Integrability of stable processes

cost stabil processes, measurable processes, integrability of paths, change of order of integration, tail behavior.

Abstract: We give necessary and sufficient conditions for \(\int_T |X(t)| P \text{d}t < \infty \) a.s. where \(p > 0 \), \(\{X(t), t \in T\} \) is an \(\alpha \)-stable process, \(0 < \alpha < 2 \), and \(P \) is a \(\alpha \)-finite measure. We establish the tail behavior of the distribution of the above integral, and we prove a Fubini-type theorem which justifies a change of order of Lebesgue integration and stochastic integration with respect to a stable random measure.
INTEGRABILITY OF STABLE PROCESSES
by
Gennady Samorodnitsky

Technical Report No. 301
June 1990
Integrability of Stable Processes

by

Gennady Samorodnitsky

School of Operations Research
and Industrial Engineering
Cornell University
Ithaca, NY 14853

and

Center for Stochastic Processes
Department of Statistics
University of North Carolina
Chapel Hill, NC 27599-3260

Abstract: We give necessary and sufficient conditions for \(\int_T |X(t)|^p v(dt) < \infty \) a.s. where \(p > 0 \), \(\{X(t), t \in T\} \) is an \(\alpha \)-stable process, \(0 < \alpha < 2 \), and \(v \) is a \(\sigma \)-finite measure. We establish the tail behavior of the distribution of the above integral, and we prove a Fubini-type theorem which justifies a change of order of Lebesgue integration and stochastic integration with respect to a stable random measure.

AMS 1980 Subject Classification: Primary 60G17, 60E07; Secondary 60B11.

Key words and phrases: stable processes, measurable processes, integrability of paths, change of order of integration, tail behavior.

1. Introduction

Let \(\nu \) be a \(\sigma \)-finite Borel measure on a separable metric space \(T \), and let \(\{X(t), t \in T\} \) be a measurable \(\alpha \)-stable process, \(0 < \alpha < 2 \). Sample path integrals of the type \(\int_T |X(t)|^p \nu(dt) \), \(p > 0 \), arise in many situations, e.g. in multiple stochastic stable integration (Rosinski and Woyczynski 1987), in inversion formulae for the Fourier transform of stable noise (Cambanis 1988), in integral transformations between stationary and stationary increments stable processes (Cambanis and Maejima 1990) and others. It is important, therefore, to know exactly when the above integral is finite. Although much is known about this question, certain things appear to have been unknown in the case \(p < 1 \) and even the known results are scattered in the literature and have never been put together, mainly because different cases have been handled using very different tools, varying from \(p \)-th order analysis to geometry of certain Banach spaces. As a result, researchers working with stable processes have had to justify in each case existence of sample path integrals (see Cambanis and Maejima (1990) for a recent example). It is our purpose in this paper, therefore, to give necessary and sufficient conditions for sample path integrability of stable processes in the case which has been open, and to present them together with known results in an easy to use form. In each case we will attempt to describe fully what part of the result has been known and to give due credit to the people to whom it belongs. In many cases we reprove known results, partially for completeness, mostly because in many cases our argument covers both known cases and open ones. Also, a large part of our argument is completely elementary.

In the next section we start with some preliminary information on sample path integrability, on stable processes, and we also give a "tiny" bit of
information on geometry of Banach spaces which we will need in the present study. Necessary and sufficient conditions for integrability of sample paths of stable processes are given in Section 3.

In Section 4 we prove a Fubini-type theorem which justifies interchanging the order of Lebesgue and stable stochastic integration, and, finally, in Section 5 we derive the asymptotics of the distribution of the integral \(\int_T |X(t)|^p \nu(dt) \) in the case when it is finite.

2. Preliminaries

A (real) stochastic process \(\{X(t), t \in T\} \) is called \(\alpha \)-stable, \(0 < \alpha \leq 2 \), if for any \(A, B > 0 \), \(\{AX_1(t) + BX_2(t), t \in T\} \overset{d}{=} (A^\alpha + B^\alpha)^{1/\alpha}X(t) + D(t), t \in T \), where \(\{X_i(t), t \in T\}, i=1,2 \), are i.i.d. copies of \(\{X(t), t \in T\} \), and \(D: T \rightarrow \mathbb{R} \) is a nonrandom function. An \(\alpha \)-stable process is called strictly \(\alpha \)-stable if \(D(t) = 0 \) for all \(t \in T \), and it is called symmetric \(\alpha \)-stable (SaS) if \(\{-X(t), t \in T\} \overset{d}{=} \{X(t), t \in T\} \). A 2-stable process is, of course, Gaussian, and an S2S process is zero-mean Gaussian.

Suppose now that the time space \(T \) is a separable metric space, and let \(\nu \) be a \(\sigma \)-finite Borel measure on \(T \). Let \(\{X(t), t \in T\} \) be a measurable zero mean Gaussian process and \(p > 1 \). Then

\[
\text{(2.1)} \quad P\left(\int_T |X(t)|^p \nu(dt) < \infty\right) = 0 \text{ or } 1.
\]

and

\[
\text{(2.2)} \quad P\left(\int_T |X(t)|^p \nu(dt) < \infty\right) = 1 \quad \text{iff} \quad \int_T E|X(t)|^p \nu(dt) < \infty.
\]

(Rajput 1972), which expresses a very simple idea: the integral \(\int_T |X(t)|^p \nu(dt) \) is finite if and only if its expectation is finite. This idea has some applicability in the \(\alpha \)-stable case proper, (i.e. where \(0 < \alpha < 2 \)), but is understandably limited by poor integrability properties of stable random
variables.

A usual and very convenient representation of \(\alpha \)-stable processes is the integral representation

\[
\{X(t), \ t \in T\} \overset{d}{=} \left(\int f_t(x)M(dx), \ t \in T \right),
\]

where \(M \) is an (independently scattered) \(\alpha \)-stable random measure on \((E, \mathcal{E})\) with certain control measure \(m \) and skewness intensity \(\beta \), and \(f_t \in L^\alpha(E, \mathcal{E}, m) \) (also \(\int f_t(x)\log |f_t(x)| |\beta(x)| m(dx) < \infty \) if \(\alpha = 1 \), \(t \in T \). We refer the reader to Hardin (1984) and Samorodnitsky (1987) for more information on integrals with respect to \(\alpha \)-stable random measures. In particular, every \(\text{SaS} \) process can be represented in the integral form (2.3), and the random measure \(M \) can be taken, in this case, to be \(\text{SaS} \) (i.e. to have skewness intensity \(\beta \equiv 0 \)) (see Bretagnolle et al. (1966) and Schriber (1972)).

A stochastic process \(\{X(t), \ t \in T\} \) is said to satisfy condition \(S \) if the linear space \(\mathcal{V}(X) = \{ \sum_{i=1}^{n} a_i X(t_i), \ a_i \in \mathbb{R}, \ t_i \in T, \ i=1, \ldots, n, \ n=1, 2, \ldots \} \) generated by the process is separable in the metric of convergence in probability. A \(\text{SaS} \) process satisfying condition \(S \) can be represented in a more special form than (2.3), namely

\[
\{X(t), \ t \in T\} \overset{d}{=} \left(\frac{1}{0} \int f_t(x)M(dx), \ t \in T \right),
\]

where \(M \) is a \(\text{SaS} \) random measure on \([0,1], \mathcal{A}\) with Lebesgue control measure and \(f_t \in L^\alpha[0,1], \ t \in T \) (Kuelbs 1973), and a strictly \(\alpha \)-stable process satisfying condition \(S \), with \(\alpha \neq 1 \), can also be represented in the form (2.4), but this time \(M \) is a totally skewed to the right \(\alpha \)-stable random measure on \([0,1], \mathcal{A}\) with Lebesgue control measure (i.e. the skewness intensity \(\beta \equiv 1 \)).

Let \(\{X(t), \ t \in T\} \) be an \(\alpha \)-stable process with an integral representation
and suppose that the control measure \(m \) is actually a probability measure. In that case

\[
\{X(t), \ t \in T\} \overset{d}{=} \left\{ \sum_{j=1}^{\infty} \left(\gamma_j^{-1/\alpha} f_t(V_j) - a_j(t) \right), \ t \in T \right\},
\]

where \(\{\Gamma_1, \Gamma_2, \ldots\} \) is a sequence of arrival times of a Poisson process with unit arrival rate, \(\begin{bmatrix} V_1 \\ \gamma_1 \end{bmatrix}, \begin{bmatrix} V_2 \\ \gamma_2 \end{bmatrix}, \ldots \) is a sequence of i.i.d. \(\text{Ex}(-1,1) \)-valued random vectors such that \(V_j \) has distribution \(m \) on \(E \), and

\[
P(\gamma_j = 1 | V_j) = 1 - P(\gamma_j = -1 | V_j) = \frac{1 + \beta(V_j)}{2},
\]

the sequences \(\{\Gamma_1, \Gamma_2, \ldots\} \) and \(\begin{bmatrix} V_1 \\ \gamma_1 \end{bmatrix}, \begin{bmatrix} V_2 \\ \gamma_2 \end{bmatrix}, \ldots \) are independent, \(a_j : T \to \mathbb{R} \), \(j=1,2,\ldots \) is a sequence of nonrandom functions (which can be taken equal identically to 0 in the \(\text{SoS} \) case as well as in the case \(0<\alpha<1 \)), and

\[
C_\alpha = \left(\int_0^\infty x^{-\alpha} \sin x \, dx \right)^{-1}.
\]

See LePage (1989). To save space we will not display the functions \(a_j \) explicitly; we only mention that they can be chosen to be measurable if the kernel \(f_t(x) \) is jointly measurable, \(T \times E \to \mathbb{R} \). Note also that the series in the right hand side of (2.5) converges with probability 1 for every \(t \in T \), and we define it to be equal to zero if it does not converge.

The following is an extension of Proposition 6.1 of Rosinski and Woyczynski (1986) to the strictly stable case.

Proposition 2.1 A strictly \(\alpha \)-stable process \(\{X(t), \ t \in T\}, \alpha \neq 1 \), (or an \(\text{SIS} \) process) has a measurable modification if and only if it admits an integral representation (2.4) with \(M \) being a totally skewed to the right \(\alpha \)-stable random measure with Lebesgue control measure, and \(f_t(x), T \times E \to \mathbb{R} \) jointly measurable.
Moreover, \(\{X(t), t \in T\} \) admits an integral representation as above, then it has a measurable modification even if \(\alpha = 1 \), and one such measurable modification is given by the right hand side of (2.5).

Proof. Suppose \(\{X(t), t \in T\} \) has the required integral representation. Let \(\{Y(t), t \in T\} \) be the version of \(\{X(t), t \in T\} \) defined by the right hand side of (2.5). Then \(\{Y(t), t \in T\} \) is measurable as the limit of a sequence of measurable functions. Conversely, if \(\{X(t), t \in T\} \) has a measurable version with \(\alpha \neq 1 \), then \(\{X_1(t)-X_2(t), t \in T\} \) has a measurable version as well, the latter process is SaS, and our conclusion follows from Proposition 6.1 of Rosinski and Woyczynski (1986).

Remark. In the sequel we will deal with measurable \(\alpha \)-stable processes represented in the more general form (2.3) rather than (2.4). One should keep in mind that in this case according to Proposition 2.1 the closed subspace of \(L^\alpha(E, \mathcal{F}, m) \) spanned by \(\{f_t, t \in T\} \) must be separable.

From now on, unless stated otherwise, \(\{X(t), t \in T\} \) will always be a measurable modification of an \(\alpha \)-stable process with an integral representation (2.3) and \(f_t(x), T \times E \rightarrow \mathbb{R} \) jointly measurable. It follows from the zero-one law of Dudley and Kanter (1974) that for any \(p>0 \), (2.1) is still true, and we want to know when the probability in (2.1) is equal to 1. The case \(p \geq 1 \) (at least, for an SaS \(\{X(t), t \in T\} \)) is known, and the results can be found in Linde (1983).

Historically, the case \(1 \leq p < \alpha \) is due to Cambanis and Miller (1980) and Linde et al. (1980), while the case \(p > \max(\alpha,1) \) is due to Marcus and Woyczynski (1979) and Linde et al. (1980). The most complicated case \(p=\alpha \geq 1 \) was solved by Rosinski and Woyczynski (1987). Most of the above results were obtained by involving the correspondence principle between stable processes.
with sample paths in L^p spaces and stable measures on these spaces (Weron 1984, also Louie 1980), and then using the theory of stable measures on separable Banach spaces.

Less seems to be known about the case $0 < p < 1$, mainly because much less is known about probability measures on such metric spaces than in the Banach space case. Luckily, the case $p = \alpha \in (0,1)$ has been solved (implicitly) by Kwapień and Woyczynski (1987), see also in this connection Rosinski and Woyczynski (1987). The sufficiency of the integrability conditions in the case $0 < \alpha < p < 1$ can be deduced from Marcus and Woyczynski (1979) and Rosinski and Woyczynski (1985).

We conclude this section with a small piece of information on geometry of Banach spaces and with a lemma.

Let Y_0, Y_1, \ldots be a sequence of i.i.d. random vectors taking values in a separable Banach space B, and suppose that the series

$$
\sum_{j=1}^{\infty} \epsilon_j \Gamma_j^{-1/\alpha} Y_j
$$

converges a.s., where ϵ_1, ϵ_2 is an i.i.d. sequence of random signs and Γ_1, Γ_2 is a sequence of arrival times of a unit rate Poisson process on \mathbb{R}^+, and all three sequences are independent. Then the series (2.7) converges to a SaS random vector on B and $E\|Y_1\|^\alpha < \infty$ (Rosinski 1986) and, moreover, if the space B is of Rademacher type $q > \alpha$, then $E\|Y_1\|^\alpha < \infty$ implies that the series (2.7) converges a.s. (Linde 1983).

Finally, a simple lemma which can be easily proved using Borell-Cantelli lemma (see also Rosinski (1989)).

Lemma 2.2 Let X_1, X_2 be a sequence of i.i.d. random variables. Then
E|X_1| < \infty \iff \lim_{n \to \infty} n^{-1}X_n = 0 \text{ a.s.},

E|X_1| = \infty \iff \lim_{n \to \infty} n^{-1}|X_n| = \infty \text{ a.s.}

We start with the following lemma, which is crucial in our line of argument.

Lemma 3.1. Let

\[X_n = \int f_n(x) M(dx), \quad n=1,2,\ldots, \]

be a sequence of jointly α-stable random variables, $0 < \alpha < 2$, where M is an α-stable random measure with control measure m. If $X_n \xrightarrow{n \to \infty} 0$ a.s. then

\[f_n(x) \xrightarrow{n \to \infty} 0 \quad \text{for } m\text{-almost every } x \in E \]

and

\[\int_0^1 \sup_{E \ni x} |f_n(x)|^\alpha m(dx) < \infty. \]

Moreover, if $0 < \alpha < 1$ and (3.1) and (3.2) hold, then $X_n \xrightarrow{n \to \infty} 0$ a.s.

Proof. This is well known, see e.g. Kosinski (1986), Corollary 5.2, also Marcus and Woyczynski (1987), Samorodnitsky (1987).

The following proposition goes a long way towards our goal.

Proposition 3.2. Let \((X(t), t \in T)\) be a measurable α-stable process, $0 < \alpha < 2$, with an integral representation (2.3). If

\[\int_T |X(t)|^\beta \nu(dt) < \infty \text{ a.s.} \]

then
(3.3) \[\int \int f_t(x)^d m(dx) P^{\alpha} v(dt) < \infty \]

and

(3.4) \[\int \int f_t(x)^P v(dt) m(dx) < \infty. \]

Proof: We may assume without loss of generality that both measures \(m \) and \(v \) are probability measures. Let \((\Omega, \mathcal{F}, P)\) be the probability space on which the process \(\{X(t), t \in T\} \) lives, and let \(U_1, U_2, \ldots \) be a sequence of i.i.d. \(T \)-valued random variables with common law \(v \) living on a different probability space \((\Omega_1, \mathcal{F}_1, P_1)\). Then for \(P \)-almost every \(\omega \in \Omega \), \(E\{X(U_1, \omega)\} < \infty \) and thus Lemma 2.2 implies that \(n^{-1/P} X(U_n, \omega) \rightarrow 0 \) \(P_1 \)-a.s., so that by Fubini's theorem, for \(P_1 \)-almost every choice of \(U_1, U_2, \ldots \), \(n^{-1/P} X(U_n) \rightarrow 0 \) \(P \)-a.s. Invoking Lemma 3.1, we conclude that for \(P_1 \)-almost every choice of \(U_1, U_2, \ldots \)

(3.5) \[\int \sup E n^{\alpha} f_{U_n}(x)^{\alpha} m(dx) < \infty. \]

Let now \(Z_1, Z_2 \) be a sequence of i.i.d. \(E \)-valued random variables with common law \(m \) living on a still different probability space \((\Omega_2, \mathcal{F}_2, P_2)\). Then (3.5), Lemma 2.2 and Fubini's theorem imply that

(3.6) \[\sup \sup n^{-1/P} j^{-1/\alpha} f_{U_n}(Z_j) < \infty \] \(P_1 \times P_2 \)-a.s.

This is the crucial relation. To derive now, say, (3.4), use (3.6) and Fubini's theorem to conclude that for \(P_2 \)-almost every choice of \(Z_1, Z_2 \)

\[\sup n^{-1/P} (\sup j^{-1/\alpha} f_{U_n}(Z_j)) < \infty \] \(P_1 \)-a.s.

Therefore, for every such \(Z_1, Z_2, \ldots \) by Lemma 2.2

\[\sup \sup j^{-1/\alpha} f_{U_n}(Z_j) P \]

\[\infty > E_1[\sup \sup (j^{-1/\alpha} f_{U_n}(Z_j))^P]\]
Applying once again Lemma 2.2 we obtain

\[\int \sup_{j \geq 1} T \left(\int_{f_j(Z_j)} P \right) p^{/ \alpha} m(dx) = E_2 \left(\int_{f_j(Z_j)} P \right) p^{/ \alpha} < \infty, \]

proving (3.4). The proof of (3.3) is identical.

Remark. It turns out that both expressions in (3.3) and (3.4) play an important role in the distribution of the integral \(\int_{T} |X(t)| P \) when the latter is finite. We will return to this point in the sequel.

The following is the main result of this section, and it gives necessary and sufficient conditions for an \(\alpha \)-stable process \(\{X(t), t \in T\} \) to have sample paths in \(L^p(T, \nu) \) for all \(p > 0, 0 < \alpha < 2 \).

Theorem 3.3 Let \(\{X(t), t \in T\} \) be a measurable \(\alpha \)-stable process with an integral representation (2.3), \(0 < \alpha < 2 \). If \(\alpha = 1 \) we assume that the process is symmetric. Let \(p > 0 \). Then \(\int_{T} |X(t)| P \) is finite. We will return to this point in the sequel.

Proof: Suppose first that \(\{X(t), t \in T\} \) is SoS. As the (most complicated) case
p = a has been covered by Rosinski and Woyczynski (1987) and Kwapien and Woyczynski (1987). It remains to consider the other two cases.

Case 1. 0 < p < a. Necessity of (3.7) follows from Proposition 3.2. On the other hand, (3.7) implies that

\[\mathbb{E} \int |X(t)|^p dt = C_{\alpha,p} \int T \frac{f_t(x)}{m(dx)}^p du < \infty, \]

where \(C_{\alpha,p} \) is a positive constant depending only on \(\alpha \) and \(p \). Thus,

\[\int_T |X(t)|^p dt < \infty \text{ a.s.} \]

Case 2. \(p > a \). Necessity of (3.9) follows once again from Proposition 3.2. On the other hand, suppose that (3.9) holds. Then \(f_t(x) \in \mathbb{L}^p(T,\nu) \) for almost every \(x \in E \) and (assuming once again that \(m \) is a probability measure).

\[\mathbb{E} \|f_\cdot(Z)\|^\alpha_{\mathbb{L}^p(T,\nu)} < \infty, \]

where \(Z \) is an \(E \)-valued random variable with law \(m \). Let \(Z_1, Z_2, \ldots \) be i.i.d. copies of \(Z \). Then the series \[\sum_{j=1}^{\infty} \mathbb{E}f_\cdot(Z_j) \] converges a.s. in \(\mathbb{L}^p(T,\nu) \) because the Banach space \(\mathbb{L}^p(T,\nu) \) is of Rademacher type \(p \Lambda 2 > \alpha \) when \(p \geq 1 \), whereas the case \(p < 1 \) is obvious. This series gives us a modification of \(\{X(t), t \in T\} \) which is in \(\mathbb{L}^p(T,\nu) \), thus completing the proof of the theorem in the symmetric case.

In the general case, let \(\{X_1(t), t \in T\} \) and \(\{X_2(t), t \in T\} \) be two independent copies of \(\{X(t), t \in T\} \). Then \(Y(t) = 2^{-1/\alpha}(X_1(t) - X_2(t)), t \in T \) is aS with an integral representation (2.3). But this time the random measure \(M \) is symmetric and has the same control measure \(m \) as before. Now our claim follows from the easily checkable fact that
\[\int_{\mathbb{T}} |X(t)|^{P} \nu(dt) < \infty \text{ a.s. iff } \int_{\mathbb{T}} |Y(t)|^{P} \nu(dt) < \infty \text{ a.s.} \]

The proof of the theorem is now complete.

Remark. It is interesting to note that our argument shows that, actually, \(\int_{\mathbb{T}} |X(t)|^{P} \nu(dt) < \infty \text{ a.s.} \) if and only if (3.6) holds.

4. **Change of order of integration.** Let \(\{X(t), t \in \mathbb{T}\} \) be a measurable \(\alpha \)-stable process with an integral representation (2.3) such that \(\int_{\mathbb{T}} |X(t)|^{P} \nu(dt) < \infty \text{ a.s.} \)

We expect the distribution of the path integral \(\int_{\mathbb{T}} X(t)\nu(dt) \) to be \(\alpha \)-stable as well, and in many applications one is interested in the parameters of this distribution. Those are easy to find if one may interchange the order of Lebesgue integration and stochastic integration in (2.3). The following theorem justifies such change of order of integration. In the (symmetric) case \(1<\alpha<2 \) it is due to Rosinski (1986). See also Appendix of Cambanis (1988).

Theorem 4.1. Let

\[X(t) = \int_{\mathbb{E}} f_{t}(x)M(dx), \quad t \in \mathbb{T} \]

be a measurable \(\alpha \)-stable process, where \(M \) is an \(\alpha \)-stable random measure \(0<\alpha<2 \), and \(f_{t}(x) : \mathbb{T} \times \mathbb{E} \to \mathbb{R} \) is jointly measurable. If \(\alpha = 1 \) we assume that \(M \) (and thus \(X \)) are symmetric. If \(\int_{\mathbb{T}} |X(t)|^{P} \nu(dt) < \infty \text{ a.s.} \) then

\[\int_{\mathbb{T}} X(t)\nu(dt) = \int_{\mathbb{E}} \left(\int_{\mathbb{T}} f_{t}(x)\nu(dt) \right)M(dx) \text{ a.s.} \]

and thus, in particular, \(\int_{\mathbb{T}} f_{t}(\cdot)\nu(dt) \in L^{\alpha}(\mathbb{E}, \mathbb{E}, m) \).

Proof: When \(\alpha \geq 1 \), our results can be proved in the same way as Lemma 7.1 of Rosinski (1986). Consider, therefore, the case \(0<\alpha<1 \). We use the
"randomization" Lemma 1.1 of Kallenberg (1988) to conclude (assuming, as usual, that the control measure \(m \) is a probability measure) that there are two
independent sequences, \(\tau_1, \tau_2, \ldots \), and \(\left\{ \frac{V_1}{\tau_1} \right\}, \left\{ \frac{V_2}{\tau_2} \right\}, \ldots \) as in (2.5) (note that \(a_j = 0 \) since \(0 < \alpha < 1 \)), such that

\[
\{X(t), t \in T\} \overset{a.s.}{=} \{C_{\alpha}^{1/\alpha} \sum_{j=1}^{\infty} \tau_1^{-1/\alpha} f_t(V_j), t \in T\} \text{ in } L^1(T, \nu)
\]

and

\[
\int \frac{f_t(x) \nu(dt)}{E} \overset{a.s.}{=} C_{\alpha}^{1/\alpha} \sum_{j=1}^{\infty} \tau_1^{-1/\alpha} \int f_t(V_j) \nu(dt).
\]

Therefore, by (4.3),

\[
\int X(t) \nu(dt) \overset{a.s.}{=} C_{\alpha}^{1/\alpha} \int \frac{f_t(x) \nu(dt)}{E} \text{ in } L^1(T, \nu)
\]

Note that

\[
\int \sum_{j=1}^{\infty} \tau_1^{-1/\alpha} |f_t(V_j)| \nu(dt) \overset{a.s.}{=} \sum_{j=1}^{\infty} \tau_1^{-1/\alpha} \int |f_t(V_j)| \nu(dt) < \infty.
\]

because \(0 < \alpha < 1 \) and because by Theorem 3.3 we have \(E(\int |f_t(V_j)| \nu(dt))^\alpha < \infty \). Now (4.4), (4.5) and Fubini's theorem complete the proof.

Remark. A similar argument yields in the nonsymmetric case, \(\alpha = 1 \), that the left hand side of (4.2) is again 1-stable and that

\[
\int X(t) \nu(dt) = \int \frac{f_t(x) \nu(dt)}{E} \overset{a.s.}{=} \text{const.}
\]

We conjecture that the constant above is, actually, equal to 0.

5. The distribution of the \(L^p \)-norm of an \(\alpha \)-stable process. Let \(\{X(t), t \in T\} \) be a measurable \(\alpha \)-stable process with an integral representation (2.3).
Suppose that for $p>0$

$$J = \left(\int_T |X(t)|^p v(dt) \right)^{1/p} < \infty \text{ a.s.} \tag{5.1}$$

It follows from the theory of stable measures on Banach spaces that, for $p \geq 1$, the limit $\lim_{\lambda \to \infty} \lambda^p (J>\lambda)$ exists, and can be identified in terms of the kernel $f_x(x)$ in (2.3), see de Acosta (1977) and Araujo and Giné (1980), Corollary 6.20. Nevertheless, in the case $0<p<1$, it is not, apparently, even known that the above limit exists. Our next theorem proves the existence of the limit and identifies it for all $p>0$. Unfortunately, we need to make an assumption slightly stronger than (5.1). We conjecture that the statement is true under (5.1) as well.

Note that our theorem is true also in the nonsymmetric case $\alpha=1$.

Theorem 5.1. Let $\{X(t), t \in T\}$ be a measurable α-stable process with an integral representation (2.3), $0<\alpha<2$, and let $p>0$. Assume that the control measure m is finite and that $f_t \in L^{\alpha+\epsilon}(E,\xi, m)$, $t \in T$ for some $\epsilon > 0$. Let M' be an $\alpha+\epsilon$-stable random measure on (E,ξ) with the same control measure and skewness intensity as M. Let $X'(t) = \int f_t(x) M'(dx)$, $t \in T$, and assume that

$$\int_T |X'(t)|^p v(dt) < \infty.$$ Then (5.1) holds, and

$$\lim_{\lambda \to \infty} \lambda^p (J>\lambda) = C_\alpha \int_E \left(\int_T |f_t(x)|^p v(dt) \right)^{\alpha/p} m(dx), \tag{5.2}$$

where C_α is given by (2.6).

Proof: We may and will assume that the measures m and v are probability measures. The fact that (5.1) holds follows from Theorem 3.3 (see also (3.6)). Let $\{\tilde{X}(t), t \in T\}$ be defined by the right hand side of (2.5). Then

$$\left(\int_T |\tilde{X}(t)|^p v(dt) \right)^{1/p} = C_\alpha \left(\int_T \sum_{j=1}^\infty \gamma_j (a_j(t) - \tilde{a}_j(t)) |f_t(V_j)|^p v(dx) \right)^{1/p}.$$
Let
\[
V_1 = C_1^{1\alpha} \left(\gamma_{1} \int T_{1}^{1\alpha} f_{1}(V_1) - a_{1}(t)\right) |P_{v}(dt)|^{1/p}.
\]
\[
(5.4)
\]
\[
V_2 = C_2^{1\alpha} \left(\int T_{1}^{1\alpha} f_{1}(V_2) - a_{2}(t)\right) |P_{v}(dt)|^{1/p}.
\]
\[
(5.5)
\]
It follows from Theorem 3.3 that \(V_1 < \infty\) a.s., and thus \(V_2 < \infty\) a.s. as well. We have
\[
\begin{align*}
\lim_{\lambda \to \infty} \lambda^{\alpha} P(V_1 > \lambda) &= \lim_{\lambda \to \infty} \lambda^{\alpha} P(C_1^{1\alpha} \left(\gamma_{1} \int T_{1}^{1\alpha} f_{1}(V_1) - a_{1}(t)\right) |P_{v}(dt)|^{1/p} > \lambda)
\end{align*}
\]
\[
= C_2 \lim_{\lambda \to \infty} \lambda P(\Gamma_1 \leq \lambda^{-1} (\int T_{1}^{1\alpha} f_{1}(V_1) |P_{v}(dt)|^{1/p}))
\]
\[
= C_2 E \left(\int T_{1}^{1\alpha} f_{1}(V_1) |P_{v}(dt)|^{1/p} \right)
\]
\[
= C_2 \int T_{1}^{1\alpha} f_{1}(x) |P_{v}(dt)|^{1/p} m(dx).
\]
If we prove that
\[
(5.7) \quad E V_2^{\alpha} < \infty.
\]
then our theorem will follow from (5.3), (5.6) and (5.7). Let
\[
\{\Gamma_1^{(1)}, \Gamma_1^{(2)}, \ldots, \Gamma_1^{(i)}, \ldots\}, \Gamma_1^{(i)} = \Gamma_1^{(1)}, \ldots, \{\Gamma_2^{(1)}, \Gamma_2^{(2)}, \ldots, \Gamma_2^{(i)}, \ldots\}, i=1,2, \text{ be two independent copies of the random variables determining } V_2 \text{ and let}
\]
\[
V_2^{(i)} = C_2^{1\alpha} \left(\int T_{1}^{1\alpha} \sum_{j=2}^{\infty} \gamma_{j} \Gamma_{j}^{(i)-1/\alpha} f_{j}(V_j^{(i)}) - a_{j}(t)\right) |P_{v}(dt)|^{1/p}, \quad i = 1,2.
\]
It is clearly enough to prove that
\[
(5.8) \quad E |V_2^{(1)} - V_2^{(2)}|^{\alpha} < \infty \quad \text{if} \quad p \geq 1.
\]
Let \(\epsilon_1, \epsilon_2, \ldots\) be a sequence of i.i.d. random signs independent of the rest of random variables involved. Choose a positive integer \(m\) so big that \(\frac{\alpha}{pm} < 1\).
Then by the so called Khinchine inequality (see e.g. Proposition 3.5.1 of Linde (1983)) we obtain

$$\begin{align*}
(5.9) \ E|V_2^{(1)} - V_2^{(2)}|^\alpha \\
\leq C \ E(\sum_{j=2}^{\infty} (\gamma_j^{(1)} f_t^{(V_j^{(1)})} - \gamma_j^{(2)} f_t^{(V_j^{(2)})}) |\mathcal{P}_v(dt))^{\alpha/p} \\
= C \ E(\sum_{j=2}^{\infty} \epsilon_j (\gamma_j^{(1)} f_t^{(V_j^{(1)})} - \gamma_j^{(2)} f_t^{(V_j^{(2)})}) |\mathcal{P}_v(dt))^{\alpha/p} \\
\leq C \ E(\sum_{j=2}^{\infty} \epsilon_j (\gamma_j^{(1)} f_t^{(V_j^{(1)})} - \gamma_j^{(2)} f_t^{(V_j^{(2)})}) |\mathcal{P}_v(dt))^{\alpha/p}
\end{align*}$$

\begin{align*}
\leq C \ E(\sum_{j=2}^{\infty} (\gamma_j^{(1)} f_t^{(V_j^{(1)})} - \gamma_j^{(2)} f_t^{(V_j^{(2)})}) |\mathcal{P}_v(dt))^{\alpha/p}
\end{align*}

\begin{align*}
\leq C \ E(\sum_{j=2}^{\infty} (\gamma_j^{(1)} f_t^{(V_j^{(1)})} - \gamma_j^{(2)} f_t^{(V_j^{(2)})}) |\mathcal{P}_v(dt))^{\alpha/p}
\end{align*}

\begin{align*}
\leq C \ E(\sum_{j=2}^{\infty} (\gamma_j^{(1)} f_t^{(V_j^{(1)})} - \gamma_j^{(2)} f_t^{(V_j^{(2)})}) |\mathcal{P}_v(dt))^{\alpha/p}
\end{align*}

\begin{align*}
\leq C \ E(\sum_{j=2}^{\infty} (\gamma_j^{(1)} f_t^{(V_j^{(1)})} - \gamma_j^{(2)} f_t^{(V_j^{(2)})}) |\mathcal{P}_v(dt))^{\alpha/p}
\end{align*}

\begin{align*}
\leq C \ E(\sum_{j=2}^{\infty} (\gamma_j^{(1)} f_t^{(V_j^{(1)})} - \gamma_j^{(2)} f_t^{(V_j^{(2)})}) |\mathcal{P}_v(dt))^{\alpha/p}
\end{align*}

\begin{align*}
\leq C \ E(\sum_{j=2}^{\infty} (\gamma_j^{(1)} f_t^{(V_j^{(1)})} - \gamma_j^{(2)} f_t^{(V_j^{(2)})}) |\mathcal{P}_v(dt))^{\alpha/p}
\end{align*}

where \textit{const.} is a finite positive number which is allowed to change from line to line.

Now, let \(\{X_i(t), t \in T\}, i=1,2\) be independent copies of \(\{X(t), t \in T\}\): then \(Y(t) = 2^{-1/(\alpha+\varepsilon)}(X_1(t) - X_2(t))\), \(t \in T\) is a measurable \(S(\alpha+\varepsilon)S\) process with an integral representation (2.3), where the random measure \(\mathcal{M}\) has the same control measure \(\mathcal{M}\) as before, but this time \(\mathcal{M}\) is \(S(\alpha+\varepsilon)S\). Clearly,

\begin{align*}
\int |Y(t)|^p \mathcal{P}_v(dt) < \infty \text{ a.s. By Lemma 3.1,}
\end{align*}
(5.10) \[\int \sup_n (n^{-1/p} f_{x_i}(x))^\alpha \, m(dx) < \infty \]

for almost every choice of i.i.d. \(T \)-valued random variables \(U_1, U_2, \ldots \) with common law \(\nu \). Fix now \(U_1, U_2, \ldots \) for which (5.10) holds. Then \(\mathbb{E} g(V_1)^{\alpha + \epsilon} < \infty \), where \(g(x) = \sup_{n \geq 1} n^{-1/p} f_{U_i}(x), \quad x \in E \), and \(V_1 \) is as above. Therefore, letting \(n \geq 1 \)

once again \(\epsilon_1, \epsilon_2, \ldots \) and \(\Gamma_1, \Gamma_2, \ldots \) be independent sequences of i.i.d. random signs and Poisson arrivals accordingly, independent of the i.i.d. sequence \(V_1, V_2, \ldots \) as above, we conclude that

\[\lim_{n \to \infty} \mathbb{E} \left| \sum_{j=2}^{\infty} \epsilon_j \Gamma_j^{-1/\alpha} g(V_j) \right|^{\alpha} < \infty. \]

Applying once again Khinchine's inequality, we obtain

\[\lim_{n \to \infty} \mathbb{E} \left| \sum_{j=2}^{\infty} \epsilon_j \Gamma_j^{-1/\alpha} g(V_j) \right|^{\alpha} \geq \text{const.} \mathbb{E} \left(\sum_{j=2}^{\infty} \Gamma_j^{2/\alpha} f_{U_j}(V_j)^2 \right)^{\alpha/2}. \]

We conclude by Lemma 2.2 that

\[\sup_{i \geq 1} \sup_{n \geq 1} n^{-2/\alpha} \sum_{j=2}^{\infty} \Gamma_j^{(i)-2/\alpha} f_{U_j}(V_j)^2 < \infty \text{ a.s.,} \]

where \(\{\Gamma_j^{(i)}, V_j^{(i)}\}, \quad i=1, 2, \ldots \) are i.i.d. copies of \(\{\Gamma_j, V_j\}, \quad j=1, 2, \ldots \), independent of the sequence \(U_1, U_2, \ldots \). By Fubini's theorem, for almost every choice of \(\{\Gamma_j^{(i)}, V_j^{(i)}\}, \quad i=1, 2, \ldots \),

\[\sup_{n \geq 1} n^{-2/p} \left(\sup_{i \geq 1} \left| \sum_{j=2}^{\infty} \Gamma_j^{(i)-2/\alpha} f_{U_j}(V_j^{(i)})^2 \right| \right) < \infty \text{ a.s.,} \]

and thus by Lemma 2.2,

\[\lim_{n \to \infty} \mathbb{E} \left(\sup_{i \geq 1} \left| \sum_{j=2}^{\infty} \Gamma_j^{(i)-2/\alpha} f_{U_j}(V_j^{(i)})^2 \right|^{p/2} \right) < \infty. \]
Applying once again Lemma 2.2, we conclude that

\[
E\left(\sum_{j=2}^{\infty} \int_{T} f_j(t)^{2/\alpha} V_j(t)^{p/2} \, d\mu(dt) \right)^{\alpha/p} < \infty,
\]

which, together with (5.10), proves (5.8), and thus the proof of the theorem is now complete.

\[\square \]

Remark. As promised, we can now identify the role of the expressions (3.3) and (3.4) in the distribution of \(J = \left(\int_{T} |X(t)|^{p} \, d\mu(dt) \right)^{1/p} \) when \(\{X(t), \, t \in T\} \) is symmetric. The expression in (3.3), \(\int_{T} \left(\int_{E} f_{t}(x)|^{a}\, d\mu dx \right)^{p/\alpha} \, d\mu(dt) \), is equal to \(const \cdot EJ^{p} \) (when \(p<\alpha \), of course), while the expression in (3.4), \(\int_{E} \left(\int_{T} f_{t}(x)|^{a}\, d\mu dx \right)^{\alpha/p} \, d\mu dx \), determines the limit \(\lim_{\lambda \to \infty} \lambda^{p} \mu(J>\lambda) \) (at least, under the assumptions of Theorem 5.1).

Acknowledgement. Stamatis Cambanis spent much time discussing with the author the problems considered in this paper. My deep thanks go to him. I am also thankful to the organizers of the Center for Stochastic Processes at UNC, Chapel Hill, for the hospitality shown to me during my visit to the Center in June 1990 when this work was written.

References

258. C. Houdré, Linear Fourier and stochastic analysis, Apr. 89.

261. I. Herbst and L. Pitt, Diffusion equation techniques in stochastic monotonicity and positive correlations, Apr. 89.

262. R. Selukar, On estimation of Hilbert space valued parameters, Apr. 89. (Dissertation)

263. E. Mayer-Wolf, The noncontinuity of the inverse Radon transform with an application to probability laws, Apr. 89.

264. D. Monrad and W. Philipp, Approximation theorems for weakly dependent random vectors and Hilbert space valued martingales, Apr. 89.

265. K. Benhenni and S. Cambanis, Sampling designs for estimating integrals of stochastic processes, Apr. 89.

266. S. Evans, Association and random measures, May 89.

267. H.L. Hurd, Correlation theory of almost periodically correlated processes, June 89.

268. O. Kallenberg, Random time change and an integral representation for marked stopping times, June 89. Probab. Th. Rel. Fields, accepted.

269. O. Kallenberg, Some uses of point processes in multiple stochastic integration, Aug. 89.

270. W. Wu and S. Cambanis, Conditional variance of symmetric stable variables, Sept. 89.

272. O. Kallenberg, On an independence criterion for multiple Wiener integrals, Sept. 89.

274. G.W. Johnson and G. Kallianpur, Homogeneous chaos, p-forms, scaling and the Feynman integral, Sept. 89.

275. T. Hida, A white noise theory of infinite dimensional calculus, Oct. 89.

276. K. Benhenni. Sample designs for estimating integrals of stochastic processes, Oct. 89. (Dissertation)

283. H.L. Koul, M-estimators in linear models with long range dependent errors, Feb. 90.

285. M.R. Leadbetter, On a basis for 'Peaks over Threshold' modeling, Mar. 90.

286. S. Cambanis and E. Masry, Trapezoidal stratified Monte Carlo integration, Mar. 90.

289. S. Cambanis and M. Maejima, Characterizations of one-sided linear fractional Lévy motions, Mar. 90.

290. N. Kono and M. Maejima, Hölder continuity of sample paths of some self-similar stable processes, Mar. 90.

294. S. Nandagopalan, On estimating the extremal index for a class of stationary sequences, Apr. 90.

296. W. Wu, E. Carlstein and S. Cambanis, Bootstrapping the sample mean for data from general distribution, May 90.

299. J.W.P. Albin, On the upper and lower classes for stationary Gaussian fields on Abelian groups with a regularly varying entropy, June 90.