INTERIOR BALLISTICS OPTIMIZATION

MAT JOE ROBERT GONZALEZ

Dept. of Mechanical Engineering
Kansas State University
Manhattan, KS 66506

NONE

NONE

MASTERS THESIS, ARMY FULLY FUNDED GRAD SCHOOL

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

SEE ATTACHED SHEET.

INTERIOR BALLISTICS
BALLISTICS
OPTIMIZATION

UNCLASSIFIED

165

UL
ABSTRACT

This research develops a general method that combines optimization methods and an interior ballistics model to automate the design process for propellent grains. It is a multi-variable constrained optimization problem. The augmented Lagrange multiplier method is used to control the constrained problem while two zero-order methods (Powell's and Hooke-Jeeves) perform the unconstrained minimization. The interior ballistics model IBRGAC, developed at the Interior Ballistics Laboratory, Aberdeen Proving Grounds, Maryland, is used as the objective cost function. To validate the process a representative 120mm tank gun system is used with four propellent combinations. The examples demonstrate that the scheme works and can be used as an effective design tool.
INTERIOR BALLISTICS OPTIMIZATION

by

JOE ROBERT GONZALEZ JR.

B.S., United States Military Academy, 1978

A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1990

Approved by:

Major Professor

90 08 20 015
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II Background</td>
<td>5</td>
</tr>
<tr>
<td>1. Optimization and Design</td>
<td>5</td>
</tr>
<tr>
<td>2. Ballistics</td>
<td>13</td>
</tr>
<tr>
<td>3. Gun Nomenclature</td>
<td>16</td>
</tr>
<tr>
<td>III Optimization Method</td>
<td>20</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>20</td>
</tr>
<tr>
<td>2. General Problem Statement</td>
<td>20</td>
</tr>
<tr>
<td>3. Augmented Lagrange Multiplier Method</td>
<td>21</td>
</tr>
<tr>
<td>4. Powell's Method</td>
<td>22</td>
</tr>
<tr>
<td>5. The Hooke-Jeeves Method</td>
<td>24</td>
</tr>
<tr>
<td>6. Description of the Optimization Code</td>
<td>25</td>
</tr>
<tr>
<td>IV Interior Ballistics Model</td>
<td>29</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>29</td>
</tr>
<tr>
<td>2. Interior Ballistic Cycle</td>
<td>30</td>
</tr>
<tr>
<td>3. Projectile Equations of Motion</td>
<td>30</td>
</tr>
<tr>
<td>4. Base Pressure Derivation</td>
<td>32</td>
</tr>
<tr>
<td>5. Mean Pressure Derivation</td>
<td>34</td>
</tr>
<tr>
<td>6. Mean Temperature Derivation</td>
<td>36</td>
</tr>
<tr>
<td>7. Work and Losses</td>
<td>38</td>
</tr>
<tr>
<td>8. Propellant and Rate of Burning</td>
<td>41</td>
</tr>
<tr>
<td>9. Gun Recoil</td>
<td>43</td>
</tr>
<tr>
<td>10. Modeling Approximations</td>
<td>45</td>
</tr>
<tr>
<td>Chapter/Section</td>
<td>Pages</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>11. Description of IBRGAC</td>
<td>46</td>
</tr>
<tr>
<td>12. Program Organization</td>
<td>48</td>
</tr>
<tr>
<td>V Example Problems</td>
<td>51</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>51</td>
</tr>
<tr>
<td>2. Baseline Equipment</td>
<td>51</td>
</tr>
<tr>
<td>3. Problem Objective Function</td>
<td>53</td>
</tr>
<tr>
<td>4. Problem Constraints</td>
<td>56</td>
</tr>
<tr>
<td>5. Optimization Initialization</td>
<td>58</td>
</tr>
<tr>
<td>6. Example Problems</td>
<td>59</td>
</tr>
<tr>
<td>Example Problem 1</td>
<td>64</td>
</tr>
<tr>
<td>Example Problem 2</td>
<td>72</td>
</tr>
<tr>
<td>Example Problem 3</td>
<td>82</td>
</tr>
<tr>
<td>Example Problem 4</td>
<td>91</td>
</tr>
<tr>
<td>7. Analysis of Results</td>
<td>101</td>
</tr>
<tr>
<td>VI Conclusions and Recommendations</td>
<td>106</td>
</tr>
<tr>
<td>1. Conclusions</td>
<td>106</td>
</tr>
<tr>
<td>2. Recommendations for Further Research</td>
<td>106</td>
</tr>
<tr>
<td>References</td>
<td>108</td>
</tr>
<tr>
<td>Appendix I - Optimization Code</td>
<td>110</td>
</tr>
<tr>
<td>Appendix II - Interior Ballistics Code</td>
<td>128</td>
</tr>
<tr>
<td>Appendix III - Input Files and Sample Output</td>
<td>154</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Area</td>
<td>m^2</td>
</tr>
<tr>
<td>a</td>
<td>Acceleration</td>
<td>m/s^2</td>
</tr>
<tr>
<td>b</td>
<td>Covolume</td>
<td>m^3/kg</td>
</tr>
<tr>
<td>C</td>
<td>Initial mass of propellent (or igniter)</td>
<td>kg</td>
</tr>
<tr>
<td>c_V</td>
<td>Specific heat at constant volume</td>
<td>$J/kg-K$</td>
</tr>
<tr>
<td>c_p</td>
<td>Specific heat at constant pressure</td>
<td>$J/kg-K$</td>
</tr>
<tr>
<td>D</td>
<td>Diameter</td>
<td>m</td>
</tr>
<tr>
<td>d</td>
<td>Distance between perforation centers</td>
<td>cm</td>
</tr>
<tr>
<td>E</td>
<td>Energy</td>
<td>J</td>
</tr>
<tr>
<td>F</td>
<td>Force</td>
<td>N</td>
</tr>
<tr>
<td>f</td>
<td>Fraction of work done against bore friction that preheats chamber</td>
<td>none</td>
</tr>
<tr>
<td>h</td>
<td>Heat transfer coefficient</td>
<td>watt/m2-K</td>
</tr>
<tr>
<td>L</td>
<td>Length of propellent</td>
<td>cm</td>
</tr>
<tr>
<td>m</td>
<td>Mass</td>
<td>kg</td>
</tr>
<tr>
<td>n</td>
<td>Factor of safety</td>
<td>none</td>
</tr>
<tr>
<td>P</td>
<td>Pressure</td>
<td>Pa</td>
</tr>
<tr>
<td>P_i</td>
<td>Diameter of inner perforation</td>
<td>cm</td>
</tr>
<tr>
<td>P_o</td>
<td>Diameter of outer perforation</td>
<td>cm</td>
</tr>
<tr>
<td>Q</td>
<td>Heat Flow</td>
<td>watts</td>
</tr>
<tr>
<td>R</td>
<td>Specific gas constant</td>
<td>kJ/kg-K</td>
</tr>
<tr>
<td>R_u</td>
<td>Universal Gas Constant</td>
<td>kJ/Kmol-K</td>
</tr>
<tr>
<td>r</td>
<td>Linear burning rate</td>
<td>m/s</td>
</tr>
<tr>
<td>S</td>
<td>Surface area of partially burned propellent grain</td>
<td>m^2</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
<td>K</td>
</tr>
<tr>
<td>T_o</td>
<td>Adiabatic flame temperature</td>
<td>K</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
<td>s</td>
</tr>
<tr>
<td>V</td>
<td>Volume</td>
<td>m^3</td>
</tr>
<tr>
<td>V</td>
<td>Molar volume</td>
<td>m^3/kmol</td>
</tr>
<tr>
<td>v</td>
<td>Velocity</td>
<td>m/s</td>
</tr>
<tr>
<td>w$_i$</td>
<td>Distance (web) between inner and outer perforations</td>
<td>cm</td>
</tr>
<tr>
<td>w$_o$</td>
<td>Distance (web) between outer perforations and outer propellent diameter</td>
<td>cm</td>
</tr>
<tr>
<td>X$_\bar{}$</td>
<td>Design vector (components are numerically subscripted)</td>
<td>none</td>
</tr>
<tr>
<td>x</td>
<td>Projectile travel</td>
<td>m</td>
</tr>
<tr>
<td>x$_g$</td>
<td>Gas distance from breech</td>
<td>m</td>
</tr>
<tr>
<td>y</td>
<td>Position of projectile base</td>
<td>m</td>
</tr>
<tr>
<td>z$_F$</td>
<td>Fraction of mass burned</td>
<td>none</td>
</tr>
<tr>
<td>a$_b$</td>
<td>Burning rate exponent</td>
<td>none</td>
</tr>
<tr>
<td>β</td>
<td>Burning rate coefficient</td>
<td>m/s-Pa</td>
</tr>
<tr>
<td>γ</td>
<td>Ratio of specific heats</td>
<td>none</td>
</tr>
</tbody>
</table>
\[\lambda\] Lagrange multiplier (Except in Chapter IV where it is the Nordheim friction factor.)

\[\rho\] density \(\text{kg/m}^3\)

\[\sigma_{yp}\] Yield point strength \(\text{MPa}\)

Subscripts:
- \(b\) base of projectile
- \(br\) breech
- \(c\) chamber
- \(g\) air pressure in front of projectile
- \(I\) igniter propellent
- \(o\) original value
- \(p\) projectile
- \(rp\) recoiling parts of gun
- \(r\) bore resistance
- \(t\) total of igniter and propellent
- \(w\) chamber wall property
CHAPTER I
INTRODUCTION

The advancing capabilities of digital computers has allowed numerical optimization to develop into an effective and useful analysis and design tool for the engineer. It is applied successfully to many design problems in various disciplines. Optimization schemes allow the engineer to evaluate a large number of design alternatives in a systematic and efficient manner to find the best design. The approach is used to improve performance and/or decrease cost while meeting the constraints appropriate to the problem.

Interior ballistics is the applied physics required to impart motion to a projectile inside a gun tube. Despite its long history and wide application, active research continues with efforts to build more realistic models of the complicated chemical, thermodynamic, and dynamic processes involved. The classic interior ballistics problem is: given the characteristics of the gun, charge, and projectile determine the muzzle velocity of the projectile and the peak pressure in the gun. There is a large knowledge base of both theoretically sound and experimentally proven concepts that make the solution of the interior ballistics problem possible.

The burning of chemical compounds, called propellents,
is an important part of interior ballistics. The combustion processes depend on many factors including the propellant material and its geometry, the rate of burn, propellant packing and packaging, and environmental factors. The resulting gases produce the pressure field that imparts acceleration to the projectile. The design of the propellant grain shape to achieve the desired pressure-time history, given the constraints imposed by the gun system and projectile, is part of the design effort. The purpose is usually to maximize the projectile muzzle velocity.

Presently there are a number of computer based interior ballistic models with a wide range of capabilities. These models allow the interior ballistician to predict the performance of a particular gun, charge, and projectile combination.

Interior ballistics depends on parameters and variables so numerous that a complete initial investigation of them is not practical. To demonstrate that optimization can be successfully applied, a specific gun system is chosen as an example. The example used is the optimum design of the propellant grain geometry for kinetic energy projectiles that are fired from 120mm tank cannons. The propellant grain is considered improved if there is a net increase in muzzle velocity without violating gun constraints. This is done by application of numerical
optimization in conjunction with the interior ballistic model.

The approach taken in this thesis is to use an interior ballistic model, and combine it with an efficient and easy to use optimization method that searches the design space for the maximum muzzle velocity without violating the constraints of the problem.

The optimization method used is a sequential unconstrained minimization technique (SUMT) called the augmented Lagrange multiplier method (ALM). In the version of the ALM used in this thesis the unconstrained minimization is done by Powell's method or the Hooke-Jeeves method. The interior ballistics model used is IBRGAC, developed at the Ballistic Research Laboratory, Aberdeen Proving Grounds, Maryland.

A background section that provides the information necessary for understanding the problem is provided in Chapter 2. This covers optimization, interior ballistics, and gun nomenclature. Chapter 3 details the optimization process and describes the algorithms and computer code used. Chapter 4 outlines the laws, theories, assumptions, and equations used to solve the interior ballistic problem. At the end of the chapter is a description of the interior ballistics code used. Chapter 5 contains the example problems, results, and an analysis of the process. Chapter 6 discusses the conclusions and recommendations for further
research.

The optimization scheme is not limited to the particular example considered but has general applicability in interior ballistics, as well as ballistics in general. Although the scope of the problem in this thesis is restricted, the method is not.
CHAPTER II
BACKGROUND

This chapter provides the background to understand the contextual scope and contribution of the thesis. It is comprised of three parts. Part one covers optimization and engineering design. Part two covers ballistics and discusses currently available interior ballistics models. Part three gives a brief background of how gun systems function along with terminology.

1. Optimization and Design.

Optimization is part of human nature. There is no endeavor that man has attempted that he has not tried to improve. Mathematically the problem of finding the extrema of functions, by hand calculation, has a long history (4). The development of the digital computer provided the impetus for the full scale development of numerical optimization. Since Davidon introduced variable-metric methods in 1959 (8) there has been an explosion in the development of optimization schemes, resulting in dozens of reliable, efficient algorithms.

In engineering design, the goal is to produce the "best" design for the desired system or component. The purpose of numerical optimization is to provide a tool to aid the engineer in this task. Engineering problems are
normally not confined to one design variable nor is the design space infinite. This results in multi-variable design problems with constraints. The general form for a nonlinear constrained optimization problem can be stated as

\[(17)\]

Minimize: \(F(\bar{x}) \)objective function,

Subject to:

\[g_j(\bar{x}) < 0 \quad j=1,ninequality constraints \]
\[h_k(\bar{x}) = 0 \quad k=1,lequality constraints \]
\[x_i^{\text{lower}} < x_i \leq x_i^{\text{upper}} \quad \text{side constraints} \]
\[i=1,n, \]

where \(\bar{x}^T = \{x_1, x_2, \ldots, x_n\} \) design variables.

The use of the term "minimize" means that any optimization scheme will locate the minimum function value. If a maximum is desired multiplying the objective function by negative one (-1.0) will convert the problem into an equivalent minimization. The two general approaches to solving this problem are direct methods and sequential unconstrained minimization techniques (SUMT) (Figure 2.1).

Direct methods incorporate information about the constraints directly into the optimization problem. Sequential linear programming (SLP) (17) is one such method where the problem and constraints are first linearized by a Taylor series expansion. The resulting linear problem is solved and the process is repeated until the nonlinear minimum is found. Another approach is the method of
Figure 2.1 Problem Solution Techniques.
feasible directions. From a constraint boundary the gradients of the objective function and any active constraints are determined and a linear approximation of the problem at that point \((\bar{x})\) is found. A search direction is then calculated that reduces the objective function without violating the active constraints. Constraints are active if the design vector is near the constraint boundary so that any small move in that direction will intersect the constraint or produce an infeasible design. It should be noted that all these direct methods require gradient information for the objective and constraint functions.

The second approach, SUMT was first developed by Fiacco and McCormick (12) and incorporates the constraints into a pseudo-objective function that can be minimized by unconstrained techniques. The general form for the SUMT is

\[
\phi(\bar{x}, \lambda) = F(\bar{x}) + \lambda P(\bar{x}).
\]

Here \(\phi\) is the pseudo-objective function, \(F(\bar{x})\) the original objective function, \(\lambda\) a scalar multiplier that determines the magnitude of the penalty, and \(P(\bar{x})\) is a penalty function that is determined from the constraints. The penalty function affects \(\phi(\bar{x}, \lambda)\) only when the corresponding constraint is violated. When the pseudo-objective function is minimized, the original constrained objective function is minimized. Three current methods used to solve Equation 2.1 are the exterior penalty function, the interior penalty function, and the augmented
Lagrange multiplier (ALM).

The exterior penalty function method creates a $P(\bar{X})$ that penalizes the design only when the constraints are violated. The interior penalty function method penalizes the design as it approaches the constraint boundary from within the feasible region. Constraint violations are not allowed and the initial design vector must start in the feasible region of the parametric space (17).

The ALM is a modification of the Lagrange multiplier method for functions with equality constraints. The inequality constraints are modified into equality constraints and incorporated into the Lagrange multiplier equation, therefore the name augmented Lagrange.

For SUMT the problem is converted to a sequence of unconstrained minimizations of n-variables. There are three classes of methods used to solve the unconstrained multivariable minimization problem; zero, first, and second order.

Zero order methods use no explicit derivative information to locate the minimum. These methods are best when derivatives cannot be calculated or are difficult to determine, but they do generally require more function evaluations to obtain convergence. Powell’s method of conjugate directions is a widely used method of this class (8). The direction vectors \bar{s}^i and \bar{s}^j are conjugate to each other if
where \bar{H}, the Hessian, is the matrix of second derivatives. Powell's method assumes that a quadratic approximation can be made of the objective function and proceeds to build a corresponding approximation of the Hessian. For a quadratic function, a minimum exists when then Hessian is positive definite. This method has produced many variations, most notably by Brent (4). These subsequent variations attempt to improve determination of the search directions. Rosenbrock's method (5) generates orthogonal search directions to improve convergence. The method of Hooke-Jeeves (8) uses the coordinate unit direction vectors as the search directions and uses an acceleration step during the search. Both Rosenbrock and Hooke-Jeeves utilize the direction of the change in the design vector between complete search sets to accelerate the minimization process.

First order methods rely on computed first derivatives to determine search directions and will converge more quickly than zero order methods for most quadratic functions. The method of Fletcher-Reeves (9) generates gradient-based directions that are conjugate to each other. A class of methods known as quasi-Newton methods approximate the inverse of the Hessian matrix and use this approximation for generating the search directions, without actually requiring second derivative calculations (13).
Davidon-Fletcher-Powell and Broyden-Fletcher-Goldfarb-Shanno are the two most common quasi-Newton methods, differing only in the way in which the search directions are updated.

Second order methods utilize both first and second derivative information. Newton's method \((13)\) expands the objective function and constraints using a second order Taylor series expansion and solves for the search direction matrix \(S\) defined by

\[
H S = -\nabla F.
\]

If the function is quadratic, the method will converge in one iteration. Both first and second derivatives must be provided.

The interior ballistic model selected (see Section 3) has multiple variables and is constrained. For some propellents there are dependencies that will not allow the model to evaluate certain combinations of parameters, producing holes in the parametric space. The number and combinations of analytical and empirical equations in the model in addition to a different surface area and volume regression equation for each propellent make the evaluation of the first derivatives difficult. These factors make the direct methods, with their dependence on explicit derivative information, less desirable than SUMT using zero order methods.

Of the SUMT methods, the exterior penalty function
method approaches the solution from the infeasible region. If this method is terminated early, it may lead to an infeasible design. The interior penalty function method approaches the solution from the feasible region. However, it may have problems dealing with discontinuities of $\phi(\bar{X}, r_p)$ at the boundaries because of the way the penalty function is generated. The ALM will approach the solution from either the feasible or infeasible region and will ensure constraint compliance at the solution and therefore is the method of choice for this thesis.

The selected interior ballistic model is time efficient. Since the parametric space is nonlinear and this is a first try at this problem, the choice of zero-order methods is indicated. Powell’s method provides good convergence and uses the idea of conjugate directions without an explicit dependence on derivative information. Hooke-Jeeves with fixed orthogonal search directions combined with an acceleration step is robust.

Optimization methods are tools for assisting the engineer in design and analysis, not for replacing him. Optimization techniques, when properly applied, result in more efficient and economical designs. A more correct description of the optimization process is "design improvement". Despite the best algorithm and applications, few designs are truly the "best designs". Some advantages from including optimization in design are (17):
1. A reduction in design time, especially when one scheme can be applied to numerous problems.

2. A systematic design procedure.

3. A wide variety of design variables and constraints can be handled.

The following disadvantages are also present:

1. Computational time increases as the number of variables increase. This can make the process prohibitively expensive or numerically ill-conditioned.

2. The process does not have experience to draw on during problem solving.

3. If the analysis is not theoretically precise, the results of the process may be misleading.

2. Ballistics.

Ballistics is the science that deals with the propulsion, flight, and impact of projectiles from guns. Ballistics is organized into three phases. Interior ballistics is the propulsion of the projectile inside the gun system. Exterior ballistics is the flight of the projectile through the atmosphere. Terminal ballistics is the impact and penetration of the projectile into the target. The sequence of events from the ignition of the propellant in the projectile, to departure of the projectile from the stabilizing tube is the interior
Ballistic cycle and the subject of this thesis.

Ballistics started as an art not a science. Initially interior ballistics was not differentiated from general ballistics because there was no practical way to measure muzzle velocity or pressure in the gun. All that could be said was that given a certain charge mass, projectile, gun, and angle of elevation a certain range could be obtained (7).

Prior to valid theoretical models and the ability to solve them, the practical approach was to solve the problem experimentally. For example, LeDuc (11) fit a hyperbolic curve to experimental data and generated ballistic tables. Some analytical models existed, but their solution was not practical for day to day use. A workable form of the analytical solution did not come until Charbonnier in 1908 (11). Numerous assumptions and simplifications were necessary, since accurate measurement of the pressure-time curve was still not possible.

The development of a reliable piezoelectric gauge around 1935 provided the means to accurately record the pressure-time events in the gun and provided the impetus to connect interior ballistics to the physics and chemistry. The central problem was still the same but more questions could be asked, and answered, by combining theoretical models and empirical data.

The development of the digital computer caused a
change in ballistic modeling. Before the digital computer, closed-form solutions to the governing differential equations or tabular and data curve fitting were predominant. Most notable of the latter were the ballistic tables of Bennet (11) in 1921, some of which are still in use today. The first uses of digital computers were to solve the governing differential equations. In 1962 Baer and Frankle (2) introduced the first direct numerical solution of the ordinary differential equations of interior ballistics on a case by case basis. The solution of the one dimensional (1-D) partial differential equations began in the late 1960’s. The first 1-D code was developed by Baer, and subsequently numerous 1-D models have been developed, most notably NOVA (16). The modeling of flame spreading phenomena, two phase flow, the condensed propellent and products of combustion are examples of work to improve the simulation of the events in the gun. These are active research efforts(11).

One of the most widely used interior ballistics models today is called IBHVG2 (Interior Ballistics of High Velocity Guns, version 2) (1). It was derived from the Baer-Frankle methodology and includes elements of MPRGUN (Multipurpose Gun Code) (2). It is a lumped parameter model in that it assumes the reaction chamber is well mixed and represented by the rate of burning. The results from IBHVG2 correspond with experimental data and there is a
high degree of reliability in the model. Projectile Design and Simulation PRODAS (6) is a model in use that takes projectile design through all three ballistic phases. It uses IBHVG2 as its interior ballistics model. Another lumped parameter model, IBRGAC (Interior Ballistics Model, Robbins-Gough-Anderson, Chambrage) (15), is derived from the NATO technical cooperative program (TTCP), model IBRGA. It is used both as a design tool and to verify predicted results from other codes. Its primary advantages are that it is a straightforward code, not expensive to run, and based on an accepted international model. For these reasons this code is selected as the interior ballistic model to be used in this research.

The typical gun system consists of a fire control system, a cannon (Figure 2.2), and a round of ammunition (Figure 2.3). The fire control system calculates the exterior ballistic solution for the flight of the projectile. It applies the correction to the elevation and deflection of the gun tube prior to firing.

The cannon is a tube that is closed at one end for firing. The barrel provides a guide and support for the projectile as it is accelerated by the impulse of the propellant gases during the interior ballistic cycle. The breech is opened to allow the projectile to be loaded and is closed for firing. In front of the breech is the
Figure 2.2 Typical Tank Gun Nomenclature (11).

Figure 2.3 Typical Kinetic Energy Tank Round.
reaction chamber that usually has a greater diameter than the remainder of the barrel. It holds the propellant and it is here that ignition and the initial pressure build-up occurs. At the front end of the reaction chamber is an area whose walls taper down to the barrel diameter. This area is called the shoulder. Forward of the shoulder the gun barrel has a uniform diameter, called the gun bore, which continues to the muzzle.

There are two ways to stabilize the projectile in flight. The first way is to impart spin to the projectile as it is traveling down the gun tube. To do this the gun barrel is rifled. Parallel grooves are cut into the barrel that twist down the tube. The rotating band that translates the twist of the rifling to projectile spin is part of the case cap assembly. It is engraved by the rifling as the projectile travels down the tube. The other method is to fin stabilize the projectile. This is done by attaching a boom and fins to the projectile. Normally a smooth bore gun is used and the rotating band seals the propellant gases behind the projectile. In both cases the pressure behind the projectile must overcome the resistance from the rotating band/gun tube interface.

The base of the round is the cartridge case. It holds the propellant and igniter and is designed to fit snugly in the reaction chamber. The part of the round that travels to the target is either a chemical energy or kinetic energy.
projectile. The remainder of the round is called the case cap assembly. It consists of the parts necessary to secure and stabilize the projectile in the gun tube. It is discarded by aerodynamic drag after the projectile leaves the gun.

A chemical energy projectile has an explosive charge that detonates upon impact. All the energy needed at impact is provided by this charge. The terminal velocity is not critical. A kinetic energy projectile does not contain any explosive charge. Its destructive force is dependent upon its kinetic energy at impact. The kinetic energy is given as

\[KE = \frac{1}{2}MV^2, \]

where \(M \) is the mass of the projectile and \(V \) is the velocity at impact. It is essential that kinetic energy projectiles have high velocity and mass.
1. Introduction.

This chapter develops the specific optimization methods and computer code that will be applied in Chapter V to the interior ballistic problem. The code is set up to accept the physical variables for ballistics that are explained in Chapter IV.

2. General Problem Statement.

The nonlinear constrained optimization problem is stated as

Minimize: \(F(\bar{x}) \)objective function.
Subject to:
\(g_j(\bar{x}) \leq 0 \quad j=1,m \)inequality constraints
\(h_k(\bar{x}) = 0 \quad k=1,l \)equality constraints
\(\bar{x}_i(\text{lower}) \leq \bar{x}_i \leq \bar{x}_i(\text{upper}) \quad \text{side constraints} \)
\(i=1,n. \)

Here the design variables are viewed as the vector \(\bar{x} \) given as

\(\bar{x}^T = \{x_1,x_2,\ldots,x_n\}, \)

where the superscript \(T \) means transpose.

3. Augmented Lagrange Multiplier Method.

The material in the background section of Chapter II justified the choice of the augmented Lagrange multiplier
(ALM) method for solving the constrained interior ballistics problem.

The ALM includes all constraint conditions in the optimization scheme. This is done by generating a pseudo-objective function that combines the objective function with the equality and inequality constraints as in Equation 3.1. Side constraints are included in the inequality constraint set. The pseudo-objective function is then minimized as an unconstrained function of the n design variables and (m+1) Lagrange multipliers. Minimizing the new objective function results in the minimum of the original cost function with all constraints satisfied. The form of the general Augmented Lagrangian is (17)

\[A(\vec{X}, \lambda, \rho_p) = F(\vec{X}) + \sum_{j=1}^{m} \left[\lambda_j \psi_j + \rho_p \psi_j^2 \right] + \sum_{k=1}^{l} \left(\lambda_{k+m} h_k(\vec{X}) + \rho_p [h_k(\vec{X})]^2 \right), \]

where

\[\psi_j = \max[g_j(\vec{X}), -\lambda_j/2\rho_p] . \]

Here \(F(\vec{X}) \) is the function to be minimized, \(h(\vec{X}) \) the equality constraints and \(g(\vec{X}) \) the inequality constraints. The \(\lambda \)'s are the Lagrange multipliers. They are a measure of the magnitude of the constraint violation and are updated between iteration as follows:

\[\lambda_j^{p+1} = \lambda_j^p + 2\rho_p \left(\max[g_j(\vec{X}), -\lambda_j^p] / 2\rho_p \right), \]

\[\lambda_{k+m}^{p+1} = \lambda_{k+m}^p = 2\rho_p h_k(\vec{X}). \]

The \(\rho_p \) is a scaling factor that weights each constraint. It is updated by a constant multiplying factor.
\[r_p = \gamma r_p. \quad 3.5 \]

An upper limit \(r_{p_{\text{max}}} \) is also established so that \(r_p \) does not increase indefinitely.

Given the initial conditions, Equation 3.1 is minimized. If a solution is found, the algorithm is exited. If not, the \(\lambda \)'s and \(r_p \) are updated by Equation 3.3, 3.4, and 3.5, and the process continues (Figure 3.1).

The ALM is considered successful when the change in the \(\lambda \)'s, the change in the original objective function, and the change in the constraint functions are within specified tolerances between consecutive iterations. \(\Lambda(\bar{X}, \lambda, r_p) \) is minimized by a suitable unconstrained minimization method.

As discussed earlier, the zero order methods selected are Powell's and Hooke-Jeeves. These approaches solve the problem by function evaluations alone and do not use gradient information to locate the minimum.

Powell's is one of the most popular and reliable of the zero order methods (8). It performs \(n+1 \) line searches per iteration. The method assumes quadratic behavior of the function and generates directions that are conjugate to an approximation of the Hessian matrix. The matrix \(\tilde{H} \) is initialized as an \(n \times n \) identity matrix. The columns are initially set to have the coordinate directions as the directions. After each set of searches along all current directions, the search directions \(\tilde{s}^i \) are updated by
Figure 3.1 ALM Method Algorithm (17).
\[\bar{s}^i = a_i \bar{s}^i, \quad i=1,n, \quad 3.6 \]

where \(a_i \) is the scalar multiplier determining the amount of change in \(\bar{x} \) for the \(i \)th direction. After \(n \) searches, a new direction \(\bar{s}^{n+1} \) is generated by connecting the initial \(\bar{x} \) with the current \(\bar{x} \) and the \(n+1 \) search is performed (17). If the process has not converged the search directions are reassigned as

\[\bar{s}^i = \bar{s}^{i+1}, \quad i=1,n \quad 3.7 \]

and become the new set of search directions.

In each direction, Powell's method uses a uniform grid search to determine an interval within which a local minimum exists. Either a three point quadratic approximation or the Golden Sections method is used to locate the minimum within the given interval. Although a quadratic approximation is less expensive in terms of function evaluations, it is less robust than the Golden Sections method. The convergence criteria is the change in the design vector, within a specified tolerance, from iteration to iteration.

5. The Hooke-Jeeves Method.

Hooke-Jeeves uses the coordinate directions as exploratory search directions. Hooke-Jeeves searches in discrete steps for each direction. After a complete set of exploratory searches, a scalar multiplier accelerates the search in the direction indicated by \(\Delta \bar{x} \). If the objective
function value is not improved after the acceleration step, the method returns to the previous \bar{x}, reduces the search increment and continues. It may require more function evaluations since Hooke-Jeeves always makes use of the coordinate directions, regardless of the behavior of the function. However, it is less likely to fail through numerical ill-conditioning. Convergence is achieved when the search increment is reduced to a value that is less than a predetermined tolerance.

The optimization code is written by the author in FORTRAN 77. The code is designed as a series of shells. The outer shell contains the ALM subroutines. In the next shell are the one dimensional unconstrained minimization subroutines. In the inner most shell are the objective and constraint function subroutines. A copy of the code is included in Appendix I. A short description of the code follows.

There is one master header file, 'declarations.ins.f'. This file contains the variable declarations, parameters, and common block definitions for the outer two shells. It is appended to the beginning of each subroutine and includes common and passed variables. Each subroutine declares local variables as needed.

The main program is called 'optimum.ftn'. It controls the process and calls the subroutines that monitor
the optimization. All user interaction is done in 'optimum'. From this program the following subroutines are called.

1. read_data: This subroutine reads the interior ballistics code input records and assigns the initial values to the design vector.
2. powell: It drives Powell's method and keeps track of search directions and convergence criteria.
3. hook_jeesves: This is the Hooke-Jeeves algorithm and controls the search and convergence criteria.
4. check_print: This program prints out the current ALM iteration values and other diagnostic information.
5. tol_test: This performs the ALM convergence test of the equality, inequality and original objective function convergence criteria.
6. update: Here the updates of \(r_p \) and the \(\lambda \)'s for the ALM pseudo-objective function by Equation 3.3, 3.4, 3.5 are performed.
7. printit: This subroutine prints the final objective function value and the final design vector.

The second shell is the unconstrained minimization shell that contains the method of Powell and Hooke-Jeeves. The Hooke-Jeeves subroutine is self contained and calls no other subroutines. The subroutine 'powell' calls the
subroutine 'search' and this subroutine calls the following subprograms.

8. ugrid_id: The uniform grid search algorithm isolates the interval where the minimum is located by conducting a one dimensional unconstrained line search of uniform step sizes until such an interval is found.

9. gold: The Golden Sections interval reducer locates the minimum in the interval found by 'ugrid_id' through the use of an iterative reduction of the interval. This reduction is done with the use of the Golden Section's ratio of 6.18 and 3.82.

10. quad: This quadratic approximation subroutine uses gaussian elimination to solve the system of equations generated by the interval sent from 'ugrid_id'. It assumes quadratic behavior in the interval.

Both methods call the subroutine 'funx.ftn'. It performs the transformation of the objective function and the constraint functions to the ALM pseudo-objective function, Equation 3.1. Subroutine 'funx' calls the following two subprograms. The first, 'fun_con.ftn', is a user supplied subroutine that contains all of the equality and inequality constraints and evaluates them for each function call. The second, 'fun_int.ftn' is the modified version of IBRGAC described in Chapter IV and found in
Appendix II.

The user is responsible for providing the input data as required by the interior ballistics code, the constraint subroutines, and the subroutines that allow the transfer of the variables from the optimization code to the interior ballistics code. They are "var_in.ftn", "var_out.ftn", and part of "read_data.ftn". The user must also specify in "optimum.ftn" the number of variables, equality constraints, inequality constraints, and tolerances.
1. Introduction.

The first part of this chapter presents the conservation equations and empirical relationships used in a lumped parameter model to solve the interior ballistics problem. It is primarily drawn from three sources; the IBRGAC User's Manual (15), the IBVGH2 User's Manual (1), and the derivation by Krier and Adams (11). Many of the equations in these sources are repeated from previous work that will not be cited here. The sequence of events during the interior ballistic cycle are described in Section 2. Section 3 defines the projectile equations of motion as a function of time and their dependence on projectile base pressure. The base pressure's relation to mean pressure in the tube and the rate of propellant gas generation is derived in Section 4. In Section 5, mean gas pressure and its dependence on mean gas temperature and rate of propellant gas generation is derived. Section 6 defines the mean temperature and its relationship to the rate of gas generation and losses to the system, which are detailed in Section 7. Section 8 derives the rate of gas generation and discusses propellant properties. In Section 9 the gun recoil equations of motion are derived. Finally, Section 10 lists the modeling approximations used in the previous
sections.

The second part of the chapter describes the IBRGAC code and its organization (Sections 11 and 12).

2. Interior Ballistic Cycle.

The interior ballistic cycle starts at propellant ignition. After the propellant is ignited, pressure and heat rapidly increase inside the chamber from the generation of combustion gases (Figure 4.1). Projectile motion begins after this pressure has overcome the resistance caused by the initiation of engraving the projectile's rotating band by the bore. Pressure increases until the rate of volume increase overcomes the rate of propellant gas generation. Acceleration continues as long as there is a pressure differential across the projectile. The interior ballistic cycle ends when the projectile leaves the gun tube.

3. Projectile Equations of Motion.

A gun is a simple heat engine in which chemical energy of the propellant is transformed into kinetic energy of the projectile and heat (16). Newton's Second Law is

\[a = \frac{F}{m} \]

where at time t projectile acceleration equals the net force generated by propellant combustion divided by effective mass. The projectile maintains a constant in-bore mass. The integral of acceleration with respect to
1) Blow by firing pin initiates propellant combustion
2) Gases evolve from burning propellant and heat build rapidly.
3) Gun chamber pressure
4) At a pressure from 2-10 Kpsi...
5) Projectile motion begins.
6) Rotating band is engraved; initial resistance to motion causes pressure behind the projectile to rise.
7) Due to higher pressure, burning rate of propellant increases.
8) Projectile motion increases; chamber volume increases.
9) Rifled bore causes projectile to spin; maximum pressure occurs soon after rifling begins.

Figure 4.1 Interior Ballistic Cycle (11).
time yields velocity while a subsequent integration gives the distance the projectile has travelled (travel).

Newton's Second Law for this problem is

\[a_p = \frac{A_b}{m_p} (P_b - P_r - P_g), \]

where \(a_p \) is projectile acceleration, \(A_b \) projectile base area, \(P_b \) the pressure at the projectile base, \(P_r \) the bore resistance to friction and engraving (as an equivalent pressure), \(P_g \) the pressure of the air in the tube ahead of the projectile, and \(m_p \) the projectile mass. The solution for projectile velocity as a function of time is obtained by determining the pressures in the parenthesis of Equation 4.2 as functions of time and integrating. \(P_r(t) \) is interpolated from tabular resistance pressure data and \(P_g(t) \) is given as a constant average value. The remaining parameter to be found is the base pressure \(P_b(t) \).

Projectile travel, in the ground based coordinate system, is the sum of projectile displacement and the recoiling gun displacement. Summing the integrals with respect to time of projectile velocity and gun recoil velocity (Equation 4.34) gives travel as

\[x = \int_0^c v_p dt + \int_0^c v_{rp} dt. \]

4. Base Pressure Derivation.

From initial projectile movement (initial volume is chamber volume minus the volume occupied by propellent) until the projectile leaves the gun tube, the volume occupied by the combustion gases is constantly
increasing. As the available volume and quantity of gases increases during propellant consumption, the gases are accelerating down the tube. This is caused by the difference in pressure from the breech to projectile base. A solution for the distribution of pressure, density, and gas velocity in the gun during firing is obtained by the Lagrange pressure gradient approximation. It states that "the velocity of the gas at any instant increases linearly with distance along the bore, from zero at the breech to the full shot velocity at the base of the projectile" (7).

The approximations made in this model are: the chamber is a cylindrical extension of the bore with the same total volume, the entire charge may at any time be treated as gaseous and gas density is uniformly distributed in the gun tube at any time. If the distance from the breech is \(x \) and \(y \) is the position of the base of the projectile, the gas velocity \(v_g \) can be expressed as

\[
v_g = \frac{x}{y} \frac{dy}{dt}.
\]

The all gaseous propellant charge assumption means that density is

\[
\rho = \frac{C_t}{A_b y'}
\]

where \(C_t \) is the initial mass of propellant and igniter. Uniformly distributed gas density means \(\frac{\partial \rho}{\partial x} = 0 \). When \(x=y \) the gas velocity \(v_g \) equals projectile velocity \(v_p \).
Therefore, Newton's First Law can be written as

\[
\frac{d^2y}{dt^2} = \frac{A_b}{m_p}(P_b - P_r - P_g),
\]

where previous definitions apply. Integrating the equation of motion for the gas using the previous three equations gives the pressure \(P(x) \) as a function of distance as

\[
P(x) = P_b + \frac{C_t}{2m_p}(1 - \frac{x^2}{y^2})(P_b - P_r - P_g).
\]

The mean pressure \(P_m \), between the breech and projectile base, can then be determined as

\[
P_m = \frac{1}{y} \int_0^y Pdx = P_b + \frac{C_t}{3m_p}(P_b - P_r - P_g).
\]

Solving for the base pressure \(P_b \) gives

\[
P_b(t) = \frac{[P_m(t) + \frac{C_t(P_r + P_g)}{3m_p}]}{[1 + \frac{C_t}{3m_p}]}. \]

To determine the base pressure \(P_b(t) \), the mean pressure \(P_m(t) \) must be determined.

5. Mean Pressure Derivation.

Van der Waals' equation of state is (16)

\[(P + a/V^2)(V - B) = \bar{R}T.\]

Here \(\bar{R} \) is the universal gas constant, \(V \) is the molar volume of gas, the term \(a/V^2 \) is the increase in pressure due to intermolecular attractions, and \(B \) is the decrease in free volume due to the finite volume of the molecules. This means the available free volume for the gas to move about is less than the free chamber volume. At low pressure and
densities these volumes are nearly identical. At high pressure and densities the free volume difference is noticeable.

As temperature and pressure increase in the gun, the effect of intermolecular attractions decreases causing the \(\frac{a}{V^2} \) term in Equation 4.7 to become negligible. Van der Waals' equation is reduced to

\[
P(V - B) = \bar{R}T. \quad 4.8
\]

To use the preceding equation with the mass and volume of gas, \(\bar{R} \) is substituted in Equation 4.8 by the relation

\[
\bar{R} = R(\frac{V_m}{V}), \quad 4.9
\]

where \(R \) is the specific gas constant, \(m \) the mass, and \(V \) the volume of gas. This form of Van der Waals' equation, after simplification, is known as the Noble-Abel equation

\[
P(V - mb) = mRT. \quad 4.10
\]

In Equation 4.10 the covolume \(b \) is defined as the Van der Waals' constant \(B \) divided by the molecular weight of the gas. Using mean values of the pressure \(P_m \) and temperature \(T_m \) over the temperature range, Equation 4.10 is

\[
P_m(V - \sum_i m_i^* b_{i1} - m_i^* b_{i2}) = (\sum_i m_i^* R_{i1} + m_i^* R_{i2})T_m. \quad 4.11
\]

The subscript \(I \) is the igniter and for multiple propellents the subscript \(i \) indicates the \(i \)th \((i=1,n)\) propellent. Substituting for the specific gas constant \(R \) in the above equation with the propellent force \(F \), defined as

\[
F = R T_0, \quad 4.12
\]

with \(T_0 \) being the adiabatic flame temperature of the
product gases, the mean pressure P_m can be stated as

$$P_m = T_m \left(\sum_{i} \frac{F_{im_i}}{T_{oi}} + \frac{F_{im_I}}{T_{oi}} \right) / (V - \sum_{i} m_i b_i - m_{ib_I}). \quad 4.13a$$

At time t, the mean pressure is calculated from Equation 4.13a for values of the mass of gas present, or

$$P_m(t) = T_m(t) \left(\sum_{i} \frac{F_{im_i}(t)}{T_{oi}} + \frac{F_{im_I}}{T_{oi}} \right) / (V(t) - \sum_{i} m_i(t) b_i - m_{ib_I}). \quad 4.13b$$

The mass of gas present $m_i(t)$ at time t is equal to the fraction of propellent mass burned $z_i(t)$, Equation 4.31, multiplied by the original propellent mass C_i or

$$P_m(t) = T_m(t) \left(\sum_{i} \frac{C_i z_i(t) F_{im_i}}{T_{oi}} + \frac{F_{im_I}}{T_{oi}} \right) / (V(t) - \sum_{i} C_i z_i(t) b_i - m_{ib_I}). \quad 4.13c$$

The volume available for the gases at time t is

$$V(t) = V_c + A_b x(t) - V_{r}(t), \quad 4.14$$

where $x(t)$ is projectile travel, A_b is area of the projectile base, and V_c is initial chamber volume. The total volume of unburnt propellent $V_r(t)$ is calculated from the fraction of mass burned by

$$V_r(t) = \sum_{i} \frac{C_i}{\rho_i} (1 - z_i(t)). \quad 4.15$$

The gas density is ρ. To determine the mean pressure $P_m(t)$ in Equation 4.13c, the mean temperature $T_m(t)$ must be known.

6. Mean Temperature Derivation.

From the First Law of Thermodynamics, the energy balance in the gun tube can be stated as: the initial
energy of the gases is equal to the internal energy of the gases plus any losses. Losses include work done by and heat transferred from the system and are discussed in the next section. Using average values of specific heats over the temperature range, the initial energy of the gases is

\[E_1 = \sum_i m_i c_{vi} T_{oi} + m_I c_{VI} T_{OI} \]

where \(m_i \) is mass, \(c_{vi} \) specific heat (at constant volume), and \(T_{oi} \) adiabatic flame temperature of the propellant product gases. The same definitions apply for the igniter. The internal energy of the gases in terms of the mean temperature \(T_m \) is

\[E_2 = \left[\sum_i m_i c_{vi} + m_I c_{VI} \right] T_m \]

Equation 4.17 and 4.18 are used in the energy balance statement. The specific heat \(c_V \) is first expressed as

\[c_V = F/[(\gamma - 1)T_0], \]

where \(\gamma \) is the ratio of specific heats, and the results are solved for mean temperature \(T_m \) to obtain

\[T_m = \frac{\left[\sum_i \frac{F_i m_i}{(\gamma_i - 1)} + \frac{F_I m_I}{(\gamma_I - 1)} - L \right]}{\left[\sum_i \frac{F_i m_i}{(\gamma_i - 1)} T_{oi} + \frac{F_I m_I}{(\gamma_I - 1)} T_{OI} \right]} \]

At time \(t \), the mean temperature is calculated from Equation 4.19a as

\[T_m(t) = \frac{\left[\sum_i \frac{F_i m_i(t)}{(\gamma_i - 1)} + \frac{F_I m_I(t)}{(\gamma_I - 1)} - L(t) \right]}{\left[\sum_i \frac{F_i m_i(t)}{(\gamma_i - 1)} T_{oi} + \frac{F_I m_I(t)}{(\gamma_I - 1)} T_{OI} \right]} \]
Again \(m_i(t) \), the mass of the gas present at time \(t \), is calculated from the fraction of propellent mass burned \(z_i(t) \), Equation 4.31, multiplied by the original propellent mass \(C_i \) or

\[
T_m(t) = \frac{F_i C_i z_i(t) + F_i M_i}{\left[\sum_i \frac{T_{oi}}{(\gamma_i - 1)} + \frac{F_i M_i}{(\gamma_i - 1)} - L(t) \right]}
\]

For both the mean pressure and temperature, the derivation of the fraction of mass burned \(z_i(t) \) is in Section 8.

In the previous section there is loss \(L(t) \) due to work performed and heat transferred from the system. There are three general classes of loss. The first is work done to the projectile and gun. They are; loss to projectile translation and rotation and recoil of the gun. The second is work lost to the propellents and resistances. They are; energy losses to propellent gas and unburned propellent motion, bore resistance due to engraving and friction and air resistance in front of the projectile. The third is heat transfer to the chamber wall. All these can be written as follows:

\[
L(t) = E_{pt} + E_{pr} + E_{rp} + E_p + E_{br} + E_c + E_h.
\]

These losses and the relevant equations are listed in Table 4.1.
<table>
<thead>
<tr>
<th>Type of Energy Loss</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>projectile translation</td>
<td>(E_{pt} = \frac{1}{2} m_p V_p^2)</td>
</tr>
<tr>
<td>projectile rotation</td>
<td>(E_{pr} = \frac{3}{4} m_p V_p^2 T_w^2)</td>
</tr>
<tr>
<td>recoil of the gun</td>
<td>(E_{rp} = \frac{1}{2} m_{rp} V_{rp}^2)</td>
</tr>
<tr>
<td>propellant gas and unburnt propellant motion</td>
<td>(E_p = \frac{1}{2} A_b \int_{0}^{c} \gamma^2 dx = \frac{1}{6} C_t V_p^2)</td>
</tr>
<tr>
<td>bore resistance due to engraving and friction</td>
<td>(E_{br} = A_b \int_{0}^{c} P_r V_p dt)</td>
</tr>
<tr>
<td>loss to air resistance</td>
<td>(E_C = A_b \int_{0}^{c} P_g V_p dt)</td>
</tr>
<tr>
<td>heat transfer to the chamber walls and gun barrel</td>
<td>(E_h = \int_{0}^{c} \dot{Q} dt)</td>
</tr>
</tbody>
</table>

Table 4.1 Table of losses for Equation 4.20.
For energy loss to projectile rotation E_{pr}, T_w is the twist of rifling in turns per caliber. More precisely, T_w is the ratio of complete revolutions to bore diameter for the rifled grooves down the length of the gun tube.

Energy due to heat transfer to the internal chamber walls and gun barrel by convection E_h is assumed to be proportional to the difference of the mean temperature of the system and average temperature of the wall. At time t, this heat loss can be stated as

$$E_h = \int_0^t \dot{Q} \, dt,$$

where

$$\dot{Q}(t) = A_w(t) h(T_m(t) - T_w(t)),$$

and $T_w(t)$ is the temperature of the chamber wall. The exposed chamber wall area A_w is

$$A_w(t) = \frac{V_0}{A_b} \pi D_b + 2A_b + \pi D_b X(t),$$

where D_b is bore diameter, V_0 initial chamber volume, and the heat transfer coefficient is given by

$$h = \lambda \tilde{c}_p \tilde{\rho} \tilde{v}_g + h_0.$$

Here \tilde{c}_p, $\tilde{\rho}$, and \tilde{v}_g are mean values for the previously defined symbols and h_0 is a natural convective term which allows heat transfer if the projectile is not moving. The Nordheim friction factor λ is empirically derived from gun tube experimentation and found to be

$$\lambda = [13.2 + 40 \log_{10}[1000D_b]]^{-2}.$$

The chamber wall temperature T_w in Equation 4.22 is derived from an energy balance that says
heat transfer + work = \(\Delta \) internal energy.

The heat transfer is \(E_h \) and work is given by \(E_{br} \) multiplied by an empirical factor \(f \), the fraction of work done against bore friction that preheats the chamber. The change in internal energy of the chamber wall is

\[\Delta = T_w c_{pw} m_w - T_c c_{pw} m_w, \]

where the \(w \) subscript indicates the chamber wall properties for specific heat (at constant pressure) and mass of the chamber wall. The initial chamber wall temperature is \(T_c \).

Placing the above terms into the conservation equation and substituting mass with density and volume yields

\[E_h + f E_{br} = c_{pw} \rho_{w} A_w D_w (T_w - T_c). \]

Here \(D_w \) is the chamber wall thickness. In terms of the chamber wall temperature \(T_w \), Equation 4.27 is

\[T_w = \frac{E_h + f E_{br}}{c_{pw} \rho_{w} A_w D_w} + T_c, \]

and can be placed into Equation 4.22 for \(T_w(t) \) at time \(t \).

8. Propellent and Rate of Burning.

Propellents are composed of compounds that ignite and burn quickly, producing large quantities of gas rapidly. Conventional propellents are primarily nitrocellulose and their basic geometric unit is the grain.

The burning rate of the propellent is the rate at which the surface of the propellent regresses. The empirical equation is the steady state burning law (7)

\[r = \beta P_m^\alpha, \]

8
where β is the burning rate coefficient and α is the burning rate exponent. The unit of r is meter per second. Experimental burning rate data are fitted to the equation to determine the coefficients, which are functions of propellent temperature.

The burning of the propellent grains produces the pressures necessary to overcome the initial resistive forces and accelerate the projectile down the gun tube. The model states that grains burn uniformly and without deformation. At constant pressure the mass of the combustion gases produced is proportional to the surface area exposed. As burning continues, the rate of mass produced depends on the surface area as a function of time. The equations for the recession of the exposed surface area for propellents are determined from geometric analysis of the grain.

The mass fraction burning rate z is the rate at which the propellent mass is being consumed and therefore the rate gas is generated. The relationship is

$$
\dot{z}_i = \frac{S_i r_i}{V_{gi}},
$$

where S_i is the remaining propellent grain surface area, r_i is the linear burning rate from Equation 4.29 and V_{gi} is the initial grain volume. Integrating equation 4.30 yields the fraction of mass burned at time t as

$$
z_i = \int_0^t \dot{z}_i dt.
$$

The physical configuration of the grains within the
chamber (packing) has an effect on the rate of burning and the resultant chamber pressure. This effect is not considered within the scope of this research.

There are three types of propellent grain geometry: regressive, neutral, and progressive. Regressive burning grains reduce their surface area during burning. Neutral burning grains maintain a constant surface area until consumed. Progressive burning grains increase in surface area as they burn. For progressive burning grains, once the grain has burned a certain distance the perforations intrude upon each other and burning becomes regressive. An example of each type is depicted in Figure 4.2.

Another factor in propellent performance is the density of loading. It is the weight of the propellent in the chamber, divided by the volume of the chamber available to the propellent. The loading density is a measure of how much propellent is present and therefore how many moles of gas will be generated. An increase in the density of loading will generally increase pressure in the chamber.

Recoil is the rearward movement of the gun in the ground reference frame during firing. Recoil is caused by reaction to the forward motion of the projectile and propellent gases. Recoil systems are designed to absorb this energy so that the gun will remain stable during
Figure 4.2 Typical Propellant Grain Burning Types.

Cord (Regressive) Single Perforation (Neutral) Seven Perforation (Progressive)
firing. The equation of motion from Newton's Second Law is
\[a_{rp} = \frac{A_b}{m_{rp}} (P_{br} - RP - P_f). \]
4.33

Here \(P_{br} \) is the breech pressure, \(RP \) is the resistive force to recoil motion, and the subscript \(rp \) means recoiling parts. The acceleration of the recoiling parts is zero until the pressure at the breech is greater than the combined resistive forces to recoil motion and barrel resistance. Integration of \(a_{rp} \) gives the corresponding velocity \(v_{rp} \) as
\[v_{rp} = \int_0^t a_{rp} \, dt, \]
4.34

10. Modeling Approximations.

Modeling the interior ballistic cycle uses the following conditions:

1. The propellant gas mixture is described by the Noble-Abel equation of state. This means that the gases are well mixed and no solid or liquid phases exists.

2. The propellant gas flow is taken to be one-dimensional, inviscid, and compressible.

3. The steady state burning rate law can be used to describe the recession of the rate of the propellant grains.

4. The base of the projectile is flat and perpendicular to the direction of travel.

5. Propellant grains are all the same size and
configuration for a given propellent load. For perforated propellents, all holes are placed in the grain symmetrically.

6. All propellent is ignited simultaneously and uniformly. The igniter is consumed by t=0.

7. All exposed burning surfaces recede at the same rate and perpendicular to the surface. That is, the grains shrink uniformly without deformation.

8. Decomposition of a unit mass of propellent will always liberate the same amount of energy, which heats product gases to the same temperatures.

9. The main constituents of the propellent gas mixture do not suffer further chemical or physical reactions.

11. Description of IBRGAC.

IBRGAC is a lumped parameter interior ballistics code written in FORTRAN. It was developed in 1987 at the Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland and validated by experimental data.

IBRGAC uses the Lagrange and chambrage method for the breech to base pressure gradient. The chambrage gradient equation takes into account the narrowing of the front of the chamber to calculate the pressure gradient in the gun tube. It is demonstrated in the User's Manual that both methods result in comparable projectile performance predictions. The Lagrange method is used exclusively in
this research for consistency.

The user provides a input file organized into 9 records that are defined as follows.

1. Record 1; Gun system data and pressure gradient calculation selection flag.
2. Record 1a; If the chambrage gradient is selected, this record is read and contains chamber dimension data.
3. Record 2; Projectile mass, air resistance flag, and \(f \), the fraction of work done against bore friction that preheats the chamber, data.
4. Record 3; Barrel resistance point data.
5. Record 4; Recoil data.
6. Record 5; Heat transfer data.
7. Record 6; Igniter data.
8. Record 7; Propellant data (up to 10 propellents).
9. Record 8; Propellant burning rate point data (for each propellant used).
10. Record 9; Time increment data.

The data are read from the input file and printed in the output file. All input data are required to be in the MKS system. The example problem input files are in Appendix III.

The model uses 4th order Runge-Kutta integration to calculate projectile velocity and travel, projectile resistance energy, system heat loss, recoil velocity and
travel, and energy loss to air resistance. The time rate of change of mass and surface area of propellent are determined from the linear burning rate.

The algorithm continues until either the projectile has left the tube or the stop time has been reached. The program will terminate for detected errors in input and output records or unacceptable grain dimensions. If time expires before the projectile has exited the tube, current projectile velocity rather than muzzle velocity is displayed. For each time step, elapsed time, acceleration, velocity, travel, breech and mean and base pressures are calculated. Once the program is complete, initial and residual propellent gas energy and all losses from Section 7 are calculated for the cycle.

12. Program Organization.

The code has been reorganized into a main program and six subprograms. This was done to allow integration with the optimization code. A complete listing of each file is in Appendix II. There is one master header file 'intball.ins.f'. This file possesses the variable declarations, parameters and common block definitions. It is appended to each subroutine. Each subroutine declares local variables. A description of each file follows:

1. fun_int; This is the main program and performs the interior ballistic calculations with the exception
of surface area and volume rate of change calculations done in 'prf017' and the loading density in 'mass_check'. It is called by subprogram 'funx' from the optimization program (see Chapter III). All subroutines are called by 'fun_int' except 'read_data'.

2. **read_data**: This subroutine is called by the optimization code. The input file values are assigned to a backup set of variables and the initial design vector is created.

3. **reset_data**: The subroutine resets all local variables used in 'fun_int' from their values and sets the working variables to their initial values for each iteration.

4. **var_in**: This subprogram is modified by the user and assigns the values from the design vector \(\bar{X} \) to the respective working variables in 'fun_int'.

5. **mass_check**: This subroutine determines the density of loading and maximum propellant charge for each problem. The actual propellant volume is calculated and compared to the maximum charge volume. It can be quickly modified to accept any factor for maximum propellant load.

6. **prf017**: This subprogram determines the acceptability of the propellant dimensions and calculates the mass fraction and surface fraction
of propellant burned.

7. \texttt{var_out}; This subroutine returns the respective working variables to the design vector after each iteration.
CHAPTER V
EXAMPLE PROBLEMS

1. Introduction.

The purpose of this chapter is to specify the equipment used in the example problems, state the problems solved, and critique the results. Section 2 describes the hardware used in the example problems and includes the specifications of the gun, projectile, and propellent. In Section 3 the optimization objective function for the interior ballistics problem is stated, while Section 4 develops the constraints by category. Section 5 explains the parameters initialized in the optimization scheme. The selected example problems, their purpose, organization, input, and output are in Section 6. The analysis of the results is in Section 7.

2. Baseline Equipment.

The gun, projectile, and propellents are described in this section. The gun system is representative of the current tank main gun.

The cannon is 4.57 meters long with a 120 mm bore diameter. The chamber is 54.0 cm long and 15.4 cm in diameter. In the forward 8.0 cm of the chamber its diameter constricts to 12.7 cm, then reduces to 12.0 cm at the barrel. The chamber volume is 9832 cm3. The gun is
smooth bore with no twist.

The design factor of safety n for gun tube strength is 1.15 (19). The yield point strengths σ_{yp} of the gun, as a function of distance down the bore, are:

\[
\begin{array}{cc}
\sigma_{yp} \text{ (MPa)} & \text{Bore Location (m)} \\
696.0 & 0.00 \leq x_p \leq 1.50 \\
276.0 & x_p = 4.00 \\
171.0 & x_p = 4.57 \\
\end{array}
\]

Here x_p indicates the projectile's location in the gun tube. The von Mises-Hencky failure criteria (18) is used to determine the maximum pressure P_{max} for the gun as

\[
P_{max} = \frac{\sigma_{yp}}{1.732*n}.
\]

From 1.50 meters to the muzzle, a 1st order least squares fit provides the distance-pressure functions (P_{max} in MPa, x_p in meters)

\[
P_{max}(x_p) = 346.0, \quad 0.00 \leq x_p \leq 1.50 \\
P_{max}(x_p) = 479.8 - 83.20*x_p, \quad 1.50 < x_p \leq 4.00 \\
P_{max}(x_p) = 502.9 - 91.23*x_p, \quad 4.00 < x_p \leq 4.57
\]

The pressure P_{max} is used as the upper limit on breech and base pressure. Breech pressure is checked against Equation 5.2. This pressure occurs at $x_p = 0.0$ for the entire cycle. Base pressure is checked against all three equations as a function of x_p. This pressure occurs at x_p throughout the cycle.

The kinetic energy projectile weighs 9.796 kg, including the case cap assembly. It is fin stabilized and
does not require applied spin. The projectile base is assumed to be a flat disk perpendicular to direction of travel.

There are two propellent compounds and three propellent grain geometries. The two compounds resemble the M6 and M8 military propellents. Their thermodynamic properties are listed in Table 5.1. All three grain geometries are cylindrical (cord) propellents with zero, one, and seven perforations. Figure 5.1 shows their critical dimensions. The seven perforation propellent must have the outer perforations \((p_o) \) equally spaced about the center. The three webs \((w, w_i, w_o) \) need not be equal and are determined from the input dimensions \(L, D, p_i, p_o, \) and \(d \).

3. Problem Objective Function.

The objective is to maximize projectile velocity for the given conditions, without violating constraints. The objective function is the projectile velocity equation (the time integral of Equation 4.2), including all required ancillary equations discussed in Chapter IV. All function evaluations will be multiplied by negative one (-1.0) to make the objective (maximum velocity) and formulation (function minimization) compatible.

4. Problem Constraints.

The constraints fall into three categories; dimension,
<table>
<thead>
<tr>
<th>Propellant</th>
<th>Impetus</th>
<th>Adiabatic Flame Temperature</th>
<th>Covolume Density</th>
<th>Ratio of Specific Heats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample (M6)</td>
<td>1135.99</td>
<td>3141</td>
<td>.9755</td>
<td>1.6605</td>
</tr>
<tr>
<td>M8</td>
<td>1168.90</td>
<td>3768</td>
<td>.9550</td>
<td>1.2119</td>
</tr>
</tbody>
</table>

Table 5.1 Propellant Thermodynamic Properties (15 and 16).
Zero Perforation

One Perforation

Seven Perforation

Figure 5.1 Example Propellant Geometries.
mass, and pressure. Constraints include both general and specific criteria and need not directly involve design variables. The constraints are developed for each component of the problem, then as each example problem is developed a specific constraint set is developed from this general set.

The size constraints for the propellent grains include non-negative values for all sizes and mass, in the form

\[x_1 \geq 0, \]

or

\[g_1(\bar{x}) = -x_1. \]

For the given chamber size a practical limit of 6.0 cm is put on grain length. This allows propellent grain to lay in the reaction chamber and extend no farther than from chamber wall to igniter probe in the center of the chamber. The form of this constraint is

\[L \leq 6.0, \]

or

\[g_2(\bar{x}) = \frac{L}{0.06} - 1.0. \]

Equation 5.6 is normalized so the constraint magnitudes will be comparable to each other. After normalization, the constraints are multiplied by scaling factors to ensure that they are of sufficient magnitude to affect the objective function. For the zero perforation propellent (see Figure 5.1 for propellent dimensions) the constraints are:
1) 3 non-negative constraints (L, D, mass).

2) \(L \geq D \).

The one perforation propellant diameter \(D \) must be greater that the diameter of the inner perforation \(p_i \), giving

1) 4 non-negative constraints (L, D, \(p_i \), mass),
2) \(L \geq D \), and
3) \(D > p_i \).

For the seven perforation propellant there are three other size constraints. The first is that the propellant diameter must be greater that the sum of the inner \(p_i \) and two outer \(p_o \) perforations. The second is that the distance between the perforation centers \(d \) must be greater than the sum of the inner and outer perforation radius. Finally, two adjacent outer perforations and the inner perforation form an equilateral triangle. The outer perforation \(p_o \) must be less than one side of the triangle \(d \). This leads to:

1) 6 non-negative constraints (L, D, \(p_o \), \(p_i \), \(d \), mass),
2) \(L \geq D \),
3) \(D > p_i + 2*p_o \),
4) \(d > p_i/2 + p_o/2 \),
5) \(p_o > d \).

The mass constraint for propellents says that propellant volume must be less than chamber volume. This is determined by comparing the total volume occupied for all propellents to initial chamber volume \(V_c \) or

\[
\sum_{i} \frac{m_i}{\rho_i} \leq V_c.
\]
No reduction factor is included to account for volume lost due to packing. Equation 5.7 is the only non-negative mass related constraint, regardless of the number of propellents.

Maximum pressure constraints are both equality and inequality constraints. The maximum pressure in the gun will occur at the breech. This pressure is key to projectile performance. To keep pressure at maximum without exceeding P_{max} the breech pressure is constrained to equal P_{max} so that

$$P_{\text{br}} = P_{\text{max}}, \quad 5.8$$

or

$$h_1(\bar{x}) = \frac{P_{\text{max}}}{P_{\text{br}}} - 1.0. \quad 5.9$$

The constraint is normalized. The base pressure constraint is an inequality constraint utilizing Equation 5.2, 5.3, and 5.4. In this form

$$485.3 - 86.8x_p \geq P_b(\text{MPa}), \quad 5.10$$

where x_p is checked to determine which equation to use.

5. Optimization Initialization.

The values used for the tolerances and multipliers that are required for the optimization method are developed in this section. The multiplier r_p is initialized at 100.0. This is to ensure the constraints affect the objective function value as quickly as possible. The r_p update factor γ is set at 2 to provide a geometric increase for the magnitude of r_p per iteration. The
maximum multiplier value r_p^{\max} is set at 10^8 to provide a reasonable upper limit for r_p. All Lagrange multipliers λ's are initially set to 1.0 to provide a neutral start point. The update formulas will determine final λ values.

From Chapter II the convergence criteria for the ALM is set at .2. This is appropriate for the magnitude of the velocity (10^4) and the λ's of the scaled and normalized constraint values. The tolerance sent to the line searches is .0001. This ensures that the search is not more precise than the grain manufacturing tolerance, .007 cm (19). This value is not inconsistent since all input values are converted to meters in the interior ballistics code so that .0001 is equivalent to a .01 tolerance for centimeter values.

The optimized and automated design process proposed must be able to accomplish several tasks. This process must attain, at least, the performance level of current design methods. It must achieve a practical optimum design regardless of the relative size of the parametric space. It also must be flexible, work for various combinations of variables, and be easy to use. The example problems are designed to answer these questions.

In Appendix D of the IBRGAC User's Manual there is a seven perforation propellant "optimized" under current
design techniques for a maximum breech pressure of 346 MPa. This design was performed by holding all variables constant and varying only the propellant inner web. The model was executed once for each each web increment and the mass was incremented manually until 346 MPa was attained.

The first example problem addresses the questions of whether the proposed method can attain comparable projectile performance compared to current design methods and does the current method attain an optimum design? The optimization process is started from the current best design for the seven perforation propellant and from a random point in the parametric space. These results will indicate the optimization process performance against the current design procedures and provide a measure of the ability of the process to search the same parametric space from different points to achieve an optimum.

The second example problem examines whether the process continues to work for a slightly more complex parametric space. Two propellents of differing geometries are used i.e. one and seven perforation. This example problem has two parts. In Part 1 an optimum design is determined from the initial propellant geometry. In Part 2 the optimization is restarted from the final design of Part 1 to determine if the process has converged at the optimum design in the parametric space.

The third example problem again addresses the question
of the optimization process performance in a larger parametric space. Three propellents are used; zero, one, and seven perforation.

The fourth example continues to examine the optimization process performance, in a different parametric space. In this example, two seven-perforation propellents with different thermodynamic properties are used. As in Example 2 a second optimization iteration is performed starting from the first iteration's final design. This checks the optimization performance of a different point in a different space than Example 2.

All four examples will address the question of the optimization method's flexibility and ease of use. The first three will also allow a comparison of the effects of a gradually increasing parametric space on the optimization process and projectile performance.

The input files for each example problem and a sample output file are listed in Appendix III. The output file demonstrates the format and calculated results available from IBRGAC.

Each example is organized into the following parts: problem statement, initial and final design table, initial and final performance table, constraint set, ALM iteration history, pressure-time, and pressure-travel charts.

The problem statement covers the conditions of the problem and its objective. Also in the problem statement
is the identification of figure and table numbers appropriate to the problem and the specification of the design vector \bar{X} for the example. Numerically subscripted components of the design vector indicate propellent type in multiple propellent examples. The number of constraints for the problem is also stated.

The initial and final design table shows the original specifications for the propellents used for the example and compares them to the final values obtained by the optimization process. The initial and final performance table compares the velocity and maximum pressures of the initial and final designs. This allows a comparison of the change in performance resulting from the optimization.

The constraint set is taken directly from the subroutine used in the code. This allows all of the constraints in their actual format to be examined. An explanation of each constraint is included in the subroutine comments. The constraint set is generated from Section 4 derivations for different propellent types. All example problems have the pressure (Equation 5.9 and 5.10) and mass (Equation 5.7) constraints included.

The ALM history shows the performance of the optimization method for each example. The number of ALM iterations, the number of function calls, the objective function value (FCOST), and the Lagrange pseudo-objective function value (ALM) are measures of the optimization
method's performance. This allows a comparison of the relative performance of the method in various parametric spaces.

The pressure-time and pressure-travel profiles for the initial and final designs allows a graphic portrayal of the performance of the propellent design and a time history of the projectile's velocity. The pressure-time curve indicates the impulse for the propellent while the pressure-travel curves gives the work performed. An increase in the area under either curve indicates an increase in projectile velocity.

The last figure of each example is a breech pressure comparison graph. It show the difference between the initial and final breech pressure as pressure-travel profiles. This graphically displays the change in work performed on the projectile from initial to final design.

Each example problem and its results are listed in order and are analyzed in Section 7.
Example 1: This example contains two parts. First, the process is started from the "optimized" design from Appendix D of the IBRGAC User's Manual. This is done to check the performance of the optimization scheme against the current design method, as described earlier in this section. Second, the same propellent is used but started at a different point. This is done to compare the optimum design attained from two distinct starting points in the same parametric space. The initial and final design results are given in Table 5.1.1. The initial and final performance values of the optimization are in Table 5.1.2. The set of constraints are stated in Table 5.1.3. The ALM iteration history for Example 1a is given in Figure 5.1.1. The pressure-time and pressure-travel profiles for Example 1a are Figures 5.1.2 and 5.1.3. The pressure differential curve is Figure 5.1.4.

The parametric space for this problem consists of six variables, the five critical dimensions for the seven perforation propellent used and its mass. The design vector \(\bar{X} \) for Example 1 is

\[
\begin{align*}
 x_1 &= L, \\
 x_2 &= P_i, \\
 x_3 &= P_o, \\
 x_4 &= D, \\
 x_5 &= d, \\
 x_6 &= \text{mass}.
\end{align*}
\]

The propellent dimension terms are defined at the beginning of the thesis. There is one equality constraint and 13 inequality constraints.
<table>
<thead>
<tr>
<th>Type</th>
<th>Initial Values</th>
<th>Example 1a</th>
<th>Example 1b</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Perf</td>
<td>Sample</td>
<td>Sample</td>
<td></td>
</tr>
<tr>
<td>Mass (kg)</td>
<td>8.70</td>
<td>8.90</td>
<td></td>
</tr>
<tr>
<td>Dimensions (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>3.175</td>
<td>4.000</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1.702</td>
<td>2.000</td>
<td></td>
</tr>
<tr>
<td>P_i</td>
<td>0.0508</td>
<td>0.0200</td>
<td></td>
</tr>
<tr>
<td>P_o</td>
<td>0.0508</td>
<td>0.0400</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>0.2807</td>
<td>0.4000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Final Values</th>
<th>Example 1a</th>
<th>Example 1b</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Perf</td>
<td>Sample</td>
<td>Sample</td>
<td></td>
</tr>
<tr>
<td>Mass (kg)</td>
<td>8.91</td>
<td>8.94</td>
<td></td>
</tr>
<tr>
<td>Dimensions (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>3.225</td>
<td>4.370</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0.987</td>
<td>1.040</td>
<td></td>
</tr>
<tr>
<td>P_i</td>
<td>0.0108</td>
<td>0.0100</td>
<td></td>
</tr>
<tr>
<td>P_o</td>
<td>0.0208</td>
<td>0.0400</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>0.2507</td>
<td>0.2700</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.1.1 Initial/Final Propellant Values.
Example 1a

<table>
<thead>
<tr>
<th></th>
<th>Initial</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projectile Velocity (m/s)</td>
<td>1398</td>
<td>1408</td>
</tr>
<tr>
<td>Max Breech Pressure (MPa)</td>
<td>346</td>
<td>345</td>
</tr>
<tr>
<td>Max Base Pressure (MPa)</td>
<td>240</td>
<td>237</td>
</tr>
</tbody>
</table>

Example 1b

<table>
<thead>
<tr>
<th></th>
<th>Initial</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projectile Velocity (m/s)</td>
<td>573</td>
<td>1407</td>
</tr>
<tr>
<td>Max Breech Pressure (MPa)</td>
<td>64</td>
<td>345</td>
</tr>
<tr>
<td>Max Base Pressure (MPa)</td>
<td>44</td>
<td>237</td>
</tr>
</tbody>
</table>

Table 5.1.2 Initial/Final Performance Values.
SUBROUTINE FUN_CON7(X,NOVAR)

C THIS IS THE CONSTRAINT SET FOR EXAMPLE 1. 7 PERFORATION GRAIN.
C
C FH = 1
C FG = 13

C**
C*XINCLUDE 'declarations.ins.fl'

COMMON/limits/dpmxba,dpmaxbr,pmxba,d_pmaxba,d_l,total_vol_prop,
+ cham_vol
REAL*4 X(NOVAR),dpmaxba,dpmaxbr,pmxba,d_l,pmx,pmx1,cham_vol,
+ total_vol_prop
C
C FOR 7 PERF PROPELLENT..dimensions..
C
C fh1 :max breech pressure constraint Pa
C fg1 :prop grain length .GT. 0 constraint m
C fg2 :inner perf diam .GT. 0 constraint m
C fg3 :outer perf diam .GT. 0 constraint m
C fg4 :prop grain diam .GT. 0 constraint m
C fg5 :dist between perf centers .GT. 0 constraint m
C fg6 :mass .GT. than 0 constraint kg
C fg7 :prop diam .GT. (inner+outer perf diams) constraint
C fg8 :dist between perf centers .GT. (inner + outer radius) constraint
C fg9 :length .GT. diameter constraint
C fg10 :max length for the cord 6cm
C fg11 :equilateral triangle requirement
C fg12 :max base pressure constraint
C fg13 :maximum volume of propellant cannot exceed the space in the chamber

FG(1) = 1000*(-X(1))
FG(2) = 1000*(-X(2))
FG(3) = 1000*(-X(3))
FG(4) = 1000*(-X(4))
FG(5) = 1000*(-X(5))
FG(6) = 1000*(-X(6))
FG(7) = 1000*(2*X(3)/X(4) + X(2)/X(4) - 1.0)
FG(8) = 1000*(5*X(3)/X(5) + 5*X(2)/X(5) - 1.0)
FG(9) = 1000*(X(4)/X(1) - 1.0)
FG(10) = 1000*(X(1)/.06 - 1.0)
FG(11) = 1000*(X(5)/X(3) - 1.0)

pmax = 3.46e8
FH(1) = pmxbr/pm1 - 1.0

C Determine acceptable pressure ..
if (dpmaxba.gt.1.5.and.dpmaxba.le.4.0) then
 pmax = -8.320e7*dpmaxba + 4.708e8
else if (dpmaxba.gt.4.0.and.dpmaxba.le.4.57) then
 pmax = -9.123e7*dpmaxba + 5.029e8
else if (dpmaxba.gt.4.57) then
 pmax = 8.6e8
end if
FG(12) = 5*(pmxba/pm1 - 1.0)
FG(13) = 100*(total_vol_prop/cham_vol - 1.0)

RETURN
END
C END OF FUN_CON..

Table 5.1.3 Example 1 Constraint Set.
NUMBER OF DESIGN VARIABLES : 6
NUMBER OF EQUALITY CONSTRAINTS : 1
NUMBER OF INEQUALITY CONSTRAINTS : 13

YOU HAVE SELECTED POWELLS METHOD

AT ITERATION NUMBER 1 AND CALL NUMBER 48
CURRENT FCOST = -1545.046
CURRENT ALM = -1499.489

AT ITERATION NUMBER 2 AND CALL NUMBER 79
CURRENT FCOST = -1501.847
CURRENT ALM = -1451.523

AT ITERATION NUMBER 3 AND CALL NUMBER 110
CURRENT FCOST = -1500.726
CURRENT ALM = -1409.354

AT ITERATION NUMBER 4 AND CALL NUMBER 162
CURRENT FCOST = -1394.435
CURRENT ALM = -1401.103

AT ITERATION NUMBER 5 AND CALL NUMBER 213
CURRENT FCOST = -1415.718
CURRENT ALM = -1405.178

AT ITERATION NUMBER 6 AND CALL NUMBER 248
CURRENT FCOST = -1408.722
CURRENT ALM = -1405.803

AT ITERATION NUMBER 7 AND CALL NUMBER 300
CURRENT FCOST = -1409.944
CURRENT ALM = -1407.968

AT ITERATION NUMBER 8 AND CALL NUMBER 335
CURRENT FCOST = -1404.827
CURRENT ALM = -1407.929

AT ITERATION NUMBER 9 AND CALL NUMBER 389
CURRENT FCOST = -1409.682
CURRENT ALM = -1408.929

AT ITERATION NUMBER 10 AND CALL NUMBER 443
CURRENT FCOST = -1408.634
CURRENT ALM = -1408.958

AT ITERATION NUMBER 11 AND CALL NUMBER 480
CURRENT FCOST = -1408.864
CURRENT ALM = -1408.933

AT ITERATION NUMBER 12 AND CALL NUMBER 517
CURRENT FCOST = -1409.094
CURRENT ALM = -1408.939

AT ITERATION NUMBER 13 AND CALL NUMBER 554
CURRENT FCOST = -1408.864
CURRENT ALM = -1408.946

AT ITERATION NUMBER 14 AND CALL NUMBER 573
CURRENT FCOST = -1408.864
CURRENT ALM = -1408.884

THE FINAL FUNCTION VALUE IS (m/s): 1408.864
THE 6 VARIABLE VALUES ARE (cm & gm):
X(1) = 3.22500
X(2) = 0.01080
X(3) = 0.02080
X(4) = 0.98709
X(5) = 0.25072
X(6) = 891.00050

THE TOTAL NUMBER OF FUNCTION CALLS WAS : 573
THE FINAL ALM FUNCTION VALUE WAS : -1408.884

Figure 5.1.1 Example 1a ALM Iteration History.
Table 5.1.2 Example 1a Pressure-Time Profiles.
Figure 5.1.3 Example 1a Pressure-Travel Profiles.
Breech Pressure Differential

Example 1a

Figure 5.1.4 Example 1a Breech Pressure Differential.
Example 2: This example expands the parametric space of the first problem to include both a one and a seven perforation propellant. This gradual increase allows analysis of the optimization method in steps. A second optimization is started from the final design of the first optimization. This will check the ability of the optimization process in finding the best design. The initial and final design results are given in Table 5.2.1. The initial and final performance values of the optimization are in Table 5.2.2. The set of constraints are stated in Table 5.2.3. The ALM iteration histories for both parts of Example 2 are given in Figure 5.2.1 and 5.2.2. The pressure-time and pressure-travel profiles for Example 2 are Figure 5.2.3 and 5.2.4. The pressure differential curve is Figure 5.2.5.

The parametric space for this problem consists ten variables, the five critical dimensions for the seven perforation propellant, the three critical dimensions of the one perforation propellant, and their masses. The design vector \(\bar{X} \) for Example 2 is

\[
\begin{align*}
X_1 & = L_1', \\
X_2 & = P_{11}', \\
X_3 & = P_{01}', \\
X_4 & = D_1', \\
X_5 & = d_1, \\
X_6 & = L_2', \\
X_7 & = P_{12}', \\
X_8 & = D_2', \\
X_9 & = \text{mass}_1', \\
X_{10} & = \text{mass}_2'. \\
\end{align*}
\]

The propellant dimension terms are defined at the beginning.
of the thesis. The subscript 1 indicates the seven perforation and the 2 indicates the one perforation propellent. There is one equality constraint and 19 inequality constraints.
Table 5.2.1 Initial/Final Propellent Values.

<table>
<thead>
<tr>
<th>Type</th>
<th>Sample Propellant 1</th>
<th>Sample Propellant 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Perf</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Mass (kg)</td>
<td>4.35</td>
<td>4.35</td>
</tr>
<tr>
<td>Dimensions (cm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>3.175</td>
<td>3.175</td>
</tr>
<tr>
<td>D</td>
<td>1.702</td>
<td>1.702</td>
</tr>
<tr>
<td>P_i</td>
<td>0.0508</td>
<td>0.0508</td>
</tr>
<tr>
<td>P_o</td>
<td>0.0508</td>
<td>---</td>
</tr>
<tr>
<td>d</td>
<td>0.2807</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Sample Propellant 1</th>
<th>Sample Propellant 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Perf</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Mass (kg)</td>
<td>4.22</td>
<td>3.85</td>
</tr>
<tr>
<td>Dimensions (cm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>5.560</td>
<td>5.240</td>
</tr>
<tr>
<td>D</td>
<td>0.8321</td>
<td>0.4946</td>
</tr>
<tr>
<td>P_i</td>
<td>0.0183</td>
<td>0.0000</td>
</tr>
<tr>
<td>P_o</td>
<td>0.0008</td>
<td>---</td>
</tr>
<tr>
<td>d</td>
<td>0.2182</td>
<td>---</td>
</tr>
</tbody>
</table>
Example 2

<table>
<thead>
<tr>
<th></th>
<th>Initial</th>
<th>Intermediate</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projectile Velocity (m/s)</td>
<td>1104</td>
<td>1397</td>
<td>1430</td>
</tr>
<tr>
<td>Max Breech Pressure (MPa)</td>
<td>211</td>
<td>346</td>
<td>340</td>
</tr>
<tr>
<td>Max Base Pressure (MPa)</td>
<td>142</td>
<td>236</td>
<td>235</td>
</tr>
</tbody>
</table>

Table 5.2.2 Initial/Final Performance Values.
SUBROUTINE FUN CON(X,NOVAR)

C THIS IS THE CONSTRAINT SET FOR EXAMPLE 2.

%INCLUDE 'declarations.ins.fl'

COMMON/limits/dpmnaxba,dpmnaxbr,pmaxbr,pmaxba,d_L,tot_all_voL,
+ chain_voL,REAL*4 X(NOVAR),dprnaxba,dprnaxbr,pmaxbr,pmaxba,d_L,pmax,
+ cham_voL_prop,

C FOR 7 PERF PROPELLENTS..........................

c fg1 is the prop grain length .GT. 0 constraint
c fg2 is the inner perf diam .GT. 0 constraint
c fg3 is the outer perf diam .GT. 0 constraint
c fg4 is the prop grain diam .GT. 0 constraint
c fg5 is the dist between perf centers .GT. 0 constraint
c fg6 is the prop diam .GT. (inner+outer perf diams) constraint
c fg7 is the dist between perf centers .GT. (inner + outer radius) constraint
c fg8 is the length .GT. diameter constraint
c fg9 is the max length for the cord 6cm.
c fg10 is the equilateral triangle requirement

FG(1) = 1000*(-x(1))
FG(2) = 1000*(-x(2))
FG(3) = 1000*(-x(3))
FG(4) = 1000*(-x(4))
FG(5) = 1000*(-x(5))
FG(6) = 100*(2*x(3)/x(4) + x(2)/x(4) - 1.0)
FG(7) = 100*(.5*x(3)/x(5) + .5*x(2)/x(5) - 1.0)
FG(8) = 100*(x(4) - x(1))
FG(9) = 100*(x(4)/x(1) - 1.0)
FG(10) = 100*(x(5)/x(3) - 1.0)

c FOR 1 PERF PROPELLENTS IS

c fg11 is the .gt. zero for length
c fg12 is the .gt. zero for perforation
c fg13 is the .gt. zero for diameter
c fg14 is the max diameter constraint
c fg15 is the perf size must be less than the diameter
c fg16 is that the length cannot be less than the diameter
c fg17 is the max length for the cord 6cm.

FG(11) = 1000.*(-x(5))
FG(12) = 1000.*(-x(7))
FG(13) = 1000.*(-x(8))
FG(14) = 100.*(x(8)/.04 - 1.0)
FG(15) = 100.*(x(7)/x(8) - 1.0)
FG(16) = 100.*(x(8)/x(6) - 1.0)
FG(17) = 100.*(x(6)/.06 - 1.0)

c Determine acceptable pressures........................

c fh1 is the max base pressure constraint
c fg18 is the max brch pressure constraint

pmax = 3.48e8

FH(1) = pmaxbr/pmax - 1.0
if (dpmaxba.gt.1.5.and.dpmaxba.le.4.0) then
pmax = -8.320e7*dpmaxba + 4.708e8
else if (dpmaxba.gt.4.0.and.dpmaxba.le.4.57) then
pmax = -9.123e7*dpmaxba + 5.029e8
else if (dpmaxba.gt.4.57) then
pmax = .86e8
end if
FG(18) = 5*(pmaxba/pmax - 1.0)

c MASS CONSTRAINT..

FG(19) = 100*(total_voL_prop/cham_voL - 1.0)

RETURN
END

Table 5.2.3 Example 2 Constraint Set.

76
NUMBER OF DESIGN VARIABLES : 10
NUMBER OF EQUALITY CONSTRAINTS : 1
NUMBER OF INEQUALITY CONSTRAINTS : 19

YOU HAVE SELECTED Hooke-Jeeves
SEARCH DELTA = 1.00000000E-04
ACCEL FACTOR = 2.500000

AT ITERATION NUMBER 1 AND CALL NUMBER 80
CURRENT FCOST = -1329.755
CURRENT ALM = -1329.787

AT ITERATION NUMBER 2 AND CALL NUMBER 160
CURRENT FCOST = -1466.381
CURRENT ALM = -1423.137

AT ITERATION NUMBER 3 AND CALL NUMBER 241
CURRENT FCOST = -1354.288
CURRENT ALM = -1346.637

AT ITERATION NUMBER 4 AND CALL NUMBER 352
CURRENT FCOST = -1389.058
CURRENT ALM = -1360.571

AT ITERATION NUMBER 5 AND CALL NUMBER 435
CURRENT FCOST = -1353.227
CURRENT ALM = -1365.933

AT ITERATION NUMBER 6 AND CALL NUMBER 489
CURRENT FCOST = -1381.153
CURRENT ALM = -1373.239

AT ITERATION NUMBER 7 AND CALL NUMBER 575
CURRENT FCOST = -1373.145
CURRENT ALM = -1371.509

AT ITERATION NUMBER 8 AND CALL NUMBER 662
CURRENT FCOST = -1378.692
CURRENT ALM = -1380.083

AT ITERATION NUMBER 9 AND CALL NUMBER 779
CURRENT FCOST = -1391.755
CURRENT ALM = -1393.354

THE FINAL FUNCTION VALUE IS (m/s): 1391.755
THE 10 VARIABLE VALUES ARE (m & kg):
X(1) = 0.031200
X(2) = 0.000183
X(3) = 0.000458
X(4) = 0.009566
X(5) = 0.002532
X(6) = 0.027800
X(7) = 0.000058
X(8) = 0.006571
X(9) = 4.360002
X(10) = 4.144999

THE TOTAL NUMBER OF FUNCTION CALLS WAS : 836
THE FINAL ALM FUNCTION VALUE WAS : -1393.354

Figure 5.2.1 Example 2, Part 1 ALM Iteration History.
NUMBER OF DESIGN VARIABLES : 10
NUMBER OF EQUALITY CONSTRAINTS : 1
NUMBER OF INEQUALITY CONSTRAINTS : 19

YOU HAVE SELECTED POWELL'S METHOD

AT ITERATION NUMBER 1 AND CALL NUMBER 81
CURRENT FCOST = -1564.146
CURRENT ALM = -1528.375

AT ITERATION NUMBER 2 AND CALL NUMBER 134
CURRENT FCOST = -1548.266
CURRENT ALM = -1465.383

AT ITERATION NUMBER 3 AND CALL NUMBER 215
CURRENT FCOST = -1447.220
CURRENT ALM = -1404.940

AT ITERATION NUMBER 4 AND CALL NUMBER 272
CURRENT FCOST = -1418.827
CURRENT ALM = -1399.732

AT ITERATION NUMBER 5 AND CALL NUMBER 331
CURRENT FCOST = -1403.700
CURRENT ALM = -1401.875

AT ITERATION NUMBER 6 AND CALL NUMBER 447
CURRENT FCOST = -1421.262
CURRENT ALM = -1420.808

AT ITERATION NUMBER 7 AND CALL NUMBER 616
CURRENT FCOST = -1427.592
CURRENT ALM = -1428.370

AT ITERATION NUMBER 8 AND CALL NUMBER 790
CURRENT FCOST = -1430.584
CURRENT ALM = -1429.993

AT ITERATION NUMBER 9 AND CALL NUMBER 935
CURRENT FCOST = -1430.577
CURRENT ALM = -1430.799

AT ITERATION NUMBER 10 AND CALL NUMBER 1024
CURRENT FCOST = -1430.334
CURRENT ALM = -1430.790

THE FINAL FUNCTION VALUE IS (m/s): 1430.334
THE 10 VARIABLE VALUES ARE (m & kg):
X(1) = 0.055600
X(2) = 0.000183
X(3) = 0.000008
X(4) = 0.008321
X(5) = 0.002182
X(6) = 0.052400
X(7) = 0.000000
X(8) = 0.004946
X(9) = 4.217497
X(10) = 3.849896

THE TOTAL NUMBER OF FUNCTION CALLS WAS : 1024
THE FINAL ALM FUNCTION VALUE WAS : -1430.790

Figure 5.2.2 Example 2, Part 2 ALM Iteration History.
Pressure-Time Profile
Example 2, Initial

Pressure-Time Profile
Example 2, Optimized

Figure 5.2.3 Example 2 Pressure-Time Profiles.
Figure 5.2.4 Example 2 Pressure-Travel Profiles.
Figure 5.2.5 Example 2 Breech Pressure Differential.
Example 3: This example further expands the parametric space of the first and second problem to include a zero, one, and seven perforation propellent. This final increase further examines the performance of the optimization method in an even larger parametric space. The initial and final design results are given in Table 5.3.1. The initial and final performance values of the optimization are in Table 5.3.2. The set of constraints are stated in Table 5.3.3. The ALM iteration history for Example 3 is given in Figure 5.3.1. The pressure-time and pressure-travel profiles for Example 3 are Figure 5.3.2 and 5.3.3. The pressure differential curve is Figure 5.3.4.

The parametric space for this problem consists thirteen variables, the two critical dimensions for the zero perforation propellent, the three critical dimensions of the one perforation propellent, the five critical dimensions for the seven perforation propellent, and their masses. The design vector \bar{X} for Example 3 is

$$
X_1 = L_1, \\
X_2 = D_1, \\
X_3 = L_2, \\
X_4 = P_{i2}, \\
X_5 = D_2, \\
X_6 = L_3, \\
X_7 = P_{i3}, \\
X_8 = P_{o3}, \\
X_9 = D_3, \\
X_{10} = d_3, \\
X_{11} = \text{mass}_1, \\
X_{12} = \text{mass}_2, \\
X_{13} = \text{mass}_3.
$$

The propellent dimension terms are defined at the beginning
of the thesis. The subscript 1 indicates the zero perforation, the 2 indicates the one perforation propellant, and the 3 indicates the seven perforation propellant. There is one equality constraint and 25 inequality constraints.
<table>
<thead>
<tr>
<th>Type</th>
<th>Initial Values</th>
<th>Example 3</th>
<th>Propellant 1</th>
<th>Propellant 2</th>
<th>Propellant 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Perf</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass (kg)</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensions (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>3.175</td>
<td>3.175</td>
<td>3.175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1.702</td>
<td>1.702</td>
<td>1.702</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_i</td>
<td>---</td>
<td>0.0508</td>
<td>0.0508</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_o</td>
<td>---</td>
<td>---</td>
<td>0.0508</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>---</td>
<td>---</td>
<td>0.2807</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Final Values</th>
<th>Example 3</th>
<th>Propellant 1</th>
<th>Propellant 2</th>
<th>Propellant 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Perf</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass (kg)</td>
<td>.99</td>
<td>3.63</td>
<td>4.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensions (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>2.494</td>
<td>5.943</td>
<td>5.996</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1.285</td>
<td>.580</td>
<td>5.996</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_i</td>
<td>---</td>
<td>.0000</td>
<td>.0018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_o</td>
<td>---</td>
<td>---</td>
<td>.0018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>---</td>
<td>---</td>
<td>.2170</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5.3.1 Initial/Final Propellent Values.
Example 3

<table>
<thead>
<tr>
<th></th>
<th>Initial</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projectile Velocity (m/s)</td>
<td>1049</td>
<td>1368</td>
</tr>
<tr>
<td>Max Breech Pressure (MPa)</td>
<td>218</td>
<td>346</td>
</tr>
<tr>
<td>Max Base Pressure (MPa)</td>
<td>149</td>
<td>239</td>
</tr>
</tbody>
</table>

Table 5.3.2 Initial/Final Performance Values.
SUBROUTINE FUN_CONV(X,NOVAR)
C THIS IS THE CONSTRAINT SET FOR EXAMPLE 3. Fm = 1 FG = 25
C INCLUDE 'declarations.ins.f'
COMMON/limits/dpmaxba,dpmaxbr,pmaxba,pmaxbr,pmaxba,d_l,total_vol_prop,+
chain_vol
REAL*4 X(NOVAR),dpmaxba,dpmaxbr,pmaxba,d_l,pmax,cham_vol,+
total_vol_prop
C FOR 0 PERF PROPELLENTdimensions....
c fg1 :prop grain length .GT. 0 constraint m
C fg2 :prop grain dia .GT. 0 constraint m
C fg3 :mass .GT. than 0 constraint kg
C fg4 :length .GT. diameter constraint
C fg5 :max length for the cord 6cm.
 FG(1) = 1000*(-x(1))
 FG(2) = 100*(-x(2))
 FG(3) = 100*(-x(1))
 FG(4) = 100*(-x(2)/x(1) - 1.0)
 FG(5) = 100*(x(1)/.06 - 1.0)
C FOR 1 PERF PROPELLENTdimensions....
c fg6 :prop grain length .GT. 0 constraint m
C fg7 :inner perf dia .GT. 0 constraint m
C fg8 :prop grain dia .GT. 0 constraint m
C fg9 :mass .GT. than 0 constraint kg
C fg10 :prop dia .GT. inner perf dia constraint
C fg11 :length .GT. diameter constraint
C fg12 :max length for the cord 6cm.
 FG(6) = 1000*(-x(3))
 FG(7) = 1000*(-x(4))
 FG(8) = 1000*(-x(5))
 FG(9) = 100*(-x(12))
 FG(10) = 100*(-x(4)/x(5) - 1.0)
 FG(11) = 100*(-x(5)/x(3) - 1.0)
 FG(12) = 100*(-x(3)/.06 - 1.0)
C FOR 7 PERF PROPELLENTdimensions....
c fg13 :prop grain length .GT. 0 constraint m
C fg14 :inner perf dia .GT. 0 constraint m
C fg15 :outer perf dia .GT. 0 constraint m
C fg16 :prop grain dia .GT. 0 constraint m
C fg17 :dist between perf centers .GT. 0 constraint
C fg18 :mass .GT. than 0 constraint kg
C fg19 :prop dia .GT. (inner+outer perf diams) constraint
C fg20 :dist between perf centers .GT. (inner + outer radius) constraint
C fg21 :length .GT. diameter constraint
C fg22 :max length for the cord 6cm.
C fg23 :equilateral triangle requirement.
c fg24 :max base pressure constraint
C fg25 :maximum volume of propellent cannot exceed the space in the chamber
 FG(13) = 1000*(-x(6))
 FG(14) = 1000*(-x(7))
 FG(15) = 1000*(-x(8))
 FG(16) = 1000*(-x(9))
 FG(17) = 1000*(-x(10))
 FG(18) = 100*(-x(13))
 FG(19) = 100*(2*x(8)/x(9) + x(7)/x(9) - 1.0)
 FG(20) = 100*(2.5*x(8)/x(10) + .5*x(7)/x(10) - 1.0)
 FG(21) = 100*(-x(9)/x(6) - 1.0)
 FG(22) = 100*(-x(6)/.06 - 1.0)
 FG(23) = 100*(3.0*x(8)/(4.0*x(9)) + x(7)/(4.0*x(9)) - 1.0)
c fh1 :max breech pressure constraint
 pmax = 3.46e8
 FH(1) = pmaxbr/pmax - 1.0
 if (dpmaxba.gt.1.5.and.dpmaxba.le.4.0) then
 pmax = -8.320e7*dpmaxba + 4.708e8
 else if (dpmaxba.gt.4.0.and.dpmaxba.le.4.57) then
 pmax = -9.123e7*dpmaxba + 19.708e8
 else if (dpmaxba.gt.4.57) then
 pmax = .8e8
 end if
 FG(24) = 5*(pmaxba/pmax - 1.0)
 FG(25) = 100*(total_vol_prop/cham_vol - 1.0)
RETURN
END
Table 5.3.3 Example 3 Constraint Set.
NUMBER OF DESIGN VARIABLES: 13
NUMBER OF EQUALITY CONSTRAINTS: 1
NUMBER OF INEQUALITY CONSTRAINTS: 25

YOU HAVE SELECTED HOOKE-JEEVES
SEARCH DELTA = 1.0000000E-04
ACCEL FACTOR = 2.500000

AT ITERATION NUMBER 1 AND CALL NUMBER 101
CURRENT FCOST = -1491.332
CURRENT ALM = -1461.602

AT ITERATION NUMBER 2 AND CALL NUMBER 167
CURRENT FCOST = -1467.295
CURRENT ALM = -1404.639

AT ITERATION NUMBER 3 AND CALL NUMBER 236
CURRENT FCOST = -1417.090
CURRENT ALM = -1361.723

AT ITERATION NUMBER 4 AND CALL NUMBER 306
CURRENT FCOST = -1366.709
CURRENT ALM = -1355.552

AT ITERATION NUMBER 5 AND CALL NUMBER 375
CURRENT FCOST = -1361.439
CURRENT ALM = -1357.584

AT ITERATION NUMBER 6 AND CALL NUMBER 519
CURRENT FCOST = -1364.183
CURRENT ALM = -1365.158

AT ITERATION NUMBER 7 AND CALL NUMBER 664
CURRENT FCOST = -1365.460
CURRENT ALM = -1366.705

AT ITERATION NUMBER 8 AND CALL NUMBER 777
CURRENT FCOST = -1367.985
CURRENT ALM = -1367.011

AT ITERATION NUMBER 9 AND CALL NUMBER 853
CURRENT FCOST = -1367.394
CURRENT ALM = -1366.895

AT ITERATION NUMBER 10 AND CALL NUMBER 930
CURRENT FCOST = -1366.816
CURRENT ALM = -1366.905

AT ITERATION NUMBER 11 AND CALL NUMBER 1121
CURRENT FCOST = -1367.399
CURRENT ALM = -1367.278

AT ITERATION NUMBER 12 AND CALL NUMBER 1316
CURRENT FCOST = -1367.478
CURRENT ALM = -1367.605

AT ITERATION NUMBER 13 AND CALL NUMBER 1374
CURRENT FCOST = -1367.565
CURRENT ALM = -1367.590

THE FINAL FUNCTION VALUE IS (m/s): 1367.565
THE 13 VARIABLE VALUES ARE (m & kg):
X(1) = 0.024935
X(2) = 0.012850
X(3) = 0.059425
X(4) = 0.000000
X(5) = 0.005798
X(6) = 0.059960
X(7) = 0.000018
X(8) = 0.000018
X(9) = 0.008613
X(10) = 0.002171
X(11) = 0.992000
X(12) = 3.625999
X(13) = 4.130000

THE TOTAL NUMBER OF FUNCTION CALLS WAS: 1394
THE FINAL ALM FUNCTION VALUE WAS: -1367.590

Figure 5.3.1 Example 3 ALM Iteration History.
Figure 5.3.2 Example 3 Pressure-Time Profiles.
Pressure-Travel Profile
Example 3, Initial

Pressure-Travel Profile
Example 3, Optimized

Figure 5.3.3 Example 3 Pressure-Travel Profiles.
Breech Pressure Differential
Example 3

Figure 5.3.4 Example 3 Breech Pressure Differential.
Example 4: This example demonstrates the optimization of two propellents with different thermodynamic characteristics. Two seven perforations propellents are used. This allows the comparison of the optimization method in a different parametric space. Just like the second example, a second optimization is started from the final design of the first optimization. This checks the ability of the optimization process in finding the best design. The initial and final design results are given in Table 5.4.1. The initial and final performance values of the optimization are in Table 5.4.2. The set of constraints are stated in Table 5.4.3. The ALM iteration histories for both parts of Example 4 are given in Figure 5.4.1 and 5.4.2. The pressure-time and pressure-travel profiles for Example 4 are Figure 5.4.3 and 5.4.4. The pressure differential curve is Figure 5.4.5.

The parametric space for this problem consists twelve variables, the five critical dimensions for the first seven perforation propellent, the five critical dimensions for the second seven perforation propellent, and their masses. The design vector \bar{x} for Example 4 is

\[
\begin{align*}
x_1 &= L_1, \\
x_2 &= P_{i1}, \\
x_3 &= P_{o1}, \\
x_4 &= D_{i1}, \\
x_5 &= d_{i1}, \\
x_6 &= L_{i2}, \\
x_7 &= P_{i2}, \\
x_8 &= P_{o2}, \\
x_9 &= D_{i2}, \\
x_{10} &= d_{i2}, \\
\end{align*}
\]
\[x_{11} = \text{mass}_1, \]
\[x_{12} = \text{mass}_2. \]

The propellant dimension terms are defined at the beginning of the thesis. The subscript 1 indicates the first seven perforation propellant and the 2 indicates the second seven perforation propellant. There is one equality constraint and 24 inequality constraints.
Initial Values Example 4

<table>
<thead>
<tr>
<th>Type</th>
<th>Sample</th>
<th>Propellant 1</th>
<th>Propellant 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Perf</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Mass (kg)</td>
<td>4.35</td>
<td>4.35</td>
<td></td>
</tr>
<tr>
<td>Dimensions (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>3.175</td>
<td>3.175</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1.702</td>
<td>1.702</td>
<td></td>
</tr>
<tr>
<td>P₁</td>
<td>.0508</td>
<td>.0508</td>
<td></td>
</tr>
<tr>
<td>P₀</td>
<td>.0508</td>
<td>.0508</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>.2807</td>
<td>.2807</td>
<td></td>
</tr>
</tbody>
</table>

Final Values Example 4

<table>
<thead>
<tr>
<th>Type</th>
<th>Sample</th>
<th>Propellant 1</th>
<th>Propellant 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. Perf</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Mass (kg)</td>
<td>5.37</td>
<td>3.20</td>
<td></td>
</tr>
<tr>
<td>Dimensions (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>3.576</td>
<td>3.548</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>.9821</td>
<td>1.002</td>
<td></td>
</tr>
<tr>
<td>P₁</td>
<td>.0800</td>
<td>.0383</td>
<td></td>
</tr>
<tr>
<td>P₀</td>
<td>.0400</td>
<td>.0508</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>.2607</td>
<td>.2707</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.4.1 Initial/Final Propellent Values.
Example 4

<table>
<thead>
<tr>
<th></th>
<th>Initial</th>
<th>Intermediate</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projectile Velocity (m/s)</td>
<td>1341</td>
<td>1391</td>
<td>1395</td>
</tr>
<tr>
<td>Max Breech Pressure (MPa)</td>
<td>325</td>
<td>346</td>
<td>345</td>
</tr>
<tr>
<td>Max Base Pressure (MPa)</td>
<td>226</td>
<td>234</td>
<td>234</td>
</tr>
</tbody>
</table>

Table 5.4.2 Initial/Final Performance Values.
C***
C SUBROUTINE FUN_CON(X,NVAR)
C***
C THIS IS THE CONSTRAINT SET FOR EXAMPLE 4
C***
C INCLUDE 'declarations_ine tù'

COMMON/limits/dpmaxba,dpmaxbr,pmaxba,pmaxbr,d_i,total_vol_prop,
+ cham_vol
REAL*4 X(NGVAR),dpmaxba,dpmaxbr,pmaxba,pmaxbr,d_i,pmax, cham_vol,
+ total_vol_prop
C FOR SAMPLE 7 PERF PROPELLENT
C...c
C fg1 is the prop grain length .GT. 0 constraint
C fg2 is the inner perf diam .GT. 0 constraint
C fg3 is the outer perf diam .GT. 0 constraint
C fg4 is the prop grain diam .GT. 0 constraint
C fg5 is the dist between perf centers .GT. 0 constraint
C fg6 is the mass .GT. 0 constraint
C fg7 is the prop diam .GT. (inner + outer perf diams) constraint
C fg8 is the dist between perf centers .GT. (inner + outer radius) constraint
C fg9 is the length .GT. diameter constraint
C fg10 is the max length for the cord 6cm
C fg11 is the equilateral triangle requirement
FG(1) = 1000*(-x(1))
FG(2) = 1000*(-x(2))
FG(3) = 1000*(-x(3))
FG(4) = 1000*(-x(4))
FG(5) = 1000*(-x(5))
FG(6) = 1000*(-x(11))
FG(7) = 1000*(x(3)/x(4) - 1.0)
FG(8) = 1000*(-x(3)/x(4) + x(2)/x(4) - 1.0)
FG(9) = 1000*(x(4)/x(1) - 1.0)
FG(10) = 1000*(x(6)/x(1) - 1.0)
FG(11) = 1000*(x(3)/x(3) - 1.0)
C FOR M8 7 PERF PROPELLENTS IS
C...c
C fg12 is the prop grain length .GT. 0 constraint
C fg13 is the inner perf diam .GT. 0 constraint
C fg14 is the outer perf diam .GT. 0 constraint
C fg15 is the prop grain diam .GT. 0 constraint
C fg16 is the dist between perf centers .GT. 0 constraint
C fg17 is the mass .GT. 0 constraint
C fg18 is the prop diam .GT. (inner + outer perf diams) constraint
C fg19 is the dist between perf centers .GT. (inner + outer radius) constraint
C fg20 is the length .GT. diameter constraint
C fg21 is the max length for the cord 6cm.
C fg22 is the equilateral triangle requirement
C fg23 is the max base pressure constraint
C fh1 is the max brch pressure constraint
FG(12) = 1000*(-x(6))
FG(13) = 1000*(-x(7))
FG(14) = 1000*(-x(8))
FG(15) = 1000*(-x(9))
FG(16) = 1000*(-x(10))
FG(17) = 1000*(x(12))
FG(18) = 1000*(-x(8)/x(9) + x(7)/x(9) - 1.0)
FG(19) = 1000*(-x(8)/x(10) + x(7)/x(10) - 1.0)
FG(20) = 1000*(-x(9)/x(6) - 1.0)
FG(21) = 1000*(-x(6)/.06 - 1.0)
FG(22) = 1000*(-x(10)/x(8) - 1.0)
C Determine acceptable pressures
pmax = 3.46e8
FH(1) = pmaxbr/pmax - 1.0
if (dpmaxba.gt.1.5.and.dpmaxba.le.4.0) then
pmax = -8.320e7*dpmaxba + 4.708e8
else if (dpmaxba.gt.4.0.and.dpmaxba.le.4.57) then
pmax = -9.123e7*dpmaxba + 5.029e8
else if (dpmaxba.gt.4.57) then
pmax = .86e8
end if
FG(23) = 5*(pmaxba/pmax - 1.0)
FG(24) = 100*(total_vol_prop/cham_vol - 1.0)
RETURN
END

Table 5.4.3 Example 4 Constraint Set.
NUMBER OF DESIGN VARIABLES : 12
NUMBER OF EQUALITY CONSTRAINTS : 1
NUMBER OF INEQUALITY CONSTRAINTS : 24

YOU HAVE SELECTED HOOKE-JEEVES
SEARCH DELTA = 1.0000000E-04
ACCEL FACTOR = 2.500000

AT ITERATION NUMBER 1 AND CALL NUMBER 92
CURRENT FCOST = -1519.152
CURRENT ALM = -1487.421

AT ITERATION NUMBER 2 AND CALL NUMBER 155
CURRENT FCOST = -1460.552
CURRENT ALM = -1419.600

AT ITERATION NUMBER 3 AND CALL NUMBER 217
CURRENT FCOST = -1423.870
CURRENT ALM = -1374.297

AT ITERATION NUMBER 4 AND CALL NUMBER 279
CURRENT FCOST = -1371.400
CURRENT ALM = -1359.452

AT ITERATION NUMBER 5 AND CALL NUMBER 381
CURRENT FCOST = -1367.596
CURRENT ALM = -1365.239

AT ITERATION NUMBER 6 AND CALL NUMBER 483
CURRENT FCOST = -1365.586
CURRENT ALM = -1367.228

AT ITERATION NUMBER 7 AND CALL NUMBER 620
CURRENT FCOST = -1368.504
CURRENT ALM = -1366.951

AT ITERATION NUMBER 8 AND CALL NUMBER 827
CURRENT FCOST = -1377.971
CURRENT ALM = -1378.822

AT ITERATION NUMBER 9 AND CALL NUMBER 1039
CURRENT FCOST = -1392.342
CURRENT ALM = -1391.591

AT ITERATION NUMBER 10 AND CALL NUMBER 1144
CURRENT FCOST = -1391.594
CURRENT ALM = -1391.761

THE FINAL FUNCTION VALUE IS (m/s): 1391.594
THE 12 VARIABLE VALUES ARE (m & kg):
X(1) = 0.035075
X(2) = 0.000233
X(3) = 0.000458
X(4) = 0.009871
X(5) = 0.002607
X(6) = 0.000983
X(7) = 0.000458
X(8) = 0.000000
X(9) = 0.010621
X(10) = 0.002857
X(11) = 5.323147
X(12) = 3.254370

THE TOTAL NUMBER OF FUNCTION CALLS WAS : 1144
THE FINAL ALM FUNCTION VALUE WAS : -1391.761

Figure 5.4.1 Example 4, Part 1 ALM Iteration History.
NUM5ER OF DESIGN VARIABLES: 6
NUMBER OF EQUALITY CONSTRAINTS: 1
NUMBER OF INEQUALITY CONSTRAINTS: 13

YOU HAVE SELECTED POWELLS METHOD

AT ITERATION NUMBER 1 AND CALL NUMBER 95
CURRENT FCOST = -1542.902
PREVIOUS FCOST = 1.0000000E-06
CURRENT ALM = -1501.385
PREVIOUS ALM = 1.0000000E-06

AT ITERATION NUMBER 2 AND CALL NUMBER 158
CURRENT FCOST = -1502.262
PREVIOUS FCOST = -1542.902
CURRENT ALM = -1442.825
PREVIOUS ALM = -1501.385

AT ITERATION NUMBER 3 AND CALL NUMBER 222
CURRENT FCOST = -1443.458
PREVIOUS FCOST = -1502.262
CURRENT ALM = -1402.508
PREVIOUS ALM = -1442.825

AT ITERATION NUMBER 4 AND CALL NUMBER 291
CURRENT FCOST = -1407.329
PREVIOUS FCOST = -1443.458
CURRENT ALM = -1394.635
PREVIOUS ALM = -1402.508

AT ITERATION NUMBER 5 AND CALL NUMBER 362
CURRENT FCOST = -1394.807
PREVIOUS FCOST = -1407.329
CURRENT ALM = -1393.702
PREVIOUS ALM = -1394.635

AT ITERATION NUMBER 6 AND CALL NUMBER 467
CURRENT FCOST = -1395.328
PREVIOUS FCOST = -1394.807
CURRENT ALM = -1395.892
PREVIOUS ALM = -1393.702

AT ITERATION NUMBER 7 AND CALL NUMBER 535
CURRENT FCOST = -1395.332
PREVIOUS FCOST = -1395.328
CURRENT ALM = -1396.150
PREVIOUS ALM = -1395.892

THE FINAL FUNCTION VALUE IS (m/s): 1395.332
THE 12 VARIABLE VALUES ARE (m & kg):
X(1) = 0.035720
X(2) = 0.000083
X(3) = 0.000408
X(4) = 0.009821
X(5) = 0.002607
X(6) = 0.035480
X(7) = 0.000383
X(8) = 0.000508
X(9) = 0.010021
X(10) = 0.002707
X(11) = 5.368001
X(12) = 3.204000

THE TOTAL NUMBER OF FUNCTION CALLS WAS: 535
THE FINAL ALM FUNCTION VALUE WAS: -1396.150

Figure 5.4.2 Example 4, Part 2 ALM Iteration History.
Pressure-Time Profile
Example 4, Initial

Figure 5.4.3 Example 4 Pressure-Time Profiles.
Figure 5.4.4 Example 4 Pressure-Travel Profiles.
Breech Pressure Differential
Example 4

Figure 5.3.5 Example 4 Breech Pressure Differential.
7. Analysis.

The analysis is divided into two parts. The first part is an individual examination of each example problem and the second part is an overall analysis of the trends the example problems indicate.

Both optimizations in Example 1 initialized at the current design and a random point in the parametric space, attain identical projectile performance of 1408 m/s without violating constraints. This indicates that the process is insensitive to the starting points. An analysis of the differences in the grain dimensions between Example 1a and 1b show that the primary difference is in the outer perforation diameter p_o and the grain length L. The relationship between the two values in the region is, for constant velocity, an increase in p_o results in a concurrent decrease in L. This results in similar initial grain surface areas, resulting in comparable projectile velocities. There is also a .7 percent increase in projectile velocity from the current design. This indicates that the process is comparable to current design methods.

In Example 2 the projectile velocity is improved from a non-optimum starting point in the parametric space. Again no constraints are violated. The second optimization improves the projectile velocity from 1397 to 1430 m/s, a difference of 2.7 percent. The optimum is therefore nearly
attained in the first optimization. Examination of the one perforation propellant, Propellant 2, shows that the process eliminated the single perforation p_1 during optimization. This demonstrates that the process can simplify geometries to improve performance. This example demonstrates that the method continues to perform for larger parametric spaces.

The third example resulted in improved projectile performance from a non-optimum point in the parametric space. The velocity, 1368 m/s, is the lowest of the four examples and is a 2.1 percent decrease from Example 1. Since the same propellant thermodynamics are used and identical geometries are present, a closer value could be expected. Analysis of the differences in the problem statements show that the mass constraints prohibited the attainment of the higher velocities reached in Example 1 or 2. When a propellant mass (for a multiple propellant problem) is the active design variable, it is incremented to locate a local optimum. For each change in the active propellant mass, there is no corresponding change for any other propellant mass in the problem. This prohibits a propellant from total elimination by reduction of its mass to zero. Despite this, Example 3 does demonstrate continued performance of the optimization method in a larger parametric space.

Example 4 also improves projectile performance within
the constraints. The velocity attained in the first optimization, 1391 m/s is only improved by .30 percent in the second optimization to 1395 m/s. This indicates that in this new parametric space the optimum is nearly attained. The similarity to the previously optimized projectile velocities is due to the relative closeness of the two propellents used, M6 and M8 (see Table 5.1). The question, can the method perform in a different parametric space, is still answered since the propellents are different.

In each example the projectile velocity is improved within the given constraint conditions. Example 1 demonstrates that the scheme will approach the optimum from reasonable starting points and that it matches well with current design techniques. Table 5.2 compares optimized velocities and net improvements.

In Examples 2, 3, and 4 the scheme continues to perform for multiple grains and types of propellents. In Examples 2 and 4 the second optimization provides small improvement indicating that the optimum is nearly attained. This demonstrates the method will locate the optimum in most cases with built in tolerances.

In Example 2 the inner perforation was reduced to zero, showing that the propellent geometry can be simplified if performance is improved. However the mass constraint prohibits elimination of a propellent, through
<table>
<thead>
<tr>
<th>Example</th>
<th>Initial Velocity</th>
<th>Final Velocity</th>
<th>Percent Change</th>
<th>2nd Itr Change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m/s</td>
<td>m/s</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>1a</td>
<td>1398</td>
<td>1408</td>
<td>+.7</td>
<td>n/a</td>
</tr>
<tr>
<td>2</td>
<td>1104</td>
<td>1430</td>
<td>+29.5</td>
<td>+2.4</td>
</tr>
<tr>
<td>3</td>
<td>1049</td>
<td>1368</td>
<td>+23.3</td>
<td>n/a</td>
</tr>
<tr>
<td>4</td>
<td>1341</td>
<td>1395</td>
<td>+3.9</td>
<td>+.39</td>
</tr>
</tbody>
</table>

Figure 5.2 Performance Synopsis

<table>
<thead>
<tr>
<th>Example</th>
<th>No. of Function Calls</th>
<th>No. of Variables</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>573</td>
<td>6</td>
<td>Powell's w/ Golden</td>
</tr>
<tr>
<td>2 (itr 1)</td>
<td>836</td>
<td>10</td>
<td>Hook-Jeeves</td>
</tr>
<tr>
<td>(itr 2)</td>
<td>1024</td>
<td>10</td>
<td>Powell's w/ Golden</td>
</tr>
<tr>
<td>3</td>
<td>1394</td>
<td>13</td>
<td>Hook-Jeeves</td>
</tr>
<tr>
<td>4 (itr 1)</td>
<td>1144</td>
<td>12</td>
<td>Hook-Jeeves</td>
</tr>
<tr>
<td>(itr 2)</td>
<td>535</td>
<td>12</td>
<td>Powell's w/ Quadratic</td>
</tr>
</tbody>
</table>

Figure 5.3 Optimization Method Comparison.
the reduction of mass to zero, in multiple propellent problems.

The higher dimensioned parametric space appears to be well behaved as can be seen by the optimization method performance and resultant velocities. Hook-Jeeves and Powell's performed equally, neither showing a distinct advantage. Powell's method used with the three point quadratic approximation (Example 4, Optimization 2) does converge in less function calls. However, if this method is used near an unfeasible region in the parametric space this advantage will be offset. Table 5.3 compares optimization performance by example.

The questions from Section 6 have been answered by the example problems. Example 1 demonstrated that the method attains comparable performance levels with current design methods. All four of the example problems show that a practical optimum design is attained regardless of the size of the parametric space. Finally, the differences in the four example problems and the relative ease with which the design vector and constraint set can be set show the flexibility and ease of use of the method.
CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

1. Conclusions.

A general method is developed for optimum and automated propellent grain design of a constrained multivariable interior ballistics system. The results obtained in Chapter V indicate that the method is computationally feasible and yields results comparable with current hunt and search design methods.

This automated design process is an aid to the interior ballisticsian. It is straightforward to implement and does not require heavy computational support. The interior ballistics model can be quickly changed or improved without affecting the optimization scheme. The process does include constraint effects directly and is flexible in that constraint parameters can be changed without difficulty. The method is tested on a specific problem, but the application is not restricted since the example’s characteristics are shared by a large class of interior ballistics problems.

2. Recommendations for Future Research.

The software developed in this research should be tested on several more problems with different parametric spaces. The accuracy of the program can be estimated by
solving a variety of actual problems with known solutions. The numerical techniques used in this present work can be improved, both in computational efficiency and convergence speed. A first order method should be integrated into the ALM process to allow greater flexibility.

The integration of both exterior and terminal ballistic models to extend the design capabilities is a long term goal.
REFERENCES

19. Personal communication with Mr. Fredrick W. Robbins, Interior Ballistics Division, Ballistics Research Laboratory, Aberdeen Proving Grounds, Maryland, February 1990.
This appendix contains the optimization code used in this thesis. The first item is the declaration file followed by the main program and the appropriate subroutines. Three called subprograms are not included. The objective function 'fun_int.ftn' is Appendix II. The constraint subroutines 'fun_con.ftn' are included with each example problem. The subroutine that reads the input file 'read_data.ftn', although called by the main program, is included in Appendix II. The files are listed below.

1. declaration.ins.f.
2. optimum.ftn.
3. hook_jeeves.ftn.
4. powell.ftn.
5. search.ftn.
6. ugrid_id.ftn.
7. gold.ftn.
8. quad.ftn.
9. gaussz.ftn.
10. funx.ftn.
11. check_print.ftn.
12. printit.ftn.
13. tol_test.ftn.
14. update.ftn.
DEclarations, Parameterization & Common block file for the Augmented Lagrangian Multiplier

Joe Robert Gonzalez

562-88-9645

This file is called from the program 'optimum.f'.
THE AUGMENTED LAGRANGIAN MULTIPLIER METHOD
BY: JOE ROBERT GONZALEZ

TO MINIMIZE FUNCTIONS OF MORE THAN ONE DIMENSION THAT HAVE EQUALITY AND/OR INEQUALITY CONSTRAINTS.

THIS PROGRAM USES FOLLOWING CONSTRAINING ALGORITHM:
1) THE AUGMENTED LAGRANGIAN MULTIPLIER

WITH THE FOLLOWING MINIMIZATION ROUTINES:
1) POWELL'S METHOD w/ LINE SEARCH
2) THE METHOD OF HOOK-JEEVES

TO MINIMIZE UNCONSTRAINED FUNCTIONS THAT HAVE EQUALITY AND/OR INEQUALITY CONSTRAINTS OF MORE THAN ONE DIMENSION.

THE AUGMENTED LAGRANGIAN MULTIPLIER METHOD

BY: JOE ROBERT GONZALEZ

TO MINIMIZE FUNCTIONS OF MORE THAN ONE DIMENSION THAT HAVE EQUALITY AND/OR INEQUALITY CONSTRAINTS.

THIS PROGRAM USES FOLLOWING CONSTRAINING ALGORITHM:
1) THE AUGMENTED LAGRANGIAN MULTIPLIER

WITH THE FOLLOWING MINIMIZATION ROUTINES:
1) POWELL'S METHOD w/ LINE SEARCH
2) THE METHOD OF HOOK-JEEVES

TO MINIMIZE UNCONSTRAINED FUNCTIONS THAT HAVE EQUALITY AND/OR INEQUALITY CONSTRAINTS OF MORE THAN ONE DIMENSION.

THE SUBROUTINES CALLED FROM USER MAIN ARE (INDENTED NAMES ARE CALLED BY THE PRECEEDING SUBROUTINES):

TOL_TEST : DETERMINES IF THE ALM TOLERANCE HAS BEEN MET.
UPDATE : UPDATES THE LAGRANGIAN MULTIPLIERS FOR THE PSEUDO-OBJECTIVE FUNCTION.
CHECK_PRINT : PRINTS OUT CURRENT VALUES FOR EACH ALM ITERATION.
PRINT : PRINTS OUT THE FINAL VALUES.
POWELL : CONTROLS THE POWELL'S METHOD SEARCH.
SEARCH : CONTROLS THE LINE SEARCH SUBROUTINES.
UGRID : UNIFORM GRID SEARCH METHOD FOR MINIMUM Bracketing.
GOLD : THE GOLDEN SECTIONS METHOD FOR THE MINIMUM.
QUAD : THE QUADRATIC APPROXIMATION METHOD FOR THE MINIMUM.
GAUSSZ : SOLUTION TO SYSTEM OF EQUATIONS BY GAUSSIAN REDUCTION WITH PARTIAL PIVOTING.
HOOK_JEEVES : PERFORMS THE HOOK-JEEVES METHOD.
READ_DATA : THE INPUT DATA SUBROUTINE FILE FOR FUN_INT.FTN
FUNX : PERFORMS THE ALM MODIFICATIONS TO DETERMINE THE VALUE OF THE PSEUDO-OBJECTIVE FUNCTION.
FUN_INT : PERFORMS THE CALCULATION OF THE COST FUNCTION.
FUN_CON : PERFORMS THE ASSOCIATED EQUALITY AND INEQUALITY CONSTRAINT FUNCTION EVALUATIONS.

PROGRAM OPTIMUM

C* INITIALIZATION OF COUNTERS AND FLAGS
C* USER INPUT
C* INITIALIZE LAMda's

C* the subroutines called from user main are (indented names are called by the preceding subroutines):
C* tol_test : determines if the alm tolerance has been met.
C* update : updates the lagrangian multipliers for the pseudo-objective function.
C* check_print : prints out current values for each alm iteration.
C* print : prints out the final values.
C* powell : controls the powell's method search.
C* search : controls the line search subroutines.
C* ugrid : uniform grid search method for minimum bracketing.
C* gold : the golden sections method for the minimum.
C* quad : the quadratic approximation method for the minimum.
C* gaussz : solution to system of equations by gaussian reduction with partial pivoting.
C* hook_jeeves : performs the hook-jeeses method.
C* read_data : the input data subroutine file for fun_int.ftn
C* funx : performs the alm modifications to determine the value of the pseudo-objective function.
C* fun_int : performs the calculation of the cost function.
C* fun_con : performs the associated equality and inequality constraint function evaluations.

XINCLUDE 'declarations.ins.f'
INTEGER*2 ITYPE

C initialization of counters and flags
ITR = 1
CALLS = 0
IFault = 0
VIRGIN = 0
ITYPE = 0
RPA = 100.0
RP_MAX = 1.00e8
GARMA = 2.0
FCOST = .00
FUN_COST = .00
FCOST_P = 1.00e-6
FUN_COSTP = 1.00e-6
CONVERGE = .FALSE.
TOLERANCE = .2
EPS = .00001

C user input
PRINT* \ 'ENTER NUMBER OF DESIGN VARIABLES:'
READ*, NOVAR
PRINT* \ 'ENTER NUMBER OF EQUALITY/INEQUALITY CONSTRAINTS:'
READ*, NUM_H, NUM_G

PRINT* \ 'NUMBER OF DESIGN VARIABLES :', NOVAR
PRINT* \ 'NUMBER OF EQUALITY CONSTRAINTS:', NUM_H
PRINT* \ 'NUMBER OF INEQUALITY CONSTRAINTS:', NUM_G

C initialize LAMda's
DO 10 I=1,NUM_H
 LAM_H(I) = 0.0
10 LAM_H(I) = 1.0
DO 20 I=1,NUM_G
 LAM_GP(I) = 0.0
20 LAM_G(I) = 1.0

112
CALL READ_DATA(XINIT,NOVAR)

CALL READDATA(XINIT,NOVAR)

PRINT*, 'SELECT MINIMIZATION TECHNIQUE:'
PRINT*, 'POWELLS METHOD => 1'
PRINT*, 'HOOKE-JEEVES => 2'
PRINT*, 'TECHNIQUE

CALL READDATA(XINIT,NOVAR)

SELECT

MINIMIZATION ROUTINE

90 PRINT*, 'SELECT MINIMIZATION TECHNIQUE:'
PRINT*, 'POWELLS METHOD => 1'
PRINT*, 'HOOKE-JEEVES => 2'
PRINT*, 'TECHNIQUE

IF (TECHNIQUE.EQ.1) THEN
PRINT*, 'YOU HAVE SELECTED POWELLS METHOD'
PRINT*, 'ENTER "0" FOR GOLDEN SECTIONS.'
PRINT*, 'ENTER "1" FOR QUADRATIC APPROXIMATION.'
READ*, ITYPE
ELSE IF (TECHNIQUE.EQ.2) THEN
PRINT*, 'YOU HAVE SELECTED HOOKE-JEEVES'
READ*, D, AF
PRINT*, 'SEARCH DELTA = ', D
PRINT*, 'ACCEL FACTOR = ', AF
END IF

MINIMIZATION EXECUTION

100 IF (TECHNIQUE.EQ.1) THEN
CALL POWELL(XINIT,EPS,NOVAR,XFINAL,FCOST,ITYPE)
ELSE IF (TECHNIQUE.EQ.2) THEN
CALL HOOK_JEEVES(XINIT,EPS,NOVAR,D,AF,XFINAL,FCOST)
END IF

DIAGNOSTIC PRINT

CALL CHECK_PRINT(ITR,XFINAL,FCOST,FCOSTP,NOVAR)

CHECKING FOR CONVERGENCE

CALL TOL_TEST(LAM_HP,LAM_GP,TOLERANCE,CONVERGE,FCOSTP,FCOST)

IF CONVERGENCE FAILED CONTINUE (check a max iter)

IF ((CONVERGE).EQV.(.FALSE.)) THEN
IF (ITR.GE.25) THEN
PRINT*, '*** MAX ITERATIONS EXCEEDED ***
PRINT*, 'THE LAST SET OF VALUES ARE:
CALL CHECK_PRINT(ITR,XFINAL,FCOST,FCOSTP,NOVAR)
ELSE
CALL UPDATE(LAM_HP,LAM_GP,GAMMA)
ITR = ITR + 1
FCOSTP = FCOST
FUN_COSTP = FUN_COST
DO TOI = 1, NOVAR
XINIT(I) = XFINAL(I)
GOTO 100
END IF
END IF

PRINT RESULTS

1000 CALL PRINTIT(XFINAL,FCOST,NOVAR)

STOP
END

END OF USER_MAIN
SUBROUTINE HOOK_JEEVES(IX,EPSNOVAR,DELTAALFA,XI,FXI)

C This is the Hook-Jeeves unconstrained minimization algorithm.
C WHERE THE FOLLOWING DEFINITIONS APPLY:
C
C NOVAR = NUMBER OF VARIABLES (HEREAFTER REFERED TO AS "N").
C CALLS = THE NUMBER OF FUNCTION CALLS.
C IX(N) = THE START POINT FOR THE SEARCH.
C XI(N) = THE CURRENT X SET.
C XP(N) = THE PREVIOUS X SET.
C Y(N) = THE CURRENT Y SET.
C YSP(N) = THE CURRENT Y SET + DELTA* DJ(N) .
C YSM(N) = THE CURRENT Y SET - DELTA* DJ(N) .
C DJ(N) = THE UNIT DIRECTION VECTOR FOR VARIABLE N.
C DELTA = THE STEP SIZE FOR THE SEARCH.
C ALFA = THE ACCELERATION FACTOR FOR THE SEARCH.
C EPS = THE "EPSILON" OR TOLERANCE FOR THE SOLUTION.
C TIMES THROUGH = THE NUMBER OF SEARCH SETS FOR THE METHOD.
C
%INCLUDE 'declarations.ins.f'

REAL*4 IX(IMAX),XI(IMAX),YI(IMAX),DJ(IMAX),YSP(IMAX),YSM(IMAX),
XP(IMAX),FXI,FYSP,FYSM,FYI,TIMES_THROUGH,ALFA,DELTA

TIMES_THROUGH = 0

C Assign the working vectors..
DO 100 N=1,NOVAR
 XI(N)=IX(N)
 YI(N)=IX(N)
100 CONTINUE

C Main loop...
70 DO 200 N=1,NOVAR
C Assign the search directions..
 DO 150 M=1,NOVAR
 DJ(M)=0
 DJ(M)=1
 DO 160 M=1,NOVAR
 YSP(M)=YI(M)
 YSP(M)=YI(M)+DELTA*DJ(M)
 CALL FUNX(YI,FYI,NOVAR)
 CALL FUNX(YSP,FYSP,NOVAR)
 IF (FYSP.LT.FYI) THEN
 YI(N)=YSP(N)
 FYI=FYSP
 ELSE
 DO 170 M=1,NOVAR
 YSM(M)=YI(M)
 YSM(M)=YI(M)-DELTA*DJ(M)
 CALL FUNX(YSM,FYSM,NOVAR)
 IF (FYSM.LE.FYI) THEN
 YI(N)=YSM(N)
 FYI=FYSM
 END IF
 END IF
200 CONTINUE

C Improvement so accelerate...
 CALL FUNX(XI,FXI,NOVAR)
 IF (FYI.LT.FXI) THEN
 DO 250 M=1,NOVAR
 XP(N)=XI(N)
 XI(N)=YI(N)
 YI(N)=XI(N)+ALFA*(XI(N)-XP(N))
 250 CONTINUE
 TIMES_THROUGH = TIMES_THROUGH +1
 GOTO 70

C Max iteration check..
 ELSE IF (TIMES_THROUGH.GT.50) THEN
 PRINT*,, *** hooke jeeves iterations .GT. 50 ***
 RETURN
 END IF
 ELSE IF (DELTA.LT.EPS) THEN
 RETURN

114
ELSE
 DELTA=DELTA/2
 DO 300 N=1,NOVAR
 300 YI(N)=XI(N)
 END IF
 TIMES_THROUGH = TIMES_THROUGH + 1
 GOTO 70
 END

C END OF HOOK-JEEVES..
C**
SUBROUTINE POWELL(IX,EPS,NOVAR,XI,FXI,ITYPE)

C This subroutine is the algorithm for Powell's method. It controls
C the search directions and the convergence in at this level. The
C searches are conducted in the following subroutines:
C
C SEARCH= THE CONTROLLING SEARCH SUBROUTINE.
C QUAD = A QUADRATIC APPROXIMATION FOR THE MINIMUM IN LINE SEARCH.
C (USES 'GAUSSZ' TO SOLVE FOR MINIMUM).
C GOLD = THE GOLDEN SECTIONS METHOD FOR THE MINIMUM IN LINE SEARCH.
C UGRID = UNIFORM GRID SEARCH METHOD FOR MINIMUM BRACKETING.

C**
C VARIABLE DEFINITIONS:
C
C IX(N) = INITIAL GUESS OF MINIMUM POINT
C XI(N) = THE CURRENT WORKING X MINIMUM DURING THE SEARCH
C XP(N) = THE PREVIOUS X MINIMUM AS THE SEARCH PROGRESSES
C YI(N) = THE CURRENT WORKING Y SEARCH LOCATION
C YM(N) = THE LINE SEARCH Y MINIMUM THAT IS RETURNED
C DJ(N) = THE CURRENT DIRECTION VECTOR OF UNIT LENGTH
C DJNORM = THE NORM OF THE CALCULATED DJ VECTOR
C LAMXDJ = RUNNING SUM OF THE PRODUCT OF THE LAMDA AND THE DJ
C DJSUM = THE RUNNING SUM OF THE NORM CALCULATION
C EPS = THE TOLERANCE
C XNS = X POINTS NORMAL CALCULATION SUM HOLDER
C HOLD(N,N+1) = THE H MATRIX WHERE THE DIRECTION VECTORS ARE STORED
C HOLD(N,N+1) = THE TRANSITION MATRIX WHERE THE NEW DIRECTION
C VECTORS ARE DETERMINED.
C NORMX = THE NORM OF THE XI AND XP VECTOR TO DETERMINE THE
C TOLERANCE FIT.
C LOOKER = THE NUMBER OF ITERATIONS OF POWELL'S DONE.

%INCLUDE 'declarations.ins.f'

INTEGER*2 LOOKER,ITYPE
REAL*4 XI(IMAX),IX(IMAX),XP(IMAX),DJ(IMAX),H(IMAX,IMAX),
+ FYM,FXI,FYI,YI(IMAX),LAM(IMAX),HOLD(IMAX,IMAX+1),xn(IMAX),
+ YM(IMAX),YS(IMAX),NORMX,DJNORM,DJSUM,XNS,LAMXDJ,dnpn(IMAX)

INTRINSIC SORT

LOOKER = 0

DO 100 N=1,NOVAR
 XI(N) = IX(N)
 YI(N) = IX(N)
100 CONTINUE

C INITIALIZING THE HOLD MATRIX & PUTTING THE ORIGINAL DIRECTION VECTORS
C IN THE H MATRIX..
99 DO 150 K=1,NOVAR
 HOLD(K,NOVAR+1) = 0
 DO 150 M=1,NOVAR
 HOLD(K,M) = 0
 IF (K.EQ.M) THEN
 H(K,M) = 1
 ELSE
 H(K,M) = 0
 END IF
150 CONTINUE

C GETTING THE CURRENT DJ OUT OF THE H MATRIX FOR THE CURRENT N........
C
C START OF THE MAIN N COUNTING LOOP FOR THE NUMBER OF VARIABLES........
200 DO 300 N=1,NOVAR+1
 C ASSIGNING THE SENDING Y FOR THE SEARCH...........................
250 DO 300 M=1,NOVAR
 YS(M) = YI(N)
250 CONTINUE
201 DO 225 M=1,NOVAR
 DJ(M) = H(M,N)
225 CONTINUE

C CURRENT SEARCH DIRECTION....................................
C
C THE SEARCH CALL..
CALL SEARCH (YS,DJ,EPS,N,FYM,YI,LAM,ITYPE)

116
C A FUNCTION EQUALITY PROBLEM CHECK, IF=1 THEN CAN'T FIND MIN IN SEARCH
C SO RESET SEARCH DIRECTIONS AND START OVER FROM LAST FEASIBLE POINT.
IF (IFault.EQ.1) THEN
 STOP 'RESTART PROCESS'
END IF
C SAVING THE DIRECTION VECTOR FOR THE CURRENT N
DO 275 M=1,NOVAR
 HOLD(M,N) = LAM(M)*DJ(M)
 H(M,N) = HOLD(m,n)
 YI(M) = YM(M)
275 CONTINUE
RETURN
FYI = FYM
C THE N+1 SEARCH DIRECTION
IF (N.EQ.NOVAR) THEN
 DO 280 M=1,NOVAR
 H(M,NOVAR+1) = YI(M) - XI(M)
 280 END DO
 END IF
C SETTINGS THE X'S AND Y'S TO THEIR NEW VALUES
DO 325 M=1,NOVAR
 XI(M) = YI(M)
325 CONTINUE
FXI = FYI
C CALCULATING THE NORM OF THE LAST 2 X POINTS TO CHECK CONVERGANCE...
XNS=0
DO 350 M=1,NOVAR
 XNS = XNS+(XI(M)-XP(M))**2
350 CONTINUE
NORMX = SQRT(XNS)
C IF CONVERGANCE HAS BEEN REACHED, XI, FXI IS RETURNED TO MAIN.....
IF (NORMX.LT.EPS) then
 RETURN
ELSE IF (LOOKER.GT.50) then
 PRINT*, 'POWELL ITERATIONS > 50 ###'
 RETURN
ELSE
C UPDATING THE SEARCH DIRECTIONS (DJ'S) FOR THE NEXT PASS...........
 DO 410 J=1,NOVAR
 LAMXDJ = 0
 410 DO 400 M=1,NOVAR
 LAMXDJ = LAMXDJ + HOLD(J,M)
 400 DO 430 M=1,NOVAR
 HOLD(J,NOVAR+1) = LAMXDJ
 430 C adding the directions together
 DO 420 J=1,NOVAR
 DJSUM = 0
 420 DO 430 K=1,NOVAR
 DJSUM = DJSUM + HOLD(K,J)**2
 430 DJNORM = SQRT(DJSUM)
 DO 440 K=1,NOVAR
 HOLD(K,J) = HOLD(K,J)/DJNORM
 440 C SETTING THE NEW DJ'S TO A UNIT LENGTH TO PREVENT CRAWLING TO A SOLUTION
 END IF
C POSITION OF THE REVISED DJ'S IN THE H MATRIX FOR USE...........
 DO 450 N=1,NOVAR
 H(M,N) = HOLD(M,N+1)
 450 END IF
GOTO 200
END
C END OF POWELL
117
SUBROUTINE SEARCH(YS,DJ,EPS,N,FYMIN,YMIN,LAMNORM,NOVAR,itype)

C THIS SUBROUTINE CONTROLS THE SEARCH PROCEDURES FOR POWELL' METHOD.
C WHERE TO FOLLOWING DEFINITIONS APPLY

YS = THE SENT VALUE TO START FROM
DJ = THE SENT DIRECTION TO SEARCH
IFI = THE EQUALITY PROBLEM FLAG
ITYPE = THE LINE SEARCH SELECTION FLAG
LAMNORM = THE NORMALIZED DELTA OF THE SEARCH
YMIN = THE RETURNED MINIMUM IN THAT DIRECTION
XASTRT = THE INTERVAL START FROM UGRID
XBEND = THE INTERVAL END FROM UGRID
SAV YS = THE RETAINED VALUES OF THE START POINT

%INCLUDE 'declarations.ins.f'

INTEGER*2 ITYPE
REAL*4 YS(IMAX),DJ(IMAX),YMIN(IMAX),FYMIN,DIR,SAV YS(IMAX),
+ LAMNORM(IMAX),LAMRAW,XASTRT(IMAX),XBEND(IMAX)

INTRINSIC SORT

DIR = 1.0
IFI = 0

C SAVING THE INCOMING START POINT VALUES...................
DO 25 I=1,NOVAR
25 SAV YS(I)=YS(I)

C CALLING THE UNIFORM GRID SEARCH SUBROUTINE................
CALL UGRID_1D(YS,DJ,NOVAR,XASTRT,XBEND,DIR)
IF (IFI .EQ. 1) THEN
RETURN
END IF

IF (ITYPE .EQ. 1) THEN
C CALLING THE QUADRATIC APPROXIMATION INTERVAL REDUCER........
CALL QUAD(XASTRT,XBEND,YMIN,FYMIN,NOVAR)
ELSE
C CALLING THE GOLDEN SECTIONS INTERVAL REDUCER................
CALL GOLD(XASTRT,XBEND,EPS,FYMIN,YMIN,NOVAR)
END IF

C CALCULATING THE FINAL LAMBDA FOR POWELL'S METHOD TO RETURN TO POWELL..
LAMRAW=0
DO 100 I=1,NOVAR
100 LAMRAW=LAMRAW+(YMIN(I)-SAV YS(I))**2
LAMNORM(N)=SQRT(LAMRAW)*DIR
RETURN
END

C END OF SEARCH...
SUBROUTINE UGRID 1D(XS,DJ,NOVAR,XP,XN,DIR)

C This subroutine performs a 1 dimensional uniform step search until an interval is found that contains a minimum is found.

WHERE THE FOLLOWING DEFINITIONS APPLY:

XS(N) = THE CURRENT X VALUE
XP(N) = THE PREVIOUS X VALUE, INTERVAL START
XN(N) = THE NEXT X VALUE, INTERVAL END
DJ = THE DIRECTION VECTOR FOR THE SEARCH
DEL = THE INCREMENT OF THE SEARCH
FXS, FXN, FXP = THE FUNCTION VALUES FOR EACH RESPECTIVE X
DIR = IF THE SEARCH IS NEGATIVE THIS SETS A NEGATIVE DISTANCE
COUNT = THE NUMBER OF STEPS TAKEN TO FIND A MINIMUM

%INCLUDE 'declarations.ins.f'

INTEGER*2 count
REAL*4 DJ, XS, XN, XP, DEL, FXS, FXN, FXP, DIR

DEL = 0.001
count = 0

C ADDING AND SUBTRACTING THE DEL TO THE INITIAL VALUE.............
DO 100 N=1,NOVAR
 XN(N) = XS(N) + DEL*DJ(N)
 XP(N) = XS(N) - DEL*DJ(N)
100 CONTINUE

CALL FUNX(XS,FXS,NOVAR)
CALL FUNX(XN,FXN,NOVAR)
CALL FUNX(XP,FXP,NOVAR)

C CASES LISTED OUT...
C case 1. \
 IF (FXP.GT.FXS.AND.FXN.GT.FXS) THEN
 RE
C case 2. \
 ELSE IF (FXP.LT.FXS.AND.FXN.LT.FXS) THEN
 GOTO 300
C case 3. \
 ELSE IF (FXP.EQ.FXS.AND.FXN.LT.FXS) THEN
 GOTO 300
C case 4. \
 ELSE IF (FXP.GT.FXS.AND.FXN.EQ.FXS) THEN
 GOTO 300
C case 5. \
 ELSE IF (FXP.GT.FXS.AND.FXN.LT.FXS) THEN
 GOTO 300
C case 6. \
 ELSE IF (FXP.LT.FXS.AND.FXN.GT.FXS) THEN
 GOTO 290
C case 7. \
 ELSE IF (FXP.EQ.FXS.AND.FXN.GT.FXS) THEN
 GOTO 290
C case 8. \
 ELSE IF (FXP.LT.FXS.AND.FXN.EQ.FXS) THEN
 GOTO 290
C case 9. \
 ELSE IF (FXP.EQ.FXS.AND.FXN.EQ.FXS) THEN
 GOTO 390
 END IF
C IF THE SEARCH IS TO LEFT THEN THIS RESETS THE VALUES TO ALLOW IT....
290 DO 295 N=1,NOVAR
 XN(N) = XP(N)
 DEL = -DEL
 FXP = FXN
 DIR = -1.0
295
C THIS IS THE MAIN SEARCH STEP LOOP..
300 DO 310 N=1,NOVAR
 XP(N) = XS(N)
 XS(N) = XN(N)
310 XN(N) = XN(N) + DEL*DJ(N)
 FXS = FXN
 CALL FUNX(XN,FXN,NOVAR)
 IF (FXN.LT.FXS) THEN
 C STEP CHECK...
 IF (COUNT.EQ.100) THEN
 PRINT*, 'no minimum found in 100 steps'
 RETURN
 END IF
 COUNT = COUNT + 1
 GOTO 300
C THE FUNCTION VALUES ARE EQUAL AND NO MINIMUM IS FOUND, IFAULT IS SET
 ELSE IF (FXN.EQ.FXS) THEN
 PRINT*, 'THERE MAY BE AN EQUALITY PROBLEM IN THIS EQUATION.'
 IFAULT = 1
 END IF
C AN INTERVAL HAS BEEN FOUND..
 RETURN
END
C END OF UNIFORM GRID..
SUBROUTINE GOLD(AX,BX,TOL,FXMIN,XMIN,NOVAR)

C THIS SUBROUTINE PERFORMS A GOLDEN SECTIONS SEARCH FOR THE LOCAL
C MINIMA IN A GIVEN INTERVAL

C WHERE THE FOLLOWING DEFINITIONS APPLY
C AX = THE START OF THE SEARCH INTERVAL
C BX = END OF THE SEARCH INTERVAL
C XMIN = THE RETURNED MINIMUM VALUE FOR X
C MU = THE GOLDEN SECTIONS MU OF .618 OF INTERVAL
C LAMDA = THE GOLDEN SECTIONS LAMDA OF .382 OF INTERVAL
C TOL = THE TOLERANCE OF THE SOLUTION (COMPAARED TO ABNORM)
C ABNORM = IS THE LINEAR DISTANCE BETWEEN THE ENDS OF THE INTERVAL
C MIN = THE END OF INTERVAL LOWEST VALUE VARIABLES
C F = THE F PREFIX INDICATES A FUNCTION VALUE

%INCLUDE 'declarations.ins.f'

REAL*4 AX(IMAX),BX(IMAX),LAMDA(IMAX),XMIN(IMAX),MU(IMAX),AB,
+ ABNORM,TOL,FA,BF,FMU,FLAMDA,FXMIN,MIN1(IMAX),
+ MIN2(IMAX),FM1I,FMIN2

INTRINSIC SQRT

CALCULATION OF THE FIRST MU AND LAMDA
DO 100 NI,NOVAR
 MU(N) = AX(N)+.618*(BX(N)-AX(N))
 LAMDA(N) = AX(N)+.382*(BX(N)-AX(N))
100 CONTINUE

THE INITIAL FUNCTION CALLS
CALL FUNX(AX,FA,NOVAR)
CALL FUNX(BX,BF,NOVAR)
CALL FUNX(MU,FMU,NOVAR)
CALL FUNX(LAMDA,FLAMDA,NOVAR)

THE START OF THE INTERVAL CHECK WITH A DETERMINATION OF ABNORM
110 AB=0
DO 125 N=1,NOVAR
 AB=AB+(BX(N)-AX(N))**2
125 ABNORM=SQRT(AB)
200 IF (ABNORM.LE.TOL) THEN
 GOTO 400
ELSE IF (FLAMDA.LT.FMU) THEN
 C THE INTERVAL IS CONVERGING TO THE LEFT
 DO 350 N=1,NOVAR
 BX(N) = MU(N)
 LMAMDSN = LMAMDSN
 350 CONTINUE
 BF = FMU
 FMU = FLAMDA
 CALL FUNX(LAMDA,FLAMDA,NOVAR)
 GOTO 110
ELSE
 C THE INTERVAL IS CONVERGING TO THE RIGHT
 DO 250 N=1,NOVAR
 250 CONTINUE
 FA = FMU
 FLAMDA = FMU
 CALL FUNX(MU,FMU,NOVAR)
 GOTO 110
END IF
C ONCE THE TOLERANCE IS MET THE LOWEST VALUE IS USED...............
400 IF (FA.LT.FLAMDA) THEN
405 do 405 i=1,novar
405 min1(i) = ax(i)
405 fmin1 = fa
405 ELSE
410 do 410 i=1,novar
410 MIN1(i) = LAMDA(i)
410 FMIN1 = FLAMDA
410 END IF
415 IF (FB.LT.FMU) THEN
415 do 415 i=1,novar
415 MIN2(i) = Bx(i)
415 FMIN2 = fb
415 ELSE
420 do 420 i=1,novar
420 MIN2(i) = MU(i)
420 FMIN2 = FMU
420 END IF
425 IF (FMIN1.LT.FMIN2) THEN
425 do 425 i=1,novar
425 XMIN(i) = MIN1(i)
425 ELSE
430 do 430 i=1,novar
430 XMIN(i) = MIN2(i)
430 END IF
430 CALL FUNX(XMIN,FXMIN,NOVAR)
430 RETURN
END
C END OF GOLDEN SECTIONS..
SUBROUTINE QUAD(AX,BX,XQMIN,FXQMIN,NOVAR)
C
C THIS SUBROUTINE PERFORMS THE QUADRATIC APPROXIMATION OF THE LINE
C SEARCH MINIMUM. IT CALLS GAUSSZ.FTN TO SOLVE THE SYSTEM OF
C EQUATIONS.
C
C NOTE: SEE GOLD FOR ALL OTHER VARIABLE NAMES
C
C ORIG = THE MATRIX OF THE SYSTEMS OF EQUATION GENERATED FOR
C EACH DIRECTION TO ESTIMATE THE MINIMUM OF X(N)
C
C YY = THE RETURNED SOLUTION VECTOR FOR EACH ORIG
C
C
C
C %INCLUDE 'declarations.ins.f'
C
REAL*4 AX(IMAX),BX(IMAX),CX(IMAX),XQMIN(MAX),FXQMIN,ORIG(3,4)
REAL*4 YY(3),FA,FB,FC

C DETERMINING THE VALUE OF C..............................
DO 100 N=1,NOVAR
100 CX(N)=(AX(N)+BX(N))/2
CALL FUNX(AX,FA,NOVAR)
CALL FUNX(BX,FB,NOVAR)
CALL FUNX(CX,FC,NOVAR)

C MAKING EACH ORIG MATRIX, N NUMBER OF TIMES................
DO 200 N=1,NOVAR
 ORIG(1,1)=AX(N)*AX(N)
 ORIG(2,1)=BX(N)*BX(N)
 ORIG(3,1)=CX(N)*CX(N)
 ORIG(1,2)=AX(N)
 ORIG(2,2)=BX(N)
 ORIG(3,2)=CX(N)
 DO 150 I=1,3
150 ORIG(I,3)=1.0
 ORIG(1,4)=FA
 ORIG(2,4)=FB
 ORIG(3,4)=FC

C THE EQUALITY CHECK IN ANY N DIRECTION FOR A DEFAULT XMIN(N)....
 IF (AX(N).EQ.BX(N)) THEN
 XQMIN(N)=AX(N)
 ELSE

C THE CALL TO THE MATRIX SOLUTION SUBROUTINE TO SOLVE ORIG........
 CALL GAUSSZ(ORIG,YY,3,4)
 XQMIN(N)=-YY(2)/(2*YY(1))
END IF

200 CONTINUE
CALL FUNX(XQMIN,FXQMIN,NOVAR)

RETURN
END
C END OF QUAD..
SUBROUTINE FUNX(X,F_ALM,NOVAR)

C This subroutine converts the objective function to the pseudo-
C objective function of the ALM method.

C**
%INCLUDE 'declarations.ins.f'

REAL*4 X(IMAX),F_ALM,SUMFH2,SUM_PSI,SUM_PSI2,PSI(IMAX)
REAL*4 SUM_FH2,SGM_FGT,FGT(IMAX)

INTRINSIC MAX

flag = 0
calls = calls + 1

C CALLING THE COST FUNCTION AND CONSTRAINT FUNCTION EVALUATIONS...........
CALL FUN_INT(X,NOVAR,FCOST,virgin,flag)
CALL FUN_CON(X,NOVAR)

C ALM TERM GENERATION..
SUMFH = 0
SUMFH2 = 0
DO 100 I=1,NUM_H
 SUMFH = SUMFH+LAM_H(I)*FH(I)
100 SUMFN2 = SUMFH2+FH(T)**2

DO 110 I=1,NUM_G
110 PSI(I) = MAX(FG(I),LAM_G(I)/(2*RPA))

SUM_PSI = 0
SUM_PSI2 = 0
DO 130 I=1,NUM_G
 SUM_PSI = SUM_PSI+LAM_G(I)*PSI(I)
130 SUM_PSI2 = SUM_PSI2+RPA*PSI(I)**2

C THE PSEUDO-OBJECTIVE FUNCTION..................................
F_ALM = FCOST+SUM_PSI+SUM_PSI2+SUMFH2+RPA*SUMFh2
FUN_COST = FCOST

C MAX ITERATION FOR FUNCTION CALLS CHECK...............................
IF (CALLS.EQ..2000) THEN
 STOP '---max iterations for method reached-------'
END IF
RETURN

C END OF ALM FUN..

C**

124
SUBROUTINE GAUSSZ(A,X,N,N1)
C
C THIS SUBROUTINE PERFORMS GAUSSIAN REDUCTION TO SOLVE THE SYSTEM OF
C EQUATIONS.
C
C
INTEGER*4 I,J,K,L,M,N,J1,JJ,NI
REAL*4 AIJ,X(N),A(N,NI),FA,FB,FC,BIG,DUMMY

DO 100 J=1,N
 AIJ=A(J,J)
 J1=J+1
 IF (J1.GT.N) GO TO 980
 BIG=ABS(A(J,J))
 M=J
 DO 900 L=J1,N
 IF (ABS(A(L,J)).LE.BIG) GOTO 900

900 CONTINUE

DO 990 JJ=J,N1
 DUMMY = A(M,JJ)
 A(M,JJ) = A(J,JJ)
 A(J,JJ) = DUMMY

990 CONTINUE

980 CONTINUE

DO 200 K=J,N1
 A(J,K)=A(J,K)/AIJ

DO 300 I=1,N
 IF (I.EQ.J) GO TO 300
 AIJ=A(I,J)
 DO 400 K=J,N1
 A(I,K)=A(I,K)-AIJ*A(J,K)

300 CONTINUE

100 CONTINUE

DO 500 I=1,N
 X(I)=A(I,N1)

500 RETURN
END

C END OF GAUSSZ.
SUBROUTINE CHECK_PRINT(ITR, XFIAL, FCOST, FCOST_P, NOVAR)

- This subroutine prints the design vector, function value and pseudo-objective function value for each complete ALM iteration.

```fortran
%INCLUDE 'declarations.ins.fl'

PRINT*, ' AT ITERATION NUMBER', ITR, ' AND CALL NUMBER', CALLS
PRINT*, ' THE VALUES OF THE VARIABLES ARE:

c Print the current design vector

do 7 i=1,NOVAR
7 WRITE(*,10)I,xfinal(I)
10 FORMAT(5X,'X(',12,I) = ,1F10.6)

IF (FLAG.EQ.1) PRINT*, '*** NOTE: ALL PROPELLENT EXPENDED ***

c Print the current and last function and ALM values

PRINT*, ' CURRENT FCOST = ',fun_cost
PRINT*, ' PREVIOUS FCOST = ',fun_costp
PRINT*, ' CURRENT ALM = ',fcost
PRINT*, ' PREVIOUS ALM = ',fcost_p

WRITE(*,11)
11 PRINT*, RP

PRINT*, ' THE CURRENT LAMBDA AND VALUE OF THE CONSTRAINT FUNCTION

do 20 i=1,NUM_H
20 WRITE(*,60)T,fh(i),lam_h(i)
do 30 i=1,NUM_G
30 WRITE(*,50)T,fg(i),i,am_g(i)
50 format(1x,'FH(',12,I) = ',e18.6, ' & LAM_G(',12,I) = ',e18.6)
60 format(1x,'GH(',12,I) = ',e18.6, ' & LAM_H(',12,I) = ',e18.6)

WRITE(*,11)
RETURN
END

C END OF CHECK PRINT........................................
```

SUBROUTINE PRINTIT(XFINAL, FCOST, NOVAR)

- This subroutine prints the final design vector, function value and number of function calls.

```fortran
%INCLUDE 'declarations.ins.fl'

PRINT*, ' THE FINAL FUNCTION VALUE IS (m/s): ', FCOST*(-1.0)
PRINT*, ' THE ',NOVAR,' VARIABLE VALUES ARE:

do 7 i=1,NOVAR
7 WRITE(*,10)I,xfinal(I)
10 FORMAT(5X,'X(',12,I) = ,1F10.6)

WRITE(*,20)((xfinal(I)*100),i=1,NOVAR)
20 FORMAT(1OX,8F12.5)

PRINT*, ' THE TOTAL NUMBER OF FUNCTION CALLS WAS : ', CALLS
PRINT*, ' THE FINAL ALM FUNCTION VALUE WAS : ', FCOST

RETURN
END

C END OF PRINT IT........................................
```
SUBROUTINE TOL_TEST(LAM HP,LAM GP,TOLERANCE,CONVERGE,FCOST_P, FCOST)
C This subroutine determines if the convergence has occurred for the ALM method to terminate.
C LOCAL DEFINITIONS
C TOTAL = THE SUM OF THE NUMBER OF INEQUALITY AND EQUALITY CONSTRAINTS.
C DIFFH = THE DIFFERENCE BETWEEN THE CURRENT AND PREVIOUS LAMBDA FOR EQUALITY CONSTRAINTS.
C DIFFG = SEE ABOVE, FOR INEQUALITY CONSTRAINTS.
C ALM SUM = THE COUNTER FOR THE NUMBER OF CONSTRAINTS IN TOLERANCE.
C DELTA_C = THE CHANGE IN THE COST FUNCTION SINCE LAST ITERATION.
C
%INCLUDE 'declarations.ins.f'
INTEGER*2 TOTAL,ALM_SUM
REAL*4 DIFFH,DIFFG,DELTA_C

INTRINSIC SORT

ALM SUM = 0
DELTA C = ABS(FUN_COST - FUN_COSTP)
TOTAL = NUM_H + NUM_G
DO 100 I=1,NUM_H
 DIFFH = LAM_H(I)-LAM_HP(I)
 IF (DIFFH.LE.TOLERANCE) THEN
 ALM SUM = ALM_SUM+1
 END IF
100 CONTINUE

DO 110 I=1,NUM_G
 DIFFG = LAM_G(I)-LAM_GP(I)
 IF (DIFFG.LE.TOLERANCE) THEN
 ALM SUM = ALM_SUM+1
 END IF
110 CONTINUE

IF (DELTA_C.LE.TOLERANCE.AND.ALM SUM.EQ.TOTAL) THEN
 CONVERGE = .TRUE.
ELSE
 CONVERGE = .FALSE.
END IF
RETURN
END

C END OF TOL_TEST

C**
SUBROUTINE UPDATE(LAM HP,LAM GP,GAMMA)
C This subroutine updates the lambda's and the rp for the ALM method.
C %INCLUDE 'declarations.ins.f'

INTRINSIC MAX

c alm update of lambda's for equality constraints
DO 200 I=1,NUM_H
 LAM HP(I)=LAM_H(I)
200 LAM_H(I)=LAM_H(I)+2*RPA*FH(I)

c alm update of lambda's for inequality constraints
DO 210 I=1,NUM_G
 LAM GP(I)=LAM_G(I)
210 LAM_G(I)=LAM_G(I)+2*RPA*MAX(FG(1),-LAM_G(I)/(2*RPA))

c rp update
RPA=GAMMA*RPA
IF (RPA.GE.RP_MAX) THEN
 RPA=RP_MAX
END IF
RETURN
END

C END OF UPDATE

127
APPENDIX II

INTERIOR BALLISTICS CODE

This appendix contains the interior ballistics code used in this thesis. This is a modified version of IBRGAC (15) to fit the optimization model. The first item is the declaration file followed by the main program. It is organized by subroutine and includes all of the design vector assignment and return subroutines. The files listed below.

1. intball.ins.f.
2. fun_int.ftn.
3. prf017.ftn.
4. read_data.ftn.
5. reset_data.ftn.
6. mass_check.ftn.
7. var_in.ftn (Example 1-4).
8. var_out.ftn (Example 1-4).
The following definitions apply (The s_ prefix indicates the saved original value of the variable):

- **Variable** Type: Variable Name: Meaning:

 - **Record 1.**
 - CHAM REAL*4 CHAMBER VOLUME cm3
 - GRVE REAL*4 GROOVE DIAMETER cm
 - ALAND REAL*4 LAND DIAMETER cm
 - GLR REAL*4 GROOVE/LAND RATIO none
 - TWST REAL*4 TWIST turns/caliber
 - TRAVP REAL*4 PROJECTILE TRAVEL cm
 - IGRAD INTEGER*2 GRADIENT FLAG none
 - 1 = Lagrange
 - 2 = Chambrage

 - **Record 1a.**
 - NCHPTS INTEGER*2 NUMBER POINTS TO DESCRIBE CHAMBER none
 - For I=1,nchpts
 - CHDIST(I) REAL*4 INITIAL DISTANCE FROM BREECH cm
 - CHDIAM(I) REAL*4 DIAMETER AT CHDIST(I) cm

 - **Record 2.**
 - PWRT REAL*4 PROJECTILE MASS kg
 - IAIR INTEGER*2 CALCULATE ENERGY LOST TO AIR RESISTANCE FLAG none
 - HTFR REAL*4 FRACTION OF WORK DONE AGAINST BORE TO HEAT TUBE none
 - PGAS REAL*4 GAS PRESSURE IN FRONT OF PROJECTILE Pa

 - **Record 3.**
 - NPTS INTEGER*2 NUMBER OF BARREL RESISTANCE POINTS none
 - For I=1,npts
 - BR(I) REAL*4 BORE RESISTANCE MPa
 - TRAV(I) REAL*4 TRAVEL cm

 - **Record 4.**
 - RCWT REAL*4 MASS OF RECOLING PARTS kg
 - NRP INTEGER*2 NUMBER OF RECOIL PAIR POINTS none
 - For I=1,nrp
 - RP(I) REAL*4 RECOIL FORCE N
 - TR(I) REAL*4 RECOIL TIME s

 - **Record 5.**
 - HO REAL*4 FREE CONVECTION HEAT TRANSFER COEFFICIENT w/cm2·k
 - TSHL REAL*4 CHAMBER WALL THICKNESS cm
 - CSHL REAL*4 HEAT CAPACITY OF STEEL OF CHAMBER WALL J/g·k
 - TWAL REAL*4 INITIAL TEMPERATURE OF CHAMBER WALL k
 - HL REAL*4 HEAT LOSS COEFFICIENT none
 - RCHOS REAL*4 DENSITY OF CHAMBER WALL STEEL g/cm3

 - **Record 6.**
 - FORCIG REAL*4 IMPEDUS OF IGNITER PROPELLENT J/g
 - ZOVI REAL*4 COVOLUME OF IGNITER cm3/g
 - TEMPI REAL*4 ADIABATIC FLAME TEMP OF IGNITER k
 - CWHI REAL*4 INITIAL MASS OF IGNITER kg
 - GAMAI REAL*4 RATIO OF SPECIFIC HEAT FOR IGNITER none
c Record 7...
c NPROP INTEGER*2 NUMBER OF PROPELLENT TYPES none
 c For I=1,nprop
 c FORCP(I) REAL*4 IMPETUS OF PROPELLENT J/g
 c TEMPP(I) REAL*4 ADIABATIC TEMPERATURE OF PROPELLENT k
 c COVP(I) REAL*4 COVOLUME OF PROPELLENT cm^3/g
 c CHWP(I) REAL*4 INITIAL MASS OF PROPELLENT kg
 c RHOP(I) REAL*4 DENSITY OF PROPELLENT g/cm^3
 c GAMAP(I) REAL*4 RATIO OF SPECIFIC HEATS FOR PROPELLENT none
 c NPERFS(I) INTEGER*2 NUMBER OF PERFORATIONS ON PROPELLENT none
 c GLENP(I) REAL*4 LENGTH OF PROPELLENT GRAIN cm
 c PDPI(I) REAL*4 DIAMETER OF INNER PERFORATIONS IN PROPELLENT GRAINS cm
 c PDPO(I) REAL*4 DIAMETER OF OUTER PERFORATIONS IN PROPELLENT GRAINS cm
 c GDIAP(I) REAL*4 OUTSIDE DIAMETER OF PROPELLENT GRAIN cm
 c DBPCP(I) REAL*4 DISTANCE BETWEEN PERFORATION CENTERS cm
 c Record 8...
 c For I=1,nprop
 c NBR(J) INTEGER*2 NUMBER OF BURNING POINTS none
 c For I=1,nbr(j)
 c ALPHA(J,I) REAL*4 EXPONENT none
 c BETA(J,I) REAL*4 COEFFICIENT cm/s-MPa(®alpha(j))
 c PRESS(J,I) REAL*4 PRESSURE MPa
 c Record 9...
 c DELTAT REAL*4 TIME INCREMENT (STEP) ms
 c DELTAP REAL*4 PRINT INCREMENT ms
 c TSTOP REAL*4 STOP TIME FOR CALCULATIONS ms

c parameter definitions..
 INTEGER*2 IMAX
 REAL*4 PI
 PARAMETER(IMAX = 20)
 PARAMETER(PI = 3.14159)

c File Input/Output..
 CHARACTER*10 bdfi, outfi

c interior ballistics definitions....................................
 c Record 1..
 c REAL*4 cham, grve, s atand, sgtr, stwst, stravp
 c INTEGER*2 igrad
 c REAL*4 s_cham, s_grve, s_atand, s_gtr, s_twst, s_travp
 c INTEGER*2 s_igrad
 c Record 1a..
 c REAL*4 chdist, chdiam
 c INTEGER*2 nchpts
 c REAL*4 s_chdist, s_chdiam
 c INTEGER*2 s_nchpts
 c Record 2..
 c REAL*4 prwt, htrf, pgas
 c INTEGER*2 ibr
 c REAL*4 s_prwt, s_htrf, s_pgas
 c INTEGER*2 s_ibr
 c Record 3..
 c REAL*4 br, trav
 c INTEGER*2 npts
 c REAL*4 s_br, s_trav
 c INTEGER*2 s_npts
 c Record 4..
 c REAL*4 rcwt, rp, tr
 c INTEGER*2 nrp
 c REAL*4 s_rcwt, s_rp, s_tr
 c INTEGER*2 s_nrp
 c Record 5..
 c REAL*4 ho, tshi, cshi, twal, hl, rhocs
 c REAL*4 s_ho, s_tshi, s_cshi, s_twal, s_hl, s_rhocs
 c Record 6..
 c REAL*4 forcig, covi, tempi, chwi, gamai
 c REAL*4 s_forcig, s_covi, s_tempi, s_chwi, s_gamai

130
c Record 7...
REAL*4 forcp(10),tempp(10),covp(10),chwp(10),rhop(10),
+ gamap(10),glenp(10),ppdpi(10),ppdpo(10),gdiap(10),
+ dbpcp(10)
INTEGER*2 nprop,nperfs(10)
REAL*4 s_forcp(10),s_tempp(10),s_covp(10),s_chwp(10),
+ s_rhop(10),s_gamap(10),s_glenp(10),s_ppdpi(10),
+ s_ppdpo(10),s_gdiap(10),s_dbpcp(10)
INTEGER*2 s_nprop,s_nperfs(10)
c Record 8...
REAL*4 nhp(10),beta(10,10),pres(10,10)
INTEGER*2 nbr(10)
REAL*4 snhp(10),s_nperfs(10),s_pres(10,10)
INTEGER*2 s_nbr(10)
c Record 9...
REAL*4 dettat,dettap tstop
REAL*4 s_deltat ,s_deltap,ststop
c end of record declarations.................................
c Lagrange chamber volume values..........................
REAL*4 bore,b1,b2,b3,b4,zz,bint(4),bvol,r1,r2,diam,area,temp,
+ chmlen
REAL*4 s_bint(4),s_bvol,s_chmlen,s_bore
c local use declarations.................................
REAL*4 step,tmpi,lambda,pmaxm,pmaxbr,pmaxxb,pmaxp,
+ pmaxmxb,pmaxa,as(4),be(4),ak(4),vv(4),tr(4),tcw(4),bo(10),
+ volg,pmean,volg,wall,ptime,z(20),y(20)
REAL*4 dpmaxba,dpmaxbr,max_mass,l_d,p_f,m_r,total_vol,p
+ cham_vol
INTEGER*2 ibrp,nde,ls1,11,1,j,k,i,y_axis,x_axis
REAL*4 velocity,values(20,20)
REAL*4 resp,elpt,elpr,pt,vzp,jzpt,elgm,elbr,elrc,areaw,avcp,
+ avc,avden,z18,z19,avvel,htns,elht,air,elar,rfor,area,
+ eprop,prop,tenenergy,tgas,v1,cov1,pbase,pbrch,j12p,
+ j22p,32p,a2t,alf,alt,bl,beta,gamma,delta,ds(20),p(20),
+ t,rmvelo,tmvelo,disf,dfact,efi,efp,tenenergy,tengas,
+ frac(10),surf(10),points,rmvel,tmvel,u
c COMMON BLOCKS..
COMMON/RECORDS /cham,grve,aland,gir,twst,travp,igrad,chdist,
+ chdlam,nchpts,prw,tfr,pgas,air,br,treps,rcpt,rp,
+ tr,nrp,ho,tsli,tsli,tsli,tsli,tsli,tsli,tsli,tsli,tsli,tsli,
+ nhf,forcp,tempp,covp,chwp,rhop,gamap,pnerfs,glenp,pdpi,
+ ppdpo,gdiap,dbpcp,nprop,alp papres,nbr,deLtat,deLtap,tstop,
+ s_nprop,salpha,s_tstop,s_samap,s_tstem,s_scovp,s_schwp,s_srhop,
+ s_sgamap,s_sperfs,s_sglenp,s_sppdpi,s_sppdpo,s_sgdiap,s_sdbcp,
+ s_sprop,s_salpha,s_sstem,s_spres,s_snbr,s_sdeLtat,
+ s_sdeLtap,s_sbiot,s_sbv0l,s_schmlen,s_sbore
COMMON/LIMITS /dpmaxba,dpmaxbr,pmaxm,pmaxbr,pmaxxb,max_mass,l_d,
+ total_vol,p,s_cham
COMMON/LOCALS /bore,b1,b2,b3,b4,zz,bint,bvol,r1,r2,diam,area,
+ temp,chmlen,step,tmpi,lambda,pmaxm,pmaxa,pmaxbr,
+ pmaxmbr,pmaxa,pmax,b1,b2,b3,b4,zz,bint,bvol,r1,r2,diam,area,
SUBROUTINE FUN_INT(X,NOVAR,FX,BURNED_UP)

This subroutine is called from 'funx.ftn'. It is a modified version of the lumped parameter interior ballistics code IBRGAC, from the Interior Ballistics Laboratory, Maryland. It has been modified to accept iterative changes the input data. The following changes have been made:

1. The input file is now read by an external subroutine, 'read_data.ftn'
2. The data is initialized by an external subroutine, 'reset_data.ftn'
3. Subroutine 'mass_check.ftn' checks the volume of propellent to see if it will fit into the chamber.

See 'intball.ins.f' for variable definitions. In addition the following definitions apply:
burned_up = the propellent is all burned up flag.
bad_web = the flag for a web violation.

%INCLUDE 'intball.ins.f'

INTEGER*2 NOVAR,BURNED_UP
REAL*4 X(NOVAR),FX,BAD_WEB
BAD_WEB = 0.0
BURNED_UP = 0
FX = 0.0

C RESET VARIABLES FOR RUN..
CALL reset_data

C VARIABLE ASSIGNMENT..
CALL VAR_IN(X,NOVAR,FX)
IF (FX.LT.0.0) RETURN

C CHECK MASS OF PROPELLENT..
CALL MASS_CHECK

C START INTERIOR BALLISTICS CALCULATIONS............................
C Calculate total mass of propellent and igniter..............
tmpi = 0.0
do 20 i=1,nprop
 tmpi = tmpi + chwp(i)
tmpi = tmpi + chwi
20

C Use Chambrage..
if(igrad.gt.1) then
 go to 131
else
C Calculate the diameter of the bore [eq 1.3]................
bore = (glr*grve**2+aland**2)/(gLr+1.0)
bore = sqrt(bore)
end if

C Calculate the area of the bore..............................
131 area = pi*bore**2/4.0
C Calculate the Nordheim Friction Factor [eq 7.15]...........
 lambda = 1.0/((13.2+4.0*log10(100.0*bore)**2)

C Initialization of Runge-Kutta values.........................
as(1) = 0.5
as(2) = 1.0-sqrt(2.)/2.
as(3) = 1.0+sqrt(2.)/2.
as(4) = 1.0/6.0
bs(1) = 2.0
bs(2) = 1.0
bs(3) = 1.0
bs(4) = 2.0
ak(1) = 0.5
ak(2) = as(2)
ak(3) = as(3)
ak(4) = 0.5
do 5 i = 1,nprop
 vp0 = chwp(i)/rhop(i)+vp0
5 continue
\[
\begin{align*}
\text{volgi} &= \text{cham} - \text{vp0} - \text{chwi} * \text{covi} \\
\text{pmean} &= \text{forcig} * \text{chwi} / \text{volgi} \\
\text{volg} &= \text{volgi} \\
\text{volgi} &= \text{volgi} + \text{vp0} \\
\text{wallt} &= \text{twal} \\
\text{ptime} &= 0.0 \\
\text{ibrp} &= 8 \\
\text{nde} &= \text{ibrp} + \text{nprop} \\
\text{write}(6,132) &= \text{area bore m}^2, 'e16.6, '\text{pressure from ign pa}', e16.6, / \\
\text{+1x}, ' \text{volume of unburnt prop m}^3, 'e16.6, ' \text{init cham vol-cov ign m} \\
\text{+3}', e16.6 \\
\text{c write}(0,6) \\
\text{c write}(6,6) \\
\text{c6 format}(1x, ' \text{time acc vel dis mpress}) \\
\text{c * pbase pbrch '}) \\
\text{isw} &= 0 \\
\text{19 continue} \\
\text{do 11} j=1,4 \\
\text{c For loop the following applies to the z & y arrays:} \\
\text{c variable definition variable definition} \\
\text{c z(1)} & \Rightarrow \text{proj accel} \\
\text{y(1)} & \Rightarrow \text{proj velocity} \\
\text{c z(2)} & \Rightarrow \text{proj velocity} \\
\text{y(2)} & \Rightarrow \text{proj travel} \\
\text{c z(3)} & \Rightarrow \text{time} \\
\text{y(3)} & \Rightarrow \text{} \\
\text{c z(4)} & \Rightarrow \text{d(proj resistance)} \\
\text{y(4)} & \Rightarrow \text{proj resistance} \\
\text{c energy} & \Rightarrow \text{energy} \\
\text{c z(5)} & \Rightarrow \text{d(heat loss)} \\
\text{y(5)} & \Rightarrow \text{heat loss} \\
\text{c z(6)} & \Rightarrow \text{recoil accel} \\
\text{y(6)} & \Rightarrow \text{recoil velocity} \\
\text{c z(7)} & \Rightarrow \text{recoil velocity} \\
\text{y(7)} & \Rightarrow \text{recoil travel} \\
\text{c z(8)} & \Rightarrow \text{d(air resistance)} \\
\text{y(8)} & \Rightarrow \text{energy loss from air} \\
\text{c energy} & \Rightarrow \text{resistance} \\
\text{c FIND BARREL RESISTANCE} \\
\text{c For loop the following applies to the z & y arrays:} \\
\text{c FIND BARREL RESISTANCE} \\
\text{c variable definition variable definition} \\
\text{c z(1)} & \Rightarrow \text{proj accel} \\
\text{y(1)} & \Rightarrow \text{proj velocity} \\
\text{c z(2)} & \Rightarrow \text{proj velocity} \\
\text{y(2)} & \Rightarrow \text{proj travel} \\
\text{c z(3)} & \Rightarrow \text{d(time)} \\
\text{y(3)} & \Rightarrow \text{time} \\
\text{c z(4)} & \Rightarrow \text{d(proj resistance)} \\
\text{y(4)} & \Rightarrow \text{proj resistance} \\
\text{c energy} & \Rightarrow \text{energy} \\
\text{c z(5)} & \Rightarrow \text{d(heat loss)} \\
\text{y(5)} & \Rightarrow \text{heat loss} \\
\text{c z(6)} & \Rightarrow \text{recoil accel} \\
\text{y(6)} & \Rightarrow \text{recoil velocity} \\
\text{c z(7)} & \Rightarrow \text{recoil velocity} \\
\text{y(7)} & \Rightarrow \text{recoil travel} \\
\text{c z(8)} & \Rightarrow \text{d(air resistance)} \\
\text{y(8)} & \Rightarrow \text{energy loss from air} \\
\text{c energy} & \Rightarrow \text{resistance} \\
\text{c FIND MASS FRACTION BURNING RATE} \\
\text{c c FIND BARREL RESISTANCE} \\
\text{do 201 k=2,npts} \\
\text{c if(y(2)+y(7).ge.trav(k)) then} \\
\text{go to 201} \\
\text{end if} \\
\text{go to 203} \\
\text{201 continue} \\
\text{k} &= \text{npts} \\
\text{c determine bore resistance due to friction and engraving [eq 7-8]} \\
\text{203} & \Rightarrow \text{resp = (trav(k)-y(2)-y(7))/(trav(k)-trav(k-1))} \\
\text{resp} &= \text{br(k)-resp*(br(k)-br(k-1))} \\
\text{c FIND MASS FRACTION BURNING RATE} \\
\text{do 211 k=1,nprop} \\
\text{c**if(ibo(k).ne.1) then} \\
\text{CALL prfOl7(pdpo(k),pdpi(k),gdiap(k),dbpcp(k),glenp(k),} \\
\text{surf(k),frac(k),y(ibrp+k),nperfs(k),u_bad_web) \\
\text{c**if(bad_web.lt.0.0) then} \\
\text{fx} &= \text{100.0*bbed_web} \\
\text{return} \\
\text{end if} \\
\text{c if surf is less than minimum then propellent all burned up} \\
\text{if(surf(k).lt.1.e-10) ibo(k)=1} \\
\text{end if} \\
\text{211 continue} \\
\text{c ENERGY LOSS TO PROJECTILE TRANSLATION [eq 7-4]} \\
\text{elpt=prwt*y(1)**2/2.0} \\
\end{align*}
\]
c ENERGY LOSS DUE TO PROJECTILE ROTATION [eq 7-5].............
etpr=pi**2*prwt*y(1)**2*twst**2/4.0
c ENERGY LOSS DUE TO GAS AND PROPELLANT MOTION..........
c Chambrage
if(igrad.eq.2) then
 c net projectile travel
 ptr = y(2)+y(7)
c total current volume behind projectile
 vzp = bvol+areab*pt
c J4 determined at zp
 j4zp= bint(4)+((bvol+areab*pt)**3-bvol**3)/(3.0*areab**2)
c [eq 7.7]
etgpm = tmpi*y(1)**2*areab**2*j4zp/(2.0*vzp**3)
c Lagrange [eq 7.6]..
else
 etgpm = tmpi*y(1)**2/6.0
end if
c ENERGY LOSS FROM BORE RESISTANCE..............................
etbr = y(4)
 z(4) = areab*resp*y(1)
c ENERGY LOSS DUE TO RECOIL [eq 7.9]..........................
etrc = rcwt*y(6)**2/2.
c ENERGY LOSS DUE TO HEAT LOSS...................................
c [eq 7.14]
 areaw = cham/areab*pi*bore+2.0*areab+pi*bore*(y(2)+y(7)))
avden = 0.0
 avc = 0.0
 avcp = 0.0
 z18 = 0
 z19 = 0
do 213 k1,nprop
c z18 is the left hand numerator term in eq 7.19
 z18 = forcp(k)*gamapck)*chwp(k)*frac(k)/(gamap(k)-l.)
 +/tempp(k)+z18
 c z19 is the left hand denominator term in eq 7.19
 z19 = chwp(k)*frac(k)+z19
c the top left numerator term in eq 7.17
 avden = avden+chwp(k)*frac(k)
 do 213 continue
 c [eq 7.19] specific heat at constant pressure of propellent gasses
 avcp = (z1B+forci*gamai*chwi/(gamai-1.)/tempi)/(z19+chwi)
c [eq 7.17] mean gas density
 avden = (avden+chwi)/(volg+cov1)
c [eq 7.16] mean gas velocity
 avvel = .5*y(1)
c [eq 7.14] Nordheim heat transfer coefficient
 htns = lambda*avcp*avden*avvel*ho
[c eq 7.12] Q dot
 z(5) = areaw*htns*(tgas-waLLt)*hL
 c [eq 7.11] heat loss
 elht = y(5)
c wall temperature
 waLit = (elht+htfr*elbr)/(cshl*rhocs*areaw*tshl)+twal
c ENERGY LOSS DUE TO AIR RESISTANCE..............................
 air=iair
 z(8)=y(1)*pgas*air
 elar=areaab*y(8)
c RECOIL.............
z(6)=0.0
 if(pbrch.le.rp(1)/areab) then
 go to 221
 end if
 rfor1=rp(2)
 if(y(3)-tr0.ge.tr(2)) then
 go to 222
 end if
 rfor = (tr(2)-(y(3)-tr0))/(tr(2)-tr(1))
 rfor = rp(2)-rfor*(rp(2)-rp(1))
 z(6) = areab/rcwt*(pbrch-rfor/areab-resp)
 if(y(6).lt.0.0) then
 y(6) = 0.0
 else
\[z(7) = y(6) \]
end if

goto 223

221 \[tr0 = y(3) \]
223 continue

c CALCULATE GAS TEMPERATURE ..
\[\text{prop} = \text{prop} \]
\[\text{rprop} = 0.0 \]
do 231 k = 1, nprop
\[\text{eprop} = \text{eprop} + \text{forcp}(k) \times \text{chwp}(k) \times \text{frac}(k) / (\text{gamap}(k) - 1.) \]
\[\text{rprop} = \text{rprop} + \text{forcp}(k) \times \text{chwp}(k) \times \text{frac}(k) / (\text{gamap}(k) - 1./ \text{temp}(k) \times \text{ten} \]
\[\text{tgas} = (\text{eprop} + \text{forcig} \times \text{chwi} / (\text{gamai} - 1.0) - \text{ten} \}
+ (\text{rprop} + \text{forcig} \times \text{chwi} / ((\text{gamai} - 1.0) \times \text{temp}(k))) \]

c FIND FREE VOLUME ..
\[\text{v1} = 0.0 \]
\[\text{covl} = 0.0 \]
do 241 k = 1, nprop
\[\text{v1} = \text{chwp}(k) \times (1. - \text{frac}(k)) / \text{chwp}(k) + \text{v1} \]
\[\text{covl} = \text{covl} + \text{chwp}(k) \times \text{covp}(k) \times \text{frac}(k) \]
241 continue
\[\text{vg} = \text{volg} + \text{areab} \times \text{y}(2) + \text{y}(7) - \text{v1} - \text{covl} \]
c CALCULATE MEAN PRESSURE ..
\[\text{rl} = 0.0 \]
do 251 k = 1, nprop
\[\text{r1} = \text{r1} + \text{forcp}(k) \times \text{chwp}(k) \times \text{frac}(k) / \text{temp}(k) \]
\[\text{pmean} = \text{tgas} / \text{volg} \times (\text{r1} + \text{forcig} \times \text{chwi} / \text{temp}(k)) \]
\[\text{resp} = \text{resp} + \text{pgas} \times \text{air} \]
if(igrad.eq.2) then
if(iswl.ne.0) then

253 \[j1zp = \text{bint}(1)+(\text{bvol} \times \text{areab} / 2.0) / \text{areab} \]
\[j2zp = (\text{bvol} + \text{areab} \times \text{pt} \times 2 / \text{areab} \times 2) \]
\[j3zp = \text{bint}(3) \times \text{areab} \times \text{bint}(1) \times \text{pt} + \text{bvol} \times \text{pt} \times 2 / 2.0 \times \text{areab} \times \text{pt} \times 3 / 6. \]
\[a2t = -\text{tmpi} \times \text{areab} \times \text{pt} / \text{vzp} \times 2 \]
\[\text{alf} = 1.0 - a2t \times j1zp \]
\[\text{alt} = \text{tmpi} \times \text{areab} \times (\text{areab} \times \text{y}(1) \times 2 / \text{vzp} + \text{areab} \times \text{resp} / \text{prwt}) / \text{vzp} \times 2 \]
\[\text{bt} = -\text{tmpi} \times \text{y}(1) \times 2 / 2.0 \times \text{vzp} \times 3 \]
\[\text{bata} = -\text{alt} \times j1zp \times \text{bt} \times j2zp \]
\[\text{gamma} = \text{alf} + a2t \times j3zp \times \text{vzp} \]
\[\text{delta} = \text{bata} + \text{alt} \times j3zp \times \text{vzp} \times \text{bt} \times j4zp \times \text{vzp} \]
c CALCULATE BASE PRESSURE
\[\text{pbase} = (\text{pmean} - \text{delta}) / \text{gamma} \]
c CALCULATE BREECH PRESSURE
\[\text{pbrch} = \text{alf} \times \text{pbase} \times \text{bata} \]
else

256 \[\text{pbases} = (\text{pmean} + \text{tmpi} \times \text{resp} / 3.0 / \text{prwt}) / (1.0 + \text{tmpi} / 3.0 / \text{prwt}) \]
if(pbase.gt.1.0) then
iswl = 1
end if
end if
end if

c CALCULATE BREECH PRESSURE
\[\text{pbrch} = \text{pbases} + \text{tmpi} \times (\text{pbases} - \text{resp}) / (2.0 \times \text{prwt}) \]
end if
c CALCULATE PROJECTILE ACCELERATION.........................
z(1) = areaab*(pbase-resp)/prwt
if(z(1).lt.0.0) then
go to 257
else
go to 258
end if
257 if(iswl.eq.0) z(1) = 0.0
258 if(y(1).lt.0.0) y(1) = 0.0
z(2)=y(1)
c GET BURNING RATE...
do 264 m=1,nprop
z(ibrp+m)=0.0
if(ibo(m).eq.1) then
go to 264
end if
do 262 k=1,nbr(m)
if(pmean.gt.pres(m,k)) then
go to 262
end if
go to 263
262 continue
k=nbr(m)
c [eq 5.2] linear burning rate..........................
z(ibrp+m)=beta(m,k)*(pmean*1.e-6)**alpha(m,k)
264 continue
c 4th order Runge-Kutta integration..................
do 21 i=1,nde
ds(i) = (z(i)-bs(j)*p(i))*as(j)
y(i) = detat*ds(i)+y(i)
pi) = 3.*ds(i)-ak(j)*z(i)+p(i)
21 continue
11 continue
t = t+deltat
c set max mean pressure.................................
if(pmaxm.le.pmean) then
pmaxm = pmean
tpmaxm = y(3)
end if
c set max base pressure.................................
if(pmaxba.le.pbase) then
pmaxba = pbase
tpmaxba = y(3)
dpmaxba = y(2)
end if
c set max breech pressure..............................
if(pmaxbr.le.pbrch) then
pmaxbr = pbrch
tpmaxbr = y(3)
dpmaxbr = y(2)
end if
if(y(3).ge.ptime) then
ptime = ptime+deltap
end if
write(0,7)y(3),z(1),y(1),y(2),pmean,pbase,pbrch
c7 format(Ix,7el1.4)
end if
c STOP CRITERIA: time is up or tube length is met........
if(t.gt.tstop.or.y(2).ge.travp) then
 go to 200
else
 rmvelo = y(1)
disto = y(2)
tvelo = y(3)
goto 19
end if
c END OF CALCULATION OUTPUT..
200 write(6,311)t,y(3)
311 format(1x,deltat t',e14.6, ' intg t',e14.6)
312 format(1x,'PMAXMEAN Pa ',e14.6, ' time at PMAXMEAN sec ',e14.6)
write(6,313)pmaxba,tpmaxa
313 format(1x,'PMAXBASE Pa ',e14.6, ' time at PMAXBASE sec ',e14.6)
write(6,314)pmaxbr,tpmaxbr
314 format(1x,'PMAXBRCH Pa ',e14.6, ' time at PMAXBRCH sec ',e14.6)
316 format(1x)

c FX value assignment..

it has either met the muzzle velocity criteria or current proj...
if (y(2).le.travp) then
write(6,327)y(1),y(3),y(2)-travp,
d
327 format(lx,'proj VELOCITY m/s ',e14.6, ' at time sec ',e14.6,
+ 'tvL diff(-) =',f10.6,' d_ =',f10.4)
c velocity check..
fx = -y(1)
go to 319
else
dfract = (travp-dist0)/(y(2)-dist0)
rmvel = (y(1)-rmvelo)*dfract+rmvelo
tmvel = (y(3)-tmvelo)*dfract+tmvelo
write(6,318)rmvel,tmvel,y(2)-travp,l_d
c
318 format(1x,rmuzzle VELOCITY m/s ',e14.6, ' at time sec ',e14.6,
+ 'tvL diff(+)=',f10.6,' p_{f}=',f10.4)
fx = -rmvel
end if

c Energy calculations..
319 efi = chwi*forcig/(gamai-1.)
efp = 0.0
315 continue
tenerg = efi+efp
write(6,317)tenerg
317 format(1x,'total initial energy available J = ',e14.6)
tengas = chwi*forcig*temp/(gamai-1.)
do 315 i=1,nprop
+ tengas=frac(i)*chwp(i)*forcp(i)*temp/(gamap(i)-1))
+ tengas
write(6,328)i,frac(i)
328 format(1x, FOR PROPELLANT ',12, ' MASSFRACT BURNT IS ',e14.6)
315 continue

c variable return...
call var.out(x,ivar)
if (frac(i).ge.1.0) burned_up = 1
return
end

c End of fun_int.ftn.
SUBROUTINE PRFO17(P,P1,D,D1,L,SURF,MASSF,X,NP,U,BAD_WEB)

This subroutine is called from 'fun_int.ftn'. It is a modified version of the 'PRF017' found in IBRGAC, from the Interior Ballistics Laboratory, Maryland. It has been modified only to ease understanding of its operation. It performs the calculations of mass fraction and surface fraction of propellant burned for zero, one, and seven perforation propellant of unequal web.

The following definitions apply:

P = OUTER PERF DIA
P1 = INNER PERF DIA
D = OUTER DIA
D1 = DISTANCE BETWEEN PERF CENTERS
L = GRAIN LENGTH
NP = NUMBER OF PERFS
SURF = OUTPUT SURFACE AREA
MASSF = OUTPUT MASS FRACTION OF PROPELLANT BURNED
W = WEB BETWEEN OUTER PERFS
W0 = OUTER WEB
W1 = WEB BETWEEN OUTER AND INNER PERFS
W4 = MINIMUM WEB
BAD_WEB = UNACCEPTABLE WEB FLAG TO ENSURE FUNCTION VALUE IS WEIGHTED
X = DISTANCE THE PROPELLENT IS BURNED INTO SURFACE
U = ORIGINAL VOLUME OF PROPELLENT GRAIN
A = ORIGINAL SURFACE AREA OF 7 PERF PROPELLENT

INTEGER*2 NP
REAL*4 pi,for,dlsq,pl2xsq,twoipi,tm2x,plsq,pp2xsq,plp2x,surf,a,d,twox,p,u,v,x,y,z,a2,a3,a4,a5,
+ b1,b2,b3,b4,b5,dsq,surt3,d1,f1,f2,f3,l1,l2,l3,hafpi,psq,p,dsq3,
+ d2sq3,pp2xsq,pl2xsq,surf,a,d,twox,p,u,v,x,y,z,a2,a3,a4,a5,
+ s1,s2,v0,v1,v2,v0,xsq,w1,w4,x1,x2,massf,l,bad_web,dm2x

DATA PI,SQRT3/3.14159,1.732051/
DATA HAFPI,PIFOR,TWOPI/1.570796,.785398,6.283185/
BAD_WEB = 0.0
DSQ = D*D
PSQ = P*P

IF (NP.EQ.0) THEN
C ZERO PERF CALCULATIONS START HERE (CALC ORIGINAL VOLUME)..............
 u = dsq*pi/4.
 IF (d-2*x.gt.0.0) THEN
 twox = x*x
 xsq = x*x
 MASSF = TWOX*(DSQ+2.*L*D-4.*X*D-PSQ+2.*P*L-4.*P*X)
 + 4.*SURT3/D2SQ
 SURF = PI*(DSQ/2.*L*D-4.*X*D-PSQ+2.*P*L-4.*P*X)
 ELSE
 MASSF = 1.0
 SURF = 0.0
 END IF
 RETURN
ELSE IF (NP.EQ.1) THEN
C ONE PERF CALCULATIONS START HERE (CALC ORIGINAL VOLUME)..............
 u = dsq*pi/4.-psq*pi/4.
 IF (d-p-4.*x.gt.0.0) THEN
 twox = x*x
 MASSF = TWOX*(DSQ+2.*L*D-4.*X*D-PSQ+2.*P*L-4.*P*X)
 + 4.*SURT3/DSQ
 SURF = PI*(DSQ/2.*L*D-4.*X*D-PSQ+2.*P*L-4.*P*X)
 ELSE
 MASSF = 1.0
 SURF = 0.0
 END IF
 RETURN
ENDIF

138
ELSE IF (NP.EQ.7) THEN
C SEVEN PERF PROPELLENT ACCEPTABLE DIMENSIONS CHECK
C OUTER PERFORATION MIDPOINT BURNED THROUGH BY INNER PERF CHECK.
IF(P1.GT.(P+Dl*(SQRT(3)-1))) THEN
 bad_web = (P+D1*(SQRT3-1)) - P
C OUTER PERFORATION MIDPOINT BURNED THROUGH BY OUTER DIAMETER CHECK.
ELSE IF (D.LT.D1*(SQRT3+1.) - P) THEN
 BADWEB = (D1*(SQRT3+1.) - P) - P
END IF

C WEB DIMENSION CHECKS..
W = D1-P
WO = (D-P-2.*D1)/2.
Wi = (2.*D1-P-Pl)/2.
C WEB BETWEEN OUTER PERF CHECK............................
IF (W.LT.O) THEN
 bad_web = w
C OUTER WEB CHECK..;
ELSE IF (W0.LT.O.) THEN
 bad-web = wO
C INNER WEB CHECK..
ELSE IF(Wi.LT.O.) THEN
 bad web = w1
END IF

C UNACCEPTABLE GRANULATION CHECK..........................
IF (BAD_WEB.LT.0.0) GOTO 60

P1SQ = P1*P1
D1SQ = D1*D1
D1SQ3 = D1*SQRT3
D2SQ3 = D1SQ*SQRT3
X1 = (P1SQ-PSQ+4.*D1SQ-2.*P1*D1SQ3)/4.(/D1SQ3+P-P1)
X2 = (D1SQ+D-P-2.*D1SQ3-PSQ)/4.(=/D1SQ3+P-D)
A = P1FL*(D+P+6.*P)*HAFPL*(O50-P1SQ-6.*PSQ)
U = P1FL/4.*(O50-P1SQ-6.*PSQ)
W4 = AMIN1(W,WO,Wl)
MASSF = 0.0
TWOX = X+X
XSQ = X*X
P1P2X = P1+TWOX
PP2X = P+TWOX
DM2X = D-TWOX
LM2X = L-TWOX
P12XSQ = P1P2X*P1P2X
PP2XSQ = PP2X*PP2X
DM2XSQ = DM2X*DM2X
C SEVEN PERF CALCULATIONS START HERE........................
C IF LENGTH IS NOT ALL BURNED UP............................
IF (LM2X.GT.O) THEN
 SO = PI*LM2X*(D+P+6.*P)*HAFPL*(DM2X*DM2X - P1P2X*P1P2X - PP2X*PP2X)
 VO = PI*FOR*(LM2X*(DM2X*DM2X-P1P2X*P1P2X-6.*PP2X*PP2X))
C SEE IF SMALLEST WEB IS BURNED THROUGH....................
IF (X.GT.W4/2.) THEN
 C IF SO CHECK THE WEBS, ONE BY ONE........................
 C FIRST CHECK INNER WEB...................................
 ELSE IF (X.GT.W4/2.) THEN
 C IT IS BURNED UP...
 Z = (2.*D1+P+P4.*X)/4.
 B5 = ((P1-P)*P4+P4.*X)/4.*D1SQ)/4./D1/P1P2X
 A3 = ATAN(SORT1.-B3/B3)
 A4 = ATAN(SORT1.-B4/B4)
 F2 = A3/4.*(P12XSQ+A4/4.*PP2XSQ-SQRT(Z*(Z-D1))*Z-D1)*Z-P-TWOX
 L2 = LH2X*(A4*PP2X+A3*P1P2X)
 ELSE
 F2 = 0.0
 L2 = 0.0
 A3 = 0.0
 A4 = 0.0
END IF

139
C NEXT CHECK WEB BETWEEN OUTER PERFORATIONS............................
IF (X.GT.W/2.) THEN
B5 = D1/PP2X
A5 = ATAN(SQRT(1. - B5*B5)/B5)
F3 = (A5*PP2XSQ-D1*SQRT(PP2XSQ-D1SQ))/2.
L3 = 2.*A5*LM2X*PP2X
ELSE
F3 = 0.0
L3 = 0.0
A5 = 0.0
END IF
C NEXT CHECK OUTER WEB...
IF (X.GT.W0/2.) THEN
Y = (2.*Di+P+D)/4.
B1 = ((D+P)*(D-2.*X)-4.*DiS0)/4./D1/PP2X
A1 = ATAN(SQRT(1. - B1*B1)/B1)
IF (A1.LE.0.) A1 = PI+A1
B2 = ((D+P)*(D-P-4.*X)+4.*DiS0)/4./D1/DM2X
A2 = ATAN(SQRT(1. - B2*B2)/B2)
F1 = A1/4.*PP2XSQ-A2/4.*DM2XSQ+SQRT(Y-D1)*(2.*Y-P-TWOX)
+ L1 = LM2X*(A1*PP2X+A2*DM2X)
ELSE
F1 = 0.0
L1 = 0.0
A1 = 0.0
A2 = 0.0
END IF
C ALL THREE WEBS HAVE BEEN CHECKED.................................
C DETERMINE SLIVERING EQUATIONS....................................
IF (X.LE.W/2.) THEN
SURF = S0+12.*(F1+F2+F3)-6.*(L1+L2+L3)
V = V0+6.0*(F1+F2+F3)*LM2X
GO TO 850
END IF
IF (X.LT.X1) THEN
S1 = 3.*D2SQ3-P1*PP2XSQ-HAFPI*P12XSQ+6.*F3+12.*F2
S1 = S1+LM2X*(PI-6.*A3)*PP2X+(PI-6.*A3)*PP2X)
V1 = LM2X/2.*(3.*D2SQ3-P1*PP2XSQ-HAFPI*P12XSQ+6.*F3
+12.*F2)
ELSE
S1 = 0.0
V1 = 0.0
END IF
IF (X.LT.X2) THEN
S2 = HAFPI*DM2XSQ-3.*D2SQ3-TWOP1*PP2XSQ+12.*F1+6.*F3
S2 = S2+LM2X*((PI-1.6.*A2)*DM2X+2.*(TWOP1-1.3.*A5)
+ PP2X)
V2 = LM2X/2.*(HAFPI*DM2XSQ-3.*D2SQ3-TWOP1*PP2XSQ+12.
+ F1+6.*F3)
ELSE
S2 = 0.0
V2 = 0.0
END IF
SURF = S1+S2
V = V1+V2
C THE PROPELLENT HAS NO WEB VIOLATIONS............................
ELSE
MASSF = -TWOX/L/(DSSO-PI SQ-6.*PSS)
MASSF = MASSF*(24.*XSO*(24.*P+4.*PI-12.*L)+PISQ
+6.*PSS-2.*L*D-2.*PI1-12.*L+P-SO)
SURF = S0
RETURN
END IF
140
C THE PROPELLENT HAS BEEN ALL BURNED UP.............................
ELSE
SURF = 0.0
V = 0.0
END IF
850 MASSF = 1.0-V/U
RETURN
C THE NUMBER OF PERFORATIONS DOES NOT EQUAL 0,1 RO 7..............
ELSE
60 WRITE(6,90)
90 FORMAT(1X,'UNACCEPTABLE GRANULATION')
END IF
RETURN
END
C end of prfo17...
 SUBROUTINE READ DATA(X,NOVAR)

 This subroutine is called by 'optim.m.ftn'; it reads the input
 records for 'fun.int.ftn'. It saves all records into 's.' prefixed
 variables. At the end of this subroutine the initial design vector
 is
 assigned. See 'intball.ins.f' for variable definitions.

 **INCLUDE 'intball.ins.f'

 INTEGER*2 NOVAR

 Input data file, and open file.

 WRITE(*,15)
 15 FORMAT('Enter name of data input file (10 characters max):')
 READ(*,10)bdfile
 10 FORMAT(A10)
 OPEN(unit=2,err=30, file=bdfile, status='old', iostat=ios)
 REWIND 2

 Output data file, and open file.

 WRITE(*,25)
 25 FORMAT('Enter name of data output file (10 characters max):')
 READ(*,10)outfile
 OPEN(unit=6, err=30, file=outfile)

 Read Record 1. The data input file is ',',a10,/

 READ2,*,END=20,ERR=30)CHAM,S_GVE,S_ALAND,S_GIR,S_TWST,
 +S_TRAVP,S_IGRAD

 Using chambrage gradient equation.

 IF (S_IGRAD. GT. 1) THEN
 WRITE(*,47, ERR=30)
 47 FORMAT(1X, 'Using chambrage pressure gradient')

 Read and echo print Record 1a (for chambrage only).

 READ2,*,END=20,ERR=30)S_CHAM,S_GVE,S_ALAND,S_GIR,S_TWST,
 +S_TRAVP,S_IGRAD

 Using chambrage distance cm, chamber diameter cm.

 IF (S_IGRAD. EQ. 1) THEN
 WRITE6,53,ERR=30)S_CHAM,S_GVE,S_ALAND,S_TWST,
 +S_TRAVP,S_IGRAD
 53 FORMAT(/,' Chamber distance cm, chamber diameter cm',/
 +5X,E14.6,E14.6)

 Convert units.

 DO 55 1=1,S_NCHPTS
 S_CHDIST(I) = 0.01*S_CHDIST(I)
 55 S_CHDIAM(I) = 0.01*S_CHDIAM(I)

 Calculate chamber integrals and volume.

 IF (S_NCHPTS. GT. 5) THEN
 S_NCHPTS = 5
 WRITE(6,44, ERR=30)
 44 FORMAT(1X, 'Use first 5 points')
 END IF

 Set bore to largest distance.

 BORE = S_CHDIAM(S_NCHPTS)

 IF(S_CHDIST(1).NE.0.0) THEN
 WRITE(6,45, ERR=30)
 45 FORMAT(1X, '# points ?')
 END IF
 S_CHDIST(1) = 0.0

 Initialization.

 B1 = 0.0
 B2 = 0.0
 B3 = 0.0
 B4 = 0.0

 Setting the initial number of integration points.

 POINTS = 25.0
 56 POINTS = POINTS + POINTS

 Setting the step size.

 STEP = S_CHDIST(S_NCHPTS)/POINTS
c increment through breech/bore distance.............
 zz = 0.0

 c initialize the bint's..............................
 bint(1) = 0.0
 bint(3) = 0.0
 bint(4) = 0.0
 bvot = 0.0

 c radius of the start of current interval..........
 r2 = 0.5*s_chdiam(1)
 k = 1
 j = int(points+0.5)

c going through the breech/bore travel.............
 do 57 i=1,j
 zz = zz+step
 c if at last interval..............................
 if (k.eq.s_nchpts-1) go to 46

 c looking for current interval in breech/bore......
 do 58 l1=k,s_nchpts-1
 if (zz.gt.s_chdist(l1).and. zz.lt.s_chdist(l1+1)) go to 59
 continue
 l1 = s_nchpts-1
 59
 k = 1T

 c diam is first the ratio of the distance into the interval.....
 46
 diam = (zz-s_chdist(k))/(s_chdist(k+1)-s_chdist(k))

 c diam is then the diameter of the current location in the interval.
 diam = s_chdiam(k)*diam*(s_chdiam(k+1)-s_chdiam(k))

 c radius at current location...........................
 r1 = 0.5*diam

 c intermediate area of selected interval & step location.....
 area = pi*(r1+r2)**2/4.

 c the current net volume of the chamber................
 bvot = bvot+step*(pi/3.0)*(r1**2+r1*r2+r2**2)

 c calculating the current J(1), J(3), & J(4) values through numerical
 c integration...
 bint(1) = bint(1) + step * bvot / area
 bint(3) = bint(3) + step * area * bint(1)
 bint(4) = bint(4) + step * bvot**2 / area

 c set old radius to current radius....................
 r2 = r1

 c determining if convergence has been reached...............
 temp = abs(1.0-b1/bint(1))
 if(abs(1.0-b3/bint(3)).gt.temp) then
 temp = abs(1.0-b3/bint(3))
 end if
 if(abs(1.0-b4/bint(4)).gt.temp) then
 temp = abs(1.0-b4/bint(4))
 end if

 c if converged set values and exit........................
 if(temp.le.0.001) then
 go to 41
 else
 b1 = bint(1)
 b3 = bint(3)
 b4 = bint(4)
 end if

 c or go back and close interval and try again............
 go to 56
 end if

143
c convert units and save...
41 s_cham = bvol*1.e6
 s_chmlen = s_chdist(s_nchpts)
 s_bint(1) = bint(1)
 s_bint(3) = bint(3)
 s_bint(4) = bint(4)
 s_bvol = bvol
 s_bore = bore

 c Use LaGrange Pressure Gradient.
 else
 format(1x,' Using LaGrange pressure gradient')
 end if
40 format(1x,1,' chamber volume cm^3',1.e6,1,' groove diam cm ','
 6.e2,1,' land diam cm ',1.e6,1,' groove/land ratio ',1.e4,1,' twist turns/caliber ',1.e4,6)

 c convert units...
 s_cham = s_cham * 1.0e-6
 s_grve = s_grve * 1.0e-6
 s_aland = s_aland * 1.0e-2
 s_trav = s_trav * 1.0e-2

 c Read and echo print Record 2.............................
 read(2,*,end=20,err=30) s_prwt,s_liar,s_htfr,s_pgas
 write(6,50,err=30) s_prwt,s_liar,s_htfr,s_pgas
50 format(1x,' projectile mass kg',1.e4,1,' switch to calculate en
 ergy lost to air resistance J',15,' fraction of work against bor
 +e used to heat the tube',1.e4,1,' gas pressure Pa',5x,1.e6)
 write(6,65)
65 format(1x)

 c convert units...
 c Read and echo print Record 3.............................
 read(2,*,end=20,err=30) snpts,(sbr(i),s_trav(i),i=1,s_npts)
 write(6,60,err=30) s_npts,(sbr(i),s_trav(i),i=1,s_npts)
60 format(1x,' number barrel resistance points',12,1,' bore resistance
 +ce MPa - travel cm*/(6x,1.e4,3x,1.e4))
 write(6,65)
65 format(1x)

 c Read and echo print Record 4.............................
 read(2,*,end=20,err=30) s_rcwt,s_nrpt,(s_rp(i),s_tr(i),i=1,s_nrpt)
 write(6,70,err=30) s_rcwt,s_nrpt,(s_rp(i),s_tr(i),i=1,s_nrpt)
70 format(1x,' number of recoil point pairs',6x,12,1,' recoil force N',
 +'/ recoil time sec',17,1,' recoil point pairs',1x,6x,12,1,' recoil force N',
 +'/ recoil time sec',17,1,' recoil point pairs',1x,6x,12,1,' recoil force N',
 +'/ recoil time sec',17,1,' recoil point pairs',1x,6x,12,1,' recoil force N',
 +'/ recoil time sec',17,1,' recoil point pairs',1x,6x,12,1,' recoil force N',
9 write(6,65)

 c Read and echo print Record 5.............................
 read(2,*,end=20,err=30) s_ho,s_tshl,s_cshl,s_twal,s_hl,s_rhocs
 write(6,75,err=30) s_ho,s_tshl,s_cshl,s_twal,s_hl,s_rhocs
75 format(1x,' free convective heat transfer coefficient w/cm^2 K',
 +',e14.6,1,' chamber wall thickness cm',25x,1.e6,1,' heat capacity
 + of steel of chamber wall J/g K',8x,1.e4,1,' initial temperature of
 + chamber wall K',15x,1.e4,1,' heat loss coefficient',31x,1.e6,1,' density of chamber wall steel g/cm^3',
44
ca convert units..
 s_forcig = s_forcig*1.e+3
 s_covi = s_covi*1.e-6/1.e-3
ca Read and echo print Record 7..
 read(2,*),end=20,er=30) s_nprop,(s_forcp(i),s_tempp(i),s_covp(i),
 + s_chwp(i),s_rhop(i),s_gamp(i),s_hperfs(i),s_glenp(i),s_pdp(i),
 + s_pddpo(i),s_gdiap(i),s_dbpcp(i),T=1,s_nprop)
 write(6,95,err=30) (1,s_forcp(i),s_tempp(i),s_covp(i),
 + s_chwp(i),s_gamp(i),s_hperfs(i),s_glenp(i),s_pdp(i),s_pddpo(i),
 + s_gdiap(i),s_dbpcp(i),T=1,s_nprop)
95 format((' FOR PROPELLENT NUMBER',i2,' impuls of propellant J/g
 +',27x,e14.6,' adiabatic temperature of propellant K',16xe14.6
 + covolume of propellant cm**3/g,23x,e14.6/ initial mass of pro
 +pellant kg,24x,e14.6/ density of propellant g/cm**3
 + ratio of specific heats for propellant',15x,e14.6/ number of
 +perforations of propellant',18x,i2/ length of propellant grain c
 +m',24x,e14.6/ diameter of inner perforation of propellant grains
 + cm',e14.6/ outside diameter of propellant grain cm',14x,e14.6/
 +distance between perf centers cm',21x,e14.6//)
ca convert units..
 do 96 i=1,s_nprop
 s_forcp(i) = s_forcp(i) *1.0e+3
 s_covp(i) = s_covp(i) *1.0e-6/1.0e-3
 s_rhop(i) = s_rhop(i) *1.0e-3/1.0e-6
 s_glenp(i) = s_glenp(i) *0.01
 s_pdp(i) = s_pdp(i) *0.01
 s_pddpo(i) = s_pddpo(i) *0.01
 s_gdiap(i) = s_gdiap(i) *0.01
 s_dbpcp(i) = s_dbpcp(i) *0.01
96 continue
ca Read and echo print Record 8..
 do 97 j=1,s_nprop
 read(2,*),end=20,er=30) s_nbr(j),(s_alpha(j,i),s_beta(j,i),
 + s_pres(j,i),i=1,s_nbr(j))
 write(6,110,err=30) s_nbr(j),(s_alpha(j,i),s_beta(j,i),
 + s_pres(j,i),i=1,s_nbr(j))
110 format(1x,' no. of Burning rate points',i2/3x,' exponent',5x,
 + coefficient',17x,' pressure/5x,'''16x,'cm/sec-MPa**ai',12x,'/
 + MPa',/(1x,e14.6,5x,e14.6,15x,e14.6))
ca convert units..
 do 112 j=1,s_nbr(j)
 s_beta(j,i) = s_beta(j,i)*1.e-2
112 s_pres(j,i) = s_pres(j,i)*1.e6
97 continue
 write(6,65)
ca Read and echo print Record 9..
 read(2,*),end=20,er=30) s_deltaj,s_deltat,s_deltap,s_tstop
 write(6,120,err=30) s_deltaj,s_deltat,s_deltap,s_tstop
120 format(2x,'time increment m/sec','e14.6/2x','print increment
 + m/sec','e14.6/2x','time to stop calculation m/sec','e14.6))
ca convert units..
 s_deltaj = s_deltaj *0.001
 s_deltat = s_deltat *0.001
 s_deltap = s_deltap *0.001
 s_tstop = s_tstop *0.001
ca Design vector assigned here, each is problem specific..................
ca Format is: x(i) = s_glenp(1) etc.
ca...
129 write(0,130)
130 format(1x,' END INPUT DATA ')
return
20 write(*,140)
140 format(1x,'end of file encounter')
return
30 write(*,150)
150 format(1x,'read or write error')
return
end
ca end of data read.
SUBROUTINE RESET DATA

This subroutine resets the variables for and is called by 'fun.int.ftn'. It transfers all initial values from their 's.' prefixed variable to the variable that is used in the calling subroutine. See 'intball.ins.f' for variable definitions.

%INCLUDE 'intball.ins.f'

Record Initialization

Record 1

 cham = s_cham
 grve = s_grve
 aland = s_aland
 glr = s_glr
 twst = s_twst
 trav = s_trav
 igrad = s_igrad

Record 1a

 do 10 i=1,s_nchpts
 chdist(i) = s_chdist(i)
 chdiam(i) = s_chdiam(i)
 10 nchpts = s_nchpts

Record 2

 prwt = s_prwt
 hthr = s_hthr
 ppas = s_ppas
 ilair = s’ilair

Record 3

 do 30 i=1,s_npts
 br(i) = s_br(i)
 trav(i) = s_trav(i)
 30 npts = s_npts

Record 4

 do 40 i=1,s_nrpl
 rp(i) = s_rp(i)
 tr(i) = s_tr(i)
 rcwt = s_rcwt
 nrp = s_nrpl

Record 5

 ho = s_ho
 tsht = s_tsht
 cshl = s_cshl
 twal = s_twal
 tl = s_tlw
 rhocs = s_rhocs

Record 6

 forcig = s_forcig
 covi = s_covi
 tempi = s_tempi
 chwi = s_chwi
 gamai = s_gamai

Record 7

 do 70 i=1,s_nprop
 forcp(i) = s_forcp(i)
 temp(i) = s_temp(i)
 covp(i) = s_covp(i)
 chwp(i) = s_chwp(i)
 rhop(i) = s_rhop(i)
 gamap(i) = s_gamap(i)
 nperfs(i) = s_nperfs(i)
 glenp(i) = s_glenp(i)
 pdpl(i) = s_pdpl(i)
 pdpo(i) = s_pdpo(i)
 gdiap(i) = s_gdiap(i)
 70 nprop = s_nprop

146
c Record 8...
do 80 i=1,10
 nbr(i) = s_nbr(i)
do 80 j=1,10
 alpha(i,j) = s_alpha(i,j)
 beta(i,j) = s_beta(i,j)
 80 pres(i,j) = s_pres(i,j)

c Record 9...
deltat = s_deltat
dettap = s_deltap
tstop = s_tstop

c LaGrange Chamber Volume resets...............................
 bint(1) = s_bint(1)
 bint(3) = s_bint(3)
 bint(4) = s_bint(4)
 bvot = s_bvot
 chmlen = s_chmlen
 bore = s_bore

c End of Record resets..

c Local use initialization..
 r1 = 0.0
 r2 = 0.0
 araeab = 0.0
 tmpi = 0.0
 i_mubda = 0.0
 pmaxm = 0.0
 pmmaxbr = 0.0
 pmmaxbe = 0.0
 tpmaxm = 0.0
 tpmaxbr = 0.0
 tpmaxbe = 0.0
 tpmax = 0.0
 air = 0.0
 do 100 i=1,4
 as(i) = 0.0
 bs(i) = 0.0
 100 ak(i) = 0.0
 vpO = 0.0
 trO = 0.0
 tcw = 0.0
 volgi = 0.0
 pmean = 0.0
 volp = 0.0
 waltt = 0.0
 ptme = 0.0
 do 110 i=1,20
 z(i) = 0.0
 y(i) = 0.0
 ds(i) = 0.0
 110 p(i) = 0.0

 points = 0
 lbrp = 0
 nde = 0
 isw1 = 0
resp = 0.0
eipt = 0.0
eipr = 0.0
pt = 0.0
vzp = 0.0
j4zp = 0.0
eipgm = 0.0
elbr = 0.0
eelrc = 0.0
areaaw = 0.0
avcp = 0.0
avc = 0.0
avden = 0.0
z18 = 0.0
z19 = 0.0
avvel = 0.0
hnts = 0.0
elht = 0.0
elar = 0.0
rfar = 0.0
eprop = 0.0
rprop = 0.0
tenergy = 0.0
tgas = 0.0
pt = 0.0
vl = 0.0
covl = 0.0
pbase = 0.0
pbrch = 0.0
j1zp = 0.0
j2zp = 0.0
j3zp = 0.0
a2t = 0.0
alf = 0.0
alt = 0.0
bt = 0.0
beta = 0.0
gamma = 0.0
delta = 0.0
t = 0.0
rmvelo = 0.0
tmvelo = 0.0
disto = 0.0
dfrac = 0.0
efi = 0.0
efp = 0.0
tenerg = 0.0
tengas = 0.0
do 120 i=1,10
 frac(i) = 0.0
 surf(i) = 0.0
120 ibo(i) = 0.0
RETURN
END

C end of reset values..
C** subroutine mass check
C**..
C THIS SUBROUTINE DETERMINES THE LOADING DENSITY AND CHECKS THE MAXIMUM
C MASS ALLOWED FOR MULTIPLE PROPELLENTS
C**..
%INCLUDE 'intbal.ins.f'

REAL*4 vol_grain(10), vol_ideal(10), mas_grain(10), num_grain(10),
+ vol_prop(10), mas_prop(10), total_mass_prop

intrinsic sqrt

C check for propellent type..
do 100 i=1,nprop
 c for 0 perf propellent..
 if (nperfs(i).eq.0) then
 c determine 1 grain volume, actual & ideal..............
 vol_grain(i) = pi*glenp(i)*(gdiap(i)**2)/4.
 vol_ideal(i) = pi*glenp(i)*(gdiap(i)**2)/4.
 c determine the mass of 1 grain of propellent..........,
 mas_grain(i) = rhop(i)*vol_grain(i)
 c determine the number of grains of propellent present,
 num_grain(i) = chwp(i)/mas_grain(i)
 c determine the pure volume of propellent present......
 vol_prop(i) = vol_ideal(i)*num_grain(i)
 c determine the mass of the propellent..................
 mas_prop(i) = mas_grain(i)*num_grain(i)
 end if
 continue
 c for 0 perf propellent..
 else if (nperfs(i).eq.1) then
 vol_grain(i) = pi*glenp(i)*(gdiap(i)**2-pdp(i)**2)/4.
 vol_ideal(i) = pi*glenp(i)*(gdiap(i)**2)/4.
 mas_grain(i) = rhop(i)*vol_grain(i)
 num_grain(i) = chwp(i)/mas_grain(i)
 vol_prop(i) = vol_ideal(i)*num_grain(i)
 mas_prop(i) = mas_grain(i)*num_grain(i)
 end if
 c for 7 perf propellent..
 else if (nperfs(i).eq.7) then
 vol_grain(i) = pi*glenp(i)*(gdiap(i)**2-pdp(i)**2-pdpo(i)**2)
+ /4.0
 vol_ideal(i) = pi*glenp(i)*(gdiap(i)**2)/4.
 mas_grain(i) = rhop(i)*vol_grain(i)
 num_grain(i) = chwp(i)/mas_grain(i)
 vol_prop(i) = vol_ideal(i)*num_grain(i)
 mas_prop(i) = mas_grain(i)*num_grain(i)
 end if
100 continue

C the total volume the propellents occupy if ideally packed & mass....
total_mass_prop = 0.0
 do 200 i=T,nprop
 total_mass_prop = total_mass_prop + chwp(i)
 200 total_mass_prop = total_mass_prop + vol_prop(i)
C the chamber volume (m^3) and loading density (g/cm^3).............
cham_vol = cham
dl = (total_mass_prop*1000.0)/(cham_vol*1e6)
return
end
C end of check mass..

149
SUBROUTINE VAR_IN(x,novar,fx)

Example 1 variable conversion for Interior Ballistics Calculation

%INCLUDE 'intbatt.ins.f'

INTEGER*2 NOVAR
REAL*4 X(NOVAR),FX

c Negative dimension check. To ensure no negative values are sent...
do 15 i=1,novar
 15 if (x(i).le.0.0) fx = fx + x(i)
end if

c variable assignment
..

7 perforation propellant
 glnp(1) = x(1)
 pdpi(1) = x(2)
 pdpo(1) = x(3)
 gdiap(1) = x(4)
 dbpcp(1) = x(5)
 chwp(1) = x(6)

return
end

c END OF VAR IN
..

SUBROUTINE VAR_OUT(x,novar)

Example 1 variable return for Interior Ballistics Calculation

%INCLUDE 'intball.ins.f'

INTEGER*2 NOVAR
REAL*4 X(NOVAR)

c variable return
..

x(1) = glnp(1)
x(2) = pdpi(1)
x(3) = pdpo(1)
x(4) = gdiap(1)
x(5) = dbpcp(1)
x(6) = chwp(1)

RETURN
end

c END OF VAR OUT
..
SUBROUTINE VAR IN(x, novar, fx)

Example 2. This subroutine is called from 'fun_int.f' and sends the design vector from the minimization process into the variables used in the interior ballistics code.

%INCLUDE 'intba.ins.f'

INTEGER*2 NOVAR
REAL*4 X(NOVAR), FX

Negative dimension value check

do 15 i=1,novar
 if (x(i).le.0.0) fx = fx + x(i)
15 if (fx.lt.0) then
 fx = -1000.0*fx
 return
 end if

variable assignment
perforation propellent

x(1) = glenp(1)
x(2) = pdpi(1)
x(3) = pdpo(1)
x(4) = gdiap(1)
x(5) = dbpcp(1)
x(9) = chwp(1)

perforation propellent

x(6) = glenp(2)
x(7) = pdpi(2)
x(8) = gdiap(2)
x(10) = chwp(2)

RETURN

END

END OF VAR IN

SUBROUTINE VAR OUT(x, novar, fx)

Example 2. This subroutine is called from 'fun_int.f' and returns the variables used in the interior ballistics code back into the design vector format for the minimization process.

%INCLUDE 'intba.ins.f'

INTEGER*2 NOVAR
REAL*4 X(NOVAR)

variable return

perf = 7

x(1) = glenp(1)
x(2) = pdpi(1)
x(3) = pdpo(1)
x(4) = gdiap(1)
x(5) = dbpcp(1)
x(9) = chwp(1)

perf = 1

x(6) = glenp(2)
x(7) = pdpi(2)
x(8) = gdiap(2)
x(10) = chwp(2)

RETURN

END

END OF VAR OUT
SUBROUTINE VAR IN(x,novar,fx)

Example 3. This subroutine is called from 'fun_int.ftn' and sends the design vector from the minimization process into the variables used in the interior ballistics code.

%INCLUDE 'intbalL.ins.f'

INTEGER*2 NOVAR
REAL*4 X(NOVAR),FX

c Negative dimension value check.................................
 DO 15 I=1,novar
 IF (X(i).LE.0.0) FX = FX + X(i)
 IF (FX.LT.0) THEN
 FX = -1000.0*FX
 RETURN
 END IF
 END IF

c variable assignment..

0 perforation propellent
 GLENP(1) = X(1)
 GDIAP(1) = X(2)
 CHWP(1) = X(11)

1 perforation propellent
 GLENP(2) = X(3)
 PDPI(2) = X(4)
 GDIAP(2) = X(5)
 CHWP(2) = X(12)

7 perforation propellent
 GLENP(3) = X(6)
 PDPI(3) = X(7)
 PDPO(3) = X(8)
 GDIAP(3) = X(9)
 DBPCP(3) = X(10)
 CHWP(3) = X(13)
 RETURN
 END

END OF VAR IN

SUBROUTINE VAR OUT(x,novar)

Example 3. This subroutine is called from 'fun_int.ftn' and returns the variables used in the interior ballistics code back into the design vector format for the minimization process.

%INCLUDE 'intball.ins.f'

INTEGER*2 NOVAR
REAL*4 X(NOVAR)

c design vector reassignment....................................

0 perforation propellent
 X(1) = GLENP(1)
 X(2) = GDIAP(1)
 X(11) = CHWP(1)

1 perforation propellent
 X(3) = GLENP(2)
 X(4) = PDPI(2)
 X(5) = GDIAP(2)
 X(12) = CHWP(2)

7 perforation propellent
 X(6) = GLENP(3)
 X(7) = PDPI(3)
 X(8) = PDPO(3)
 X(9) = GDIAP(3)
 X(10) = DBPCP(3)
 X(13) = CHWP(3)
 RETURN
 END

END OF VAR OUT

152
SUBROUTINE VAR_IN(x,novar,fx)

Example 4. This subroutine is called from 'fun_int.ftn' and sends
the design vector from the minimization process into the variables
used in the interior ballistics code.

%INCLUDE 'intball.ins.f'

INTEGER*2 NOVAR
REAL*4 X(NOVAR),FX

c Negative dimension value check..............................
do 15 i=1,novar
15 if (x(i).le.0.0) fx = fx + x(i)
 if (fx.lt.0.0) then
 fx = -1000.0*fx
 return
 end if
end if

c variable assignment...
c 7 perforation propellant
glenp(1) = x(1)
pdpi(1) = x(2)
pdp(1) = x(3)
gdpi(1) = x(4)
dbp(1) = x(5)
chwp(1) = x(11)
c M8 7 perforation propellant
glenp(2) = x(6)
pdpi(2) = x(7)
pdp(2) = x(8)
gdpi(2) = x(9)
dbp(2) = x(10)
chwp(2) = x(12)

return
end

c END OF VAR IN..

SUBROUTINE VAR_OUT(x,novar,fx)

Example 4. This subroutine is called from 'fun_int.ftn' and returns
the variables used in the interior ballistics code back into the
design vector format for the minimization process.

%INCLUDE 'intball.ins.f'

INTEGER*2 NOVAR
REAL*4 X(NOVAR)

c variable return..
c perf = 7
x(1) = glenp(1)
x(2) = pdpi(1)
x(3) = pd(1)
x(4) = gdpi(1)
x(5) = dbp(1)
x(11) = chwp(1)
c M8 perf = 7
x(6) = glenp(2)
x(7) = pdpi(2)
x(8) = pd(2)
x(9) = gdpi(2)
x(10) = dbp(2)
x(12) = chwp(2)

RETURN
end

c END OF VAR OUT...
This appendix contains a copy of the input file for each example and a sample copy of the interior ballistic output file. A format guide is included after the input files to describe each entry. Each line in the input file corresponds to a record input.
Input file for problem 1a. 7-perforation propellant, sample

```
9832.2384 12.7 12.7 1.0 0.0 457.2 1
9.796 0.0 0.0 0.0 0.0 0.0 1.3 0.0 300. 0. 457.
1.e20 2 3.0e+4 0.0 8.0e+5 0.2
0.01135 .01143 .46028 273. 1. 7.8612
86.5535 .9755 294. .004712 1.4
1 1135.99 3141. .9755 8.7 1.6605 1.23 7 3.175 .0508 .0508 1.0721 .2807
1 1.0 .1105187 689.476 .005 .05 30.
```

Input file for problem 1b. 7-perforation propellant, sample

```
9832.2384 12.7 12.7 1.0 0.0 457.2 1
9.796 0.0 0.0 0.0 0.0
1.e20 2 3.0e+4 0.0 8.0e+5 0.2
0.01135 .01143 .46028 273. 1. 7.8612
86.5535 .9755 294. .004712 1.4
1 1135.99 3141. .9755 8.9 1.6605 1.23 7 4.00 .02 .04 2.0000 .400
1 1.0 .1105187 689.476 .005 .05 30.
```

Input file for problem 2. 7-perforation propellant, sample

```
9832.2384 12.7 12.7 1.0 0.0 457.2 1
9.796 0.0 0.0 0.0
1.e20 2 3.0e+4 0.0 8.0e+5 0.2
0.01135 .01143 .46028 273. 1. 7.8612
86.5535 .9755 294. .004712 1.4
2 1135.99 3141. .9755 4.35 1.6605 1.23 7 3.175 .0508 .0508 1.0721 .2807
1135.99 3141. .9755 3.00 1.6605 1.23 1 3.175 .0508 .0508 1.0721 .0000
1 1.0 .1105187 689.476 .005 .05 30.
```

Input file for problem 2. 0-perforation propellant, sample

```
9832.2384 12.7 12.7 1.0 0.0 457.2 1
9.796 0.0 0.0 0.0
1.e20 2 3.0e+4 0.0 8.0e+5 0.2
0.01135 .01143 .46028 273. 1. 7.8612
86.5535 .9755 294. .004712 1.4
3 1135.99 3141. .9755 3.00 1.6605 1.23 0 3.175 .0000 .0000 1.0721 .0000
1135.99 3141. .9755 3.00 1.6605 1.23 1 3.175 .0508 .0508 1.0721 .0000
1135.99 3141. .9755 3.00 1.6605 1.23 7 3.175 .0508 .0508 1.0721 .2807
1 1.0 .1105187 689.476 .005 .05 30.
```

Input file for problem 4. 7-perforation propellant, sample

```
9832.2384 12.7 12.7 1.0 0.0 457.2 1
9.796 0.0 0.0 0.0
1.e20 2 3.0e+4 0.0 8.0e+5 0.2
0.01135 .01143 .46028 273. 1. 7.8612
86.5535 .9755 294. .004712 1.4
2 1135.99 3141. .9755 4.35 1.6605 1.23 7 3.175 .0508 .0508 1.0721 .2807
1168.90 3768. .9550 4.35 1.2119 1.62 1 3.175 .0508 .0508 1.0721 .2807
1 1.0 .1105187 689.476 .005 .05 30.
```
Format for input files. Each line in file is 1 record. Record 1a is read only if IGRAD = 2 in Record 1.

Record 1.

CHAM REAL*4 CHAMBER VOLUME cm³
GRVE REAL*4 GROOVE DIAMETER cm
ALAND REAL*4 LAND DIAMETER cm
GLR REAL*4 GROOVE/LAND RATIO none
TWST REAL*4 TWIST turns/caliber
TRAVP REAL*4 PROJECTILE TRAVEL cm
IGRAD INTEGER*2 GRADIENT FLAG none

1 = Lagrange, 2 = Chambrage

Record 1a.

NCCHPTS INTEGER*2 NUMBER POINTS TO DESCRIBE CHAMBER none
For I=1,ncchpts
CHDIST(I) REAL*4 INITIAL DISTANCE FROM BREECH cm
CHDIAM(I) REAL*4 DIAMETER AT CHDIST(I) cm

Record 2.

PWRT REAL*4 PROJECTILE MASS kg
IAIR INTEGER*2 CALCULATE ENERGY LOST TO AIR Resistance Flag (C = yes) none
HTFR REAL*4 FRACTION OF WORK DONE AGAINST BORE TO HEAT TUBE none
PGAS REAL*4 GAS PRESSURE IN FRONT OF PROJECTILE Pa

Record 3.

NPPTS INTEGER*2 NUMBER OF BARREL RESISTANCE POINTS none
For I=1,npts
BR(I) REAL*4 BORE RESISTANCE MPa
TRAV(I) REAL*4 TRAVEL cm

Record 4.

RCWT REAL*4 MASS OF RECIOLING PARTS kg
NP INTG*2 NUMBER OF RECOIL PAIR POINTS none
For I=1,shape
RP(I) REAL*4 RECOIL FORCE N
RT(I) REAL*4 RECOIL TIME s

Record 5.

HO REAL*4 FREE CONVECTION HEAT TRANSFER COEFFICIENT w/cm²·k
TSHL REAL*4 CHAMBER WALL THICKNESS cm
CSHL REAL*4 HEAT CAPACITY OF STEEL OF CHAMBER WALL J/g·k
TWAL REAL*4 INITIAL TEMPERATURE OF CHAMBER WALL k
NL REAL*4 HEAT LOSS COEFFICIENT none
RCHOS REAL*4 DENSITY OF CHAMBER WALL STEEL g/cm³

Record 6.

FORCIG REAL*4 IMPETUS OF IGNITER PROPELLANT J/g
COVI REAL*4 COVOLUME OF IGNITER cm³/g
TEMP1 REAL*4 ADIABATIC FLAME TEMP OF IGNITER k
CMII REAL*4 INITIAL MASS OF IGNITER kg
GAMAI REAL*4 RATIO OF SPECIFIC HEATS, IGNITER none

Record 7.

NP INTG*2 NUMBER OF PROPELLENT TYPES none
For I=1,shape
FOPC(I) REAL*4 IMPETUS OF PROPELLANT J/g
TEMPP(I) REAL*4 ADIABATIC TEMPERATURE OF PROPELLANT k
COVP(I) REAL*4 COVOLUME OF PROPELLANT cm³/g
CMIP(I) REAL*4 INITIAL MASS OF PROPELLANT kg
DHOP(I) REAL*4 DENSITY OF PROPELLANT g/cm³
GAMAP(I) REAL*4 RATIO OF SPECIFIC HEATS, PROPELLANT none
NPCCP(I) REAL*4 NUMBER OF PERFORATIONS ON PROPELLANT none
GLENP(I) REAL*4 LENGTH OF PROPELLANT GRAIN cm
PDPI(I) REAL*4 DIAMETER OF INNER PERFORATIONS cm
PDPO(I) REAL*4 DIAMETER OF OUTER PERFORATIONS cm
GDIAP(I) REAL*4 OUTSIDE DIAMETER OF PROPELLANT GRAIN cm
DBPCP(I) REAL*4 DISTANCE BETWEEN PERFORATION CENTERS cm

Record 8.

NBRJ INTEGER*2 NUMBER OF BURNING POINTS none
For I=1,shape
ALPHA(J,I) REAL*4 EXPONENT none
BETA(J,I) REAL*4 COEFFICIENT cm/s·MPa
PRESS(J,I) REAL*4 PRESSURE MPa

Record 9.

DELTAT REAL*4 TIME INCREMENT (STEP) ms
DELTAP REAL*4 PRINT INCREMENT ms
TSSTOP REAL*4 STOP TIME FOR CALCULATIONS ms
The data input file is p3final.in

Using Lagrange pressure gradient
chamber volume cm³ 0.983224E+04
groove diam cm 0.127000E+02
land diam cm 0.127000E+02
groove/land ratio 0.100000E+01
Twist turns/caliber 0.000000E+00
projectile travel cm 0.457200E+03

projectile mass kg 0.979600E+01
switch to calculate energy lost to air resistance J 0
fraction of work against bore used to heat the tube 0.000000E+00
gas pressure Pa 0.000000E+00
number barrel resistance points 5
bore resistance MPa · travel cm
0.000000E+00 0.000000E+00
0.000000E+00 0.600000E+00
0.000000E+00 0.130000E+01
0.000000E+00 0.300000E+03
0.000000E+00 0.457000E+03

mass of recoiling parts kg 0.100000E+21
number of recoil point pairs 2
recoil force N recoil time sec
0.300000E+05 0.000000E+00
0.600000E+05 0.200000E+00

free convective heat transfer coefficient w/cm² K 0.113500E-02
chamber wall thickness cm 0.114300E+01
heat capacity of steel of chamber wall J/g K 0.600000E+00
initial temperature of chamber wall K 0.273000E+03
heat loss coefficient 0.100000E+01
density of chamber wall steel g/cm³ 0.786120E+01

impetus of igniter propellant J/g 0.845535E+02
covolume of igniter cm³/g 0.975500E+00
adiabatic flame temperature of igniter propellant K 0.294000E+03
initial mass of igniter kg 0.471200E-02
ratio of specific heats for igniter 0.140000E+01

FOR PROPELLENT NUMBER 1
impetus of propellant J/g 0.113599E+04
adiabatic temperature of propellant K 0.314100E+04
covolume of propellant cm³/g 0.975500E+00
initial mass of propellant kg 0.362600E+01
density of propellant g/cm³ 0.166050E+01
ratio of specific heats for propellant 0.123000E+01
number of perforations of propellant 0
length of propellant grain cm 0.249350E+01
diameter of inner perforation in propellant grains cm 0.000000E+00
diameter of outer perforation of propellant grains cm 0.000000E+00
outside diameter of propellant grain cm 0.128500E+01
distance between perf centers cm 0.000000E+00

FOR PROPELLENT NUMBER 2
impetus of propellant J/g 0.113599E+04
adiabatic temperature of propellant K 0.314100E+04
covolume of propellant cm³/g 0.975500E+00
initial mass of propellant kg 0.362600E+01
density of propellant g/cm³ 0.166050E+01
ratio of specific heats for propellant 0.123000E+01
number of perforations of propellant 1
length of propellant grain cm 0.594250E+01
diameter of inner perforation in propellant grains cm 0.000000E+00
diameter of outer perforation of propellant grains cm 0.000000E+00
outside diameter of propellant grain cm 0.579800E+00
distance between perf centers cm 0.000000E+00
<table>
<thead>
<tr>
<th>No. of Burning Rate Points</th>
<th>Exponent</th>
<th>Coefficient</th>
<th>Pressure</th>
<th>Time Increment</th>
<th>Print Increment</th>
<th>Time to Step Calculation</th>
<th>Volume of Unburnt Propellant</th>
<th>Mass</th>
<th>Length</th>
<th>Init Vol-Cov Ign</th>
<th>Initial Mass of Propellant</th>
<th>Diameter of Inner Perforation</th>
<th>Diameter of Outer Perforation</th>
<th>Distance Between Perf Centers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.100000E+01</td>
<td>0.110519E+00</td>
<td>0.689476E+03</td>
<td></td>
<td>0.500000E-02</td>
<td>0.500000E-01</td>
<td>0.300000E+02</td>
<td>0.526829E-02</td>
<td>0.982764E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of Burning Rate Points</th>
<th>Exponent</th>
<th>Coefficient</th>
<th>Pressure</th>
<th>Time Increment</th>
<th>Print Increment</th>
<th>Time to Step Calculation</th>
<th>Volume of Unburnt Propellant</th>
<th>Mass</th>
<th>Length</th>
<th>Init Vol-Cov Ign</th>
<th>Initial Mass of Propellant</th>
<th>Diameter of Inner Perforation</th>
<th>Diameter of Outer Perforation</th>
<th>Distance Between Perf Centers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.100000E+01</td>
<td>0.110519E+00</td>
<td>0.689476E+03</td>
<td></td>
<td>0.500000E-02</td>
<td>0.500000E-01</td>
<td>0.300000E+02</td>
<td>0.526829E-02</td>
<td>0.982764E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>delta time</td>
<td>0.105500E+01</td>
<td>intg time</td>
<td>0.105498E+01</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>PMAXMEAN Pa</td>
<td>0.310357E+09 time at PMAXMEAN sec</td>
<td>0.676509E-02</td>
<td></td>
</tr>
<tr>
<td>PMAXBASE Pa</td>
<td>0.239143E+09 time at PMAXBASE sec</td>
<td>0.676509E-02</td>
<td></td>
</tr>
<tr>
<td>PMAXbraco Pa</td>
<td>0.345900E+09 time at PMAXbraco sec</td>
<td>0.676509E-02</td>
<td></td>
</tr>
<tr>
<td>Muzzle VELOCITY (m/s)</td>
<td>0.136756E+04 at time sec</td>
<td>0.105473E+01</td>
<td></td>
</tr>
</tbody>
</table>

Total Initial Energy Available J = 0.432081E+08

FOR PROPELLANT 1 MASSFRACT BURNT = 0.487515E+00

FOR PROPELLANT 2 MASSFRACT BURNT = 0.100000E+01

FOR PROPELLANT 3 MASSFRACT BURNT = 0.100000E+01

159