ELECTRICALLY SMALL ANTENNAS

The Ohio State University

J.H. Richmond and C.H. Walter

ElectroScience Laboratory

Department of Electrical Engineering

Columbus, Ohio 43212

Semi-Annual Report 711964-5

Contract DAAG29-79-C-0082

July 1981 to December 1981

Department of the Army

U.S. Army Research Office

Research Triangle Park, North Carolina 27709
NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.
This summary describes the work on ARO Grant Number DAAG29-79-C-0082 from 1 July to 31 December 1981. The purpose of this grant is to develop theory and techniques for small antennas mounted on structures, for printed-circuit antennas, and for k-pulse applications.
PROGRESS REPORT

1. ARO PROPOSAL NUMBER: 08542-55-00

2. PERIOD COVERED BY REPORT: 1 July to 31 December 1981

3. TITLE OF PROPOSAL: Electrically Small Antennas

4. CONTRACT OR GRANT NUMBER: DAAG29-79-C-0082

5. NAME OF INSTITUTION: The Ohio State University
 ElectroScience Laboratory

6. AUTHOR(S) OF REPORT: J.H. Richmond and C.H. Walter

7. LIST OF MANUSCRIPTS SUBMITTED OR PUBLISHED UNDER ARO SPONSORSHIP
 DURING THIS PERIOD, INCLUDING JOURNAL REFERENCES:
 None

8. SCIENTIFIC PERSONNEL SUPPORTED BY THIS PROJECT AND DEGREES
 AWARDED DURING THIS REPORTING PERIOD:
 J.H. Richmond
 C.H. Walter
 No degrees awarded during this period.
BRIEF OUTLINE OF RESEARCH FINDINGS

This summary describes the work on ARO Grant Number DAAG29-79-C-0082 from 1 July to 31 December 1981. The purpose of this grant is to develop theory and techniques for small antennas mounted on structures, for printed-circuit antennas, and for k-pulse applications.

For the mutual impedance between coplanar microstrip antennas, it was found that the numerical integration technique required some refinement. After the singularity is removed, a significant contribution still comes from the very small region around the singularity. Therefore, careful integration is required in this region, and the payoff is much better agreement with experimental measurements. Keywords: Antennas

In future periods, we expect to investigate the self impedance and mutual impedance of microstrip antennas on a conducting circular cylinder. The solution will involve an inverse Fourier transform and a summation of cylindrical wave functions. This work will represent a beginning on the more general problem of conformal microstrip arrays.