possess enhanced activities or show a specific mode of action. Based on their structural skeletons the submitted compounds fall into three groups of classes: modified nucleosides, natural products, and miscellaneous heterocycles.

A substantial amount of effort was allocated to large-scale preparation of 1-β-D-Ribofuranosyl-1,2,4-triazole-3-carboxamide (Ribavirin) (Scheme 1) Ribavirin with its documented antiviral activity was also the starting material to synthesize the carboxamidine analogue in greater quantities to enable large-scale in vivo studies in the treatment of Hemorrhagic Fever with Renal Syndrome, where this modified derivative showed pronounced efficacy over Ribavirin.

Comparative structural studies between Ribavirin and Thiazofurin, a C-nucleoside of known antiviral activity, were performed to produce several deoxygenated species. Analogous to active dideoxy purine nucleosides it was hoped that such synthetic manipulations would produce entities with greater antiviral activities, however, preliminary test results do not indicate such desirable effects. The chemical transformations leading to such deoxy-analogues of ribavirins and thiazofurin are shown in Schemes 2 and 3 respectively, and this study, submitted to the Journal of Nucleosides and Nucleotides, is presently in print.

In addition to preparing Ribavirin and structurally modifying commercially available nucleosides, several non-natural nucleoside were synthesized when starting with basic building blocks to produce the target compounds via a multi-step syntheses. Schemes 4, 5, and 6 show the preparations of 3-Deazaguanosine (AVS 215), 2-β-D-ribofuranosylselenazo-4-carboxamide (AVS 253, Selenazole) and 7-carbamoyl-1-β-D-ribofuranosylimidazo[l,2-b]pyrazol-6-yl-methyl-sulfone (AVS 439) respectively.

A significant amount of time and efforts was directed towards the synthesis of two natural products which had been previously isolated in minute quantities from plant extracts by researchers in Japan and the United States. Combretastatin (AVS 353), reported by C. Pettit, Arizona State University, was synthesized by the contractor according to Scheme 7, where the material was obtained as a racemic mixture. The second compound, Lycoricidine Triacetate (AVS 360), had been previously isolated and synthesized by Ohta et al., Kyote College of Pharmacy, following a 21-step synthetic pathway. The contractor was able to circumvent several manipulations and obtained the correct steric hydroxyl orientation as the key step, thus shortening the synthetic route to 17 steps, as shown in Scheme 8. The successful one-step cis-hydroxylation using osmium tetroxide presented a novel synthetic tool, and the study was submitted to and published in Synthesis, Aug. 1987.

A number of intermediates obtained during the lycoricidine synthesis, previously not available from natural sources and unreported in the literature, were submitted for antiviral screenings. Studies are still continuing with this class of compounds that have the phenanthridone skeleton in common, and a publication summarizing these investigations is the preparatory stage, to be submitted to the Journal of Medicinal Chemistry shortly.
The heterocycles produced under this contract were mostly nucleobases, related to nucleosides that were prepared during the same period, however, their syntheses could differ greatly, as shown for 7-Deazaguanine (AVS 272) in Scheme 9. Non-nucleoside related heterocycles such as methyl-4-chloro-5-(2,4-dichlorophenyl)-1(H) pyrazole-3-carboxylate (AVS 332) are an example of compounds that showed some biological activity, and its preparation is shown in Scheme 10.

The total scope of work encompassed all aspects of modern organic synthesis, combined with analytical evaluations based on current "State of the Art" techniques. Valuable chemical experience and special scientific insights the contractor gained through this work will always be greatly appreciated by the people involved in all aspects of contract work, and hopefully the contracting agency feels that the contractor's contributions helped to promote progress in their field of endeavour.
VI. Synthetic Reaction Schemes
Scheme 1

Synthetic Procedure Ribavirin

\[
\begin{align*}
\text{NH}_2 & \quad \text{H}_2\text{C}_2\text{O}_2 & \quad + & \quad \text{HOOC-COOH} & \quad \xrightarrow{\Delta} & \quad \text{2} \\
\text{NH} & \quad \text{H}_2\text{C}_2\text{O}_2 & \quad \xrightarrow{\text{CH}_3\text{OH}} & \quad \text{HCl,NaNO}_2 & \quad \xrightarrow{\text{CH}_3\text{OH}} & \quad \text{4} \\
\text{O} & \quad \text{C} & \quad \xrightarrow{\text{NH}_2} & \quad \text{AcO} & \quad \xrightarrow{\text{CH}_3\text{OH}} & \quad \text{8} \\
\text{160}^\circ & \quad \text{AcO} & \quad \xrightarrow{\text{NH}_3} & \quad \text{AcO} & \quad \xrightarrow{\text{AcO}} & \quad \text{(Ribavirin)} \\
\end{align*}
\]

Ac = CH₂C=O
Scheme 2

\[
\begin{align*}
&\text{CH}_3\text{CN} \quad \text{AcO} \quad \text{Br} \\
&\quad \downarrow \\
&\quad 2 \\
&\quad \quad \text{Zn/Cu} \\
&\quad \quad \text{3e} \\
&\quad \quad \text{1.H}_2/\text{Pd-BaCO}_3 \\
&\quad \quad \text{2. MeONa} \\
&\quad \text{3a, 3b, 3c; 3d, 3e} \\
&\text{R} = \begin{cases}
\text{AcO} & \text{3a, 3b, 3e; 3c, 3d} \\
\text{MeO} & \text{3c, 3d} \\
\end{cases}
\end{align*}
\]

Ribavirin Series
Scheme 3

Tiazofurin Series
Scheme 4

1. MeO-C\(\text{O}\)\(\text{O}\) → MeO-C\(\text{O}\)\(\text{O}\) with AcOH, NaNO\(_2\), Na\(_2\)S\(_2\)O\(_4\), KCNS

2. MeO-C\(\text{O}\)\(\text{O}\) → MeO-C\(\text{O}\)\(\text{NH}\) with NH\(_2\)OH

3. MeO-C\(\text{O}\)\(\text{O}\) → MeO-C\(\text{O}\)\(\text{S}\) with RaNi

4. MeO-C\(\text{O}\)\(\text{N}\)\(\text{C}\)\(\text{N}\) with POCl\(_3\)

5. BzO\(\text{O}\)\(\text{O}\)\(\text{O}\)\(\text{O}\) with Ac, HMDS

6. MeO-C\(\text{O}\)\(\text{N}\)\(\text{C}\)\(\text{N}\) with H\(_2\)N-NH\(_2\) \cdot H\(_2\)O

7. MeO-C\(\text{O}\)\(\text{N}\)\(\text{C}\)\(\text{N}\) with RaNi

AVS 215
Scheme 5

Synthetic Procedure

2-β-D-Ribofuranosylselenazo-4-carboxamide

AVS 253

AVS 253
Scheme 6

EtO → CH₂—Cl + NH₂—NH₂ → Et → CH₂—NH—NH₂

MeS—CN

MeS—CN

IN H₂SO₄

MeS—CN

HMDS

MeS—CN

NC

NC

N

TMS

MeS—CN

NC

In AcO

BzO

BzO

OBz

triflate

MCPBR

NH₃/MeOH

NH₄OH/H₂O₂

AVS 439
Scheme 9

1. \(\text{H}_3\text{COCH}_2\text{CO} \) + 1AcOH → \(\text{H}_3\text{COCH}_2\text{CO} \) + 2NaNO₂ → \(\text{H}_3\text{COCH}_2\text{CO} \) + 3Na₂S₂O₄ → \(\text{H}_3\text{COCH}_2\text{CO} \) + KCNS

2. \(\text{H}_3\text{COCH}_2\text{CO} \) → \(\text{H}_3\text{COCH}_2\text{CO} \) → \(\text{H}_3\text{COCH}_2\text{CO} \) → 3

3. \(\text{H}_3\text{COCH}_2\text{CO} \) + KCNS

4. \(\text{H}_3\text{COCH}_2\text{CO} \) + \(\text{NH}_4\text{OH} \) → \(\text{H}_3\text{COCH}_2\text{CO} \) + \(\text{CH}_3\text{O} \)

5. \(\text{H}_3\text{COCH}_2\text{CO} \) + \(\text{Ni} \) → \(\text{H}_3\text{COCH}_2\text{CO} \) → \(\text{H}_3\text{COCH}_2\text{CO} \)

6. \(\text{H}_3\text{COCH}_2\text{CO} \) → \(\text{H}_3\text{COCH}_2\text{CO} \) → \(\text{H}_3\text{COCH}_2\text{CO} \) → \(\text{H}_3\text{COCH}_2\text{CO} \) → \(\text{H}_3\text{COCH}_2\text{CO} \)

7. \(\text{H}_3\text{COCH}_2\text{CO} \) → \(\text{H}_3\text{COCH}_2\text{CO} \) → \(\text{H}_3\text{COCH}_2\text{CO} \) → \(\text{H}_3\text{COCH}_2\text{CO} \) → \(\text{H}_3\text{COCH}_2\text{CO} \)

8. \(\text{H}_3\text{COCH}_2\text{CO} \) → \(\text{H}_3\text{COCH}_2\text{CO} \) → \(\text{H}_3\text{COCH}_2\text{CO} \) → \(\text{H}_3\text{COCH}_2\text{CO} \) → \(\text{H}_3\text{COCH}_2\text{CO} \)

AVS-272
Synthetic Procedure

Methyl 4-chloro-5-(2,4-dichlorophenyl)-1(H)pyrazole-3-carboxylate

AVS-332
VII. Discussion of two compounds pending submission

A). Presently about 600 g of pure (AVS-1) (Ribavirin) is awaiting shipment to USAMRIID upon receipt of correct analytical results.

B.) Dimethyl ribavirinamidine (AVS 5601), shown below, is still in the synthesis developmental stage. A small sample of the compound will be supplied to USAMRIID to complete all assignment at no cost to the contracting agency.
VIII. Acknowledgements

The personnel assigned to contract DAMD17-85-C-5071 during the contract period were:

1. Ernst Schubert, Ph.D. 1-17-85 5-31-90
2. Gary Era, B.S. 4-10-89 5-31-90
3. Krishna Upadhya, Ph.D. 8-04-86 1-31-90
4. Valerie Nottingham, B.S. 7-11-88 4-28-89
5. Bheema Ugarkar, Ph.D. 1-17-85 12-31-86
6. Jay DaRe, B.S. 1-17-85 6-30-88
7. Penny Domenico, B.S. 1-17-85 5-31-86

Respectfully Submitted By:
Pharm-Eco Laboratories, Inc.

Ernst M. Schubert, Ph.D
Principal Investigator
(805) 527-3630
IX. Appendix:

Presentations at National and International Meetings.

a. **Second International Conference on Antiviral Research.**

b. **Third Chemical Congress Of North America.**
Toronto, Canada, June 5-10, 1988.

c. **American Chemical Society 196th National Meeting.**

d. **Eastern Analytical Symposium.**
New York, N.Y., 1989
"Structural Confirmation by 500 MHz Spectroscopy of an Analogue of the Amaryllidaceae Alkaloids, Narciclasine and Pancretistatin." Bjarne Gabrielsen, Department of Antiviral Studies, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21701, Gwendolyn N. Chmurney, Program Resources, Inc., NCI-FCRF, P.O. Box B, Frederick, MD 21701, Ernst M. Schubert, Pharm-Eco Laboratories, Simi Valley, CA. 93065 and G. Robert Pettit, Cancer Research Institute, Arizona State University, Tempe, AZ 85287.

e. **Third International Conference on Antiviral Research.**
B: Reprints of Publications.
With Compliments of the Author.
Improved Synthesis of Lycoricidine Triacetate

Bheemarao G. Ugarkar, Jay DaRe, Ernst M. Schubert*

Pharm-Eco Laboratories, Inc., 2355 Chain Drive, Simi Valley, CA 93065, U.S.A.

The synthesis of lycoricidine triacetate by a modified pathway is described. In this preparation, catalytic amounts of osmium tetroxide are used to stereospecifically introduce two hydroxy groups, rendering the title compound via two novel intermediates.

Lycoricidine (1) and lycoricidinol (2), two constituents found in Amaryllidaceae plants, show strong growth-inhibiting action in the rice seedling test, and they exhibit anti-tumor activity against Ehrlich carcinoma. Such antimitotic behavior prompted further investigations to establish their configurations and conformations, which were subsequently confirmed by total synthesis.

During recent in vitro testing of lycoricidine triacetate (3) it displayed antiviral activity, and a proposed in vivo study necessitated the preparation of a larger quantity of 3. The isolation of lycoricidine from plant material is impractical since its abundance in fresh bulbs of Lycoris is ~0.00032%, while a reported synthesis produced lycoricidine in a 21-step procedure with 1.5% overall yield, starting with piperonal. After establishing the desired phenanthridone intermediate 4 following a twelve-step procedure, acetylation and removal of the tetrahydropyranyl group is followed by stereospecific cis-hydroxylation with equimolar amounts of osmium(VIII) oxide to yield intermediate 5.

The two cis-hydroxy groups in 5 are protected as the isopropylidene acetal to allow for the introduction of a double bond by total synthesis. The synthesis of lycoricidine triacetate by a modified pathway is to yield intermediate 8, which upon dehydration yields lycoricidine triacetate in 37% overall yield, starting with 4.

Spectral and analytical data confirm the structural assignments of 3 and, based on 400 MHz 1H-NMR, 13C-NMR, COSY, and HOMCOR spectra, the spatial arrangement at the four chiral carbons is in agreement with the absolute structure assigned to lycoricidine. Two different melting points have been reported for lycoricidine triacetate, depending on its origin, but such a difference could be a result of the mode of recrystallization to obtain a product of differing crystal structure. Hydrolysis of the prepared lycoricidine triacetate, according to Lit., produces lycoricidine (1), whose spectral and analytical data agree with the reported values for lycoricidine of natural origin.

Presently, lycoricidine triacetate (3) is being screened for its in vivo antiviral activity, and if proven useful as an antiviral agent, it can readily be prepared according to the reported modifications. They make the procedure economically more attractive for scale-up work because they reduce the number of required steps, thus improving the overall yield, while significantly reducing the hazards of handling and disposing of large amounts of highly toxic osmium oxides.

All solvents used were of reagent grade. Melting points were taken on a Thomas-Hoover capillary melting point apparatus and are uncorrected. TLC was run on Silica Gel GF plates (Analtech, Newark, Del.) where the products were visualized by UV-absorbance, or by iodine stains. Microanalyses were performed by MfHt Laboratories, Phoenix, Arizona. Mass spectral analyses were taken on a Varian Model 31A spectrometer by Dr. K. H. Schram, College of Pharmacy, University of Arizona, Tucson, AZ. IR spectra were obtained on a Beckman Model 25 spectrophotometer. In addition to the standard NMR spectra, taken on a Varian EM 390 spectrometer, 400 MHz 1H-NMR, 13C-NMR, attached proton test (ATP), homonuclear correlation (COSY), and heteronuclear correlation (HETCOR) spectra were recorded by SRI International, Menlo Park, California.
The remaining oil is triturated with EtOH (50 mL) and air-dried; yield of intermediate 9: 25.0 g (75%); m.p. 222-223°C; TLC (CHCl₃/MeOH 6:1); Rf: 0.60.

4aH-v,1H-trans,2H-v,1H-trans,3H-v,1H-trans,4H-trans,10H-trans,2,3,4, 3-triacetoxy-8,9-methylenedioxy-1,2,3,4,4a,10b-hexahydro-6(SH)phenanthridine (8):

A mixture of trihydroxy compound 6 (18.6 g, 0.047 mol), pyridine (200 mL), and acetic anhydride (200 mL) is stirred at room temperature overnight. Acetic anhydride and pyridine are evaporated under reduced pressure, followed by evaporation with EtOH to remove traces of phosphoric esters. The residual material is soaked in EtOH (50 mL) and chilled.

The resulting crystalline material is collected by filtration, washed with EtOH (50 mL), and air-dried; yield of intermediate 7: 22.0 g; m.p. 275°C.

Without further characterization, intermediate 7 is suspended in EtOH (500 mL), p-toluenesulfonic acid (500 g) is added, and the mixture is kept at reflux for 2 h. Upon cooling, the crystalline material is filtered, washed with cold EtOH (2 x 25 mL), and dried in air; yield of 8: 15.0 g (73%); m.p. 303-304°C; TLC (CHCl₃/MeOH 6:1); Rf: 0.75.

Preparation of Dimethyl (1-Formylalkyl)phosphonates via Singlet Oxygen Adducts

Mitsuji Yamashita, Hiroyuki Nomoto, Hiroyuki Imoto

Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, Hamamatsu 432, Japan

The nitro group of dimethyl (1-nitromethylalkyl)phosphonates is conveniently converted into a formyl group by reaction with singlet oxygen to give dimethyl (1-formylalkyl)phosphonates. (1-Formylbutyl)diphenylphosphine oxide is prepared by the same reaction.

The conversion of nitroalkanes into carbonyl compounds is a synthetically useful functional group interconversion. The reaction is usually carried out under strongly acidic, basic oxidative, or neutral reductive conditions. Surprisingly, our numerous attempts to effect the analogous conversion of organophosphorus compounds having a P-(2-nitroalkyl) group under various conditions were unsuccessful. However, we then found that oxidation with ozone conveniently converts [1-(nitromethyl)alkyl]diphenylphosphine oxides into (1-formylalkyl)diphenylphosphine oxides; however, ozonolysis is problematic and does not allow for efficient scale-up.

Phosphoric esters are widely known to exert a great variety of vital functions. Some phosphonates having a C-P bond, normally being prepared by replacing the O-atom of a P-O-C linkage of phosphoric esters by the isoelectronic CH₂ group, are also naturally occurring, and their metabolism has been investigated. Phosphoric acid derivatives such as (--)1,2-epoxypropylphosphonic acid (phosphonomycin) and dimethyl 1-hydroxy-2,2,2-trichloroethylphosphonate (Dipertex) are active substances as antibiotics and pesticides and are therefore of practical importance.
PREPARATION AND ANTIVIRAL ACTIVITY OF SEVERAL DEOXYGENATED RIBAVIRIN AND TIAZOFURIN DERIVATIVES.

Krishna Upadhya, Jay DaRe, and Ernst M. Schubert* Pharm-Eco Laboratories, 2355 Chain Dr., Simi Valley, Ca 93065.

Gwendolyn N. Chmurny, Program Resources Inc. NCI-FCRF, P.O. Box B, Frederick, MD 21701, and Bjarne Gabrielsen, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21701-5011.

Abstract: Ribavirin and tiazofurin, two nucleosides of known antiviral activity, have been transformed by previously reported methods to yield several deoxy, epoxy, or dideoxy analogues. The deoxygenated derivatives were evaluated for antiviral activity against a host of DNA and RNA viruses; however, no significant in vitro activity was detected.

In the past, a number of 2’3’-dideoxynucleosides have been prepared and evaluated for their antiviral activity. Such studies were mostly directed towards suppressing the replication of the human immunodeficiency virus in the treatment of the acquired immune deficiency syndrome (AIDS). 3’-Azido-3’deoxythymidine (AZT)\(^1\) and 2’3’-dideoxycytidine (ddCyd)\(^2\) were found to be the most active pyrimidine nucleosides, while recent studies indicate that 2’3’-dideoxyinosine (DDI), a purine riboside derivative, might find wide clinical application in the treatment of AIDS.\(^3\)

Since none of the parent nucleosides such as thymidine, cytidine, or inosine show any noticeable antiviral activity, it was thought that the transformation of a ribonucleosides of known antiviral activity such as ribavirin or tiazofurin\(^5\) into their deoxygenated derivatives would offer the possibility of augmenting their respective biological activities, or enhancing their therapeutic specificity. Analogously, a recent publication by Krawczyk and Townsend\(^6\) reports the synthesis of the 2’3’-dideoxy derivatives of the antibiotics tubercidin, toyocamycin and sangivamycin as examples of biologically active purine nucleosides which were transformed into agents that might demonstrate anti-HIV activity.

Since the preparation of 2’3’-dideoxyribosides as well as those of other sugar-modified nucleosides has been the topic of a number of studies in recent
years, there are several methodologies, such as the modified Corey-Winter reaction7 and other elimination8 or synthesis methods9 available to accomplish such transformations. During the course of this study we found that a modified procedure, based on work reported by Robins et al.10 was best suited for transforming both the N-nucleoside ribavirin and the C-nucleoside tiazofurin into various sugar-modified analogues via a common intermediate (3a-d and 9a-d) by essentially using identical reagents and reaction conditions.

Both ribavirin (1) and tiazofurin (9) were acylated with \(\alpha\)-acetoxy-isobutyryl bromide (2), as shown in Schemes 1 and 2, to form a mixture of four possible intermediates, shown by structures 3a-d and 9a-d. This mixture of intermediate isomers was subjected to transformations without further characterization; however, upon careful dehydrohalogenation and purification of either 3a-d or 9a-d without deblocking the 5'-position, the \(^1\text{H} \) NMR spectrum of the purified product 3e or 9e showed the two \(\alpha\)-methyl groups of the side chains as one singlet (6H), indicating the existence of the open chain, and not the sterically rigid dioxolone ring configuration as a possible structure.

The treatment of 3 and 9 with zinc/copper couple and sodium methoxide readily yielded enes 4 and 10 respectively, which in turn were readily hydrogenated to form 2'-3'-dideoxyribavirin (7) and 2'-3'-dideoxytiazofurin (11) in good yield.

Hydrogenation of 3, followed by deblocking, gave 2'-3'-dideoxyribavirin (7). The major product isolated from this reaction, however, was 3'-deoxyribavirin (6), as identified by comparison with data published by Witkowski et al. The treatment of 3 with sodium methoxide in methanol produced 2',3'-anhydoribavirin 5; yet, when the same reaction conditions were applied to 9, it resulted in double elimination and formation of the furan derivative of the thiazole amide 12, first reported by Srivastava et al.5

2'-3'-Dideoxyribavirin, previously prepared by a different route and shown to be inactive against the HIV virus12 was still considered a viable candidate to be screened as part of the whole series of obtained compounds against a number of different RNA and DNA viruses, as discussed below.
Ribavirin Series

SCHEME 1
Tiazofurin Series

SCHEME 2
Ribavirin (1) possesses considerable activity in vitro against RNA viruses of the Bunyaviridae family13,14 (Rift Valley fever, RVF'sandfly fever, SFS, and Punta Toro, PT viruses).15 Activity has also been demonstrated against the retrovirus human immunodeficiency virus type 1 (HIV-1)16, the DNA-containing adenovirus type 2 (AD2)13, and vaccinia virus (VV),13 and the RNA-containing alphavirus, Venezuelan equine encephalomyelitis virus (VEE)13,14. Activity is also present, but to a lesser degree, against RNA viruses of the Flaviviridae family, yellow fever (YF), and Japanese encephalitis (JE) viruses13,14. Virtually no activity is observed against vesicular stomatitis virus, VSV (Rhabdoviridae family)13. Tiazofurin 8, possesses some activity in vitro against the flaviviruses YF and JE13,14, lesser activity against the bunyaviruses RVF, PT13,14 and SFS, and the DNA-containing adenovirus and vaccinia virus13. No activity has been reported against HIV, VEE, and VSV13.

In vitro antiviral activities were determined for the deoxygenated ribavirin analogues 4-7 and tiazofurin analogues 10-12 against human immunodeficiency virus (HIV-1), the RNA-containing bunyaviruses (Rift Valley fever, sandfly fever, and Punta Toro viruses), flaviviruses (Japanese encephalitis and yellow fever viruses), alphavirus (Venezuelan equine encephalomyelitis virus), rhabdovirus (vesicular stomatitis virus), and the DNA-containing adenovirus type 2 and vaccinia virus. The observed antiviral activities are summarized in the accompanying table. Replacement of the ribofuranosyl group in the deoxygenated tiazofurin analogues 10-12 resulted in the loss of all in vitro antiviral activity previously observed for tiazofurin 8 against the flaviviruses, bunyaviruses and DNA viruses, and vaccinia and adenovirus type 2. Compounds 10-12 were also inactive against HIV-1, VEE, and VSV.

Replacement of the ribofuranosyl group of ribavirin 1 by 2',3'-dideoxy (7), 3'-deoxy (6), or 2',3'-anhydro (5) ribofuranosyl moieties resulted in elimination of all antiviral efficacy against HIV-1, vaccinia and adenoviruses, flaviviruses (JE, YF), Venezuelan equine encephalomyelitis (VEE), bunyaviruses (PT, SFS) and no resulting activity against vesicular stomatitis virus (VSV).
2',3'-Dideoxy-2',3'-didehydro ribavirin 4 retained some efficacy only against the bunyaviruses (RVF, PT, SFS) and vaccinia virus, however the level of efficacy in vitro was greatly reduced compared to that of ribavirin. Similar reduced activity was also observed against Rift Valley fever virus by 5-7. Plaque reductions of 80% (@ 100 µg/mL), 59%, 76% and 94% were observed for 4-7 respectively against RVF virus in Vero cells at 250 µg/mL. However the activities of 4-7 against RVF could not be separated from the accompanying Vero cell toxicity. 2',3'-Dideoxyribavirin 7 and 3'-deoxyribavirin 6 were evaluated further in the murine model of Rift Valley fever virus17. Doses of 25, 125 and 250 mg/kg/day were administered subcutaneously in 10% DMSO-PBS or saline on days -1 to +3. No beneficial effects were observed in terms of increased survival numbers or times, nor were the compounds toxic at these doses (virus ratings, VR, 0.96-0.99). As a positive control, ribavirin at doses of 100 and 200 mg/kg/day protected 100% of the RVF-infected mice (VR = 5.4 and 6.1 respectively).

IN VITRO ANTIVIRAL TESTING DATA9

<table>
<thead>
<tr>
<th>Compound</th>
<th>Virus</th>
<th>ID\textsubscript{50}a</th>
<th>MTCb</th>
<th>Tic</th>
<th>dTid</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>RVF</td>
<td>61</td>
<td><100</td>
<td>1.6</td>
<td>6.6</td>
</tr>
<tr>
<td>4</td>
<td>SFS</td>
<td>5</td>
<td>10</td>
<td>2.0</td>
<td>5.6</td>
</tr>
<tr>
<td>4</td>
<td>PT</td>
<td>28</td>
<td>32</td>
<td>1.1</td>
<td>6.3</td>
</tr>
<tr>
<td>4</td>
<td>YF</td>
<td>73</td>
<td>10</td>
<td>0.1</td>
<td>1.2</td>
</tr>
<tr>
<td>4</td>
<td>VV</td>
<td>36</td>
<td>100</td>
<td>2.8</td>
<td>7.5</td>
</tr>
<tr>
<td>5</td>
<td>RVF</td>
<td>149</td>
<td>250</td>
<td>1.7</td>
<td>6.6</td>
</tr>
<tr>
<td>6</td>
<td>RVF</td>
<td>117</td>
<td>250</td>
<td>2.1</td>
<td>6.6</td>
</tr>
<tr>
<td>7</td>
<td>RVF</td>
<td>101</td>
<td><250</td>
<td>2.5</td>
<td>6.6</td>
</tr>
</tbody>
</table>

a 50% Viral Inhibitory dose, µg/ml
b Minimum Toxic Concentration, µg/ml
c Therapeutic Index, Ti = MTC\textsubscript{50}/ID\textsubscript{50}
d Positive drug controls: ribavirin (RVF, SFS, PT), selenazofurin (YF, JE), adenosine arabinoside, ara-A (VV)
e Vero cells
EXPERIMENTAL SECTION

Analytically pure ribavirin and tiazofurin were provided by US Army Medical Research Institute for Infectious Diseases, Ft. Detrick, MD.

Melting points were determined on a Thomas Hoover melting point apparatus and are uncorrected. The utilized 2n/Cn couple contained 5% copper. Silica gel used for chromatography was flash grade (Aldrich, 260-400 mesh), and thin-layer chromatography (TLC) was performed on prescored silica gel plates GHLF, 250 microns (Analtech Corp., Newark, DE.) with 6:1 dichloromethane-methanol as developing solvent. TLC plates were sprayed with 10% methanolic sulfuric acid after elution and heated to visualize the compounds. IR spectra were recorded using a Beckman AccuLab 2 spectrophotometer, and elemental analyses were performed by MHW Laboratories, Phoenix, Arizona.

All of the NMR spectra with the exception of 12 were obtained on a Varian VXR500S NMR spectrometer equipped with a SUN 4/110 acquisition computer and data station. The following 90° pulse widths were used for 1D and 2D data acquisition: proton, observe = 14.0 μsec, Waltz decouple = 89.3 μsec; carbon, observe = 15.0 μsec, Waltz decouple = 30.8 μsec, 2D 90° PW = 29 μsec. For 1D experiments, the Ernst angle was used for acquisition. Heteronuclear multiple quantum coherence (hmqc) standard pulse sequence from Varian software was used to obtain directly bonded, indirectly detected proton-carbon connectivities (ref. Bax, 1J_C,H = 150 Hz)18. Heteronuclear multiple bond connectivity (hmbc) was modified from Varian software according to Bax18 and used to detect long range proton-carbon connectivities (Jnxh - 8 Hz). Standard Varian COSY was used for proton-proton connectivity determination. Zero field decoupling (ZFD) and modified Varian software were used to obtain chemical shift and coupling information.

Spectra of 12 were obtained on a Varian XL200 with an ADVANCE data system operating at 200.1 MHz. The following 90° pulse widths were operational: proton, observe = 23.5 μsec, Waltz decoupling = 79.2 μsec; carbon, observe = 9 μsec. The Ernst angle was used for 1D data acquisition.

Definition of J coupling notations: capital letters in 13C coupling
patterns refer to directly bonded $^1J_{C-H}$ while lower case letters refer to J coupling over more than one bond. For example, Ddt (156, 2.0, 10.8) means that the carbon in question has a directly bonded J_{CH} of 156 Hz, a long-range coupling to one proton of $J = 2.0$ Hz and a long range coupling to two protons of $J = 10.8$ Hz. s = singlet, d = doublet, t = triplet, q = quartet, b = broad, cm = complex multiplet.

The chemical shifts in the proton spectra are referenced from tetramethylsilane (TMS) set equal to 0 ppm. The chemical shifts in the carbon spectra are referenced with respect to dimethylsulfoxide-d_6 (DMSO$-d_6$) set equal to 39.5 ppm from TMS.

In vitro antiviral activity was determined in terms of therapeutic index by observing inhibition of viral cytopathic effect (CPE)13,15,19-22 except for RVF virus which was determined by plaque reduction assays 14. The 50% inhibitory dose is that drug dose causing a 50% inhibition of CPE or plaque number. The minimum cytotoxic concentration (MTC) is that drug concentration at which 50% of the cells showed cytotoxic effects. The in vitro therapeutic index (TI, proportional to in vitro activity) was calculated by dividing the MTC by the ID$\textsubscript{50}$. Compounds were evaluated for therapeutic efficacy in Rift Valley fever-infected mice according to the procedure of Peters et al17. The in vivo virus rating, VR, was calculated by dividing the geometric mean time to death of drug-treated, infected animals by that for untreated, infected animals.

1-(2,3-Dideoxy-β-D-glycero-pent-2-enofuranosyl)-1,2,4-triazole-3-carboxamide (4). (2',3'-Dideoxy-2',3'-didehydroribavirin):

Ribavirin (1) (19.5 g, 80 mmol) was dissolved in acetonitrile (200 mL) containing water (1.44 mL, 80 mmol). To this solution was added α-acetoxyisobutyryl bromide (2) (49.4 g, 36 mL, 240 mmol) in one portion, and stirring was continued at room temperature for two hours. After adding 5% sodium bicarbonate solution (200 mL) the mixture was extracted with ethyl acetate (2 x 200 mL), and the organic phase was washed with sodium bicarbonate solution and with brine. After evaporation of the solvent under reduced pressure a highly
viscous foam was obtained, which was dissolved in tetrahydrofuran (600 mL). Zinc/copper couple (80 g) was added, followed by ammonium chloride (50 g) and the reaction mixture was stirred for two hours when the temperature reaches 40°. The zinc/copper couple was filtered off, washed with ethyl acetate and the organic layer was washed with a 5% aqueous solution of ethylenediamine tetraacetic acid tri-sodium salt, followed by washings with bicarbonate (100 mL) and brine (200 mL).

The solvent was removed under reduced pressure, the residue was dissolved in methanol (200 mL) and sodium methoxide (0.5 g) was added to adjust the pH to 9.5. After stirring for three hours a solid started to precipitate. The solvent volume was reduced to half its volume, the precipitate was collected by filtration and recrystallized from methanol-ethyl acetate.

Yield 7.0 g (42%); m.p. 152-153°; IR (KBr): 3400-3050; 1750; 1480; 1480; 1270; 1190; 1070; 840; 780 cm⁻¹. ¹H-NMR: (DMSO-d₆) δ 8.75(s, 1, C₅H); 7.82 and 7.63 (each singlets, 1H each, NH); 6.85(td,1,H-1',J(1',2') = 1.6 Hz, J(1',4') = 2.4 Hz); 6.51 (td, 1, H-3',J(3',4') = 1.7 Hz, J(3',2')=6.1 Hz); 6.13 (ddd, 1, H-2',J(2',1') = 1.5 Hz, J(2',4') = 2.3 Hz, J(2',3') = 6.0 Hz); 4.914 (ddddd, 1, H-4', J(4',1') = 2.4 Hz, J(4',3') = 1.7 Hz, J(4',2') = 2.3 Hz, J(4',a,b) = 4.2, 4.8 Hz, J(4',OH) - 5.6 Hz; 4.908 (4, 1, 5'-OH, J(OH-5') = 5.6 Hz; 3.48, 3.55 (AB of ABXY, 2, H-5'a,b), J(gem) = 11.6, 11.7, J(5',a,b,4')=4.2, 4.8Hz, J(4', OH) = 5.6 Hz);

¹³C-NMR: (DMSO-d₆): δ 160.32 (Sq, C=O, J = 1.2 Hz); 156.75 (Sdd, C-3, J = 8.5, 11.7 Hz); 144.13 (Dd, C-5, J = 214.7, 2.7 Hz); 134.58 (Dtdd, C-3', J = 172.3, 4.0, 2.4, 7.4 Hz); 124.56 (Dtd, C-2', J = 176.9, 4.1, 2.5 Hz); 93.24 (Dtd, C-1', J = 171.1, 10.6, 3.6 Hz); 88.61 (Dddt, C-4', J = 149.8, 8.8, 11.3, 2.2 Hz); 62.84 (T, C-5', J = 141.0 Hz); TLC: Rf 0.7. Anal. Calcd. for C₈H₁₀N₄O₃: C, 45.61; H, 4.79; N, 26.66; Found: C, 45.85; H, 4.76; N, 26.85.

¹Assigned from coupled ¹³C spectrum through HMQC.
1-(2,3-Dideoxy-β-D-glycero-pentofuranosyl)-1,2,4-triazole-3-carboxamide (7)

(2',3'-Dideoxyribavirin):
Ribavirin-2'-ene (4) (2.3 g, 11 mmol) was dissolved in methanol (100 mL), and palladium on barium carbonate (500 mg) was added. The mixture was hydrogenated at room temperature and atmospheric pressure for 3 hours. The catalyst was filtered off on a sintered glass funnel, the filtrate was evaporated to dryness under reduced pressure, and the residue was recrystallized from methanol (50 mL) to yield 1.8 g (77%) of dideoxyribavirin, m.p. 153-154°C. IR (nujol): 3000-2800 (br); 1690; 1460; 1370 cm⁻¹.

¹H NMR: (DMSO d₅) 12: 6.81 (s, 1, C₅H); 7.79, 7.59 (each singlet, 1, NH); 6.16 (dd, 1, H-1', J(1'-2'a,b) = 2.6, 6.5 Hz); 4.88 (t, 1, 5'-OH, J = 5.6 Hz); 4.15 (dddd, 1, H-4', J = 5.2, 4.5, 6.0, 9.2 Hz); 3.56 (ddd, 1, H-5'a, J = 11.7, 4.2, 5.7 Hz); 3.47 (dt, 1, H-5'b, J = 11.7, 5.3 Hz); 2.38 (cm, 2, H-2'a,b); 1.98 (cm, 2, H-3'a,b).

¹³C NMR: (DMSO d₆): 6.160.37 (S, C=O); 156.84 (Sdd, C-3, J = 8.2, 11.4 Hz); 143.88 (Dd, C-5, J = 214.2, 1.8 Hz); 88.61 (Dcm, C-1', Jch = 170.1 Hz); 82.84 (Dcm, C-4', Jch = 146.3 Hz); 62.86 (Td, C-5', J = 139.8, 4.7 Hz); 31.90 (Tt, C-3', J = 134.1, 3.1 Hz); 25.32 (Tcm, C-2', Jch = 133.0 Hz).

TLC: Rf 0.65. Anal. Calcd. for C₈H₁₂N₄O₈: C, 45.27; H, 5.70; N, 26.40. Found: C, 45.26; H, 5.72; N, 26.36.

3'-Deoxyribavirin (6):
Ribavirin (1) (4.88 g, 20 mmol) was dissolved in acetonitrile (60 mL) and α-acetoxyisobutyryl bromide (2) (9 mL, 50 mmol) was introduced in one portion. The reaction mixture was stirred for two hours at room temperature, then ethyl acetate (300 mL) was added to the clear solution. The organic layer was washed with 5% sodium bicarbonate solution (2 x 50 mL), the bicarbonate phase was washed with ethyl acetate (100 mL), and the combined organic phase was washed with water (2 x 50 mL) and saturated brine (50 mL). The ethyl acetate solution was dried over sodium sulfate, and the solvent was evaporated under reduced pressure to yield 9.2 g of (3) as a viscous oil.
The crude material was dissolved in dry methanol (200 mL), then triethylamine (3 mL) was added, followed by 5% palladium on barium carbonate (2 g). The reaction mixture was hydrogenated at room temperature and atmospheric pressure for two hours, then stirring was continued for four more hours. The catalyst was filtered off, the solvent was removed under reduced pressure and the residue was vacuum-dried. After dissolving the residue in methanol (200 mL) sodium methoxide (1.5 g) was added, and after two hours TLC indicated the completion of deblocking, showing the presence of two products: the spot at Rf 0.7 indicated dideoxy-didehydro-ribavirin (4) while the major product at Rf 0.3 represented 3'-deoxy-ribavirin (6).

The solvent was evaporated under reduced pressure, the residue was loaded onto a silica gel column and eluted with methylene chloride, gradually increasing its polarity by adding methanol. Collecting the fractions containing the two compounds, 0.5 g of dideoxy-didehydro-ribavirin (4) and 2.1 g (47%) of 3'-deoxy-ribavirin (6) was obtained, m.p. 141-142° (lit1 141-142°).

IR (nujol): 3400-3000 (br); 2950; 1680; 1600; 1455; 1300; 1110; 1080; 710 cm⁻¹.

¹H NMR (DMSO-d₆): δ 8.87 (d, 1, C₅H, J(5,1') = 0.2 Hz); 7.85 (bs, 1, NH); 7.64 (bs, 1, Nil); 5.86 (d, 1, H-1', J(1'-C₃H) = 0.7 Hz); 5.74 (bd, 1, 2'-OH, J = 3.8 Hz); 4.98 (bs, 1, 5'-OH); 4.47 (cm, 1, H-4'); 4.43 (bdt, 1, H-2', J(2'-OH) = 5 Hz, J(2',3') = 9.8 Hz); 3.65 and 3.52 (both dd, 1 each, H-5a,b); J(5',5'b) = 11.7 Hz, J(5',4') = 2.4, 4.5 Hz); 2.12 and 1.90 (both ddd, 1 each, H-3'a,b, J(gem) = 13.2 Hz, J(3', 2') = 10.1 Hz, J(3',4') = 1.5, 5.1 Hz.

¹³C NMR (DMSO-d₆): δ 160.59 (cm, C-O); 157.26 (Sdd, C-3, ³JCH = 8.5, 11.6 Hz); 144.27 (Dd, C-5, J = 215.6, 2.0 Hz); 94.67 (Dcm, C-1', ¹JCH = 170.3 Hz); 82.37 (cm, C-41, ¹JCH = 148.9 H₂); 75.50 (Dcm, C-2', ¹JCH = 153.2 Hz); 62.59 (Td, C-5', J = 140.2, 3.7 Hz); 33.77 (Tcm, C-3', ¹JCH = 132.3 Hz).

TLC: Rf 0.3. Anal. Calcd. for C₈H₁₂N₄O₄: C, 42.10; H, 5.30; N, 24.55. Found: C, 42.22; H, 5.41; N, 24.35.
1-(2',3'-Anhydro-β-D-ribofuranosyl)-1,2,4-triazole-3-carboxamide (5)

Ribavirin (1) (2.44 g, 10 mmol) was dissolved in acetonitrile (30 mL) containing water (0.18 mL). While stirring α-acetoxyisobutyryl bromide (2) (4.5 mL, 30 mmol) was added in one portion. After 2 h at room temperature ethyl acetate (200 mL) was added, the solution was washed with sodium bicarbonate solution 5% (2 x 50 mL), the bicarbonate solution was extracted with ethyl acetate (100 mL) and the combined ethyl acetate extracts were washed with water (2 x 50 mL) and saturated brine solution.

The organic phase was dried over sodium sulfate, filtered, and, upon evaporation of the solvent, 5 g of crude material was obtained. The crude product (5 g) was dissolved in 1 M methanolic sodium methoxide solution (40 mL) and stirred for two hours, during which time a solid separated from solution. The solid was collected by filtration and recrystallized from water to yield 1.8 g (80%) of final product, m.p. 233-235°. IR (nujol): 3430; 3265; 3000-2800 (br); 1690; 1600; 1460; 1375; 1290; 1190; 1070; 1030; 970; 860; 830 cm⁻¹.

¹H NMR (DMSO-d₆): δ 8.847 (s, 1, C₅H⁻⁴, J < 0.4 Hz if present); 7.879 (s, 1, NH); 7.705 (s, 1, NH); 6.281 (s, 1, H-1', J < 0.7 Hz if present); 4.985 (t, 1, 5'-OH, J = 5.5 Hz); 4.30 (dd, 1, H-2', 3J(2',1') = 0.5 Hz, J(2',3') = 2.7 Hz); 4.21 (d, 1, H-3', J (3',2') = 2.7 Hz, coupling was small to H-4' if present); 4.18 (dd, 1, H-4', J(4',5'a,b) = 5.8, 6.8 Hz); 3.63 (ddd, 1, H-5'a) and 3.47 (ddd, 1, H-5'b), J(5'a,5'b) = 11.4, 11.3 Hz, J(5'a,b, OH) = 5.6, 5.7 Hz, J(5'a,b,4') = 6.8, 5.6 Hz.

¹³C NMR (DMSO-d₆): δ 160.11 (Sdd, C=O, 2J(C-N-H) = 1.1, 2.2 Hz; 157.45 (Sdd, C-3, 3J = 8.8, 11.5 Hz); 145.56 (Dd, C-5, J = 215.7, 1.6 Hz); 85.26 (Ddd, C-1', J = 171.6, 5.9, 10.6 Hz); 81.21 (Ddcm, C-4', J = 151.9, 11.7, complex multiplet); 60.52 (Tcm, C-5', J = 142.1, complex multiplet); 57.43 (D of pentuplets (to H-5'a,b, H-4' and H-2') C-3', J = 193.4, 4.6 Hz); 57.16 (Dt, C-2', J = 197.8, 4.0 Hz).

TLC: Rf 0.32. Anal. Calcd. for C₈H₁₀N₂O₄: C, 42.47; H, 4.45; N, 24.77. Found: C, 42.46; H, 4.51; N, 24.88.
Tiazofurin (8) (5.12 g, 20 mmol) was suspended in acetonitrile (60 mL) containing water (0.36 mL), and α-acetoxyisobutyryl (2) bromide (9 mL, 60 mmol) was added in one portion. After stirring at room temperature for three hours ethyl acetate (200 mL) was added, and the solution was washed with 5% sodium bicarbonate (2 x 50 mL). The aqueous layer was extracted with ethyl acetate (100 mL), the combined organic layers were washed with water (2 x 50 mL) and brine (50 mL), followed by drying over sodium sulfate.

The solvent was evaporated under reduced pressure and the thus obtained foam was dissolved in tetrahydrofuran (200 mL). Zinc-copper couple (25 g) and ammonium chloride (12 g) were added and the mixture, initially at 40°C, were stirred while allowing the temperature to adjust to room temperature. After 2.5 hours, the Zn/Cu-couple was filtered off, the solvent was evaporated under reduced pressure, and the residue was taken up in ethyl acetate (300 mL). The solution was washed with a 5% EDTA tri-sodium salt solution (2 x 50 mL), the aqueous phase was extracted with ethyl acetate (100 mL) and the combined organic layers were washed with water (100 mL) and brine (50 mL). After drying over sodium sulfate the solvent was evaporated under reduced pressure, the residue was dissolved in methanol (100 mL), and sodium methoxide (0.5 g) was added to a pH of 10. After stirring for two hours TLC indicated complete disappearance of starting material and Amberlite H⁺ resin was added to neutralize the medium. The resin was filtered off, and the solvent was evaporated under diminished pressure. The residue was chromatographed on a silica gel column with dichloromethane/5% methanol as eluant. Removal of solvent in vacuo from fractions containing 10, followed by recrystallization from ethyl acetate gave 3.9 g (86%) of 10, m.p. 120-121°C. IR (nujol): 3460; 3300 (br); 2950; 2840; 1645; 1570; 1450; 1360; 1280; 1070; 1030 cm⁻¹.

¹H NMR: (DMSO d₆) δ 8.2 (d, 1, C₅H, 5(5-1') - 0.4 Hz); 7.7 and 7.6 (each bs, 1 each, NH, slight exchange with D₂O); 6.17 and 6.13 [(AB of ABXY, 2, H-3' and H-2' respectively); a J(2',3') = 6.1 Hz, J(2', 1') = 1.8 Hz, J(2',4') = 2.1 Hz,
$J(3', 4') = 1.4$ Hz, $J(3', 1') = 2.3$ Hz; 6.02 (dddd, 1, H-1', J = 0.4, 1.6, 2.1, 3.8 Hz; 4.93 (t, 1, 5'-OH, exchanged with D_2O, J = 5.6 Hz); 4.92 (dddt, 1, H-4', J = 1.5, 2.3, 3.8, 5.4 Hz, couplings to H-3', H-2', H-1' and H-5'a,b respectively); 3.59 and 3.53, (AB of ABXY, 2, H-5'a,b; J(gem) = 11.2 Hz, J(5'-4') = 5.4, 5.4 Hz, J(5'-OH) = 5.7, 5.4 Hz.

13C-NMR: (DMSO d$_6$) δ 173.1 (Stdd, C-2, J = 1.7, 5.2, 7.2 Hz); 162.3 (Sd, C-4, 2J$_{CH}$ = 1.7 Hz); 150.2 (Sdd, C=O, J = 4.5, 6.8 Hz); 130.3 (Dsextets, bC-2', J = 171.6, 3.6 Hz); 128.6 (Dq, bC-3', J = 175.0, 4.2 Hz); 124.7 (D, C-5, 1J$_{CH}$ = 192.7 Hz); 88.5 (Dtq, C-4', J = 148.3, 10.0, 2.4 Hz); 84.5 (Dt, C-1', J = 153.8, 10.7 Hz); 64.4 (Tdd, C-5', J = 141, ca. 3, ca. 7 Hz); a Two 3J$_{CH}$ to H-5, H-2'; 1.7 Hz coupling to H-1' or H-3'.

TLC: R$_f$ 0.7. Anal. Calcd. for C$_9$H$_{10}$N$_2$O$_3$S: C, 47.77; H, 4.45; N, 12.38; S, 14.17. Found: C, 47.80; H, 4.62; N, 13.13; S, 13.94.

2-(2.3-Dideoxy-α-D-glycero-pentofuranosyl)thiazole-4-carboxamide (11)

(2'.3'-dideoxytiazofurin): Tiazofurin-2'-ene (2.5 g, 10 mmol) was dissolved in methanol (100 mL), and maintained under a nitrogen atmosphere. Carefully 5% ethanol-pretreatment palladium on barium carbonate (1 g) was introduced, and the hydrogenation was carried out at room temperature and atmospheric pressure during a two hour period. The catalyst was filtered off, the solvent was evaporated under reduced pressure and the residue was recrystallized from ethyl acetate; yield 2.1 g (84%); m.p. 94-95°. Analysis showed that the compound crystallized with 0.5 mol of water. IR (KBr): 3400-3050; 1670; 1380; 1190; 1050; 940 cm$^{-1}$.

2Definitive assignment from 13C spectrum based on hmbc present for H-5'a,b: δ 6.17, but not for δ 6.13.

3Assigned from hmbc.
1H NMR: (DMSO d$_6$) δ 8.81 (s, 1, C$_5$H); 7.79 and 7.59 (each bs, 1 each, NH, partially exchanged with D$_2$O); 5.20 (dd, 1, H-1', J(1'-2'a,b) = 5.4, 7.9 Hz); 4.88 (t, 1, 5'-OH, partially exchanged with D$_2$O, J = 5.5 Hz); 4.08 (tdd, 1, H-4', J(4'-5'a,b) = 5.3 Hz, J(4'-3'a,b) = 6.1, 7.5 Hz); 3.54 and 3.49 (each dd, 1 each, H-5'a,b, J(5'a,b-4') = 5.4, 5.2 Hz, J(gem) = 11.3 Hz); 2.41 (cm, 1, H-2'a); 2.03 (cm, 2, H-2'b, H-3'b); 1.71 (cm, 1, H-3'a).

5Irradiation of H-4' produced no change in the absorption of H-1', indicating the absence of H(1'-4') coupling through the ribosyl oxygen or through C$_2$-C$_3$. The latter was observed when C$_2$-C$_3$ was unsaturated. Irradiation of H-4' gave rise to an AB pattern for H-5'a,b.

13C-NMR: (DMSO d$_6$) 175.30 (Std, C-2, J = 4.5, 7.2 Hz); 162.80 (S, C-4); 150.15 (Sdd, C-0, J = 0.8, 4.9, 6.8 Hz); 124.38 (D, C-5, J$_{CH}$ = 192.3 Hz); 81.73 (Dcm, C-4', J = 147.4, 8.2 Hz); 78.12 (Dcm, C-1', J = 151.8, 7.3 Hz); 63.93 (Tdd, C-5', J = 139.6, 2.0, 4.5 Hz); 33.09 (Tcm, C-3', J = 133.4 Hz); 27.71 (Tcm, C-2', J = 129.2 Hz); TLC: Rf 0.70. Anal. Calcd. for C$_{12}$H$_{12}$N$_2$O$_3$: C, 47.35; H, 5.30; N, 12.27; S, 14.04. Found: C, 47.16; H, 5.41; N, 12.13; S, 13.78.

2-(5-Hydroxymethylfuran-2'-yl)thiazole-4-carboxamide (12):

Tiazofurin (8) (2.6 g, 10 mmol) was suspended in acetonitrile (30 mL) containing water (0.18 mL, 10 mmol) and o-acetoxyisobutyryl bromide (2) (4.5 mL, 30 mmol) is added in one portion. The reaction mixture was stirred for two hours when it formed a clear solution. Ethyl acetate (200 mL) was added, and the solution was washed with 5% sodium bicarbonate solution (2 x 50 mL), the aqueous phase was extracted with ethyl acetate (100 mL x 2), and the combined organic extracts were washed with water (50 mL) and brine (50 mL). After drying over

4In a D$_2$O-exchanged sample, J=0.9; 4.6 Hz.

5Definitive assignment from 13C spectrum based on hmbc present for H-5'a,b: δ 6.17, but not for δ 6.13.

6In a D$_2$O-exchanged sample, J=0.9; 4.6 Hz.
sodium sulfate the solvent was evaporated to yield a crude reaction product mixture (9).

The crude product was dissolved in anhydrous methanol (100 mL) and sodium methoxide (1.5 g) was added to adjust the pH value to 10. After stirring for two hours at room temperature the reaction mixture was neutralized with Amberlite resin H+ (20 g). The resin was collected by filtration, the solvent was evaporated and the residue was recrystallized from methanol (25 mL) to yield 1.9 g (85%) of pure product, m.p. 192-194°; (lit. 192-193°). IR (KBr): 3420; 3380-3050(br); 1680; 1550; 1380; 1295; 1070; 1020; 890; 810 cm⁻¹.

1H NMR: (DMSO d₆) δ 200 MHz 8.25 (s, 1, C₅H); 7.75 and 7.66 (each bs, 1 each, exchangeable with D₂O, NH); 7.11 (d, 1, H-2', J(2'-3') = 3.4 Hz); 6.55 (d, 1, H-3', J(3'-2') = 7.4 Hz); 5.45 (t, 1, 5'-OH, exchangeable with D₂O, J = 5.6 Hz); 4.50 (d, 2, H-5'a,b, J = 5.35 Hz);

13C NMR: (DMSO d₆) δ (Coupled with D₂O exchange); 162.35 (Sd, C-4, 2JCCH = 1.4 Hz); 157.8 (Scc, C-4'); 157.2 (Sd, C-1', 2JCCH = 7.7 Hz); 151.0 (Sdd, C-6, 3JCCH = 4.6 Hz, 2JCNH = 7.2 Hz); 147.0 (Sdd, C-2'b 3JCSCJ = 3JCCCH = 8.4 Hz); 123.5 (Ds, C-5'b 1Jch = 194.7 Hz°); 110.8 (Dd, C-2', J = 178.3, 4.6 Hz); 109.8 (Ddt, C-3', J = 177.3, 2.8, 3.8 Hz); 55.7 (Td, C-5', J = 142.8, 2.9 Hz).

TLC: Rf 0.55. Anal. Calcd. for C₈H₃N₃O₃S: C, 48.20; H, 3.60; N, 12.50; S, 14.30. Found: C, 48.38; H, 3.72; N, 12.49; S, 14.16.

7Tentatively assigned. Similar chemical shifts and couplings were reported by Srivastava, et al.

8Most highly coupled carbon.

9The carbon chemical shifts and assignments for the thiazole ring for compounds 10-12 (Scheme 2) agree generally with those of Kovacs, et al. (23). The sole exception was C-2 of 12 which was shifted upfield to 147 ppm from its usual absorption at 172-3 ppm by the direct bonding to the furanosyl ring.
ACKNOWLEDGEMENT

This study was performed under Contract # DAMD17-85-C-5071, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland. The findings in this report are those of the authors and should not be construed as an official Department of the Army position, unless so designated by other documentation.

Part of this project has been funded with Federal funds from the Department of Health and Human Services under contract number NO1-CO-74102. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

REFERENCES

X. Distribution List

1 Copy: Commander
US Army Medical Research and Development Command
Attn: SGRD-RMI-S
Fort Detrick
Frederick, MD 21702-5012

5 Copies: Commander
US Army Medical Research Institute of Infectious Diseases
Attn: SGRD-UIZ-M
Fort Detrick
Frederick, MD 21702-5011

1 Copy: Commandant
Academy of Health Sciences, U.S. Army
Attn: AHS-CDM
Fort Sam Houston, TX 78234

1 Copy: Dean, School of Medicine
Uniformed Services University of the Health Sciences
4301 Jones Bridge Road
Bethesda, MD 20014

1 Copy: Director
Walter Reed Army Institute of Research
Attn: SGRD-UWZ-C
Walter Reed Army Medical Center
Washington, D.C. 20307-5100

2 Copies: Administrator
Defense Technical Information Center
Attn: DTIC-FDAC
Cameron Station
Alexandria, VA 22314