INDEX TO BENET LABORATORIES
TECHNICAL REPORTS - 1989

R. D. NEIFELD
TECHNICAL PUBLICATIONS AND EDITING SECTION

JULY 1990

US ARMY ARMAMENT RESEARCH,
DEVELOPMENT AND ENGINEERING CENTER
CLOSE COMBAT ARMAMENTS CENTER
BENÉT LABORATORIES
WATERVLIET, N.Y. 12189-4050

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The use of trade name(s) and/or manufacturer(s) does not constitute an official indorsement or approval.

DESTRUCTION NOTICE

For classified documents, follow the procedures in DoD 5200.22-M, Industrial Security Manual, Section II-19 or DoD 5200.1-R, Information Security Program Regulation, Chapter IX.

For unclassified, limited documents, destroy by any method that will prevent disclosure of contents or reconstruction of the document.

For unclassified, unlimited documents, destroy when the report is no longer needed. Do not return it to the originator.
This is a compilation of technical reports published by Benet Laboratories during 1989.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Reports</td>
<td>1</td>
</tr>
<tr>
<td>Author Index</td>
<td>4</td>
</tr>
<tr>
<td>Subject Index</td>
<td>7</td>
</tr>
<tr>
<td>AD Numbers</td>
<td>16</td>
</tr>
<tr>
<td>Abstracts--Report Documentation Page (DD Form 1473)</td>
<td>19</td>
</tr>
<tr>
<td>REPORT NUMBER</td>
<td>TITLE</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
</tr>
<tr>
<td>ARCCB-TR-89002</td>
<td>High Speed Abrasive Belt Grinding</td>
</tr>
<tr>
<td>ARCCB-TR-89003</td>
<td>Analysis of a Large High Pressure Vessel Closure</td>
</tr>
<tr>
<td>ARCCB-TR-89006</td>
<td>Switching Zone Control for a System with an Elastic Joint</td>
</tr>
<tr>
<td>ARCCB-CR-89007</td>
<td>Propellant Driven MHD Generator for Rail Gun Power Supply</td>
</tr>
<tr>
<td>ARCCB-TR-89008</td>
<td>Wave Coupling and Resonance in Gun Tubes</td>
</tr>
<tr>
<td>ARCCB-TR-89009</td>
<td>Titanium-Jacketed Cannon Tube Program</td>
</tr>
<tr>
<td>ARCCB-TR-89010</td>
<td>Switching Zone Control as a Distributed Controller</td>
</tr>
<tr>
<td>ARCCB-MR-89011</td>
<td>Dimensional Changes in Wires During Coiling Operations</td>
</tr>
<tr>
<td>ARCCB-TR-89012</td>
<td>Advanced Tank Gun Parametric Study (U)</td>
</tr>
<tr>
<td>Report Number</td>
<td>Title</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>ARCCB-SP-89013</td>
<td>Index to Benet Laboratories Technical Reports - 1988</td>
</tr>
<tr>
<td>ARCCB-TR-89014</td>
<td>Stress Intensity Factors and Displacements for Arc Bend Samples Using Collocation</td>
</tr>
<tr>
<td>ARCCB-TR-89017</td>
<td>Compression Molding of Fiber Glass/Epoxy Handguards for the SFLM Advanced Combat Rifle</td>
</tr>
<tr>
<td>ARCCB-TR-89018</td>
<td>Applications and Limitations of Finite Element Analysis to Armament Components</td>
</tr>
<tr>
<td>ARCCB-TR-89019</td>
<td>Autofrettage--Stress Distribution Under Load and Retained Stresses After Depressurization</td>
</tr>
<tr>
<td>ARCCB-TR-89020</td>
<td>The Influence of Transient Flexural Waves on Dynamic Strains in Gun Tubes</td>
</tr>
<tr>
<td>ARCCB-TR-89021</td>
<td>Effects of Varying Plating Parameters on the Longitudinal Distribution of Low Contraction Chromium in Long Gun Tubes</td>
</tr>
<tr>
<td>ARCCB-TR-89022</td>
<td>Determination of Chromic Acid in Chromium Plating Solutions Using a Redox Titration and Indicator</td>
</tr>
<tr>
<td>ARCCB-TR-89023</td>
<td>Analytical Comparison of the Accuracy of Tank Weapons</td>
</tr>
<tr>
<td>Report Number</td>
<td>Title</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>ARCCB-TR-89024</td>
<td>Optimization of Plating Parameters for Low Contraction Chromium Electrodeposits</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCCB-TR-89025</td>
<td>Determination of Sulfuric Acid in Anodizing and Hardcoating Solutions by Acid-Base Titration Using a pH Meter</td>
</tr>
<tr>
<td>ARCCB-TR-89027</td>
<td>Elastic-Plastic Analysis of a Thick-Walled Composite Tube Subjected to Internal Pressure</td>
</tr>
<tr>
<td>ARCCB-TR-89028</td>
<td>Thermal Study of the 120-mm M256 Cannon Tube</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCCB-TR-89030</td>
<td>Determination of Trivalent Chromium Ions in Chromium Plating Solutions by Ultraviolet-Visible Spectrophotometry</td>
</tr>
<tr>
<td>ARCCB-TR-89031</td>
<td>Determination of Phosphoric and Sulfuric Acids in Polishing Solutions by Acid-Base Titration Using a pH Meter</td>
</tr>
<tr>
<td>ARCCB-TR-89032</td>
<td>Calculations of Braiding Parameters</td>
</tr>
<tr>
<td>ARCCB-TR-89033</td>
<td>Modal Analysis of Nonprismatic Beams - Uniform Segment Method</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCCB-MR-89034</td>
<td>Investigation Into the Fabrication of a Composite Top Attack Recoilless Rifle</td>
</tr>
<tr>
<td>AUTHOR</td>
<td>REPORT NUMBER</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Abbott, R. T.</td>
<td>ARCCB-MR-89015</td>
</tr>
<tr>
<td>Artus, B.</td>
<td>ARCCB-TR-89028</td>
</tr>
<tr>
<td>Askew, J. C.</td>
<td>ARCCB-TR-89021</td>
</tr>
<tr>
<td>Avitzur, B.</td>
<td>ARCCB-MR-89011 ARCCB-TR-89019</td>
</tr>
<tr>
<td>Bak, J.</td>
<td>ARCCB-TR-89002</td>
</tr>
<tr>
<td>Capsimalis, G. P.</td>
<td>ARCCB-TR-89005</td>
</tr>
<tr>
<td>Champoux, R. L.</td>
<td>ARCCB-MR-89004</td>
</tr>
<tr>
<td>Chang, S. S. L.</td>
<td>ARCCB-TR-89006 ARCCB-TR-89010</td>
</tr>
<tr>
<td>Chen, P. C. T.</td>
<td>ARCCB-TR-89027</td>
</tr>
<tr>
<td>Cunningham, G.</td>
<td>ARCCB-TR-89009</td>
</tr>
<tr>
<td>Gast, R. G.</td>
<td>ARCCB-TR-89023 ARCCB-TR-89033</td>
</tr>
<tr>
<td>Hasenbein, R.</td>
<td>ARCCB-TR-89009 ARCCB-TR-89028</td>
</tr>
<tr>
<td>Hyland, E.</td>
<td>ARCCB-TR-89009</td>
</tr>
<tr>
<td>Kapp, J. A.</td>
<td>ARCCB-MR-89004 ARCCB-TR-89014 ARCCB-MR-89015</td>
</tr>
<tr>
<td>Konrad, B. A.</td>
<td>ARCCB-TR-89016</td>
</tr>
<tr>
<td>Meisel, L. V.</td>
<td>ARCCB-TR-89029</td>
</tr>
</tbody>
</table>
AUTHOR INDEX--1989

Miller, M. D. ARCCB-TR-89024
Miner, K. R. ARCCB-TR-89017
ARCCB-TR-89034
Morris, S. L. ARCCB-TR-89012
Neifeld, R. D. ARCCB-SP-89013
Nelson, F. J. ARCCB-TR-89024
O'Hara, G. P. ARCCB-TR-89003
ARCCB-TR-89016
Pan, S. K. ARCCB-TR-89024
Racicot, R. L. ARCCB-TR-89006
ARCCB-TR-89010
Scavullo, M. A. ARCCB-TR-89016
Shuy, G. W. ARCCB-CR-89007
Simkins, T. E. ARCCB-TR-89008
ARCCB-TR-89020
Sneck, H. J. ARCCB-TR-89033
Sopok, S. ARCCB-TR-89022
ARCCB-TR-89025
ARCCB-TR-89026
ARCCB-TR-89030
ARCCB-TR-89031
Todaro, M. E. ARCCB-TR-89005
Underwood, J. H. ARCCB-MR-89004
ARCCB-TR-89016
ARCCB-TR-89018
AUTHOR INDEX--1989

<table>
<thead>
<tr>
<th>Author</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vincent, T. P.</td>
<td>ARCCB-TR-89001</td>
</tr>
<tr>
<td>Vottis, P. M.</td>
<td>ARCCB-CR-89007</td>
</tr>
<tr>
<td>Wharton, R. K.</td>
<td>ARCCB-TR-89001</td>
</tr>
<tr>
<td>Wheeler, P. C.</td>
<td>ARCCB-TR-89032</td>
</tr>
<tr>
<td>Woo, J. T.</td>
<td>ARCCB-CR-89007</td>
</tr>
</tbody>
</table>
SUBJECT INDEX--1989

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABAQUS Computer Program</td>
<td>ARCCB-TR-89003</td>
</tr>
<tr>
<td>Abrasive Belts</td>
<td>ARCCB-TR-89002</td>
</tr>
<tr>
<td>Absorption Spectra</td>
<td>ARCCB-TR-89026</td>
</tr>
<tr>
<td>Abstracts</td>
<td>ARCCB-SP-89013</td>
</tr>
<tr>
<td>Acoustic Emissions</td>
<td>ARCCB-TR-89005</td>
</tr>
<tr>
<td>Acquisition</td>
<td>ARCCB-TR-89001</td>
</tr>
<tr>
<td>Adhesion</td>
<td>ARCCB-TR-89005</td>
</tr>
<tr>
<td>Alloys</td>
<td>ARCCB-TR-89029</td>
</tr>
<tr>
<td>Aluminum</td>
<td>ARCCB-TR-89025</td>
</tr>
<tr>
<td>Aluminum Alloys</td>
<td>ARCCB-TR-89016</td>
</tr>
<tr>
<td>Anodic Coatings</td>
<td>ARCCB-TR-89025</td>
</tr>
<tr>
<td>Antitank Ammunition</td>
<td>ARCCB-TR-89012</td>
</tr>
<tr>
<td></td>
<td>ARCCB-MR-89015</td>
</tr>
<tr>
<td>Atomic Spectroscopy</td>
<td>ARCCB-TR-89026</td>
</tr>
<tr>
<td>Autofrettage</td>
<td>ARCCB-MR-89004</td>
</tr>
<tr>
<td></td>
<td>ARCCB-TR-89009</td>
</tr>
<tr>
<td></td>
<td>ARCCB-TR-89019</td>
</tr>
<tr>
<td>Autoignition</td>
<td>ARCCB-TR-89028</td>
</tr>
<tr>
<td>Bang-Bang Control</td>
<td>ARCCB-TR-89006</td>
</tr>
<tr>
<td></td>
<td>ARCCB-TR-89010</td>
</tr>
</tbody>
</table>
SUBJECT INDEX--1989

<table>
<thead>
<tr>
<th>Subject</th>
<th>ARCCB/TR-89023</th>
<th>ARCCB/TR-89033</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bending Stress</td>
<td>ARCCB-TR-89014</td>
<td></td>
</tr>
<tr>
<td>Bibliographies</td>
<td>ARCCB-SP-89013</td>
<td></td>
</tr>
<tr>
<td>Braiding</td>
<td>ARCCB-TR-89032</td>
<td>ARCCB-MR-89034</td>
</tr>
<tr>
<td>Breech Mechanisms</td>
<td>ARCCB-TR-89003</td>
<td></td>
</tr>
<tr>
<td>Chemical Analysis</td>
<td>ARCCB-TR-89022</td>
<td>ARCCB-TR-89025</td>
</tr>
<tr>
<td></td>
<td>ARCCB-TR-89026</td>
<td>ARCCB-TR-89030</td>
</tr>
<tr>
<td></td>
<td>ARCCB-TR-89031</td>
<td></td>
</tr>
<tr>
<td>Chromic Acid</td>
<td>ARCCB-TR-89022</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>ARCCB-TR-89005</td>
<td>ARCCB-TR-89021</td>
</tr>
<tr>
<td></td>
<td>ARCCB-TR-89022</td>
<td>ARCCB-TR-89024</td>
</tr>
<tr>
<td></td>
<td>ARCCB-TR-89026</td>
<td>ARCCB-TR-89030</td>
</tr>
<tr>
<td></td>
<td>ARCCB-TR-89031</td>
<td></td>
</tr>
<tr>
<td>Closures</td>
<td>ARCCB-TR-89003</td>
<td></td>
</tr>
<tr>
<td>Coatings</td>
<td>ARCCB-TR-89002</td>
<td></td>
</tr>
<tr>
<td>Coils</td>
<td>ARCCB-MR-89011</td>
<td></td>
</tr>
<tr>
<td>Collocation</td>
<td>ARCCB-TR-89014</td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td>Code</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>Composite Materials</td>
<td>ARCCB-MR-89004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARCCB-TR-89017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARCCB-TR-89027</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARCCB-TR-89032</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARCCB-MR-89034</td>
<td></td>
</tr>
<tr>
<td>Compression Molding</td>
<td>ARCCB-TR-89017</td>
<td></td>
</tr>
<tr>
<td>Contact Wheels</td>
<td>ARCCB-TR-89002</td>
<td></td>
</tr>
<tr>
<td>Contraction</td>
<td>ARCCB-TR-89021</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARCCB-TR-89024</td>
<td></td>
</tr>
<tr>
<td>Control Systems</td>
<td>ARCCB-TR-89010</td>
<td></td>
</tr>
<tr>
<td>Cook-Off</td>
<td>ARCCB-TR-89028</td>
<td></td>
</tr>
<tr>
<td>Coupling (Interaction)</td>
<td>ARCCB-TR-89029</td>
<td></td>
</tr>
<tr>
<td>Cracks</td>
<td>ARCCB-TR-89014</td>
<td></td>
</tr>
<tr>
<td>Critical Velocity Theory</td>
<td>ARCCB-TR-89008</td>
<td></td>
</tr>
<tr>
<td>Cylindrical Bodies</td>
<td>ARCCB-TR-89005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARCCB-TR-89018</td>
<td></td>
</tr>
<tr>
<td>Decentralization</td>
<td>ARCCB-TR-89006</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARCCB-TR-89010</td>
<td></td>
</tr>
<tr>
<td>Deformation</td>
<td>ARCCB-TR-89020</td>
<td></td>
</tr>
<tr>
<td>Depressurization</td>
<td>ARCCB-TR-89019</td>
<td></td>
</tr>
<tr>
<td>Dimensional Changes</td>
<td>ARCCB-MR-89011</td>
<td></td>
</tr>
<tr>
<td>Dynamics</td>
<td>ARCCB-TR-89001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARCCB-TR-89023</td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td>ARCCB-TR-</td>
<td>ARCCB-MR-</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Elastic Properties</td>
<td>89006</td>
<td>89010</td>
</tr>
<tr>
<td></td>
<td>89019</td>
<td>89027</td>
</tr>
<tr>
<td>Electric Guns</td>
<td>89007</td>
<td></td>
</tr>
<tr>
<td>Electrical Resistance</td>
<td>89029</td>
<td></td>
</tr>
<tr>
<td>Electrodeposition</td>
<td>89024</td>
<td></td>
</tr>
<tr>
<td>Fabrication</td>
<td>89034</td>
<td></td>
</tr>
<tr>
<td>Failure</td>
<td>89016</td>
<td></td>
</tr>
<tr>
<td>Fatigue (Mechanics)</td>
<td>89009</td>
<td></td>
</tr>
<tr>
<td>Fatigue Life</td>
<td>89004</td>
<td>89018</td>
</tr>
<tr>
<td>Fiber Glass/Epoxy Composites</td>
<td>89017</td>
<td></td>
</tr>
<tr>
<td>Filament Winding</td>
<td>89017</td>
<td>89034</td>
</tr>
<tr>
<td>Finite Element Analysis</td>
<td>89003</td>
<td>89015</td>
</tr>
<tr>
<td></td>
<td>89016</td>
<td>89018</td>
</tr>
<tr>
<td></td>
<td>89033</td>
<td></td>
</tr>
<tr>
<td>Flexural Properties</td>
<td>89008</td>
<td>89020</td>
</tr>
<tr>
<td>Fracture (Mechanics)</td>
<td>89014</td>
<td>89015</td>
</tr>
<tr>
<td></td>
<td>89016</td>
<td>89018</td>
</tr>
</tbody>
</table>
SUBJECT INDEX--1989

Graphite/Epoxy Composites ARCCB-MR-89034
Grinding ARCCB-TR-89002
Gun Tubes ARCCB-TR-89005
 ARCCB-TR-89008
 ARCCB-TR-89009
 ARCCB-TR-89020
 ARCCB-TR-89021
 ARCCB-TR-89027
 ARCCB-TR-89028
Guns ARCCB-SP-89013
HEAT Rounds ARCCB-MR-89015
Indicators ARCCB-TR-89022
Interior Ballistics ARCCB-TR-89008
 ARCCB-TR-89012
 ARCCB-TR-89020
 ARCCB-TR-89028
Ions ARCCB-TR-89030
Iron ARCCB-TR-89026
Jacketed Cannon Tubes ARCCB-TR-89009
Kinetic Energy Projectiles ARCCB-TR-89012
Linear Regression ARCCB-TR-89021
Machine Tools ARCCB-TR-89001
Magnetohydrodynamic Generators ARCCB-CR-89007
Mandrels ARCCB-TR-89032
<table>
<thead>
<tr>
<th>Subject</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing</td>
<td>ARCCB-TR-89001</td>
</tr>
<tr>
<td>Mises’ Yield Criteria</td>
<td>ARCCB-TR-89019</td>
</tr>
<tr>
<td>Modal Analysis</td>
<td>ARCCB-TR-89023</td>
</tr>
<tr>
<td>Nondestructive Testing</td>
<td>ARCCB-MR-89015</td>
</tr>
<tr>
<td>Optimization</td>
<td>ARCCB-TR-89024</td>
</tr>
<tr>
<td>Parameters</td>
<td>ARCCB-TR-89024</td>
</tr>
<tr>
<td>Phonons</td>
<td>ARCCB-TR-89029</td>
</tr>
<tr>
<td>Phosphoric Acid</td>
<td>ARCCB-TR-89031</td>
</tr>
<tr>
<td>Plastic Deformation</td>
<td>ARCCB-MR-89011</td>
</tr>
<tr>
<td>Plastic Properties</td>
<td>ARCCB-TR-89019</td>
</tr>
<tr>
<td>Plating</td>
<td>ARCCB-TR-89021</td>
</tr>
<tr>
<td>Polishing (Solutions)</td>
<td>ARCCB-TR-89026</td>
</tr>
<tr>
<td>Power Supplies</td>
<td>ARCCB-CR-89007</td>
</tr>
<tr>
<td>Pressure Vessels</td>
<td>ARCCB-TR-89003</td>
</tr>
<tr>
<td>Preventive Maintenance</td>
<td>ARCCB-TR-89001</td>
</tr>
<tr>
<td>Subject</td>
<td>Code</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Projectile Components</td>
<td>ARCCB-TR-89018</td>
</tr>
<tr>
<td>Projectiles</td>
<td>ARCCB-MR-89015</td>
</tr>
<tr>
<td></td>
<td>ARCCB-TR-89016</td>
</tr>
<tr>
<td>Propellants</td>
<td>ARCCB-CR-89007</td>
</tr>
<tr>
<td>Publications</td>
<td>ARCCB-SP-89013</td>
</tr>
<tr>
<td>Pulse Generators</td>
<td>ARCCB-CR-89007</td>
</tr>
<tr>
<td>Rail Guns</td>
<td>ARCCB-CR-89007</td>
</tr>
<tr>
<td>Recoilless Guns</td>
<td>ARCCB-MR-89034</td>
</tr>
<tr>
<td>Reports</td>
<td>ARCCB-SP-89013</td>
</tr>
<tr>
<td>Residual Stress</td>
<td>ARCCB-MR-89004</td>
</tr>
<tr>
<td></td>
<td>ARCCB-TR-89009</td>
</tr>
<tr>
<td>Resin Applicator System</td>
<td>ARCCB-TR-89032</td>
</tr>
<tr>
<td>Resonance</td>
<td>ARCCB-TR-89008</td>
</tr>
<tr>
<td>Reynolds Number</td>
<td>ARCCB-TR-89021</td>
</tr>
<tr>
<td>Rifles</td>
<td>ARCCB-TR-89017</td>
</tr>
<tr>
<td></td>
<td>ARCCB-MR-89034</td>
</tr>
<tr>
<td>Robotics</td>
<td>ARCCB-TR-89006</td>
</tr>
<tr>
<td></td>
<td>ARCCB-TR-89010</td>
</tr>
<tr>
<td>Saturation</td>
<td>ARCCB-TR-89029</td>
</tr>
<tr>
<td>Screw Threads</td>
<td>ARCCB-TR-89003</td>
</tr>
<tr>
<td>Serial Flechette Launch Mechanisms</td>
<td>ARCCB-TR-89017</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>Shot Peening</td>
<td></td>
</tr>
<tr>
<td>Shrink Fits</td>
<td></td>
</tr>
<tr>
<td>Simulation</td>
<td></td>
</tr>
<tr>
<td>Solutions (Mixtures)</td>
<td></td>
</tr>
<tr>
<td>Spectrophotometric Analysis</td>
<td></td>
</tr>
<tr>
<td>Spindles</td>
<td></td>
</tr>
<tr>
<td>Steel Liners</td>
<td></td>
</tr>
<tr>
<td>Strain (Mechanics)</td>
<td></td>
</tr>
<tr>
<td>Stress Analysis</td>
<td></td>
</tr>
<tr>
<td>Stress Concentration</td>
<td></td>
</tr>
<tr>
<td>Stress Intensity</td>
<td></td>
</tr>
<tr>
<td>Stresses</td>
<td></td>
</tr>
<tr>
<td>Structural Properties</td>
<td></td>
</tr>
<tr>
<td>Sulfuric Acid</td>
<td></td>
</tr>
<tr>
<td>Superconductivity</td>
<td></td>
</tr>
<tr>
<td>Switching Zone Control</td>
<td></td>
</tr>
</tbody>
</table>
SUBJECT INDEX—1989

<table>
<thead>
<tr>
<th>Subject</th>
<th>Document Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank Guns</td>
<td>ARCCB-TR-89012, ARCCB-TR-89023</td>
</tr>
<tr>
<td>Temperature</td>
<td>ARCCB-TR-89028</td>
</tr>
<tr>
<td>Thermal Properties</td>
<td>ARCCB-TR-89028</td>
</tr>
<tr>
<td>Thick Walls</td>
<td>ARCCB-TR-89019, ARCCB-TR-89027</td>
</tr>
<tr>
<td>Titanium Alloys</td>
<td>ARCCB-TR-89009</td>
</tr>
<tr>
<td>Titration</td>
<td>ARCCB-TR-89022, ARCCB-TR-89025, ARCCB-TR-89031</td>
</tr>
<tr>
<td>Toughness</td>
<td>ARCCB-TR-89014</td>
</tr>
<tr>
<td>Tresca's Yield Criteria</td>
<td>ARCCB-TR-89019</td>
</tr>
<tr>
<td>Trivalent Chromium</td>
<td>ARCCB-TR-89030</td>
</tr>
<tr>
<td>Uniform Segment Method</td>
<td>ARCCB-TR-89023, ARCCB-TR-89033</td>
</tr>
<tr>
<td>Waves</td>
<td>ARCCB-TR-89008, ARCCB-TR-89020</td>
</tr>
<tr>
<td>Welding</td>
<td>ARCCB-MR-89004</td>
</tr>
<tr>
<td>Wire</td>
<td>ARCCB-MR-89011</td>
</tr>
<tr>
<td>REPORT NUMBER</td>
<td>AD NUMBER</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>ARCCB-TR-89001</td>
<td>A204 813</td>
</tr>
<tr>
<td>ARCCB-TR-89002</td>
<td>A205 618</td>
</tr>
<tr>
<td>ARCCB-TR-89003</td>
<td>A205 617</td>
</tr>
<tr>
<td>ARCCB-MR-89004</td>
<td>A205 622</td>
</tr>
<tr>
<td>ARCCB-TR-89005</td>
<td>A205 621</td>
</tr>
<tr>
<td>ARCCB-TR-89006</td>
<td>A206 870</td>
</tr>
<tr>
<td>ARCCB-CR-89007</td>
<td>B132 341L</td>
</tr>
<tr>
<td>ARCCB-TR-89008</td>
<td>A207 098</td>
</tr>
<tr>
<td>ARCCB-TR-89009</td>
<td>B134 777L</td>
</tr>
<tr>
<td>ARCCB-TR-89010</td>
<td>A208 708</td>
</tr>
<tr>
<td>ARCCB-MR-89011</td>
<td>A208 709</td>
</tr>
<tr>
<td>ARCCB-TR-89012</td>
<td>C045 181L</td>
</tr>
<tr>
<td>ARCCB-SP-89013</td>
<td>A210 093</td>
</tr>
<tr>
<td>ARCCB-TR-89014</td>
<td>A210 404</td>
</tr>
<tr>
<td>ARCCB-MR-89015</td>
<td>A210 403</td>
</tr>
<tr>
<td>ARCCB-TR-89016</td>
<td>A210 986</td>
</tr>
<tr>
<td>ARCCB-TR-89017</td>
<td>A212 040</td>
</tr>
<tr>
<td>ARCCB-TR-89018</td>
<td>A211 834</td>
</tr>
<tr>
<td>ARCCB-TR-89019</td>
<td>A212 090</td>
</tr>
</tbody>
</table>
AD NUMBERS--1989

<table>
<thead>
<tr>
<th>Number</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCCB-TR-89020</td>
<td>A213 788</td>
</tr>
<tr>
<td>ARCCB-TR-89021</td>
<td>B142 222L</td>
</tr>
<tr>
<td>ARCCB-TR-89022</td>
<td>A220 641</td>
</tr>
<tr>
<td>ARCCB-TR-89023</td>
<td>B137 407L</td>
</tr>
<tr>
<td>ARCCB-TR-89024</td>
<td>A220 379</td>
</tr>
<tr>
<td>ARCCB-TR-89025</td>
<td>A215 829</td>
</tr>
<tr>
<td>ARCCB-TR-89026</td>
<td>A214 467</td>
</tr>
<tr>
<td>ARCCB-TR-89027</td>
<td>A215 258</td>
</tr>
<tr>
<td>ARCCB-TR-89028</td>
<td>B139 053L</td>
</tr>
<tr>
<td>ARCCB-TR-89029</td>
<td>A216 431</td>
</tr>
<tr>
<td>ARCCB-TR-89030</td>
<td>A215 688</td>
</tr>
<tr>
<td>ARCCB-TR-89031</td>
<td>A216 327</td>
</tr>
<tr>
<td>ARCCB-TR-89032</td>
<td>A216 836</td>
</tr>
<tr>
<td>ARCCB-TR-89033</td>
<td>A216 952</td>
</tr>
<tr>
<td>ARCCB-MR-89034</td>
<td>B140 975L</td>
</tr>
</tbody>
</table>
MACHINE TOOL DYNAMIC MEASUREMENTS AND DIAGNOSTIC SYSTEM

R. K. Wharton and T. P. Vincent (See Reverse)

US Army ARDEC
Benet Laboratories, SMCAR-CCB-TL
Watervliet, NY 12189-4050

January 1989

Approved for public release; distribution unlimited.

Vibrations in machine tools, commonly known as chatter, often are the cause for poor machining operations and breakdown of machinery. A state-of-the-art measurement and analysis system was designed, fabricated, and implemented. The system performs real-time acquisition of raw vibration measurement data and provides analysis for preventative/predictive maintenance action.

(Cont'd on reverse)
7. AUTHORS (CONT'D)

T. P. Vincent
Operations Directorate
Watervliet Arsenal
Watervliet, NY 12189-4050

20. ABSTRACT (CONT'D)

The system has been used to determine the causes for poor surface finishes occurring during metal removal processes. In the first case, during rough and finish grinding operations, several grinder spindles were found to be significantly out of balance. Investigation revealed that during balancing of spindles, the spindle manufacturer was using frequency versus mils engineering units to represent when a spindle was balanced. This procedure was found to be inadequate for the grinder's surface finish production requirement. The system's real-time capability resulted in the spindle manufacturer's redesign of his spindles and the acceptance of frequency versus g' level vibration units as more precise parameters to represent when a spindle balanced condition was present. In the second case, a surface grinder was producing poor surface finishes due to excessive vibration chatter attributed to spindle ball bearing outer race defects.

The implementation of the Machine Tool Dynamic Measurements and Diagnostic System into maintenance practices enables technological advantages in the following manufacturing areas: ability to quickly determine and remedy existing machine tool mechanical problems, reference-baseline vibration signature (newly acquired machine tools and existing units), assistance in maintaining ordnance dimensional and surface finish requirements, improvement in reducing machine downtime, and input for short/long-term management purposes.
High Speed Abrasive Belt Grinding

Abstract

This report is the culmination of a two-phase project established to reduce current stock removal costs and eliminate finish turning operations of tubes by combining rough stock removal and finish grinding. The first phase was designated for engineering and investigation into the feasibility and application of abrasive belt grinding technology. This information was then used to generate a specification establishing some criteria for design and process control.
20. ABSTRACT (CONT'D)

manufacture of a machine to remove heavy stock and finish tubes utilizing abrasive belt technology. The specification was subsequently used for the acquisition of a machine to perform the tasks. The second phase was designated for testing of the equipment and establishing production parameters.
Analysis of a Large High Pressure Vessel Closure

The design of the end closure for a high pressure vessel is never an easy task. However, in this case it is complicated by a requirement for quick operation and high reliability. The configuration which has best proven itself many times is the screw block breech. This report covers an analysis of this closure which is a five-body problem. The problem is further complicated by the fact that the bodies interact on eight contact surfaces. This analysis will point to a fatigue failure at a single point in the structural system.
An overview of the ASTM Symposium on Analytical and Experimental Methods for Residual Stress Effects in Fatigue, held on 20-21 October 1986 in Phoenix, Arizona, is presented. The background and objective for the symposium are described and the technical papers presented at the symposium and published in the proceedings are summarized. The papers are in two general categories: (1) effects of residual stress near the surface of a specimen or component—particularly shot peening applications, and (2) effects of bulk residual stresses—particularly autofrettaged pressure vessels and piping.
7. AUTHORS (Cont'd)

R. L. Champoux
Ceramic Binder Systems, Inc.
Butte, MT 59701
The use of acoustic emission was investigated as a method of characterizing chromium adhesion on steel. The samples used in the study were cylinders cut from the muzzle end of 120-mm gun tubes, plated on the inner surface with chromium, and cut to form split rings. Acoustic emission data was taken during loading of each ring. The results of the study are inconclusive regarding the effectiveness of acoustic emission as a test method for chromium adhesion.
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>1. REPORT NUMBER</th>
<th>2. GOVT ACCESSION NO.</th>
<th>3. RECIPIENT'S CATALOG NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCCB-TR-89006</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE (and Subtitle)</th>
<th>5. TYPE OF REPORT & PERIOD COVERED</th>
<th>6. PERFORMING ORG. REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWITCHING ZONE CONTROL FOR A SYSTEM WITH AN ELASTIC JOINT</td>
<td>Final</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. AUTHOR(s)</th>
<th>8. CONTRACT OR GRANT NUMBER(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ronald L. Racicot and Sheldon S.L. Chang (See Reverse)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. PERFORMING ORGANIZATION NAME AND ADDRESS</th>
<th>10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Army ARDEC</td>
<td>ANCMS No. 6111.02.H610.011</td>
</tr>
<tr>
<td>Benet Laboratories, SMAC-CCB-TL</td>
<td>PRON No. A1826111A11A</td>
</tr>
<tr>
<td>Watervliet, NY 12189-4050</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. CONTROLLING OFFICE NAME AND ADDRESS</th>
<th>12. REPORT DATE</th>
<th>13. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Army ARDEC</td>
<td>March 1989</td>
<td>17</td>
</tr>
<tr>
<td>Close Combat Armaments Center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picatinny Arsenal, NJ 07806-5000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)</th>
<th>15. SECURITY CLASS. (of this report)</th>
<th>15a. DECISION/RECLASSIFICATION/DOWNGRADING SCHEDULE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UNCLASSIFIED</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. DISTRIBUTION STATEMENT (of this Report)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19. KEY WORDS (Continue on reverse side if necessary and identify by block number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decentralized Control</td>
</tr>
<tr>
<td>Bang-Bang Control</td>
</tr>
<tr>
<td>Robotics</td>
</tr>
<tr>
<td>Flexible Mechanisms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20. ABSTRACT (Continue on reverse side if necessary and identify by block number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>An extension of the powerful switching zone control (SZC) approach to include systems with elastic joints is presented. SZC is a decentralized non-linear feedback controller that approaches the minimum time bang-bang controller in the limit. The controller is robust and has a number of desirable attributes which are discussed in this report. The problems that are resolved in applying SZC to the flexible joint mechanism include stability, controller design, and nonzero steady-state disturbances. Simulation and experimental results demonstrate the usefulness of the developed procedures for practical applications.</td>
</tr>
</tbody>
</table>

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
7. AUTHORS (Cont'd)

Sheldon S.L. Chang
Department of Electrical Engineering
State University of New York at Stony Brook
Stony Brook, NY 11794
REPORT DOCUMENTATION PAGE

1. REPORT NUMBER
ARCCB-CR-89007

2. GOVT ACCESSION NO.

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (final Subtitle)
PROPellant Driven MHD Generator for Rail Gun Power Supply

5. TYPE OF REPORT & PERIOD COVERED
Final Report
May 86 - Sept 86

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)
Geoffrey W. Shuy and James T. Woo - InterScience, Inc.
Patrick M. Vottis - Benet Laboratories

8. CONTRACT OR GRANT NUMBER(s)
DAAA22-86-C-0267

9. PERFORMING ORGANIZATION NAME AND ADDRESS
InterScience, Inc.
105 Jordan Road
Troy, NY 12180

10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS
US Army ARDEC
Close Combat Armaments Center
Picatinny Arsenal, NJ 07806-5000

12. REPORT DATE
March 1989

13. NUMBER OF PAGES
66

14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)
US Army ARDEC
Benet Laboratories, SMCAR-CCB-TL
Watervliet, NY 12189-4050

15. SECURITY CLASS. (OF THIS REPORT)
UNCLASSIFIED

16. DISTRIBUTION STATEMENT (of this Report)

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
Approved for public release; distribution unlimited.

18. SUPPLEMENTARY NOTES
Patrick M. Vottis - Benet Laboratories Project Engineer

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Rail Guns
Electromagnetic Launchers
MHD Power Supply
Magnetohydrodynamic Power Supply
Propellant (Driven MHD)

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
A propellant driven magnetohydrodynamic (MHD) generator concept for pulsed power generation has been analyzed. The principal interest is to evaluate the feasibility of converting stored chemical energy to pulsed electrical energy for driving rail guns. The system requires neither electrical switching nor power conditioning and can be simple, lightweight, and reliable. Preliminary estimates of operating parameters have been made, including B-field, duct dimensions, current, power, overall efficiency, entrance and exit pressures, conductivities, and flow speeds.
Uncommonly large dynamic strains observed during the firing of a 120-mm gun tube have been found to be due to a projectile velocity which causes resonant type behavior of a particular axisymmetric wave. The theory explaining this phenomenon is reviewed and extended to show the potential for excitation of non-axisymmetric waves through coupling when the tube has an eccentric bore. These non-axisymmetric waves, one of which resonates at a projectile velocity extremely close to that which causes axisymmetric resonance, cause a beamlike motion of the gun tube which can affect accuracy at the target.
A program has been completed in which a large caliber titanium-jacketed cannon tube was successfully designed, fabricated, and tested. The primary technical objective of this program was to reduce muzzle end weight, thereby lessening the tipping moment of the main weapon system.

The overall purpose of this report is to document the program efforts, so that it may be a reference for future concept programs.
Details are given concerning material properties, design requirements and rationale, fabrication methods, and test results.
This report investigates the use of switching zone control (SZC) to control a multidegree of freedom robotic mechanism. Two powerful attributes of switching zone control are decentralization and near minimum time. The "decentralized" property allows the use of a distributed control system where each motor/joint of a multilink mechanism is independently controlled, for example, by its own microprocessor. Overall control can also be accomplished with another microprocessor which would coordinate overall motions and (CONT'D ON REVERSE)
7. AUTHORS (CONT'D)

Sheldon S.L. Chang
State University of New York at Stony Brook
Department of Electrical Engineering
Stony Brook, NY 11794

10. ABSTRACT (CONT'D)

Communications. The coupling effects from other links and motors as well as random valued gravity and friction effects are handled as disturbing torques. The newly investigated work reported here deals with: (1) experimental results and verification of applying SZC to a multidegree of freedom robotic system; (2) real-time identification of gravity, friction, and other effects to adaptively compensate for nonzero steady-state disturbing torques; and (3) extension of SZC to systems with elastic joints.
When evaluating the properties of coils, either the magnetic field of an electromagnetic coil or the spring-constant of a coiled spring, it is common to assume that the wire's cross section remains the same as in its linear form. In reality, however, changes in this cross section become more pronounced as the ratio of the wire's thickness, H, (in the radial direction of the coil) to that of the coil's inner diameter, ID, approaches 0.05 and above. While these changes are functions of the above-mentioned ratio, they (CONT'D ON REVERSE)
20. ABSTRACT (CONT'D)

vary between the coil's ID and its outer diameter, OD. In designing coils for high current density, the ability to compute these changes becomes pertinent, mainly because it affects the minimum available clearance between the coil's loops.
Title: Advanced Tank Gun Parametric Study (U)

Authors: Steven L. Morris

Performing Organization Name and Address: U.S. Army ARDEC, Benet Laboratories, SMCAR-CCB-TL, Watervliet, NY 12189-4050

Monitoring Agency Name and Address: U.S. Army ARDEC, Close Combat Armaments Center, Picatinny Arsenal, NJ 07806-5000

Report Date: May 1989

Number of Pages: 37

Distribution Statement: Distribution limited to Department of Defense only because of specific authority; May 1989. Other requests for this document must be referred to Commander, US Army Armament Research, Development, and Engineering Center, ATTN: Benet Laboratories, SMCAR-CCB-TL, Watervliet, NY 12189-4050. Approved for public release; distribution unlimited.

Supplementary Notes:

Keywords: Tank Guns, Kinetic Energy Penetrators, Interior Ballistics, Chemical Energy Warheads

Abstract: The study was performed in order to determine what characteristics would be desirable in future tank guns. The future was defined as the 2005-2010 time frame. Consideration was given to physical parameters, such as length of travel, chamber volume, etc.; to current and projected areas of ammunition development; and to projected threats for the time frame under consideration. Due to the nature of the role of tank guns, the analysis of kinetic energy projectiles is given the primary emphasis, although secondary rounds are.
20. ABSTRACT (CONT'D)

considered. A configuration for future tank guns is proposed, and several suggestions for future work are made.
Index to Benet Laboratories Technical Reports - 1988

This is a compilation of technical reports published by Benet Laboratories during 1988.
Stress intensity factors, crack mouth opening displacements, and load-line displacements were determined for the arc bend-chord support specimen using boundary collocation. Several inner radius (r_1) to outer radius (r_2) ratios were studied at each of two span (S) to width (W) ratios. The actual solution matrix is for $S/W = 3, r_1/r_2 = 0.8$, 0.6, 0.4, and for $S/W = 4, r_1/r_2 = 0.8$, 0.7, 0.6. Also, the three-point bend single-edge specimen (SE(B)) at both $S/W = 3$ and $S/W = 4$ was studied to examine the limiting behavior of the
generated solutions. For all of the $S/W = 3$ cases, solutions were obtained for crack length to width ratios (a/W) from 0.2 to 0.6, and in the $S/W = 4$ cases, a/W was varied from 0.2 to 0.5. The solutions were obtained by the linear superposition of a pure bending stress, a pure shear stress, and a uniform normal stress on an annular segment. The magnitudes of the individual components depended upon the size of the annular segment and the S/W ratio. Wide range expressions were fit to the numerical solutions to make them applicable over a wider range of testing conditions and for inclusion in future revisions of E-399 on Plane-Strain Fracture Toughness Testing.
REPORT ON THE DEVELOPMENT OF NONDESTRUCTIVE TESTING CRITERIA FOR THE 120-MM M830 PROJECTILE BODY

J. A. Hagg and R. T. Albott

Approved for public release; distribution unlimited.

The nondestructive testing defect criteria for the 120-mm M830 HEAT round have been developed. Based on a finite element stress analysis of launch stresses performed at ARDEC, an estimated stress intensity factor (K) solution has been determined. Fracture toughness measurements on several M830 projectile bodies are made to determine the range of fracture properties that are expected in large production of this component. The limiting sizes of allowable defects are determined by combining the K solution with the fracture toughness.
measurements. Although no statistical analysis is performed, no launch failures of the MIRI due to material defects are anticipated during its expected useful life because of the liberal safety factors used along with conservative assumptions and engineering judgment.
<table>
<thead>
<tr>
<th>REPORT DOCUMENTATION PAGE</th>
<th>READ INSTRUCTIONS BEFORE COMPLETING FORM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. REPORT NUMBER</td>
<td>2. GOVT ACCESSION NO.</td>
</tr>
<tr>
<td>ARCCB-TR-89016</td>
<td></td>
</tr>
<tr>
<td>4. TITLE (Main Title)</td>
<td>5. TYPE OF REPORT & PERIOD COVERED</td>
</tr>
<tr>
<td>FRACTURE AND THREE-DIMENSIONAL STRESS ANALYSES OF 7075 ALUMINUM PROJECTILE COMPONENTS UNDER SPIN AND INERTIA LOAD</td>
<td>Final</td>
</tr>
<tr>
<td>7. AUTHOR(s)</td>
<td>8. PERFORMING ORG. REPORT NUMBER</td>
</tr>
<tr>
<td>J. H. Underwood, M. A. Scavullo, G. P. O'Hara, and B. A. Konrad (See Reverse)</td>
<td></td>
</tr>
<tr>
<td>9. PERFORMING ORGANIZATION NAME AND ADDRESS</td>
<td>10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS</td>
</tr>
<tr>
<td>U.S. Army ARDEC</td>
<td>AMCNS No. 6111.01.91A0.000</td>
</tr>
<tr>
<td>Benet Laboratories, SMCAR-CCB-TL</td>
<td>PRON No. 1A7B2701NMSC</td>
</tr>
<tr>
<td>Watervliet, NY 12189-4050</td>
<td></td>
</tr>
<tr>
<td>11. CONTROLLING OFFICE NAME AND ADDRESS</td>
<td>12. REPORT DATE</td>
</tr>
<tr>
<td>U.S. Army ARDEC</td>
<td>June 1989</td>
</tr>
<tr>
<td>Close Combat Armaments Center</td>
<td></td>
</tr>
<tr>
<td>Picatinny Arsenal, NJ 07806-5000</td>
<td></td>
</tr>
<tr>
<td>14. MONITORING AGENCY NAME AND ADDRESS</td>
<td>15. SECURITY CLASS. (of this report)</td>
</tr>
<tr>
<td>Materials Research Laboratories</td>
<td>UNCLASSIFIED</td>
</tr>
<tr>
<td>Defence Science and Technology Organisation</td>
<td></td>
</tr>
<tr>
<td>P.O. Box 50, Ascot Vale</td>
<td></td>
</tr>
<tr>
<td>Victoria, 3032, Australia</td>
<td></td>
</tr>
<tr>
<td>16. DISTRIBUTION STATEMENT (of this Report)</td>
<td>16. SECURITY CLASSIFICATION/DOWNGRADING SCHEDULE</td>
</tr>
<tr>
<td>Approved for public release; distribution unlimited.</td>
<td></td>
</tr>
<tr>
<td>17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)</td>
<td></td>
</tr>
<tr>
<td>18. SUPPLEMENTARY NOTES</td>
<td></td>
</tr>
<tr>
<td>Portions of this work were performed at Materials Research Laboratories, Australia. Presented at the 1987 Symposium of the Australian Fracture Group, University of Sydney, 24-25 August 1987. Published in Proceedings of the Symposium.</td>
<td></td>
</tr>
<tr>
<td>19. KEY WORDS (Continue on reverse side if necessary and identify by block number)</td>
<td></td>
</tr>
<tr>
<td>Stress Analysis</td>
<td>Failure Energy</td>
</tr>
<tr>
<td>Fracture Mechanics</td>
<td>High Strength Aluminum</td>
</tr>
<tr>
<td>Finite Elements</td>
<td>Armament Components</td>
</tr>
<tr>
<td>20. ABSTRACT (Continue on reverse side if necessary and identify by block number)</td>
<td></td>
</tr>
<tr>
<td>A fracture case study of a high strength aluminum projectile component subjected to inertial and spin loading during launch from a cannon is presented. A three-dimensional finite element model was used to calculate the projectile stresses and to determine which of the several types of loading was the primary cause of failure. A design change to minimize spin loading resulted in a significantly reduced failure incidence. Mechanical and fracture mechanics tests of the aluminum were performed in order to determine material (Cont'd on Reverse)</td>
<td></td>
</tr>
</tbody>
</table>
7. AUTHORS (Cont'd)

B. A. Konrad
U.S. Army ARDEC
Close Combat Armaments Center
Tank Ammunition Branch B
Picatinny Arsenal, NJ 07806-5000

20. ABSTRACT (Cont'd)

specifications which could prevent failures in the future. An energy-to-
failure test similar to the Charpy test was found to be the most
discriminating.
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>1. REPORT NUMBER</th>
<th>2. GOVT ACCESSION NO.</th>
<th>3. RECIPIENT'S CATALOG NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCCB-TR-89017</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE (and Subtitle)</th>
<th>5. TYPE OF REPORT & PERIOD COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPRESSION MOLDING OF FIBER GLASS/EPoxy HANDGUARDS FOR THE SFLM ADVANCED COMBAT RIFLE</td>
<td>Final</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. AUTHOR(s)</th>
<th>8. CONTRACT OR GRANT NUMBER(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kevin R. Miner</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. PERFORMING ORGANIZATION NAME AND ADDRESS</th>
<th>10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Army ARDEC</td>
<td>AMCMS No. 6236.07.6270.0</td>
</tr>
<tr>
<td>Benet Laboratories, SNCR-CCB-TL</td>
<td>PRON No. 1A-8-328CD-NMSC</td>
</tr>
<tr>
<td>Watervie, NY 12089-4050</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. CONTROLLING OFFICE NAME AND ADDRESS</th>
<th>12. REPORT DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Army ARDEC</td>
<td>July 1989</td>
</tr>
<tr>
<td>Close Combat Armaments Center</td>
<td></td>
</tr>
<tr>
<td>Picatinny Arsenal, NJ 07806-5000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. NUMBER OF PAGES</th>
<th>15. SECURITY CLASS. (of this report)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>UNCLASSIFIED</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. DISTRIBUTION STATEMENT (of this Report)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>18. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. KEY WORDS (Continue on reverse side if necessary and identify by block number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Combat Rifle</td>
</tr>
<tr>
<td>Fiber Glass/Epoxy Composites</td>
</tr>
<tr>
<td>Composite Materials</td>
</tr>
<tr>
<td>Compression Molding</td>
</tr>
<tr>
<td>Composites Fabrication</td>
</tr>
<tr>
<td>Filament Winding</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20. ABSTRACT (Continue on reverse side if necessary and identify by block number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A novel compression molding process was used to fabricate a lightweight, high-strength continuous filament fiber glass/epoxy handguard for the advanced combat rifle. This process involved placing a filament wound preimpregnated preform into a fiber glass/epoxy mold with a room temperature vulcanized (RTV) rubber top cover and subjecting it to an autoclave cycle. A well-compacted and durable structure was easily and quickly produced utilizing this technique.</td>
</tr>
</tbody>
</table>
Title: Applications and Limitations of Finite Element Analysis to Armament Components

Authors: J. H. Underwood

Performer Organization Name and Address: U.S. Army ARDEC, Benet Laboratories, SMAR-CCB-TL, Watervliet, NY 12189-4050

Controlling Office Name and Address: U.S. Army ARDEC, Close Combat Armaments Center, Picatinny Arsenal, NJ 07806-5000

Report Date: July 1989

Number of Pages: 22

Distribution Statement (of this Report): Approved for public release; distribution unlimited.

Supplementary Notes: Presented at the Fifth International Conference in Australia on Finite Element Methods, University of Melbourne, 19-21 August 1987. Published in Proceedings of the Conference.

Key Words: Finite Elements, Fracture Mechanics, Stress Analysis, Armament Components, Fracture Tests, Fatigue, Notch Stress

Abstract: A review of three applications of finite element methods for stress, displacement, and stress intensity factor analyses of various armament components is presented. First, stress analysis of sections from outside diameter notched cylinders was performed to describe the cylinder's fatigue life behavior. Second, stress analysis methods for long rod projectiles subjected to inertial loading were developed; the stresses at a failure location of a projectile were used to help explain the failure and were related to results of mechanical tests. (Cont'd on reverse)
tests of the projectile and the projectile material. Last, stress intensity factor and displacement analyses of fracture mechanics test specimens were performed to recommend standardized test procedures. Stress intensity factor and load-line displacement solutions were obtained for three-point bend, arc-shaped specimens which can be conveniently cut from cylindrical vessels and pipes. The finite element solutions were compared with collocation solutions for the same and similar geometries.
AUTOFRETTAGE--STRESS DISTRIBUTION UNDER LOAD AND RETAINED STRESSES AFTER DEPRESSURIZATION

Boaz Avitzur

U.S. Army ARDEC

Benet Laboratories, SMCAR-CCB-TL

Watervliet, NY 12189-4050

Presented at informal discussions with representatives of industry and academia at industrial and educational facilities in Israel between 29 November and 21 December 1988.

There is a long-standing interest in developing a capability to predict the distribution of retained stresses in thick-walled tubes after the removal of an internal pressure--post autofrettage. In this report, four different methods of calculating such stresses are presented and compared. The methods presented are based on the following assumed yield criteria and deformation conditions:

(cont'd on Reverse)
20. ABSTRACT (CONT'D)

1. Tresca's yield criterion
2. Tresca's yield criterion times $2/\sqrt{3}$
3. Mises' yield criterion in plane-stress
4. Mises' yield criterion in plane-strain
THE INFLUENCE OF TRANSIENT FLEXURAL WAVES ON DYNAMIC STRAINS IN GUN TUBES

Thomas E. Simkins

U.S. Army ARDEC
Benet Laboratories, SmcAr-CCB-TL
Watervliet, NY 12189-4050

U.S. Army ARDEC
Close Combat Armaments Center
Picatinny Arsenal, NJ 07806-5000

August 1989

Approved for public release; distribution unlimited.

Transient waves or vibrations can be excited in several ways as ballistic pressure traverses the length of a gun tube. This report shows that despite their diversity, these transients will constructively interfere with the steady-state deformation in a highly predictable way to cause alternating regions of high circumferential strain along the tube. The method of stationary phase plays a key role in the analysis.
<table>
<thead>
<tr>
<th>REPORT DOCUMENTATION PAGE</th>
<th>READ INSTRUCTIONS BEFORE COMPLETING FORM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. REPORT NUMBER</td>
<td>2. GOVT ACCESSION NO.</td>
</tr>
<tr>
<td>ARCCB-TR-89021</td>
<td></td>
</tr>
<tr>
<td>4. TITLE (and Subtitle)</td>
<td>5. TYPE OF REPORT & PERIOD COVERED</td>
</tr>
<tr>
<td>EFFECTS OF VARYING PLATING PARAMETERS ON THE LONGITUDINAL DISTRIBUTION OF LOW CONTRACTION CHROMIUM IN LONG GUN TUBES</td>
<td>Final</td>
</tr>
<tr>
<td>7. AUTHOR(s)</td>
<td>8. CONTRACT OR GRANT NUMBER(s)</td>
</tr>
<tr>
<td>John C. Askew</td>
<td></td>
</tr>
<tr>
<td>9. PERFORMING ORGANIZATION NAME AND ADDRESS</td>
<td>10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS</td>
</tr>
<tr>
<td>U.S. Army ARDEC</td>
<td>AMCNS No. 6126.23.1BLO.0AR</td>
</tr>
<tr>
<td>Benet Laboratories, SMCAR-CCB-TL</td>
<td>PRON No. 1A72RZVENMSC</td>
</tr>
<tr>
<td>Watervliet, NY 12189-4050</td>
<td></td>
</tr>
<tr>
<td>11. CONTROLLING OFFICE NAME AND ADDRESS</td>
<td>12. REPORT DATE</td>
</tr>
<tr>
<td>U.S. Army ARDEC</td>
<td>August 1989</td>
</tr>
<tr>
<td>Close Combat Armaments Center</td>
<td></td>
</tr>
<tr>
<td>Picatinny Arsenal, NJ 07806-5000</td>
<td></td>
</tr>
<tr>
<td>14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)</td>
<td>13. NUMBER OF PAGES</td>
</tr>
<tr>
<td></td>
<td>23</td>
</tr>
<tr>
<td>15. SECURITY CLASS. (of this report)</td>
<td></td>
</tr>
<tr>
<td>UNCLASSIFIED</td>
<td></td>
</tr>
<tr>
<td>16. DISTRIBUTION STATEMENT (of this Report)</td>
<td>15a. DECLASSIFICATION/DOWNGRADING SCHEDULE</td>
</tr>
<tr>
<td>Distribution limited to Department of Defense only because of critical technology; August 1989. Other requests for this document must be referred to Commander, U.S. Army Armament Research, Development, and Engineering Center, ATTN: Benet Laboratories, SMCAR-CCB-SAP, Watervliet, NY 12189-4050.</td>
<td></td>
</tr>
<tr>
<td>17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)</td>
<td>18. SUPPLEMENTARY NOTES</td>
</tr>
<tr>
<td>Approved for public release; distribution unlimited.</td>
<td></td>
</tr>
<tr>
<td>19. KEY WORDS (Continue on reverse side if necessary and identify by block number)</td>
<td>20. ABSTRACT (Continue on reverse side if necessary and identify by block number)</td>
</tr>
<tr>
<td>Low Contraction Chromium</td>
<td>This report is a quantitative description of the effects of varying flow rate, plating time, and anode spacing on the deposition of low contraction chromium in long gun tubes. Linear regression is used to develop a model which relates the relevant plating parameters. The limited data yield results specifically applicable to 155-mm rifled tubes in lengths of 300 inches or less.</td>
</tr>
<tr>
<td>Critical Length</td>
<td></td>
</tr>
<tr>
<td>Taper</td>
<td></td>
</tr>
<tr>
<td>Reynolds Number</td>
<td></td>
</tr>
<tr>
<td>Linear Regression</td>
<td></td>
</tr>
<tr>
<td>REPORT DOCUMENTATION PAGE</td>
<td>READ INSTRUCTIONS BEFORE COMPLETING FORM</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>1. REPORT NUMBER</td>
<td>2. GOVT ACCESSION NO.</td>
</tr>
<tr>
<td>ARCCB-TR-89022</td>
<td></td>
</tr>
<tr>
<td>3. RECIPIENT'S CATALOG NUMBER</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4. TITLE (and Subtitle)</td>
<td>5. TYPE OF REPORT & PERIOD COVERED</td>
</tr>
<tr>
<td>DETERMINATION OF CHROMIC ACID IN CHROMIUM PLATING SOLUTIONS USING A REDOX TITRATION AND INDICATOR</td>
<td>Final</td>
</tr>
<tr>
<td>6. PERFORMING ORG. REPORT NUMBER</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>7. AUTHOR(s)</td>
<td>8. CONTRACT OR GRANT NUMBER(s)</td>
</tr>
<tr>
<td>Samuel Sopok</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>9. PERFORMING ORGANIZATION NAME AND ADDRESS</td>
<td>10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS</td>
</tr>
<tr>
<td>U.S. Army ARDEC</td>
<td>AMCMNS No. 6126.23,LBLQ.0</td>
</tr>
<tr>
<td>Benet Laboratories, SMCAR-CCB-TL Watervliet, NY 12189-4050</td>
<td>PRCN No. 1A92ZNACNMSC</td>
</tr>
<tr>
<td></td>
<td>11. CONTROLLING OFFICE NAME AND ADDRESS</td>
</tr>
<tr>
<td>U.S. Army ARDEC</td>
<td>Close Combat Armaments Center</td>
</tr>
<tr>
<td></td>
<td>Picatinny Arsenal, NJ 07806-5000</td>
</tr>
<tr>
<td>12. REPORT DATE</td>
<td>August 1989</td>
</tr>
<tr>
<td>13. NUMBER OF PAGES</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)</td>
<td>15. SECURITY CLASS. (of this report)</td>
</tr>
<tr>
<td></td>
<td>UNCLASSIFIED</td>
</tr>
<tr>
<td></td>
<td>15a. DECLASSIFICATION/DOWNGRADING SCHEDULE</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>16. DISTRIBUTION STATEMENT (of this Report)</td>
<td>Approved for public release; distribution unlimited.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>18. SUPPLEMENTARY NOTES</td>
<td>Submitted to Plating and Surface Finishing.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>19. KEY WORDS (Continue on reverse side if necessary and identify by block number)</td>
<td>Chemical Analysis</td>
</tr>
<tr>
<td></td>
<td>Chromic Acid</td>
</tr>
<tr>
<td></td>
<td>Chromium Plating Solutions</td>
</tr>
<tr>
<td></td>
<td>Redox Titration</td>
</tr>
<tr>
<td></td>
<td>Redox Indicator</td>
</tr>
<tr>
<td>20. ABSTRACT (Continue on reverse side if necessary and identify by block number)</td>
<td>The chemical literature lacks a simple analytical method for adequately controlling chromic acid in chromium plating solutions during the plating process. In this report, a simple method for analyzing and controlling chromic acid during the plating process is presented. The optimum operating range of chromic acid is 240 to 260 g/l and the resulting precisions are in the range of 0 to 2.5 g/l, providing adequate control of these plating solutions supported by five years of testing.</td>
</tr>
</tbody>
</table>
Contemporary military strategists emphasize the importance of increased mobility, lethality, and survivability for battle tanks earmarked for the twenty-first century. This impels the developers of tank armament to deliver lighter cannons which are more lethal yet less vulnerable than their predecessors. Therefore, vibration and its impact upon shot accuracy as well as strength must be considered in the design of current lightweight tank guns.

(Cont'd on reverse)
20. ABSTRACT (CONT'D)

The Uniform Segment Method (USM) is a modal analysis technique for determining the transient vibration response of large caliber weapons driven by the classical gun/beam loads. It was devised for use in the design loop of new tank weapons. In this report, the accuracy of tank armament in development is compared to the fielded systems which they replace. A number of new design features which have been incorporated into the design are addressed in regard to their impact upon shot accuracy.
Optimization of Plating Parameters for Low Contraction Chromium Electrodeposits

Electrodeposition of low contraction (LC) chromium has been investigated in order to deposit a high tensile strength and crack-free chromium coating. The plating parameters—current density, chromic acid/sulfuric acid ratio, and chromium(III) concentration—were varied and a systematic study was performed. A chromic acid concentration of 250 g/l and a bath temperature of 85°C were maintained constant throughout the study. The deposit is crack-free having a typical columnar microstructure of fibrous grains with a <211> preferred orientation.
orientation. On the basis of mechanical properties of the deposits, optimum plating conditions were found, i.e., 97 A/dm2 current density, 100/1 acid ratio, and 4.0 g/l chromium(III) concentration. With the optimum plating conditions, a tensile strength of 87,000 psi and hardness of 760 KHN were obtained from the deposit.
The chemical literature lacks an acceptable analytical method for adequately monitoring sulfuric acid in aluminum finishing solutions during the finishing processes. These solutions include anodizing and hardcoating solutions. In this report, an improved method is presented that provides acceptable analysis and monitoring of this acid during the finishing processes. The optimum operating ranges of this acid are 90 to 150 g/l and 120 to 150 g/l for the respective anodizing and hardcoating solutions. The resulting precisions are

| KEY WORDS (Continue on reverse side if necessary and identify by block number) |
|---------------------------------|---------------------------------|
| Chemical Analysis | Aluminum Finishing Solutions |
| Sulfuric Acid | Acid-Base Titration |
| Anodizing Solutions | pH Meter |
| Hardcoating Solutions | |

1. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The chemical literature lacks an acceptable analytical method for adequately monitoring sulfuric acid in aluminum finishing solutions during the finishing processes. These solutions include anodizing and hardcoating solutions. In this report, an improved method is presented that provides acceptable analysis and monitoring of this acid during the finishing processes. The optimum operating ranges of this acid are 90 to 150 g/l and 120 to 150 g/l for the respective anodizing and hardcoating solutions. The resulting precisions are

CONT'D ON REVERSE
20. ABSTRACT (CONT'D)

in the range of 1 to 3 g/l, providing adequate monitoring of these metal finishing solutions supported by seven years of testing.
Title: Determination of Iron in Chromium Plating and Polishing Solutions by Atomic Absorption Spectrometry

Author: Samuel Sopok

DATE: October 1989

Number of Pages: 10

Abstract:

The chemical literature lacks a specific analytical method for adequately monitoring iron in chromium plating and polishing solutions during the plating and polishing processes. In this report, a specific method is presented for analyzing and monitoring iron during these processes. The optimum operating range of the iron is generally around 10 g/l maximum in both the chromium plating and the polishing solutions. The resulting precisions are in the range of 0.5 to 1.5 g/l, providing adequate monitoring of these solutions supported by six years of testing.
ELASTIC-PLASTIC ANALYSIS OF A THICK-WALLED COMPOSITE TUBE SUBJECTED TO INTERNAL PRESSURE

Abstract

This report presents an elastic-plastic analysis of a thick-walled composite tube subjected to internal pressure. The composite tube is constructed of a steel liner and a graphite-bismaleimide outer shell. Analytical expressions for stresses, strains, and displacements are derived for all cases where the structure is subjected to internal pressure. The loading ranges include elastic, elastic-plastic, and fully-plastic up to failure. Numerical results for the hoop strains in several composite tubes are presented.

Keywords

- Composite Jacket
- Steel Liner
- Elastic-Plastic Analysis
- Thick-Walled Tube
This report presents thermal data recently obtained during tests of the 120-mm M256 cannon tube firing DM13 APFSDS-T ammunition. A thermodynamic model has been calibrated which predicts tube temperatures using direct input from an interior ballistics code. Predictions have also been made (using the calibrated model) of worst-case temperatures expected when firing various types of 120-mm ammunition (DM13 APFSDS, M829 APFSDS, M829E1 APFSDS, and M830 HEAT) from this cannon.
Temperature predictions generated in this study should be adequate for assessing whether various ammunition components loaded into a hot 120-mm M256 cannon tube will experience problems such as autoignition (i.e., cook-off) or other thermal effects.
Title:
Does Absence of Saturation Preclude Strong Electron-Phonon Coupling?

Author(s):
L. V. Meisel

Performing Organization Name and Address:
U.S. Army ARDEC
Benet Laboratories, SMCAR-CCB-TL
Watervliet, NY 12189-4050

Report Date:
November 1989

Number of Pages:
13

Distribution Statement (of this report):
Approved for public release; distribution unlimited.

Supplementary Notes:

Keywords:
Superconductivity
Electron-Phonon Interaction
Saturation
Electrical Transport

Abstract:
Diffraction model calculations of electrical resistance for strong electron-phonon coupling in two- and three-dimensional alloys incorporating Pippard-Ziman phonon ineffectiveness are reported. It is shown that in an electron-phonon scattering-based theory, although strong electron-phonon coupling is necessary, it is not a sufficient condition for the production of strong saturation in the normal state resistivity. Thus, absence of saturation does not preclude strong electron-phonon coupling.
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>1. REPORT NUMBER</th>
<th>ARCCB-TR-89030</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. GOVT ACCESSION NO.</td>
<td></td>
</tr>
<tr>
<td>3. RECIPIENT'S CATALOG NUMBER</td>
<td></td>
</tr>
<tr>
<td>4. TITLE (and Subtitle)</td>
<td>DETERMINATION OF TRIVALENT CHROMIUM IONS IN CHROMIUM PLATING SOLUTIONS BY ULTRAVIOLET-VISIBLE SPECTROPHOTOMETRY</td>
</tr>
<tr>
<td>5. TYPE OF REPORT & PERIOD COVERED</td>
<td>Final</td>
</tr>
<tr>
<td>6. PERFORMING ORG. REPORT NUMBER</td>
<td></td>
</tr>
<tr>
<td>7. AUTHOR(s)</td>
<td>Samuel Sopok</td>
</tr>
<tr>
<td>8. CONTRACT OR GRANT NUMBER</td>
<td></td>
</tr>
<tr>
<td>9. PERFORMING ORGANIZATION NAME AND ADDRESS</td>
<td>U.S. Army ARDEC Benet Laboratories, SMSCAR-CCB-TL Watervliet, NY 12189-4050</td>
</tr>
<tr>
<td>10. PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS</td>
<td>AMCNS No. 6126.23.1BLC.0 PRON No. 1A92ZNCNMSC</td>
</tr>
<tr>
<td>11. CONTROLLING OFFICE NAME AND ADDRESS</td>
<td>U.S. Army ARDEC Close Combat Armaments Center Picatinny Arsenal, NJ 07806-5000</td>
</tr>
<tr>
<td>12. REPORT DATE</td>
<td>November 1989</td>
</tr>
<tr>
<td>13. NUMBER OF PAGES</td>
<td>13</td>
</tr>
<tr>
<td>14. MONITORING AGENCY NAME & ADDRESS (IF different from Controlling Office)</td>
<td></td>
</tr>
<tr>
<td>15. SECURITY CLASS. (OF THIS REPORT)</td>
<td>UNCLASSIFIED</td>
</tr>
<tr>
<td>15a. DECLASSIFICATION/DOWNG RADING SCHEDULE</td>
<td></td>
</tr>
<tr>
<td>16. DISTRIBUTION STATEMENT (OF THIS REPORT)</td>
<td>Approved for public release; distribution unlimited.</td>
</tr>
<tr>
<td>17. DISTRIBUTION STATEMENT (OF THE ABSTRACT ENTERED IN BLOCK 20, IF DIFFERENT FROM REPORT)</td>
<td></td>
</tr>
<tr>
<td>18. SUPPLEMENTARY NOTES</td>
<td>Submitted to Plating and Surface Finishing.</td>
</tr>
<tr>
<td>19. KEY WORDS (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)</td>
<td>Chemical Analysis Chromium Plating Solutions Trivalent Chromium Ions UV-Visible Cr(III) Ions Spectrophotometry</td>
</tr>
<tr>
<td>20. ABSTRACT (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)</td>
<td>The chemical literature lacks a specific and direct analytical method for adequately monitoring trivalent chromium ions (Cr(III)) in chromium plating solutions during the plating process. In this report, a specific and direct method is presented providing acceptable analysis and monitoring of the trivalent chromium in this process. The optimum operating range of the trivalent chromium is 7.5 g/l maximum in the chromium plating solutions. The resulting precisions are in the range of 0.5 to 1.0 g/l, providing adequate monitoring of these solutions supported by four years of testing.</td>
</tr>
</tbody>
</table>
The chemical literature lacks an acceptable analytical method for adequately monitoring phosphoric and sulfuric acids in alloy steel polishing solutions during the polishing process. In this report, an improved method is presented that provides acceptable analysis and monitoring of these acids. The typical operating ranges of these acid constituents are 640 to 730 g/l phosphoric acid and 795 to 895 g/l sulfuric acid. The resulting precisions are in the range of 0 to 8 g/l, providing adequate monitoring of these polishing solutions supported by six years of testing.
Braiding is a process in which fibrous strands of material are interlocked and precisely placed onto a mandrel. Resin may be applied to the fibers prior to placement onto the mandrel through a resin applicator.

Certain parameters are needed in the braiding process for the operator to fabricate an item displaying specific properties. Some of these parameters are braider speed, mandrel traverse rate, and volume flow rate of the resin and (CONT'D ON REVERSE)
20. ABSTRACT (CONT'D)

the fiber onto a mandrel.

Descriptions and calculations of these parameters are covered in this report.
A method to determine the free vibration frequencies and mode shapes of non-prismatic beams that are end-mounted on various supports is described. The term Uniform Segment Method (USM) is used to distinguish this method from finite element (FEM) techniques. The analytical details are presented along with a description of the implementing computer routines. The results are compared with finite element models. Directions for continued research using this modelling technique are also outlined.
7. AUTHORS (CONT'D)

H. J. Sneck
Department of Mechanical Engineering, Aeronautical Engineering, and Mechanics
Rensselaer Polytechnic Institute
Troy, NY 12180-3590

and

U.S. Army ARDEC
Close Combat Armaments Center
Benet Laboratories
Watervliet, NY 12189-4050
INVESTIGATION INTO THE FABRICATION OF A COMPOSITE TOP ATTACK RECOILLESS RIFLE

Kevin R. Miner

U.S. Army ARDEC
Benet Laboratories, SMCAR-CCB-TL
Watervliet, NY 12189-4050

Close Combat Armaments Center
Picatinny Arsenal, NJ 07806-5000

December 1989

Approved for public release; distribution unlimited.

Recoilless Rifle
Graphite/Epoxy Composites
Composite Materials

Composite Fabrication
Filament Winding
Braiding

The fabrication of a lightweight, expendable recoilless rifle, known as TOPCAT (Top Attack Consumable Antitank), using composite materials was investigated. Filament winding and braiding were successfully employed in the construction of several of these shoulder-fired weapons.
<table>
<thead>
<tr>
<th>Department</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIEF, DEVELOPMENT ENGINEERING DIVISION</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: SMCAR-CCB-D</td>
<td></td>
</tr>
<tr>
<td>-DA</td>
<td>1</td>
</tr>
<tr>
<td>-DC</td>
<td>1</td>
</tr>
<tr>
<td>-DI</td>
<td>1</td>
</tr>
<tr>
<td>-DP</td>
<td>1</td>
</tr>
<tr>
<td>-DR</td>
<td>1</td>
</tr>
<tr>
<td>-DS (SYSTEMS)</td>
<td>1</td>
</tr>
<tr>
<td>CHIEF, ENGINEERING SUPPORT DIVISION</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: SMCAR-CCB-S</td>
<td></td>
</tr>
<tr>
<td>-SE</td>
<td>1</td>
</tr>
<tr>
<td>CHIEF, RESEARCH DIVISION</td>
<td>2</td>
</tr>
<tr>
<td>ATTN: SMCAR-CCB-R</td>
<td></td>
</tr>
<tr>
<td>-RA</td>
<td>1</td>
</tr>
<tr>
<td>-RE</td>
<td>1</td>
</tr>
<tr>
<td>-RM</td>
<td>1</td>
</tr>
<tr>
<td>-RP</td>
<td>1</td>
</tr>
<tr>
<td>-RT</td>
<td>1</td>
</tr>
<tr>
<td>TECHNICAL LIBRARY</td>
<td>5</td>
</tr>
<tr>
<td>ATTN: SMCAR-CCB-TL</td>
<td></td>
</tr>
<tr>
<td>TECHNICAL PUBLICATIONS & EDITING SECTION</td>
<td>3</td>
</tr>
<tr>
<td>ATTN: SMCAR-CCB-TL</td>
<td></td>
</tr>
<tr>
<td>DIRECTOR, OPERATIONS DIRECTORATE</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: SMCWV-OD</td>
<td></td>
</tr>
<tr>
<td>DIRECTOR, PROCUREMENT DIRECTORATE</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: SMCWV-PP</td>
<td></td>
</tr>
<tr>
<td>DIRECTOR, PRODUCT ASSURANCE DIRECTORATE</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: SMCWV-QA</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: PLEASE NOTIFY DIRECTOR, BENET LABORATORIES, ATTN: SMCAR-CCB-TL, OF ANY ADDRESS CHANGES.
<table>
<thead>
<tr>
<th>COMMANDER</th>
<th>NO. OF COPIES</th>
<th>COMMANDER</th>
<th>NO. OF COPIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>US ARMY LABCOM, Isa</td>
<td></td>
<td>AIR FORCE ARMAMENT LABORATORY</td>
<td></td>
</tr>
<tr>
<td>ATTN: SLCIS-IM-TL</td>
<td>1</td>
<td>ATTN: AFATL/MN</td>
<td>1</td>
</tr>
<tr>
<td>2800 POWDER MILL ROAD</td>
<td></td>
<td>EGLIN AFB, FL 32542-5434</td>
<td></td>
</tr>
<tr>
<td>ADELPHI, MD 20783-1145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMANDER</td>
<td></td>
<td>COMMANDER</td>
<td></td>
</tr>
<tr>
<td>US ARMY RESEARCH OFFICE</td>
<td></td>
<td>AIR FORCE ARMAMENT LABORATORY</td>
<td></td>
</tr>
<tr>
<td>ATTN: CHIEF, IPO</td>
<td>1</td>
<td>ATTN: AFATL/MNF</td>
<td>1</td>
</tr>
<tr>
<td>P.O. BOX 12211</td>
<td></td>
<td>EGLIN AFB, FL 32542-5434</td>
<td></td>
</tr>
<tr>
<td>RESEARCH TRIANGLE PARK, NC 27709-2211</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIRECTOR</td>
<td></td>
<td>METALS AND CERAMICS INFO CTR</td>
<td></td>
</tr>
<tr>
<td>US NAVAL RESEARCH LAB</td>
<td></td>
<td>BATTELLE COLUMBUS DIVISION</td>
<td></td>
</tr>
<tr>
<td>ATTN: MATERIALS SCI & TECH DIVISION</td>
<td>1</td>
<td>505 KING AVENUE</td>
<td></td>
</tr>
<tr>
<td>CODE 26-27 (DOC LIB)</td>
<td>1</td>
<td>COLUMBUS, OH 43201-2693</td>
<td>1</td>
</tr>
<tr>
<td>WASHINGTON, D.C. 20375</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER, US ARMY AMCOM, ATTN: BENET LABORATORIES, SMCAR-CCB-TL, WATERVLIET, NY 12189-4050, OF ANY ADDRESS CHANGES.