Title and Subtitle:

Water in Marine Sediments

Author(s):

Richard H. Bennett and Huon Li

Abstract

Marine sediments of the world ocean basins consist of a wide variety of particulate materials that vary considerably chemically and physically. The sedimentary deposits are lithogenic or biogenic depending on the predominant particle types and source. Compositionally the particles are biologically produced marine carbonate or siliceous materials or terrigenous components such as detrital sands and clays and/or authigenic minerals. Organic carbon is often an important constituent of marine sediment. The distribution of sediments in the world oceans and their physical, mechanical, and chemical properties are determined by numerous macro and micro-environmental processes. The water content and porosity are important fundamental physical properties that are highly variable. The sediment porometry and volume of water contained in the pores are controlled by particle size and type, and the microstructure (fabric and physico-chemistry). Temporal and spatial changes occur in sediment porosity, water content, and porometry as a function of large and small scale processes; typical examples are gravitational consolidation and authigenic mineralization.*
respectively. Properties such as permeability, shear strength, and compressibility of surficial marine sediment depend largely on the basic nature of the microstructure, the particle size distribution, and percentage of organic material which collectively determines the water content and porosity of sedimentary deposits. High water contents of surficial sediments are associated with fine-particle size and high organic carbon content.
Marine sediments of the world ocean basins consist of a wide variety of particulate materials that vary considerably chemically and physically. The sedimentary deposits are lithogenic or biogenic depending on the predominant particle types and source. Compositionally the particles are biologically produced marine carbonate or siliceous materials or terrigenous components such as detrital sands and clays and/or authigenic minerals. Organic carbon is often an important constituent of marine sediment. The distribution of sediments in the world oceans and their physical, mechanical, and chemical properties are determined by numerous macro and micro-environmental processes.

The water content and porosity are important fundamental physical properties that are highly variable. The sediment porometry and volume of water contained in the pores are controlled by particle size and type, and the microstructure (fabric and physico-chemistry). Temporal and spatial changes occur in sediment porosity, water content, and porometry as a function of large and small scale processes; typical examples are gravitational consolidation and authigenic mineralization, respectively. Properties such as permeability, shear strength, and compressibility of surficial marine sediment depend largely on the basic nature of the microstructure, the particle size distribution, and percentage of organic material which collectively determines the water content and porosity of sedimentary deposits. High water contents of surficial sediments are associated with fine-particle size and high organic carbon content.