3-Ferrocenylpyrazole ($Hpz^*$) has been prepared and was converted to the salt $Kpz^*$ and the complex $[\text{H}_{\text{pz}}^-\text{CH}_2\text{CCH}_2\text{CH}_2\text{Pd}(\text{pz}^*)_2]$. In many respects $Hpz^*$ reacts with boron compounds in a manner similar to the unsubstituted parent pyrazole. Thus, the pyrazaboles $R_2B(\mu-\text{pz}^*)_2B_R^2$ ($R = H, \text{C}_8\text{H}_8$); the adducts $(\text{CH}_3)_2\text{HN}-B(\text{pz}^*)(\text{C}_8\text{H}_8)_2$, $(\text{CH}_3)_2\text{HN}-B(\text{pz}^*)(\text{C}_8\text{H}_8)_2$ ($\text{C}_8\text{H}_8 = 9$-borabicyclo[3.3.1]nonane), $Hpz^*-B(\text{pz}^*)(\text{C}_8\text{H}_8)_2$, and $(\text{CH}_3)_2\text{HN}-B(\text{pz}^*)_2$; the salts $Tl(\text{pz}^*)_2B_H^2$, $K(\text{pz}^*)_2B(\text{C}_8\text{H}_8)_2$, and $M(\text{pz}^*)_2B(\text{C}_8\text{H}_8)_2$ ($M = Na, K$); as well as the complexes $(\text{C}_8\text{H}_8)_2B(\mu-\text{pz}^*)_2Pd(\pi-\text{CH}_2\text{CH}_2\text{CH}_2)$ and $(\text{C}_8\text{H}_8)_2B(\mu-\text{pz}^*)_2Pd(\pi-\text{CH}_2\text{CH}_2\text{CH}_2)$ have been prepared and characterized. On the other hand, the relative stability of the ferrocenyl unit of $Hpz^*$ prevents some reactions which are possible with other pyrazoles, e.g., formation of $K[H(\text{B}(\text{pz}^*)_3)]$ or $K[B(\text{pz}^*)_2]$ from $Hpz^*$ and $KBH_4$, or the halogenation at the boron sites of $H_2B(\mu-\text{pz}^*)_2B_H^2$. 

**3. Title** (Include Security Classification)

BORON DERIVATIVES OF 3-FERROCENYLPYRAZOLE (unclassified).

**12. Principal Authors**

K. Niedenzu, J. Serwatowski, S. Trofimenko

**19. Abstract** (Continues on reverse if necessary and identify by block number)

3-Ferrocenylpyrazole ($Hpz^*$) has been prepared and was converted to the salt $Kpz^*$ and the complex $[(\pi-\text{CH}_2\text{CCH}_2\text{CH}_2\text{Pd}(\text{pz}^*))_2]$. In many respects $Hpz^*$ reacts with boron compounds in a manner similar to the unsubstituted parent pyrazole. Thus, the pyrazaboles $R_2B(\mu-\text{pz}^*)_2B_R^2$ ($R = H, \text{C}_8\text{H}_8$); the adducts $(\text{CH}_3)_2\text{HN}-B(\text{pz}^*)(\text{C}_8\text{H}_8)_2$, $(\text{CH}_3)_2\text{HN}-B(\text{pz}^*)(\text{C}_8\text{H}_8)_2$ ($\text{C}_8\text{H}_8 = 9$-borabicyclo[3.3.1]nonane), $Hpz^*-B(\text{pz}^*)(\text{C}_8\text{H}_8)_2$, and $(\text{CH}_3)_2\text{HN}-B(\text{pz}^*)_2$; the salts $Tl(\text{pz}^*)_2B_H^2$, $K(\text{pz}^*)_2B(\text{C}_8\text{H}_8)_2$, and $M(\text{pz}^*)_2B(\text{C}_8\text{H}_8)_2$ ($M = Na, K$); as well as the complexes $(\text{C}_8\text{H}_8)_2B(\mu-\text{pz}^*)_2Pd(\pi-\text{CH}_2\text{CH}_2\text{CH}_2)$ and $(\text{C}_8\text{H}_8)_2B(\mu-\text{pz}^*)_2Pd(\pi-\text{CH}_2\text{CH}_2\text{CH}_2)$ have been prepared and characterized. On the other hand, the relative stability of the ferrocenyl unit of $Hpz^*$ prevents some reactions which are possible with other pyrazoles, e.g., formation of $K[H(\text{B}(\text{pz}^*)_3)]$ or $K[B(\text{pz}^*)_2]$ from $Hpz^*$ and $KBH_4$, or the halogenation at the boron sites of $H_2B(\mu-\text{pz}^*)_2B_H^2$. 

**Distribution Statement A**

Approved for public release

Distribution Unlimited
Boron Derivatives of 3–Ferrocenylpyrazole

K. Niedenzu,* J. Serwatowski,† and S. Trofimenko*‡

Received

3–Ferrocenylpyrazole (= Hpz*) has been prepared and was converted to the salt Kpz* and the complex ((κ–CH2CCH3CH2)Pd(pz*)2). In many respects Hpz* reacts with boron compounds in a manner similar to the unsubstituted parent pyrazole. Thus, the pyrazaboles R2B(μ–pz*)2BR2 (R = H, C2H5); the adducts (CH3)2HN·B(pz*)(C2H5)2, (CH3)2HN·B(pz*)(C6H14) (where (C6H14BH = 9–borabicyclo[3.3.1]nonane), Hpz*B(pz*)(C6H14), and (CH3)2HN·B(pz*)3; the salts Tl[(pz*)2BH2], K[(pz*)2B(C2H5)2], and M[(pz*)2B(C6H14)] (M = Na, K); as well as the complexes (C2H5)2B(μ–pz*)2Pd(κ–CH2CHCH2) and (C6H14)B(μ–pz*)2Pd(κ–CH2CHCH2) have been prepared and characterized. On the other hand, the relative lability of the ferrocenyl unit of Hpz* prevents some reactions which are possible with other pyrazoles, e.g., formation of K[HB(pz*)3] or K[B(pz*)4] from Hpz* and KBH4, or the halogenation at the boron sites of H2B(μ–pz*)2BH2.

STATEMENT "A" per Dr. Robert Nowak
ONR/Code 1113ES
TELECON 9/25/90 VG
Introduction

There are many compounds known in which the two adjacent nitrogen atoms of pyrazolyl moieties bridge a boron and a metal atom (M) to give the structural arrangement B(μ–pz)ₙM (Hpz = pyrazole; n = 1 to 3). In contrast, no materials are known in which a boron atom is bonded to a metal via the dinitrogen unit and simultaneously to a different metal via one nitrogen and the carbon framework of the same pyrazolyl group. The synthesis and characterization of such species derived from 3-ferrocenylpyrazole was the ultimate goal of the present study.

Experimental Section

Elemental analyses were performed by the Schwarzkopf Microanalytical Laboratory, Woodside, NY. Melting points (uncorrected) were determined on a Mel–Temp block.

NMR spectra were recorded for solutions in CDCl₃ (unless otherwise noted) on a Varian VXR–400 (¹¹B and high resolution) or GEMINI–200 (¹H, ¹³C) instrument. Chemical shift data are given in ppm with positive values indicating downfield from the reference (internal (CH₃)₄Si for ¹H and ¹³C NMR, external (C₂H₅)₂O·BF₃ for ¹¹B NMR); s = singlet, d = doublet, t = triplet, q = quartet, p = quintuplet, h = septet, m = unresolved multiplet, and an asterisk denotes a broad signal. Coupling constants J are given in hertz. ¹³C NMR spectra were generally recorded in the proton decoupled mode. Electron impact (El) mass spectral data (70 eV unless otherwise noted) were obtained on a VG ZAB–2F spectrometer under standard operating conditions. Data are listed to m/z 30 for 5% or greater relative abundances (in parentheses) only.

All nonreferenced reagents were obtained from Aldrich Chemical Co., Milwaukee, WI, and used as received.

3–Ferrocenylpyrazole (= Hpz*). To 54 g (1 mol) of dry sodium methoxide slurried in 1 L of toluene was added with stirring a solution of 228 g (1 mol) of acetylferrocene and a large excess of ethyl formate in toluene. An exothermic controlled reaction occurred, a red solution formed, and finally an orange–brown precipitate was obtained. The latter was collected, dissolved in methanol and reacted with an aqueous solution of 68.5 g (1 mol) of hydrazine monohydrochloride. The product was extracted with
methylene chloride and the latter solvent was evaporated to leave a red tar. This material was refluxed for 1 h with 25 g (0.5 mol) of hydrazine hydrate in methanol (or ethanol). The dark reddish solution was poured slowly and with stirring into about 1 L of cold water. An oil formed, which soon solidified. The solid was collected, washed with water, and then dissolved in ca. 200 mL of methylene chloride. The solution was filtered through a short alumina column and the orange filtrate was concentrated until crystals started appearing. After transfer to a smaller vessel, methylene chloride was driven off and, on cooling, 130 g (61%) of crystalline orange product, mp 148–149 °C, was obtained. Anal. Calcd. for C_{13}H_{12}FeN_{2} (M_r = 252.10): C, 61.94; H, 4.80; Fe, 22.15; N, 11.11. Found: C, 61.26; H, 5.09; Fe, 22.09; N, 11.80.

NMR data: δ(H) 11.1" (1 H, s), 7.57 (1 H, d, J = 1.5), 6.37 (1 H, unresolved d), 4.66 (2 H, unresolved t), 4.30 (2 H, t, J = 1.7), 4.08 (5 H, s); δ(C) 147.4", 135.5", 103.5, 76.8, 69.8, 69.0, 67.0. Solution in THF-d_8: δ(H) 7.42" (1 H, s), 6.27" (1 H, s), 4.63" (2 H, s), 4.21" (2 H, s), 4.00" (5 H, s). The (14 eV) mass spectrum of the compound exhibited a parent ion cluster with the base peak at m/z 252.

Kpz*. A stirred mixture of 6.6 g (26 mmol) of Hpz*, 120 mL of benzene, and 1.1 g (28 mmol) of small chunks of metallic potassium was heated to 50–60 °C for 4 h. After that time the evolution of hydrogen had stopped. The orange gray precipitate was collected, washed with benzene and dried to give an essentially quantitative yield (7.6 g) of Kpz*, which sintered at 170 °C and decomposed at 180 °C. Anal. Calcd. for C_{13}H_{11}FeKN_{2} (M_r = 290.05): C, 53.79; H, 3.82; Fe, 19.26; K, 13.48; N, 9.65. Found: C, 53.65; H, 4.02; Fe, 19.12; K, 12.98; N, 9.25.

NMR data (solution in THF-d_8): δ(H) 7.51" (1 H, s), 6.16" (1 H, s), 4.61" (2 H, s), 4.06" (2 H, s), 3.92" (5 H, s); δ(C) 149.0, 139.6, 101.0, 85.6, 70.0, 67.8, 66.9.

[(\(\pi\)-CH_2CCH_3CH_2)Pd(pz^*)]_2. A mixture of equimolar amounts (10 mmol) of Hpz* (2.5 g), (\(\pi\)-C_H_3CCH_3CH_2)PdCl (as the dimer, 1.3 g), and (C_3H_5)_2N (1.0 g) was stirred for 30 min in 100 mL of methylene chloride to which 50 mL of water has been added. The yellow–orange organic layer was filtered through Celite and evaporated to leave an essentially quantitative yield of the compound as yellow solid, sintering from 222 °C and decomposing at 235–244 °C. Anal. Calcd. for C_{17}H_{18}FeN_2Pd
$M_r = 412.6$: C, 49.49; H, 4.39; Fe, 13.55; N, 6.79; Pd, 25.79. Found: C, 49.14; H, 4.31; Fe, 13.32; N, 6.68; Pd, 25.83. Both $^1$H and $^{13}$C NMR spectra were complex showing the presence of rotamers.

Zn(pz*)$_2$. To a solution of 2.1 g (8.3 mmol) of Hpz and 0.84 g (8.3 mmol) of triethylamine in 50 mL of methylene chloride was added 4.15 mL of a 1 M solution of zinc chloride in diethylether. The mixture was stirred for 3 h at ambient temperature and the precipitate (2.2 g, 94%) was filtered off, washed with methylene chloride and dried under vacuum. The product decomposed near 340 °C. Anal. Calcd. for $C_{26}H_{24}Fe_2N_4Zn (M_r = 567.26): C, 55.00; H, 3.92; Fe, 19.69; N, 9.60; Zn, 11.53. Found: C, 54.88; H, 4.15; Fe, 19.74; N, 9.60; Zn, 11.50. The material was insoluble in common organic solvents and no NMR data could be recorded.

$H_2B(μ-pz^*)_2BH_2$. A mixture of 12.6 g (0.05 mol) of Hpz* and 3.7 g (0.05 mol) of trimethylamine-borane, $(CH_3)_3N•BH_3$, was refluxed in 250 mL of toluene until gas evolution ceased (ca. 1 h). The solvent was evaporated and the residue was dissolved in methylene chloride and chromatographed on alumina. The eluate was dropped into refluxing heptane so that the methylene chloride slowly distilled out. This procedure gave slow formation of orange crystals of the compound; it begins to sinter near 230 °C, mp 245–246 °C dec. Anal. Calcd. for $C_{26}H_{26}B_2Fe_2N_4 (M_r = 527.51): C, 59.39; H, 4.60; B, 4.11; Fe, 21.24; N, 10.65. Found: C, 59.21; H, 4.61; B, 4.09; Fe, 21.08; N, 10.58.

NMR data: δ(1H) 7.51 (1 H, d, $J = 2.3$), 6.34 (1 H, d, $J = 2.3$), 4.71 (2 H, unresolved), 4.36 (2 H, unresolved), 4.14 (5 H, s), 3.6* (2 H, s); δ(11B) –9.2 (s, $h_{11B} = 400$ Hz); δ(13C) 148.2, 135.6, 105.6, 74.8, 70.2, 69.9, 69.3. In CD$_2$Cl$_2$: δ(13C) 148.1, 135.4, 105.6, 74.7, 70.2, 70.0, 69.4. EI mass spectrum (14 eV): m/z 529 (5), 528 (31), 527 (100), 526 (53), 525 (21), 524 (8), 459 (7), 264 (23), 263 (5), 252 (9).

$(C_2H_2)_2B(μ-pz^*)_2B(C_2H_5)_2$. To a solution of 0.50 g (2 mmol) of Hpz* in 25 mL of toluene was added 0.22 g (2 mmol) of (dimethylamino)diethylborane, $(CH_3)_2NB(C_2H_5)_2$, and the mixture was heated to reflux for 8 h. Volatiles were removed under reduced pressure to leave a dark gummy material. The latter was boiled with cyclohexane and the hot mixture was filtered to give a clear bright orange solution of the desired product and some unreacted Hpz*. Cyclohexane was removed under vacuum and the residue was treated with ethanol to leave 0.22 g (35%) of the compound. It was purified by dissolving it
in a minimum amount of toluene, adding a fivefold volume of ethanol, and placing the mixture in an ice bath. The resultant bright orange precipitate had a mp 182–185 °C. Anal. Calcd. for C_{34}H_{42}B_{2}Fe_{2}N_{4} (M_r = 639.64): C, 63.80; H, 6.61; B, 3.39; Fe, 17.45; N, 8.75. Found: C, 63.15; H, 6.53; B, 3.43; Fe, 17.39; N, 8.76.

NMR data: δ(^1H) 7.50 (1 H, d, J = 2.5), 6.56 (1 H, d, J = 2.4), 4.54 (2 H, t, J = 1.8), 4.29 (2 H, t, J = 1.8), 4.19 (5 H, s), 0.48 (4 H, q, J = 7), 0.29 (6 H, t, J = 7); δ(^11B) 3.0 (s, h_{1/2} = 500 Hz); δ(^13C) 147.6, 133.8, 109.7, 78.9, 71.9, 69.9, 68.4, 16.2°, 9.0. The EI mass spectrum exhibited a weak parent ion at m/z 640.

(CH_3)_2HN-B(pz')(C_6H_{14}). To a stirred mixture of 1.1 g (4.4 mmol) of Hpz" and 40 mL of ether was added 0.72 g (4.4 mmol) of 9-dimethylamino-9-borabicyclo[3.3.1]nonane, (CH_3)_2NB(C_6H_{14}). The pyrazole dissolved completely and a new precipitate developed rapidly. The mixture was stirred for 15 min at room temperature and was filtered to give 1.35 g (74%) of the desired orange compound. (Some additional material can be obtained by concentration of the filtrate.) The product sinters at 130–140 °C and melts at 170–180 °C dec. Anal. Calcd. for C_{23}H_{32}BFeN_{3} (M_r = 417.19): C, 66.22; H, 7.73; B, 2.59; Fe, 13.39; N, 10.07. Found: C, 65.59; H, 7.74; B, 2.87; Fe, 13.47; N, 9.91.

NMR data: δ(^1H) 7.49 (1 H, d, J = 1.8), 6.27 (1 H, d, J = 2.1), 4.71 (2 H, s), 4.19 (2 H, s), 3.99 (5 H, s), 3.9° (ca. 1 H, s), 2.41 (6 H, d, J = 6.0), 2.05–1.15 (14 H, m); δ(^11B) 1.2 (s, h_{1/2} = 225); δ(^13C) 149.6, 133.6, 101.2, 81.3, 69.2, 67.7, 66.5, 36.3, 31.1, 30.9, 24.0, 23.3, 20.6°.

Hpz"·B(pz')(C_6H_{14}). A stirred slurry of 1.5 g (3.6 mmol) of Hpz" and 40 mL of ether was added 0.72 g (4.4 mmol) of 9-dimethylamino-9-borabicyclo[3.3.1]nonane, (CH_3)_2NB(C_6H_{14}). The pyrazole dissolved completely and a new precipitate developed rapidly. The mixture was stirred for 15 min at room temperature and was filtered to give 1.35 g (74%) of the desired orange compound. (Some additional material can be obtained by concentration of the filtrate.) The product sinters at 130–140 °C and melts at 170–180 °C dec. Anal. Calcd. for C_{34}H_{37}BFe_{2}N_{4} (M_r = 624.20): C, 65.42; H, 5.98; B, 1.73; Fe, 17.89; N, 8.98. Found: C, 64.86; H, 5.56; B, 1.58; Fe, 17.61; N, 9.05.

NMR data: δ(^1H) 7.68° (2 H), 6.29° (2 H), 4.65° (4 H), 4.22° (4 H), 3.9° (10 H), 2.43° (2 H), 2.1–1.2 (12 H, m) (note: all signals have satellites or shoulders); δ(^11B) 32.8 (s, h_{1/2} = 550 Hz) and 1.2 (s, h_{1/2} = 400 Hz) in ratio = ca. 1:10 (but varying considerably with the concentration, the signal at 1.2 ppm increasing with increasing concentration).
Na[(pz)*2B(C6H14)]. To a stirred solution of 1.60 g (2.56 mmol) of Hpz*-B(pz*)(C6H14) (see above) in 30 mL of benzene was added 0.15 g (5.3 mmol) of sodium hydride. The mixture was stirred for 2 h at room temperature and hydrogen evolution ceased. The mixture was filtered and solvent was evaporated from the clear filtrate to leave an essentially quantitative yield of the sodium salt. It began to sinter at 40–50 °C and decomposed near 100 °C.

NMR data (solution in CD2Cl2): δ(^1H) 7.62 (1 H, d, J = 2.0), 7.44 (1 H, s), 6.33 (1 H, s), 6.24 (1 H, d, J = 2.1), 4.58 (2 H, s), 4.49 (2 H, t, J = 1.9), 4.29 (2 H, s), 4.16 (2 H, t, J = 1.9), 4.09 (5 H, s), 4.05 (5 H, s), 1.95–1.25 (14 H, m); δ(11B) -1.5 (shoulder at 1.4).

K[(pz*)2B(C6H14)]. To a stirred slurry of 1.7 g (4.1 mmol) of (CH3)2HN.B(pz'XCsH14) (see above) and 30 mL of benzene was added 1.15 g (3.96 mmol) of Kpz'. The mixture was heated to reflux for 3 h and the orange insoluble material was collected, washed with benzene and dried to give 2.2 g (81.5% yield) of product, mp 280 °C dec. (Some additional material can be obtained from concentration of the solution.) Anal. Calcd. for C34H36BFeN4 (Mr = 662.29): C, 61.66; H, 5.48; B, 1.63; Fe, 16.86; K, 5.90; N, 8.46. Found: C, 61.07; H, 5.14; B, 1.84; Fe, 17.01; K, 5.68; N, 8.09.

NMR data (solution in (CD3)2CO): δ(^1H) 7.53 (1 H, d, J = 2), 6.12 (1 H, d, J = 1.9), 4.60 (2 H, t, J = 1.8), 4.09 (2 H, t, J = 1.9), 3.93 (5 H, s), 2–1.1 (14 H, m); δ(11B) -1.0 (s, h1/2 = 230 Hz); δ(13C) 148.7, 133.1, 101.6, 83.8, 70.1, 66.9, 32.6, 25.6, 25.0°.

(C6H14)B(μ−pz)*2Pd(μ−CH2CHCH2). To a stirred slurry of 1.40 g (2.11 mmol) of K[(pz)*2B(C6H14)] and 30 mL of methylene chloride was added 0.40 g (1.09 mmol) of [(μ−CH2CHCH2)PdCl]2. Most of the material dissolved and the mixture was stirred for 2 h at ambient temperature. It was filtered and solvent was evaporated from the clear filtrate to give 1.2 g (74%) of orange solid, which decomposed at 230–240 °C. The compound can be recrystallized from benzene or toluene (with considerable losses). Anal. Calcd. for C37H41BFeN4Pd (Mr = 770.2): C, 57.65; H, 5.37; B, 1.40; Fe, 14.50; N, 7.27; Pd, 13.81. Found: C, 57.46; H, 5.03; B, 1.28; Fe, 14.51; N, 6.91; Pd, 14.01.

NMR data (solution in CD2Cl2): δ(^1H) 7.76 (2 H, d, J = 2.3), 6.41 (2 H, d, J = 2.3), 5.19 (1 H, h), 4.76 (2 H, m), 4.44 (2 H, m), 4.3 (4 H, m), 4.20 (10 H, s), 3.08 (2 H, d, J = 6.8), 2.47 (2 H, d, J = 12.3).
2.4-1.1 (14 H, m); δ(11B) 0.1 (s, J1/2 = 275 Hz); δ(13C) 151.2, 135.3, 112.8, 105.2, 81.8, 70.7, 70.1, 69.5, 68.7, 68.4, 57.9, 33.2, 30.9, 28.0, 24.5, 21.5. The mass spectrum exhibited a parent ion cluster at m/z 770.

K[(pz²)²B(C₂H₅)₂]. To a stirred slurry of 1.6 g (6.3 mmol) of Hpz² in 80 mL of ether was added 0.70 g (6.2 mmol) of (CH₃)₂NB(C₂H₅)₂. The mixture was stirred for 15 min and a very small amount of insoluble material was filtered off. Solvent was removed from the filtrate. The residue, mp = ca. 50 °C and assumed to be (CH₃)₂HN-B(pz²)(C₂H₅)₂ [NMR data: δ(1H) 7.40 (1 H, d, J = 2.2), 6.20 (1 H, d, J = 2), 5.5* (1 H), 4.67 (2 H, t, J = 1.8), 4.20 (2 H, t, J = 1.7), 4.00 (5 H, s), 2.37 (6 H, d, J = 5.9), 0.9–0.5 (10 H, m)], was dissolved in benzene, and 1.86 g (6.4 mmol) of Kpz² was added to the brown solution. The stirred slurry was heated to reflux for 90 min until no more amine evolved. The mixture was filtered and the collected solid was washed with benzene and dried under vacuum to give 2.7 g of material, which sintered near 160 °C and decomposed at 178 °C.

NMR data (solution in C₂D₅OD): δ(1H) 7.46* (1 H, s), 6.28* (1 H, s), 4.73* (2 H, s), 4.28* (2 H, s), 3.98* (5 H, s), 1.0–0.1 (5 H, m); δ(11B) 6.5 (s, J1/2 = 950).

(C₂H₅)₂B(μ-pz²)²Pd(κ-CH₂CHCH₂). To a stirred slurry of 2.05 g (3.36 mmol) of K[(pz²)²B(C₂H₅)₂] (see above) in 30 mL of benzene was added 0.61 g (1.18 mmol) of [(κ-CH₂CHCH₂)PdCl]₂. The mixture was stirred at room temperature over night, filtered, and solvent was evaporated from the clear filtrate to leave 2.35 g (97%) of crude solid product which sintered at 170 °C and decomposed at 190–200 °C. The compound can be recrystallized from cyclohexane, but the resultant product is then obtained as the solvate with 1 molecule of cyclohexane, which could not be removed under vacuum at room temperature. Anal. Calcd. for (C₂H₅)₂B(μ-pz²)²Pd(κ-CH₂CHCH₂)·C₆H₁₂ = C₉₉H₄₉BFe₂N₄Pd (Mᵣ = 802.3): C, 58.33; H, 6.16; B, 1.35; Fe, 13.92; N, 6.98; Pd, 13.26. Found: C, 58.36; H, 5.94; B, 1.49; Fe, 13.99; N, 6.62; Pd, 13.98.

NMR data (solution in CD₂Cl₂): δ(1H) 7.69 (2 H, d, J = 2.2), 6.45 (2 H, d, J = 1.7), 5.08 (1 H, h), 4.68* (2 H, s), 4.50* (2 H, s), 4.30 (4 H, t, J = 1.7), 4.17 (10 H, two overlapping s), 2.84 (2 H, ill resolved d, J = ca. 6–7), 2.31 (2 H, d, J = 11.5), 1.43 (12 H, s, cyclohexane), 1.3–0.6 (10 H, m); δ(11B) 1.0 (s, J1/2
A stirred mixture of 2.7 g (50 mmol) of KBH₄, 2.6 g (0.11 mol) of Hpz⁺, and 300 mL of dimethylacetamide was heated until 2.5 L of hydrogen had evolved. Volatile material was removed under vacuum at 130–140 °C. The solid residue was dissolved in a mixture of 400 mL of tetrahydrofuran and 50 mL of acetone and filtered through Celite. An aqueous solution of 0.2 mol of Ti(O₃)₂ was added to the filtrate and the mixture was stirred. The resultant precipitate was collected, washed with methanol and dried to give 13 g (36%) of the desired orange complex, decomposing at 203–206 °C. (Unreacted Hpz⁺ can be recovered from the filtrate by stirring with water and methylene chloride. The organic phase is then filtered through alumina and evaporated to dryness.) Anal. Calcd. for C₂₆H₂₂Fe₂N₄Ti (Mr = 719.38): C, 43.39; H, 3.36; B, 1.50; Fe, 15.53; N, 7.79; Ti, 28.43. Found: C, 43.67; H, 3.94; B, 1.19; Fe, 15.17; N, 7.54.

NMR data (solution in CD₂Cl₂): δ(¹H) 7.44 (1 H, d, J = 2.2), 6.25 (1 H, d, J = 2.0), 4.53 (2 H, t, J = 1.9), 4.26 (2 H, t, J = 1.8), 4.05 (5 H, s), 1.5° (1 H); δ(¹¹B) -8.8 (ill resolved t, J = ca. 90 Hz); δ(¹³C) 152.1, 137.9, 103.7, 79.6, 70.1, 69.1, 67.8. The mass spectrum exhibited a parent ion cluster at m/z 719 with the correct calculated isotopic distribution.

(CH₃)₂HN-B(pz*)₃. A mixture of 3.6 g (14 mmol) of Hpz⁺, 0.68 g (4.8 mmol) of tris(dimethylamino)borane, [(CH₃)₂N]₃B, and 50 mL of benzene was refluxed with stirring for 2 h. The mixture was cooled to room temperature, filtered, and benzene was stripped of the clear filtrate to leave an essentially quantitative yield of the desired material as dark orange solid, mp 170–175 °C dec. Anal. Calcd. for C₄₁H₄₀Fe₂N₇ (Mr = 809.17): C, 80.86; H, 5.02; B, 1.34; Fe, 20.70; N, 12.12. Found: C, 60.70; H, 5.08; B, 1.39; Fe, 19.86; N, 11.69.

NMR data: δ(¹H) 7.13 (3 H, d, J = 1.7), 6.30 (3 H, d, J = 1.9), 4.71° (6 H, s), 4.25° (6 H, s), 4.04° (15 H, s), 2.98° (6 H, s); δ(¹¹B) 0.8 (h1/2 = 50 Hz); δ(¹³C) 152.6, 135.9, 103.0, 79.6, 69.3, 68.2, 66.6, 39.5. Solution in CD₂Cl₂: δ(¹H) 7.12 (3 H, d, J = 2.4), 6.33 (3 H, d, J = 2.3), 4.71 (6 H, t, J = 1.8), 4.6° (1 H, s), 4.26 (6 H, t, J = 1.8), 4.04 (15 H, s), 2.94 (6 H, s).
Results and Discussion

3-Ferrocenylpyrazole (= Hpz*) has been prepared in a manner analogous to that used for the synthesis of 3-tert-butylpyrazole and 3-phenylpyrazole. A substantial amount of [(Fe)COCH\textsubscript{2}CH=N-\textsubscript{2} (Fc = ferrocenyl) was coproduced along with Hpz\textsuperscript{*} during this reaction, but this byproduct could be reacted with additional hydrazine to give a reasonable yield of the desired product. (Note: This latter complication is not encountered when synthesizing simpler substituted pyrazoles.) The compound is an orange crystalline material which is stable on air.

3-Ferrocenylpyrazole was reacted with metallic potassium to form the salt Kpz\textsuperscript{*}, and with [(\(\pi\text{-CH}_2\text{CCH}_3\text{CH}_2\))PdCl\textsubscript{2}] to yield the complex [(\(\pi\text{-CH}_2\text{CCH}_3\text{CH}_2\))Pd(pz\textsuperscript{*})\textsubscript{2}]. The former was characterized by NMR data. The species Zn(pz\textsuperscript{*})\textsubscript{2} was also prepared from Hpz\textsuperscript{*} and ZnCl\textsubscript{2} in the presence of trimethylamine as HCl acceptor, but was found to be an insoluble material that could not be studied by solution NMR.

Reactions of Hpz\textsuperscript{*} – analogous to those of the unsubstituted parent pyrazole (= Hpz) – with various boron species have been studied. In many of these reactions the presence of the organometallic substituent at the pyrazole moiety does not affect the expected pattern. For example, pyrazaboles (I) could easily be obtained, i.e., the reaction of Hpz\textsuperscript{*} with (CH\textsubscript{3})\textsubscript{2}NBH\textsubscript{3} readily gave the pyrazabole H\textsubscript{2}B(\(\mu\text{-pz}^*\))\textsubscript{2}BH\textsubscript{2}, analogous to the corresponding reaction of Hpz\textsuperscript{6} and the pyrazabole (C\textsubscript{2}H\textsubscript{5})\textsubscript{2}B(\(\mu\text{-pz}^*\))\textsubscript{2}B(C\textsubscript{2}H\textsubscript{5})\textsubscript{2} was prepared from (CH\textsubscript{3})\textsubscript{2}NB(C\textsubscript{2}H\textsubscript{5})\textsubscript{2} in the same manner as described for the reaction of the latter aminoborane with Hpz\textsuperscript{7}. However, in both cases the resultant pyrazabole was the symmetrical
species with the ferrocenyl substituents in the 1,5-positions of the pyrazabole skeleton, as evidenced by the NMR data. This is in agreement with analogous reactions of 3-substituted pyrazoles containing a bulky substituent (C₆H₅, C(CH₃)₃) but in contrast to the reaction of 3-methylpyrazole with, for example, (CH₃)₃N·BH₃. In this latter case, a mixture of both 1,5- and 1,7-dimethylpyrazabole was obtained. Hence, the ferrocenyl substituent exhibits a distinct directive effect in the formation of the pyrazaboles.

The reaction of Hpz⁺ with aminoboranes proceeded in the same stepwise fashion that has been observed for the reaction of Hpz with the same boranes. Thus, the complexes (CH₃)₂NH·B(C₆H₁₄)(pz⁺) and Hpz⁺·B(pz⁺)(C₆H₁₄) (where (C₆H₁₄)BH = 9-borabicyclo[3.3.1]nonane) were obtained by paralleling corresponding reactions of Hpz. Only very broad and featureless signals (of appropriate intensities) were observed in the ¹H NMR spectrum of the material. In addition, the ¹¹B NMR spectrum exhibited two signals, i.e., for three- and four-coordinate boron. These observations suggest an equilibrium between the individual donor and acceptor and the complex. This same feature has been observed for other complexes of the type Hpz·B(pz)R₂ where R is a bulky substituent. The NMR data gave no evidence for the presence of isomeric species and the ferrocenyl substituent is presumably always in the 3-position of the pyrazole ring.

The complex Hpz⁺·B(pz⁺)(C₆H₁₄) was reacted with NaH to give the salt Na[(pz⁺)₂B(C₆H₁₄)], and the corresponding potassium salt was obtained from the reaction of Kpz⁺ with (CH₃)₂HN·B(pz⁺)(C₆H₁₄).

Finally, the reaction of tris(dimethylamino)borane with Hpz⁺ gave access to (CH₃)₂HN·B(pz⁺)₂ in a fashion analogous to the corresponding reaction of the cited borane with Hpz.

On the other hand, the ferrocenyl substituent can render the pyrazole–boron derivatives sensitive to chemical attack. For example, although the parent pyrazabole, H₂B(μ−pz)₂BH₂, is readily halogenated with elemental halogen to give X₂B(μ−pz)₂BX₂ (X = Cl, Br), the pyrazabole H₂B(μ−pz*)₂BH₂ decomposed on reaction with elemental halogen under identical reaction conditions. Furthermore, extensive decomposition was observed on treatment of H₂B(μ−pz*)₂BH₂ with (C₂H₅)₂O·BF₃, although in the case of H₂B(μ−pz)₂BH₂ the reaction has been used for the preparation of both F₂B(μ−pz)₂BH₂ and F₂B(μ−pz)₂BF₂.
The ion $[\text{H}_2\text{B}(\text{pz})_2]^-$ was obtained by the reaction of $\text{KBH}_4$ with $\text{Hpz}^-$ and was isolated at the TI(I) salt. The formation of the anion is analogous to the reaction of $\text{Hpz}$ with $\text{KBH}_4$. However, in the case of $\text{Hpz}^-$, at the temperatures required to make tris(1-pyrazolyl)borates, the generation of hydrogen stopped after about one half of the theoretical amount had been generated and, subsequently, extensive decomposition occurred and the formation of cyclopentadiene was observed.

Representative transition metal complexes were prepared from the bis(3-ferrocenylpyrazol-1-yl)borate anions, e.g., $(\text{C}_2\text{H}_5)_2\text{B(μ-pz)}_2\text{Pd}($-$\text{CH}_2\text{CHCH}_2)$ and $(\text{C}_8\text{H}_{14})\text{B(μ-pz)}_2\text{Pd}($-$\text{CH}_2\text{CHCH}_2)$ (2). These species are interesting since they are the first poly(1-pyrazolyl)borate complexes in which the boron is bonded to a transition metal via the dinitrogen group of a pyrazole, and is simultaneously bonded to another transition metal via one nitrogen and the carbon framework of the same pyrazole moiety.

It is of interest to note that for both of the complexes $\text{R}_2\text{B(μ-pz)}_2\text{Pd}($-$\text{CH}_2\text{CHCH}_2)$ the room temperature $^1\text{H}$ and $^{13}\text{C}$ NMR signals of the $\text{C}_3\text{H}_4$ ring of the ferrocenyl moiety (i.e., the ring directly bonded to the pyrazole framework) are complex. Nevertheless, the assignments of the observed signals can be made on the basis of their relative intensities and in conjunction with relevant data of related species. For example, the $^1\text{H} (^{13}\text{C})$ signals (all in ppm) of $(\text{C}_2\text{H}_5)_2\text{B(μ-pz)}_2\text{Pd}($-$\text{CH}_2\text{CHCH}_2)$ for the allyl group are assigned at $5.08 (113.6)$ for the CH moiety, and at $2.84/2.31 (58.8)$ for the two CH$_2$ groups. Relevant signals sets of the pyrazolyl ring are $-(152.5)$ for the 3-position, $6.45 (105.2)$ for the 4-, and $7.69 (135.2)$ for the 5-position. The lone C atom of the pz-bonded $\text{C}_3\text{H}_4$ ring of the ferrocenyl moiety is
at 85.6, and the $^1$H($^{13}$C) signals for the C$_2$H$_5$ ring are at 4.17(70.2). The two $^1$H signals at 4.68 (1 H) and 4.50 (1 H) correlate with the $^{13}$C signals at 70.5 and 69.8, and the $^1$H signal at 4.30 (2 H) has two $^{13}$C counterparts at 68.8 and 68.5, thus completing the assignments of the ferrocenyl moiety. All $^1$H NMR signals sharpen on lowering of the temperature and at $-70^\circ$C the signals of the C$_2$H$_5$ group are sufficiently resolved to clearly show the presence of two magnetically nonequivalent ethyl groups.

The cited assignments do not give an answer, however, as to why essentially four different signals are observed for the four CH units of the C$_5$H$_4$ ring. This feature may be explained by interaction of this ring with the allyl group. Indeed, the $^1$H NMR signals of the latter are not as well resolved as is the case for similar derivatives obtained from (C-)unsubstituted pyrazole. On the other hand, such latter complexes gave clear evidence for the presence of allyl group rotamers, which also may be reflected in the signals of the (neighboring) C$_5$H$_4$ ring of the ferrocenyl groups in the present case.

Acknowledgment. This work was supported by the Office of Naval Research (K.N.).

Footnote and References

† University of Kentucky
‡ E. I. du Pont de Nemours & Co.


### TECHNICAL REPORT DISTRIBUTION LIST, GENERAL

<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry Division, Code 1113</td>
<td></td>
</tr>
<tr>
<td>800 North Quincy Street</td>
<td></td>
</tr>
<tr>
<td>Arlington, VA 22217-5000</td>
<td>Dr. Ronald L. Atkins</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>1</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. Bernard E. Douda</td>
<td>Chief of Naval Research</td>
</tr>
<tr>
<td>Crane, IN 47522-5050</td>
<td>Special Assistant</td>
</tr>
<tr>
<td>Dr. Richard W. Drisko</td>
<td>for Marine Corps Matters</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>Code 00MC</td>
</tr>
<tr>
<td>Code L52</td>
<td></td>
</tr>
<tr>
<td>Port Hueneme, California 93043</td>
<td></td>
</tr>
<tr>
<td>Dr. Richard W. Drisko</td>
<td>1</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td></td>
</tr>
<tr>
<td>Code L52</td>
<td></td>
</tr>
<tr>
<td>Port Hueneme, California 93043</td>
<td></td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>2</td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td>high</td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td>quality</td>
</tr>
<tr>
<td>David Taylor Research Center</td>
<td>1</td>
</tr>
<tr>
<td>Dr. Eugene C. Fischer</td>
<td></td>
</tr>
<tr>
<td>Annapolis, MD 21402-5067</td>
<td></td>
</tr>
<tr>
<td>Dr. James S. Murday</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375-5000</td>
<td></td>
</tr>
<tr>
<td>Dr. Eugene C. Fischer</td>
<td>1</td>
</tr>
<tr>
<td>Naval Ocean Systems Center</td>
<td></td>
</tr>
<tr>
<td>Code 52</td>
<td></td>
</tr>
<tr>
<td>San Diego, CA 92152-5000</td>
<td></td>
</tr>
<tr>
<td>Dr. Harold H. Singerman</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Code 283</td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375-5000</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>1</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. Bernard E. Douda</td>
<td></td>
</tr>
<tr>
<td>Crane, IN 47522-5050</td>
<td></td>
</tr>
<tr>
<td>Chief of Naval Research</td>
<td>1</td>
</tr>
<tr>
<td>Special Assistant</td>
<td></td>
</tr>
<tr>
<td>for Marine Corps Matters</td>
<td></td>
</tr>
<tr>
<td>Code 00MC</td>
<td></td>
</tr>
<tr>
<td>800 North Quincy Street</td>
<td></td>
</tr>
<tr>
<td>Arlington, VA 22217-5000</td>
<td></td>
</tr>
<tr>
<td>Dr. Bernadette Eichinger</td>
<td>1</td>
</tr>
<tr>
<td>Naval Ship Systems Engineering Station</td>
<td></td>
</tr>
<tr>
<td>Code 053</td>
<td></td>
</tr>
<tr>
<td>Philadelphia Naval Base</td>
<td></td>
</tr>
<tr>
<td>Philadelphia, PA 19112</td>
<td></td>
</tr>
<tr>
<td>Dr. Sachio Yamamoto</td>
<td>1</td>
</tr>
<tr>
<td>Naval Ocean Systems Center</td>
<td></td>
</tr>
<tr>
<td>Code 52</td>
<td></td>
</tr>
<tr>
<td>San Diego, CA 92152-5000</td>
<td></td>
</tr>
<tr>
<td>David Taylor Research Center</td>
<td>1</td>
</tr>
<tr>
<td>Dr. Harold H. Singerman</td>
<td></td>
</tr>
<tr>
<td>Annapolis, MD 21402-5067</td>
<td></td>
</tr>
<tr>
<td>ATTN: Code 283</td>
<td></td>
</tr>
</tbody>
</table>
ORGANOELEMENT CHEMISTRY - Distribution List

Professor O. T. Beachley, Jr.
Department of Chemistry
State University of New York
Buffalo, NY 14214
R&T Code 4135002

Professor Richard L. Wells
Department of Chemistry
Duke University
Durham, NC 27706
R&T Code 4135008

Dr. Duncan Brown
Advanced Technology Materials, Inc.
520-B Danbury Road
New Milford, CT 06776

Professor Herbert C. Brown
Purdue University
Department of Chemistry
West Lafayette, IN 47907
R&T Code 4135011

Professor Steven L Buchwald
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, MA 02139
R&T Code 4135014

Professor N. John Cooper
Department of Chemistry
University of Pittsburgh
Pittsburgh, PA 15260
R&T Code 413j007

Professor William E. Hatfield
Department of Chemistry
University of North Carolina
Chapel Hill, NC 27514
R&T Code 4135007

Dr. Kelvin T. Higa
Chemistry Division
Research Departemnt
Naval Weapons Center
China Lake, CA 93555
R&T Code 4135024

Professor Robert H. Neilson
Department of Chemistry
Texas Christian University
Fort Worth, TX 76843
R&T Code 4135005

Professor Kurt Niedenzu
Department of Chemistry
University of Kentucky
Lexington, KY 40506
R&T Code 4135003