Multivariate Generalizations of Student’s t-Distribution
ONR Technical Report

Robert D. Gibbons
University of Illinois at Chicago

Donald R. Hedeker
University of Illinois at Chicago

R. Darrell Bock
University of Chicago

July 1990

Dr. R.D. Gibbons
Biometric Laboratory
Illinois State Psychiatric Institute.
1601 W. Taylor St., Chicago, IL 60612, USA.

Supported by the Cognitive Science Program, Office of Naval Research, under Grant #N00014-89-J-1104. Research in whole or in part is permitted for any purpose of the United States Government. Approved for public release; distribution unlimited.
Multivariate Generalizations of Student's t-distribution

Robert D. Gibbons, Donald Hedeker, and R. Darrell Bock

To be submitted for publication in Biometrics

In the process of developing a conditionally dependent item-response theory model, we were confronted with the problem of modeling an underlying multivariate normal (MVN) response process with general correlation among the items. Without the assumption of conditional independence, for which the underlying MVN cdf takes on comparatively simple forms, and can be numerically evaluated using existing reduction formulae, our task required the development of a computationally fast, tractable and accurate approximation of multivariate normal orthant probabilities for general correlation (p,). The focus of our previous technical reports have provided such a method, based on Clark's (1961) approximation of the moments of n correlated random normal variables. The major thrust of our work continues in the area of applying this algorithm to problems in item-response theory (IRT). The focus of this report, however, is on the application of our previous results to another problem in statistics, namely, the generation of simultaneous confidence bounds for multiple correlated comparisons. There is a large statistical literature on this topic, however, as in IRT, the solutions have been based on reduction formulae which limit their application to special cases (e.g., equi-correlation), which arises in the univariate case of multiple treatment groups each of size n = m to a single control of size n0. More general problems, such as, obtaining simultaneous confidence bounds for regression coefficients cannot be solved using these existing methods. In this report we illustrate how the results we have obtained in the IRT context can be applied to simultaneous statistical inference problems of various kinds.
ABSTRACT

In the process of developing a conditionally dependent item-response theory model, we were confronted with the problem of modeling an underlying multivariate normal (MVN) response process with general correlation among the items. Without the assumption of conditional independence, for which the underlying MVN cdf takes on comparatively simple forms and can be numerically evaluated using existing reduction formulae, our task required the development of a computationally fast, tractable and accurate approximation of multivariate normal orthant probabilities for general correlation. The focus of our previous technical reports have provided such a method, based on Clark's (1964) approximation of the moments of n correlated random normal variables. The major thrust of our work continues in the area of applying this algorithm to problems in item-response theory (IRT). The focus of this report, however, is on the application of our previous results to another problem in statistics; namely, the generation of simultaneous confidence bounds for multiple correlated comparisons. There is a large statistical literature on this topic, however, as in IRT, the solutions have been based on reduction formulae which limits their application to special cases (e.g., equa-correlation), which arises in the comparison of multiple treatment groups each of size \(n_i = m \) to a single control of size \(n_0 \). More general problems, such as, obtaining simultaneous confidence bounds for regression coefficients cannot be solved using these existing methods. In this report we illustrate how the results we have obtained in the IRT context can be applied to simultaneous statistical inference problems of various kinds.
1 Introduction

If the random variables x_1, \ldots, x_p follow the multivariate normal (MVN) distribution with means zero, common variance σ^2, and a correlation matrix $\Sigma = [\rho_{ij}]$, and if $(\nu s^2)/\sigma^2$ is an independent χ^2 variable with ν degrees of freedom, then the random vector $t = (t_1, \ldots, t_p)$, where $t_i = x_i/s$ (for $i = 1, \ldots, p$) is said to have the p-variate t-distribution with ν degrees of freedom. This distribution is the multivariate analogue of Student’s t with density function:

$$f(t_1, t_2, \ldots, t_p) = \frac{\Gamma(\frac{p+\nu}{2}) |\Omega^{-1}|^{1/2}}{(\nu \pi)^{p/2} \Gamma(\nu/2)} (1 + \frac{1}{\nu} t^t \Omega^{-1} t)^{-\frac{p+\nu}{2}}.$$ \hspace{1cm} (1)

The distribution has applications in a number of statistical problems, most notably in the multiple comparison of several treatments with a control (Dunnett, 1955), and as John (1961) has noted, in the construction of simultaneous confidence bounds for the parameters in a linear model. We will discuss these applications of the multivariate-t distribution and suggest a numerical method for evaluating the probabilities associated with this distribution.

2 Dunnett’s Test

Consider the problem of comparing each of p treatments with a control in respect to their means $\mu_0, \mu_1, \mu_2, \ldots, \mu_p$, where μ_0 designates the control and $x_i, i = 1, 2, \ldots, p$, the treatments. Assume that the observations are normally and independently distributed with common within-group standard deviation σ. In this case, Dunnett (1955) has provided a procedure for making confidence statements about the p differences $\mu_i - \mu_0$, such that the probability of all p statements being simultaneously correct is equal to a specified P level. Dunnett’s procedure and the associated tables are available for the case of equal sample sizes in all groups. Here, we will expand the procedure to the case where the sample sizes are not equal, and to an even more general class of problems involving simultaneous statistical inference.

Suppose that there are n_0 observations for the control, n_1 observations for the first treatment, \ldots, n_p observations for the p-th treatment, and denote these observations by X_{ij} ($i = 0, 1, \ldots, p; j = 1, 2, \ldots, n_i$) and the corresponding i-th treatment mean as \bar{X}_i. Assume that there is an estimate of σ^2 available (denoted s^2) based on ν degrees of freedom, which is independent of the estimator of the mean. Now let

$$z_i = \frac{\bar{X}_i - \bar{X}_0 - (\mu_i - \mu_0)}{\sqrt{\frac{n_0+n_1}{n_0n_1}}}.$$ \hspace{1cm} (2)
and let \(t_i = z_i/s \) for \(i = 1, 2, \ldots, p \). As Dunnett (1955) notes, the lower confidence limits with joint confidence coefficient \(P \) for the \(p \) treatment effects \(\mu_i - \mu_0 \) are given by

\[
\bar{X}_i - \bar{X}_0 - d_i s \sqrt{\frac{n_0 + n_i}{n_0 n_i}},
\]

(3)

if the \(p \) constants \(d_i \) are chosen so that

\[
\text{Prob}(t_1 < d_1, t_2 < d_2, \ldots, t_p < d_p) = P.
\]

(4)

To find the \(p \) constants \(d_i \) that satisfy these equations, the joint distribution of the \(t_i \) is required, which is the multivariate analogue of Student's \(t \)-distribution defined by Dunnett and Sobel (1955). Dunnett (1955) has shown how the problem of evaluating the multivariate \(t \)-distribution can be reduced to the problem of evaluating the corresponding MVN distribution. For the latter, notice that the joint distribution of the \(z_i \) is a MVN distribution with means 0 and variances \(\sigma^2 \). The correlation between \(z_i \) and \(z_j \) is given by:

\[
\rho_{ij} = 1/\sqrt{\left(\frac{n_0}{n_i} + 1\right)\left(\frac{n_0}{n_j} + 1\right)}.
\]

(5)

which for the special case of equal sample sizes equals 1/2 for all \(i \) and \(j \). Dunnett and Sobel note that the joint probability statement given above can be written in the following way:

\[
P = \text{Prob}(t_1 < d_1, t_2 < d_2, \ldots, t_p < d_p)
\]

\[
= \text{Prob}(z_1 < d_1 s, z_2 < d_2 s, \ldots, z_p < d_p s)
\]

\[
= \int_{-\infty}^{+\infty} F(d_1 s, d_2 s, \ldots, d_p s) f(s) ds.
\]

(6)

where \(F(d_1 s, d_2 s, \ldots, d_p s) \) is the MVN cdf of the \(z_i \) and \(f(s) \) is the one-dimensional density function of \(s \). Thus, with probability values for \(F(\cdot) \), the above equation can be evaluated using numerical integration over the distribution of \(s \). For this, note that the density function of \(s \) is given by Pearson and Hartley (1976) as:

\[
f(s) = \frac{\nu^{\nu/2}}{\Gamma(\nu/2)2^{(\nu/2)-1}} s^{-\nu} \exp(-\nu s^2/2\sigma^2).
\]

(7)

Since \(s^2/\sigma^2 \equiv \chi^2/\nu \) we can rewrite the equation for \(P \) in terms of integration over the distribution of \(u = s/\sigma \) (which is defined on 0 to \(+\infty \)) as:
\[P = \int_{-\infty}^{+\infty} F(d_1 u, d_2 u, \ldots, d_p u) f(u) \frac{ds}{du} du \]
\[= \int_{0}^{+\infty} F(d_1 u, d_2 u, \ldots, d_p u) \frac{\nu^{\nu/2}}{\Gamma(\frac{\nu}{2})2^{(\nu/2)-1}} u^{\nu-1} \exp(-\nu u^2/2) du. \]

Numerical integration over the distribution of \(c \) can then be performed to yield the associated probability \(P \) for selected values of \(d, p, \) and \(\nu \).

3 Some Special Cases

Direct evaluation of the MVN cdf is not possible for \(p > 3 \). In the following, we note some special cases for which reduction formulae are available.

3.1 Case 1: \(n_0 = n_i = n \). (\(i = 1, \ldots, p \))

When all sample sizes are equal, the correlation in (5) is 1/2 for all possible pairings of the treatment groups and the control. Dunnett (1955) has given tables for the critical values of this distribution. In this case, the MVN probability in (8) is simply

\[F_p(0,0,\ldots,0;\{.5\}) = \frac{1}{p+1}. \]

3.2 Case 2: \(n_0 = n \) and \(n_i = m \). (\(i = 1, \ldots, p \))

When the \(p \) treatment groups are each of size \(m \), but the control group is of size \(n \), where \(n \neq m \), then from (5), \(\rho_{ij} = \rho \) for all \(i,j \). and the the probability in (8) is

\[F_p(ds,ds,\ldots,ds;\{\rho\}) = \int_{-\infty}^{+\infty} \left[F^p \left(\frac{ds + \rho^{1/2} y}{\sqrt{1 - \rho}} \right) \right] f(y)d(y), \]

where \(f(t) = \exp(-\frac{1}{2}t^2)/(2\pi)^{1/2} \) and \(F(t) = \int_{-\infty}^{t} f(t)dt \). see Gupta (1963).

3.3 Case 3: \(n_0 = n \) and \(n_i \) unequal

When the treatment group sample sizes are unequal, the correlation matrix \(\{\nu_{ij}\} \) has the special form
\[
\rho_{ij} = \alpha_i \alpha_j
\]
\[
= \left(\frac{n_0}{n_i} + 1 \right)^{-1/2} \left(\frac{n_0}{n_j} + 1 \right)^{-1/2}
\]
for \((i \neq j)\), where \(-1 \leq \alpha_i \leq +1\). In this case, the MVN cdf is:

\[
F_p(d_1s, d_2s, \ldots, d_ps; \{\rho_{ij}\}) = \int_{-\infty}^{\infty} \text{Prob} \left\{ X_i < \left(\frac{d_is - \alpha_i y}{\sqrt{1 - \alpha_i^2}} \right); \text{ all } i \right\} f(y) d(y)
\]

\[
= \int_{-\infty}^{\infty} \left[\prod_{i=1}^{p} F \left(\frac{d_is - \alpha_i y}{\sqrt{1 - \alpha_i^2}} \right) \right] f(y) d(y).
\]

(see Dunnett and Sobel, 1955). This MVN integral can be approximated to any practical degree of accuracy using Gauss-Hermite quadrature (Stroud and Secrest, 1966).

4 The General Case

The special cases in the previous sections provide methods for evaluating the MVN integral in (8), that cover all possible applications of the Dunnett type multiple comparison with control procedure, regardless of the sample sizes of the various groups. Nevertheless, there are still situations in which a completely general solution is required. Of course, for the general case, a more general method for evaluating the probabilities of the MVN cdf \(F(\cdot)\) is needed. For example, in regression analysis the \((b_1, b_2, \ldots, b_p)\) are MVN with means \((\beta_1, \beta_2, \ldots, \beta_p)\) and variance covariance matrix \(\{c_{ij}\} \sigma^2 = S^{-1} \sigma^2\), where \(S_{ij} = \sum_{r=1}^{n}(x_{ir} - \bar{x}_i)(x_{jr} - \bar{x}_j)\) for \((i, j = 1, 2, \ldots, p)\). In this case, \(\{\rho_{ij}\} = (c_{ii}c_{jj})^{-1/2} c_{ij}\) and none of the previous reduction formulae apply. One computationally tractable possibility is to use Clark's (1961) formulae for the moments of the maximum of p correlated normal variables as applied by Gibbons et. al. (1987) to the problem of approximating MVN orthant probabilities. A brief description of this approximation is now provided, and we will show that these probabilities are sufficiently accurate for practical purposes.

4.1 The Clark Algorithm

We begin by noting that the MVN cdf \(F_p(d_1s, d_2s, \ldots, d_ps; \{\rho_{ij}\})\) can be written as:

\[
F_p = Pr\{x_1 \leq h_1, x_2 \leq h_2, \ldots, x_n \leq h_n\},
\]

(12)
where $h_{i} = d_{i,s}$. If $h_{1} \ldots h_{n} = h = 0$, and the x_{i} follow a standardized MVN distribution, F_{p}^{0} is a so-called "orthant" probability. However, note that we can also write this MVN probability as:

$$F_{p}^{0} = Pr \{max(x_{1}, \ldots, x_{n}) \leq 0\}. \quad (13)$$

If $max(x_{1}, \ldots, x_{n})$ were normally distributed, which it clearly is not, with mean $E[max(x_{1}, \ldots, x_{n})]$ and variance $V[max(x_{1}, \ldots, x_{n})]$, then,

$$F_{p}^{0} = F \left[\frac{E(max(x_{1}, \ldots, x_{n}) - h)}{\sqrt{V(max(x_{1}, \ldots, x_{n})}}} \right]. \quad (14)$$

where in this case $h = 0$. For general h_{i}, we would set $h = 0$ and subtract h_{i} from the mean of x_{i}.

In order to proceed, we need the first two moments of $max(x_{1}, \ldots, x_{n})$ where the x_{i} have a joint MVN distribution with general correlation $\{\rho_{ij}\}$, and some bound on the error introduced by assuming that $max(x_{1}, \ldots, x_{n})$ has a normal distribution. Clark (1961), has provided an approximation for the first four moments of the maximum of p jointly normal correlated random variables, and Gibbons et. al., (1990), have shown that the accuracy of the approximation is approximately 10^{-3} in problems of this kind. An overview of the approximation is provided in the following.

Let any three successive components from an p-variate vector, y_{1}, be distributed:

$$\begin{bmatrix} y_{i} \\ y_{i+1} \\ y_{i+2} \end{bmatrix} \sim N\left(\begin{bmatrix} \mu_{i} \\ \mu_{i+1} \\ \mu_{i+2} \end{bmatrix}, \begin{bmatrix} \sigma_{i}^{2} \\ \sigma_{i+1}^{2} + \sigma_{i+1,i+1}^{2} \\ \sigma_{i+1}^{2} + \sigma_{i+1,i+1}^{2} + \sigma_{i+2}^{2} \end{bmatrix} \right)$$

Let $\hat{y}_{i} = max(y_{i}) = y_{i}$, and compute the probability that $y_{i+1} > \hat{y}_{i}$ as follows:

set $z_{i+1} = (\mu_{i} - \mu_{i+1})/\zeta_{i+1}$.

where $\zeta_{i+1}^{2} = \sigma_{i}^{2} + \sigma_{i+1}^{2} - 2\sigma_{i} \sigma_{i+1} \rho_{i,i+1}$.

Then $P(y_{i+1} > \hat{y}) = P(y_{i+1} - \hat{y} > 0) = \Phi(-z_{i+1})$

the value of the univariate normal distribution function at the standard deviate $-z_{i+1}$.
Now let $\hat{y}_{i+1} = \max(y_i, y_{i+1})$ and assume (as an approximation) that (y_{i+2}, \hat{y}_{i+1}) is bivariate normal with means,

$$
\begin{align*}
\mu(y_{i+2}) &= \mathcal{E}(y_{i+2}) = \mu_{i+2} \\
\mu(\hat{y}_{i+1}) &= \mathcal{E}(\hat{y}_{i+1}) = \mu_i \Phi(z_{i+1}) + \mu_{i+1} \Phi(-z_{i+1}) + \zeta_{i+1} \phi(z_{i+1}),
\end{align*}
$$

variances

$$
\begin{align*}
\sigma^2(y_{i+2}) &= \mathcal{E}(y_{i+2}^2) - \mathcal{E}^2(y_{i+2}) = \sigma_{i+2}^2, \\
\sigma^2(\hat{y}_{i+1}) &= \mathcal{E}(\hat{y}_{i+1}^2) - \mathcal{E}^2(\hat{y}_{i+1}).
\end{align*}
$$

where

$$
\mathcal{E}(\hat{y}_{i+1}^2) = (\mu_i^2 + \sigma_i^2) \Phi(z_{i+1}) + (\mu_{i+1}^2 + \sigma_{i+1}^2) \Phi(-z_{i+1}) + (\mu_i + \mu_{i+1}) \zeta_{i+1} \phi(z_{i+1}).
$$

(17)

and correlation

$$
\rho(\hat{y}_{i+1}, y_{i+2}) = \frac{\sigma_i \rho_{i+1} \Phi(z_{i+1}) + \sigma_{i+1} \rho_{i+1} \Phi(-z_{i+1})}{\sigma(\hat{y}_{i+1})}.
$$

(18)

Then,

$$
P(y_{i+2} = \max(y_i, y_{i+1}, y_{i+2})) = P((y_{i+2} - y_{i+1} > 0) \cap (y_{i+2} - y_i > 0))
$$

is approximated by

$$
P(y_{i+2} > \hat{y}_{i+1}) = P(y_{i+2} - \hat{y}_{i+1} > 0)
\begin{equation}
= \Phi\left(\frac{\mu_{i+2} - \mu(\hat{y}_{i+1})}{\sqrt{\sigma_{i+2}^2 + \sigma^2(\hat{y}_{i+1}) - 2\sigma_{i+2} \sigma(\hat{y}_{i+1}) \rho(\hat{y}_{i+1}, y_{i+2})}} \right).
\end{equation}
$$

(20)

Assuming as a working approximation that \hat{y}_{i+1} is normally distributed with the above mean and variance, we may therefore proceed, recursively from $i = 1$ to $i = p - 1,$ where y_{p+1} is an independent dummy variate with mean zero and variance zero (i.e. $y_{p+1} = 0$). Then, for example,

$$
P[y_{p+1} = \max(y_1, y_2, \ldots, y_{p+1})]
\begin{equation}
= P[(-y_1 > 0) \cap (y_{p+1} - y_2 > 0) \cap \ldots \cap (y_{p+1} - y_p > 0)]
= P[(y_1 > 0) \cap (-y_2 > 0) \cap \ldots \cap (-y_p > 0)]
\end{equation}
$$

(21)
approximates the negative orthant. The probability of any other orthant can be obtained by reversing the signs of the variates corresponding to 1's in the orthant pattern.

More generally, to compute any MVN orthant probability, for example,

$$
\int_{-\infty}^{h} \int_{-\infty}^{h} \ldots \int_{-\infty}^{h} f(x_1, x_2, \ldots, x_p; \{\rho_{ij}\}) \, dx_1 \ldots \, dx_p
$$

we compute the negative orthant setting $\mu_{p+1} = h$. Finally, to approximate the integral for general h_i, we compute the negative orthant by setting $\mu_{p+1} = 0$ and $\mu_i = \mu_i - h_i$. In the present context $h_i = d_i$.

4.2 Applications

To illustrate the use of the general approximation, consider the following two multivariate prediction problems.

4.2.1 Confidence Bounds for Means

Simultaneous confidence bounds for the means of correlated normal variables can now be found using the general method. Suppose x_1, \ldots, x_p are MVN with mean vector μ_1, \ldots, μ_p and dispersion matrix $\sigma^2 \{\rho_{ij}\}$, where $\{\rho_{ij}\}$ is the correlation matrix. The Clark algorithm can be used to satisfy the inequality,

$$
\bar{x}_i - N^{-\frac{1}{2}}ds < \mu_i < \bar{x}_i + N^{-\frac{1}{2}}ds
$$

for $(i = 1, \ldots, p)$.

4.2.2 Confidence Bounds for a Future Observation

Similarly, simultaneous confidence bounds for a future p-variate observation may also be found in this way. Suppose x_1, \ldots, x_p represent a future observation vector from a MVN population with equal variances and correlation matrix $\{\rho_{ij}\}$. A previous sample of size N is available from which the estimates \bar{x} and s are obtained. The Clark algorithm can be used to satisfy the inequality,

$$
\bar{x}_i - (1 + 1/N)^{-\frac{1}{2}}ds < x_i < \bar{x}_i + (1 + 1/N)^{-\frac{1}{2}}ds
$$

for $(i = 1, \ldots, p)$. The value $h = ds$ is selected such that the desired confidence level P in (6) is obtained.
Table 1

95% Critical Values for Various Modifications of Dunnett’s Test

<table>
<thead>
<tr>
<th>Case</th>
<th>n_0</th>
<th>n_1</th>
<th>n_2</th>
<th>n_3</th>
<th>n_4</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>2.22</td>
<td>2.22</td>
<td>2.22</td>
<td>2.20</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>2.19</td>
<td>2.19</td>
<td>2.19</td>
<td>2.17</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>2.19</td>
<td>2.13</td>
<td>2.13</td>
<td>2.12</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>2.18</td>
<td>2.09</td>
<td>2.09</td>
<td>2.07</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>2.20</td>
<td>2.25</td>
<td>2.25</td>
<td>2.22</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>30</td>
<td>50</td>
<td>20</td>
<td>10</td>
<td>2.19</td>
<td>2.10</td>
<td>2.11</td>
<td>2.10</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>5</td>
<td>50</td>
<td>10</td>
<td>50</td>
<td>2.18</td>
<td>2.09</td>
<td>2.13</td>
<td>2.13</td>
</tr>
</tbody>
</table>

I Dunnett’s original test (correct for case I only)

II n_0 controls and $m = n_1 = \ldots = n_4$ treatments (correct for cases 1 & 2)

III All n_i potentially different (1 dimensional quadrature: correct for cases 1.2.3)

IV General $\{p_{ij}\}$ (Clark approximate for all cases)

5 Illustrations

Table 1 presents comparisons of various modifications of Dunnett’s test for various sample size combinations for a 5 group study.

Inspection of Table 1 reveals that all three of the reduction formulae work exactly as anticipated. The general solution based on the Clark approximation performs quite well, and if anything, its accuracy is best in those cases when it is most needed, i.e., when the correlations are heterogeneous. Dunnett’s original tabled values (i.e., case I), appear to overestimate the true values when $n_0 < n_i$ and underestimate the true values when $n_0 > n_i$. In general, the case II solution (i.e., $\{p_{ij}\} = \rho$) works reasonably well under all conditions; however, it is somewhat biased in the final example in which the sample sizes are quite variable.

As a second numerical example, let us return to the problem of obtaining simultaneous confidence bounds for regression coefficients. Mosteller and Tukey (1977, pages 549-551) recovered demographic transition data on fertility rates and five socioeconomic indicators from 47 Swiss provinces in 1888. The socioeconomic indicators were:

1. Proportion of population involved in agriculture as an occupation.

2. Proportion of draftees receiving highest mark on army examination.
3. Proportion of population whose education is beyond primary school.

4. Proportion of the population who are catholic.

5. Infant mortality: proportion of live births who live less than 1 year.

The common standardized fertility measure \(I_g \) was used as the dependent measure and the socioeconomic indicators \(x_1, \ldots, x_5 \) were the predictors. The least squares estimated regression equation was:

\[
\hat{I}_g = .645 - .203x_1 - .295x_2 - .396x_3 + .001x_4 + 1.316x_5
\]

This regression equation reveals that fertility is inversely related to socioeconomic status, which is consistent with the fact that at the time, fertility was beginning to fall from the high level generally found in underdeveloped countries to the lower level that it has today. The correlation matrix \(\{\rho_{ij}\} = (c_{ij})^{-1} \) of the \((b_1, b_2, \ldots, b_8) \) was:

\[
\{\rho_{ij}\} = \begin{bmatrix}
1.00 \\
.21 & 1.00 \\
.39 & -.59 \\
-.26 & .55 & -.47 & 1.00 \\
.17 & -.03 & .15 & -.17 & 1.00
\end{bmatrix}
\]

and the unbiased moment estimator \(s^2 \) of \(\sigma^2 \),

\[
s^2 = \frac{1}{N - p - 1} (T_{yy} - b_1 T_{y1} - b_2 T_{y2} - \ldots - b_5 T_{y5})
\]

where

\[
T_{yi} = \sum_{k=1}^{N} y_k (x_{ik} - \bar{x}_i) \quad (i = 1, 2, \ldots, p)
\]

and

\[
T_{yy} = \sum_{k=1}^{N} (y_i - \bar{y})^2
\]

was \(s^2 = .0045 \). The elements \(c_{ii}, i = 1, 2, \ldots, p \) of \(S^{-1} \) were \(c_{11} = .96 \), \(c_{12} = 11.89 \), \(c_{33} = 6.55 \), \(c_{44} = .000024 \), and \(c_{55} = 30.58 \). Using the general approximation, we find that the inequalities

\[
b_i - dc_{ii}s \leq \lambda_i \leq b_i + dc_{ii}s \quad (i = 1, 2, \ldots, p)
\]

are simultaneously satisfied for \(P = .95 \) when \(d = 2.32 \), which yields the confidence limits:
The confidence limit for b_2 (i.e., proportion of draftees receiving highest marks on army examination), was the only interval that included $3 = 0$. For a single interval $d = t_{41.05} = 2.02$, which is considerably smaller than the simultaneous value of $d = 2.32$ used here. Had we used a simple Bonferroni type adjustment (i.e., $\alpha = .05/5 = .01$), then $d = t_{41.01} = 2.70$, which would clearly have been overly conservative.

6 Summary

In this paper we have provided methods for evaluating the multivariate t-distribution with and without restrictions on the form of the correlation matrix $\{\rho_{ij}\}$. Using these results, Dunnett's test for multiple treatments compared to a single control was then generalized to various unbalanced cases. In the more general case, in which $\{\rho_{ij}\}$ does not have a simple unidimensional form, we have applied Clark's approximation to the moments of the maximum of n correlated random normal variables to the problem of approximating the required MVN cdf. This approach appears to work well, and is the only computationally tractable solution for the case of general $\{\rho_{ij}\}$. Application to the problem of obtaining simultaneous confidence limits for regression coefficients, clearly illustrates the importance of this approach, given that repeated use of limits designed for a single comparison yield inadequate coverage, and simplistic adjustments that do not take the correlational structure into consideration (e.g., Bonferroni adjusted $\alpha^* = \alpha/p$), yield limits that are overly conservative.
References

Distribution List

Dr. Ken B. Carroll
409 Elbow Rd., North
Chapel Hill, NC 27514

Dr. John M. Carroll
IBM Watson Research Center
User Interface Institute
P.O. Box 704
Tarrytown, N.Y. 10591

Dr. Robert B. Anderson
Department of Sciences
Sugar Sand Road
1453 Copenhagen
DENMARK

Dr. Ronald Armstrong
Rutgers University
Graduate School of Management
Newark, N.J. 07102

Dr. Eva L. Baker
UCLA Center for the Study of Emotion
145 Moore Hall
University of California
Los Angeles, CA 90024

Dr. Laura L. Barnes
College of Education
University of Toledo
2811 W. Bancroft Street
Toledo, OH 43606

Dr. William M. Bart
University of Minnesoia
Dept. of Educ. Psychology
110 Bunton Hall
178 Pilbury Dr., S.E.
Minneapolis, MN 55455

Dr. Isaac Bejar
Mail Stop 18R
Educational Testing Service
Rosedale Road
Princeton, NJ 08541

Dr. Menachem Breuhaus
School of Education
Tel Aviv University
Ramat Aviv 69978
ISRAEL

Dr. Arthur S. Bleaves
Code 1452
Naval Training Systems Center
Orlando, FL 32813-7100

Dr. Bruce Blossom
Defense Manpower Data Center
601 Pacific St.
Santa Clara, CA 95054

Dr. Arnold Bober
Soeco Psychologsh Onderzoek
Reinventenweg Dichterleurem
Koeveren Koningsl Aesol
Broyeverset
1130 Brussels, BELGIUM

Dr. Robert Bresaut
Code 381
Naval Training Systems Center
Orlando, FL 32824-1221

Dr. Robert Brennan
American College Testing Program
P.O. Box 168
Iowa City, IA 52243

Dr. Gregory Connell
CTB/McGraw-Hill
200 Garden Road
Monterey, CA 93940

Dr. John B. Dalleo
CERL
University of Illinois
103 South Mathews Avenue
Urbana, IL 61801

Dr. David Doig
Center for Naval Analysis
4411 Ford Avenue
P.O. Box 1636
Alexandria, VA 22302-0168

Dr. Heo-Ki Dong
Bell Communications Research
Room B4A1807
P.O. Box 1120
Passau, N.J. 08651-1120

Dr. Fritz Dragow
University of Illinois
Department of Psychology
602 E. Daniel St.
Champaign, IL 61820

Dr. Benjamin E. Breyer
Department of Psychology
University of Iowa
Iowa City, IA 52242

Dr. James E. Early
Air Force Human Resources Lab
Brooks AFB, TX 78235

Dr. Susan Embretson
University of Kansas
Department of Psychology
125 Fraser
Lawrence, KS 66045

Dr. George Englebard, Jr.
Division of Educational Studies
Emory University
210 Felburne Blvd.
Atlanta, GA 30322

Dr. Benjamin E. Breyer
Operational Technologies Corp.
1512 California Avenue
San Antonio, TX 78228

Dr. P.A. Federico
Code 51
NPRDC
San Diego, CA 92152-6800

Dr. Leonard Feld
Naval Center
Department of Psychology
University of Iowa
Iowa City, IA 52242

Dr. Robert L. Ferguson
American College Testing Program
P.O. Box 168
Iowa City, IA 52243

Dr. Gerhard Fochler
Lettinse A/3
A 1040 Vienna
AUSTRIA

Dr. Myron Foulzi
U.S. Army Headquarters
DAFE-MR
The Pentagon
Washington, DC 20310-0000

Prof. Donald Fitzgerald
University of New England
Department of Psychology
Armidale, New South Wales 2351
AUSTRAWA

Mr. Paul Foley
Naval Personnel R&D Center
San Diego, CA 92152-4800
University of Illinois at Chicago/Gibbons

Dr. Bruce Waters
HumanBO
1100 S. Washington
Alexandria, VA 22314

Dr. David J. Weiss
Wells Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455-0344

Dr. Ronald A. Wescott
Box 146
Central, CA 93921

Major John J. Weis
AFRL/MQAS
Brooks AFB, TX 78235

Dr. Donald Zentes
Code 51
Navy Personnel R&D Center
San Diego, CA 92152-6000

Dr. Randi R. Wilson
University of Southern California
Department of Psychology
Los Angeles, CA 90089-1081

German Military Representative
ATTN: Wolfgang Wildgrube
Schuwaltplatz
D-1008 Bonn 2
400 Bryn Mawr Street, NW
Washington, DC 20016

Dr Bruce Williams
Department of Educational Psychology
University of Illinois
Urbana, IL 61801

Dr. Hilda Wing
Federal Aviation Administration
800 Independence Ave, SW
Washington, DC 20591

Mr. John H. Wolfe
Navy Personnel R&D Center
San Diego, CA 92152-6000

Dr. George Wong
Boasidass Laboratory
Memorial Sloan Kettering
Cancer Center
1275 York Avenue
New York, NY 10021

Dr. Wallace Wullock, III
Navy Personnel R&D Center
Code 51
San Diego, CA 92152-6000

Dr. Kenjiro Yasue
E.T.
Educational Testing Service
Rosedale Road
Princeton, NJ 08541

Dr. Wendy Yan
CTW/McGraw Hall
Del Monte Research Park
Monterey, CA 93940

Dr. Joseph L. Young
National Science Foundation
Room 320
1800 G Street, N.W.
Washington, DC 20550

Mr. Anthony R. Zarra
National Council of State Boards of Nursing, Inc.
425 North Michigan Avenue
Suite 1544
Chicago, IL 60611