Early Time Structuring of VHANES: Preliminary Results

J. D. Huba

Space Plasma Branch
Plasma Physics Division

August 15, 1990

Approved for public release; distribution unlimited.
Abstract

The stability of the debris shell of a nuclear burst at altitudes above 400 km is investigated. A set of relatively simple expressions are derived to estimate the effective gravitational acceleration associated with the deceleration of the shell (by mass pick-up and magnetic field sweep-up) and the curvature of the magnetic field. We then present a stability analysis, based on the recent kinetic theory, developed by Huba et al. (1990). In particular, the turn-on conditions for the unmagnetized ion Rayleigh-Taylor instability are derived for both the fluid and kinetic regimes, as well as the finite Larmor radius stabilization criterion for the magnetized ion Rayleigh-Taylor instability. We apply these results to 1 MT bursts at altitudes h = 400 km, 1,000 km, and 10,000 km. We find the burst at 400 km is stable to the unmagnetized ion Rayleigh-Taylor instability; the burst at 1,000 km is marginally unstable to the kinetic instability; and the burst at 10,000 km is strongly unstable to both the kinetic and fluid instabilities. A critical parameter in determining the stability properties of the debris shell is the density gradient scale length (or shell thickness).

Subject Terms

NAVES Structure, Early Time Structure, VHANE, Debris Jetting
CONTENTS

I. INTRODUCTION ... 1

II. DECELERATION MODELS ... 3
 A. Mass Pick-up .. 3
 B. Magnetic Deceleration ... 4
 C. Curvature Acceleration .. 5
 1. Super-Alfvenic Expansions ... 5
 2. Sub-Alfvenic Expansions ... 6
 D. Quantitative Results .. 6

III. STABILITY THEORY ... 7
 A. Equilibrium ... 7
 B. Dispersion Equation .. 8
 1. High Frequency Limit ($\omega >> \Omega_e$) .. 9
 2. Low Frequency Limit ($\omega >> (1)$) .. 12

IV. APPLICATION TO VHANES ... 13

V. DISCUSSION .. 15

ACKNOWLEDGMENTS .. 16

REFERENCES ... 17

DISTRIBUTION LIST .. 23
EARLY TIME STRUCTURING OF VHANES: PRELIMINARY RESULTS

I. INTRODUCTION

An outstanding problem in the DNA HANE community is understanding the generation, evolution, and decay of plasma irregularities associated with high altitude nuclear bursts. Although the focus of this program has been on late time structure (e.g., the determination of the freezing scale size), an important aspect of the problem is early time structure. It is known that structuring does occur at very early times in HANEs (t ≤ sec); however, the exact structuring mechanisms are not well understood, nor is the impact of early time structure on late time structure known. For example, does the early time structure act as a seed mechanism for late time structure? Are the scale lengths of late time structure influenced by the early time structure? Aside from structure questions, there is also the possibility that early time structure can lead to the transport of debris across magnetic field lines; for example, weapon debris may reach much higher altitudes than expected.

Most of the research on early time structuring has focussed on bursts which are super-Alfvenic, i.e., Starfish or Checkmate. For the purposes of discussion we will assume that the transition altitude for super-Alfvenic to sub-Alfvenic bursts occurs at h - 1000 km. The actual height, of course, depends upon ionospheric conditions at the time of burst (i.e., the ambient Alfvén velocity \(V_{Alfven} \)) and the initial expansion velocity of the debris (i.e., \(V_{debris} \)). We will refer to sub-Alfvenic bursts as VHANEs (Very High Altitude Nuclear Explosions) since they occur for h > 1000 km.

The initial work on early time structuring was done by Brecht and Papadopoulos (1979) who suggested that a Rayleigh-Taylor instability can initiate cross-field jetting of energetic ions. Their analysis is based upon the usual MHD assumptions, i.e., \(\partial/\partial t \ll \Omega_i \) and \(\rho_i \ll R, L_i \): time scales small compared to the ion cyclotron period, and length scales large compared to the ion Larmor radius. They argued that the instability can be driven by (1) laminar acceleration of a group of ions within the debris-air shock, and/or (2) the centripetal force associated with the curved magnetic field. For parameters relevant to Starfish they find that the instability has a growth rate \(\gamma = 71 \text{ sec}^{-1} \) (or growth time \(\tau_g = 14 \text{ msec} \)) and a transverse wavelength in the range 3-30 km. However, their analysis is not entirely applicable to VHANES (bursts at altitudes h > 1000 km) because

Manuscript approved April 26, 1990.
their results are based on relationships appropriate for super-Alfvenic plasma expansions. For example, they assume a highly compressed magnetic field in the debris-air coupling shell, and neglect the deceleration of the debris shell caused by the 'sweep-up' of the ambient magnetic field. These considerations are reasonable for super-Alfvenic bursts; however, they are not valid for sub-Alfvenic bursts. Moreover, recent theoretical work at NRL on the structuring of sub-Alfvenic plasma expansions [e.g., AMPTE magnetotail release (Bernhardt et al., 1987) and the NRL laser experiment (Ripin et al., 1987)] has found that conventional MHD theory is not valid, and that a modified MHD theory must be used which includes the Hall current (Hassam and Huba, 1987, 1988; Huba et al., 1987, 1989). Of course, hybrid codes (Thomas and Brecht, 1988) and particle codes (Winske, 1989) are also appropriate because they contain the proper ion dynamics.

Very recently, Sperling (1989) has argued that the unmagnetized ion Rayleigh-Taylor instability (or the large Larmor radius instability as referred to in the NRL laser experiment) is not relevant to VHANEs. A key argument in this paper is that the conventional Rayleigh-Taylor growth rate is less than the ion cyclotron frequency (i.e., \(\gamma_0 = \left(g/L_n \right)^{1/2} < \Omega_i \)). First, we note that this conclusion is based only on a limited set of parameters which are poorly known. Second, and more important, we have shown in Huba et al. (1989) and in the present paper that the criterion \(\gamma_0 < \Omega_i \) is overly stringent, and that a high frequency instability can occur for less stringent conditions; namely, for \(\gamma_0 > \left(m_e/m_i \right)^{1/4} \Omega_i \). Thus, the modified MHD theory of Hassam and Huba (1988), and the recently developed kinetic theory of sub-Alfvenic expansions may apply to VHANEs.

The organization of the paper is as follows. In the next section we estimate the 'effective gravity' associated with BANE and VHANE plasma expansions. These results are based upon simplistic models and provide a good starting point for more detailed calculations and numerical investigations. In Section III we describe the kinetic theory of Huba et al. (1989) as it pertains to the stability of sub-Alfvenic VHANE expansions. In Section IV we apply the results of Sections II and III for bursts at altitudes \(h = 400 \text{ km}, 1,000 \text{ km}, \text{ and } 10,000 \text{ km} \). Finally, in Section V we summarize our results.
II. DECELERATION MODELS

A. Mass Pick-up

We first estimate the deceleration of the debris-air coupling shell caused by direct momentum coupling to the background plasma. We estimate the deceleration of the shell by assuming a momentum conserving snowplow model. We assume that

\[MV_d = M_0 V_d 0 \]

where \(M \) is the mass, \(V_d \) is the velocity, and the subscript 0 denotes initial values. Assuming a spherical expansion we take

\[M = M_0 + \frac{4\pi R^3}{3} n_a m_a \]

where \(R \) is the radius of the shell, and \(n_a \) and \(m_a \) are the density and mass of the background plasma, respectively. We substitute (2) into (1) and obtain

\[V_d = V_d 0 \left(1 + \frac{R^3}{R_M^3}\right)^{-1} \]

where \(R_M \) is the equal mass radius given by \(R_M = (3M_0/4\pi n_a m_a)^{1/3} \). Taking the first derivative of (3) we obtain the effective gravitational acceleration \(g_M \) associated with the deceleration

\[g_M = -\frac{dV_d}{dt} = 3V_d 0 \frac{2}{R^3} \frac{R^2}{R_M^3} \left(1 + \frac{R^3}{R_M^3}\right)^{-3} \]

From (4) we find that the maximum inertial deceleration occurs when \(R = 0.66R_M \) so that

\[g_{Mm} = \frac{V_d 0}{R_M} \]

where \(g_{Mm} \) denotes the maximum 'effective' gravity (i.e., the deceleration \(dV_d/dt \)).
B. Magnetic Deceleration

We estimate the 'stopping' radius of a magnetically confined expansion by equating the initial kinetic energy of the plasma with the magnetic energy in a volume \((4/3)\pi R_B^3\) where \(R_B\) is defined as the magnetic confinement radius,

\[
\frac{1}{2} M_0 V_d^2 = B_0^2 \frac{4\pi}{3} n R_B^3
\]

(6)

where \(M_0\) is the mass of the plasma, \(V_d\) is the initial debris expansion velocity, and \(B_0\) is the ambient magnetic field. From (6) we obtain

\[
R_B = \left(\frac{3M_0 V_d^2}{8\pi n B_0^2}\right)^{1/3}
\]

(7)

We compare this distance with the equal mass radius \(R_M\). For the expanding plasma to be confined magnetically we require \(R_B < R_M\). This leads to \(V_d < V_{Aa} \) where \(V_{Aa} = B_0/(4\pi n a m_a)^{1/2}\) is the Alfven velocity in the ambient plasma. When \(V_d \ll V_{Aa}\) the expanding plasma is stopped before it sweeps up very much background plasma.

We estimate \(g_B\), the deceleration caused magnetic field sweep-up, using conservation of energy. We write

\[
\frac{1}{2} M_0 V_d^2(t) + \frac{B_0^2}{8\pi} \frac{4\pi}{3} R^3(t) = \frac{1}{2} M_0 V_d^2
\]

(8)

where the LHS of (8) is the sum of the kinetic energy of the expanding debris and the swept-up magnetic energy at time \(t\) and position \(R\), and the RHS is the energy at \(t = 0\). We solve (8) for \(V_d(t)\) and obtain

\[
V_d(t) = \left(V_d^2 - \frac{B_0^2}{3M_0 R^3}\right)^{1/2}
\]

(9)

We take the time derivative of (9) to obtain

\[
g_B(t) = -\frac{dV_d}{dt} = \frac{B_0^2}{2M_0} R^2(t) = \frac{3V_d^2}{2R_B} \frac{R^2}{R_B^2}
\]

(10)

where we have made use of the fact that \(V_d = dR/dt\) and the definition of
We note that the maximum deceleration occurs at $R = R_B$, the radius of maximum expansion.

C. Curvature Acceleration

1. Super-Alfvenic Expansions

We note that the curvature force is given by $F_C = B^2/4\pi R$ so that the acceleration g_C is

$$g_C = B^2/4\pi R n_T m_T$$ \hfill (11)

where $n_T = n_a + n_d$ and $m_T = m_a + m_d$. In the super-Alfvenic regime one can use the relationship $B^2 \sim V_d^2 4\pi m_a m_a$ (Brecht and Papdopoulos, 1979) and (3), we rewrite (11) as

$$g_C = \frac{V_d^2}{R} \left(1 + \frac{R^3}{R'M} \right)^{-2} \left(1 + \frac{n_d m_d}{n_a m_a} \right)^{-1}$$ \hfill (12)

We take $n_d m_d >> n_a m_a$ (Clark, private communication), which is typical of Starfish for $R < R_H$, and find that (12) becomes

$$g_C = \frac{n_a}{n_d} \frac{V_d^2}{R} \left(1 + \frac{R^3}{R'H} \right)^{-2}$$ \hfill (13)

We will assume n_a is roughly constant, but take n_d to be a decreasing function of radius as follows

$$n_d = \frac{3}{8\pi} \frac{M_0}{a_d} \frac{1}{\Delta R(3R^2 + \Delta R^2)}$$ \hfill (14)

Substituting (14) into (13) we find that

$$g_C = \frac{V_d^2}{R} \left(1 + \frac{R^3}{R'H} \right)^{-2} \frac{2\Delta R(3R^2 + \Delta R^2)}{R^3}$$ \hfill (15)

where we have made use of the definition of R_H.

5
2. Sub-Alfvénic Expansions

The assumptions upon which (13) is based are not valid for sub-Alfvénic expansions. In particular, the magnetic field is not compressed (i.e., the relationship $B^2 - V_d^2 A_n m_a$ is no longer valid) so that $B = B_0$ where B_0 is the ambient magnetic field. Substituting (14) into (11) we find that the curvature acceleration in the sub-Alfvénic regime is given by

$$g_C = \frac{B_0^2}{3H_0} \frac{\Delta R}{R} (3R^2 + \Delta R^2) = \frac{V_d^2}{R} \frac{\Delta R}{R_B} \frac{3R^2 + \Delta R^2}{R_B^2}$$

(16)

We note that g_C reaches a minimum at $R = \Delta R/\sqrt{3}$.

D. Quantitative Results

We present Fig. 1 which is a plot of g (cm/sec2) vs. R (km) for a 1 MT burst at altitudes $h = 400$ km, 1,000 km, and 10,000 km. The parameters used are the following: $h = 400$ km [$n_a = 5.0 \times 10^5$ cm$^{-3}$ and $m_a = 16 m_p$ (oxygen background)]; $h = 1,000$ km [$n_a = 1.0 \times 10^3$ cm$^{-3}$ and $m_a = m_p$ (hydrogen background)]; and $h = 10,000$ km [$n_a = 1.0$ cm$^{-3}$ and $m_a = m_p$ (hydrogen background)]. In all cases we have taken $V_d = 2.0 \times 10^8$ cm/sec, $H_0 = 5.0 \times 10^5$ gm, $m_d = 28 m_p$ (aluminum debris), and $Z = 2$. These parameters are shown in Table I along with the relevant expansion parameters.

For $h = 400$ km we note that the Alfven Mach number is $M_A = V_d/V_a = 9.43$ so that $R_M < R_B$, as expected. Thus, the $h = 400$ km burst is super-Alfvénic; we use (4) and (15) to calculate the mass and curvature decelerations, respectively. The curvature acceleration (g_C) dominates the mass pick-up deceleration (g_M) until $R = R_M/2$ where $R_M = 200$ km. For $R > R_M/2$ the two accelerations are comparable. We note that the total effective gravity ($g_T = g_C + g_M$) is reasonably large throughout the expansion to R_M: $g_T \approx 10^9$ cm/sec2.

For $h = 1,000$ and 10,000 km we find that the Alfven Mach number is $M_A = 1.36 \times 10^{-1}$ and 4.71×10^{-2}, respectively. These bursts are sub-Alfvénic and therefore $R_B < R_M$. Thus, we use (10) and (16) in calculating g_B and g_C, respectively. The burst at $h = 1,000$ km expands to a radius $R_B = 1000$ km. Early in the expansion phase we see that $g_C > g_B$ but that the magnitude of g_C is relatively small, $g_c \approx 5 \times 10^6$ cm/sec2. Later in the
expansion phase g_B dominates over g_C and becomes reasonably large, $g_B > 10^8 \text{ cm/sec}^2$. The burst at $h = 10,000 \text{ km}$ expands to a radius $R_B = 5000 \text{ km}$. In this situation we note that $g_B > g_C$ throughout the expansion, unlike the $h = 1,000 \text{ km}$ burst. However, the magnitude of g_B is somewhat smaller than $h = 1,000 \text{ km}$ burst; we see that $g_B > 10^7 \text{ cm/sec}^2$ for $R > 2000 \text{ km}$, reaching a maximum value $g_B = 10^8 \text{ cm/sec}^2$ at $R = R_B$. The reduction in the value of g_B as h increases is simply because the ambient magnetic field strength is decreasing, all other parameters being equal.

III. STABILITY THEORY

We now explore the stability of the expanding (and decelerating) debris plasma. A detailed kinetic theory of the stability properties of sub-Alfvénic plasma expansions in finite β, collisional plasmas has been presented in Huba et al. (1989). We will not reproduce the derivation of the dispersion equation here but refer the interested reader to Huba et al. (1989) for details.

A. Equilibrium

The plasma configuration and slab geometry used in the analysis are shown in Fig. 2. We consider a plasma with a density profile $n_0(x)$ such that $\partial n_0/\partial x < 0$; we include a magnetic field $\mathbf{B} = B_0 \mathbf{\hat{z}}$, an ambient electric field $\mathbf{E} = -E_0 \mathbf{\hat{x}}$, and a gravitational acceleration $\mathbf{g} = g \mathbf{\hat{x}}$. The gravitational acceleration can be associated with the transverse deceleration of a sub-Alfvénic plasma expansion in a magnetic field (i.e., $\mathbf{g} = -\mathbf{\nabla} V_{10}/\mathbf{t}$), a super-Alfvénic expansion in a background plasma, and/or the curvature acceleration, as described above. For example, in Fig. 2, one can imagine a plasma shell decelerating as it moves in the $+x$-direction. We also assume that the time scale of the instability is much slower than the electron cyclotron frequency (i.e., $\omega \ll \omega_e$). We allow the time scale of the instability to be arbitrary in relation to the ion cyclotron period.

The electron momentum equation for this situation is given by

$$0 = \frac{e}{m_e} (E_0 + \frac{1}{c} \nu_e \times B_0) - \frac{T_e}{m_e} \frac{\partial n_0}{n_0} \quad (17).$$

From (17) it is easily shown that the equilibrium electron drift is given by
\[V_{e0} = (V_E + V_{de}) \ e_y \] (18)

where \(V_E = cE_0/B_0 \) is the \(E \times B \) drift velocity and \(V_{de} = cT_e/eB_0L_n \) is the electron diamagnetic drift velocity where \(L_n = |\nabla n_0/\nabla x|^{-1} \).

The ion momentum equation is given by

\[0 = \frac{eZ}{m_i} (E_0 + \frac{1}{c} V \times B_0) - \frac{T_i}{m_i} \frac{v_{n0}}{n_0} + g \] (19)

From (19) the equilibrium ion drift is found to be

\[V_{i0} = \left(\frac{eZ}{B_0} - \frac{g}{Q_i} - \frac{cT_i}{\epsilon Z B_0 L_n} \right) e_y \] (20)

The components of \(V_0 \) are the \(E \times B \) drift \([V_E = cE_0/B_0] \), the gravitational drift \([V_g = g/Q_i] \), and the ion diamagnetic drift \([V_{di} = cT_i/eZ B_0 L_n] \).

In order to satisfy the equilibrium condition \(V \cdot nV_{i0} = 0 \) we choose to work in the ion rest frame, i.e., \(V_{i0} = 0 \). Thus, we take

\[\frac{cE_0}{B_0} = \frac{g}{Q_i} + \frac{cT_i}{\epsilon Z B_0 L_n} \] (21)

The ions are electrostatically confined in the unmagnetized limit.

B. Dispersion Equation

For the parameters given in Table I we note \(\beta = (8 \pi nT/B^2) \ll 1 \), \(v_{en} \ll \omega_e \), and \(v_{in} \ll \omega_i \). Thus, we will use the low \(\beta \) (i.e., electrostatic), collisionless dispersion equation derived in Huba et al. (1989). In this limit the dispersion equation is

\[D(\omega, k_y) = 1 + \frac{\omega_{pe}^2}{k_y^2 v_e^2} + \frac{2 \omega_{di}^2}{k_y^2 v_i^2} (1 + i \omega_{ci}) + \frac{2 \omega_{pe}^2}{k_y^2 v_e^2} \frac{\omega_1 - \omega_2 \Gamma_0(b_e)}{\omega_1} = 0 \] (22)

where
\[G_1 = \int_0^\infty dt \exp[i(\omega + k_y V_{di})t + \frac{1}{2}k_y^2 \rho_e^2(\cos Q_1 t - 1) + i \frac{k_y V_{di}}{Q_1} \sin Q_1 t] \]

\[\omega_1 = \omega - k_y V_E, \quad \omega_2 = \omega - k_y V_E - k_y V_{de}, \quad \omega_{pi}^2 = 4me^2/e^2/m_i, \text{ and } \omega_{pe}^2 = 4me^2/e^2, \quad V_{E} = V_g + V_{di}, \quad V_g = g/Q_1, \quad V_{di} = cT_i/eZB, \quad b_e = k_y^2 \rho_e^2/2, \quad \mu = k_y \rho_e, \quad \rho_e = v_e/Q_e, \quad v_a = 2T_a/m_a, \quad \Gamma_0(x) = \exp(-x)I_0(x), \text{ and } I_0(x) \text{ is the modified Bessel function of order 0.} \]

This dispersion equation is valid for \(\omega \ll Q_1, \omega \sim Q_1, \) and \(\omega \gg Q_1; \) thus, it describes the Rayleigh-Taylor instability in both the magnetized and unmagnetized ion limits.

1. High Frequency Limit (\(\omega \gg Q_1 \))

We first simplify (22) by considering the high frequency (\(\gamma > Q_1 \)) where \(\gamma \) is the growth rate), short wavelength (\(k_y \rho_i \gg 1 \)), cold electron limit (\(T_e \to 0 \)). In this limit we note that \(G_1 = -i \xi_1 Z(\xi_1)/\omega \) where \(\xi_1 = \omega/k_y v_i, \) and \(\Gamma_0(b_e) = 1 - b_e. \) The dispersion equation then becomes

\[D(\omega, k_y) = 1 + \frac{\omega^2}{\rho_e^2} + \frac{2\omega_{pi}^2}{k_y^2 v_i^2} (1 + \xi_1 Z(\xi_1)) + \frac{2\omega_{pi}^2}{k_y^2 v_i^2} \frac{k_y V_{di}}{\omega - k_y V_E} = 0 \] (23)

We further simplify (23) by assuming the ions to be either cold (\(\omega/k_y v_i \gg 1 \)) or warm (\(\omega/k_y v_i \ll 1 \)), which corresponds to the strong drift velocity regime (\(V_E \gg v_i \)) or the weak drift velocity regime (\(V_E \ll v_i \)), respectively.

a. Cold Ion Limit (\(\omega/k_y v_i \gg 1 \))

We first consider the cold ion limit: \(\omega/k_y v_i \gg 1 \) [the strong drift regime (i.e., \(V_E \gg v_i \))]. We expand the plasma dispersion function in (23) in its asymptotic limit. The dispersion equation then becomes

\[D(\omega, k_y) = 1 + \frac{\omega^2}{\rho_e^2} + \frac{2\omega_{pi}^2}{k_y^2 v_i^2} \frac{k_y V_{di}}{\omega - k_y V_E} + \frac{\omega_{pe}^2}{\rho_e^2} = 0 \] (24)

We can rewrite (24) in the following form

\[(\omega^2 - \omega_{1h}^2)(\omega - k_y V_E) = -\frac{\omega_{1h}^2}{Q_1 k_y \Gamma_0} \] (25)
where \(\omega_{lh} = \omega_{pi} / (1 + \omega_{pe}^2/Q_e^2)^{1/2} \) is the lower hybrid frequency. Equation (25) is very similar to the dispersion equation derived by Krall and Liever (1971) for the lower-hybrid-drift instability (see Eq. (7) of their paper); in the limit \(g \rightarrow 0 \) it agrees exactly with their dispersion equation. Following the analysis of Krall and Liever (1971) one can show that the maximum growth rate of the instability is \(\gamma_{M} = \omega_{lh} \) with \(\omega_{r} = k_{y}V_{E} = \omega_{lh} \). From (25) it is clear that the instability is fluid-like and is caused by the coupling of a lower hybrid wave \((\omega = \omega_{lh}) \) with a drift wave \((\omega = k_{y}V_{E}) \) in an inhomogeneous plasma (i.e., finite \(L_{n} \)).

Equation (25) yields a relatively simple solution in the low frequency limit, i.e., \(\omega \ll \omega_{lh} \). It is given by

\[
\omega^2 - Q_{i}k_{y}L_{n}\omega + k_{y}^2gL_{n} = 0
\]

where we have assumed \(V_{g} \gg V_{di} \). Equation (26) has previously been derived from fluid theory by Hassam and Huba (1987, 1988). The eigenfrequency is given by

\[
\omega = \frac{1}{2} Q_{i}k_{y}L_{n} \pm \frac{1}{2} \left[(Q_{i}k_{y}L_{n})^2 - 4gL_{n}k_{y}^2 \right]^{1/2}.
\]

Instability occurs for \(g/L_{n} > Q_{i}^2/4 \). In the limit of large \(g \) one finds that \(\gamma = k_{y}(gL_{n})^{1/2} \).

b. Warm Ion Limit (\(\omega/k_{y}v_{i} \ll 1 \))

We now consider the warm ion limit: \(\omega/k_{y}v_{i} \ll 1 \) [the weak drift regime (i.e., \(V_{E} \ll v_{i} \)]. For this situation it is found that the instability is kinetic in nature; the unstable waves grow because of inverse Landau damping of the ions. We expand the plasma dispersion function in (23) in the small argument limit. The dispersion equation then becomes

\[
D(\omega,k_{y}) = 1 + \frac{2\omega_{pi}^2}{k_{y}^2v_{i}^2} + \frac{2\omega_{pi}^2}{k_{y}^2v_{i}^2}i\omega_{n} + \frac{2\omega_{pe}^2}{k_{y}^2v_{i}^2} + \frac{k_{y}v_{i}}{k_{y}^2v_{i}} + \frac{\omega_{pe}}{\omega - k_{y}V_{E}} = 0
\]

Equation (34) can be rewritten as follows
\begin{align}
0 &= 1 + \frac{k_y^2}{k_y^2} + \frac{k_y^2}{k_y^2} \left(\frac{\nu_{di}}{\omega - k_y \nu_E} + \frac{k_y^2 \nu_{di}}{k_y^2} \right) i \sqrt{\omega} \\
(29)
\end{align}

where

\[k_y^2 = \frac{2 \omega_{pi}^2}{v_i^2} (1 + \frac{\omega_{pe}^2}{\omega^2})^{-1}. \]

Assuming that \(\omega_r >> \gamma \), the real frequency is determined from \(D(\omega_r, k_y) = 0 \) and we find that

\[\omega_r = k_y \nu_{di} \frac{\nu_{di}^2}{k_y^2 + k_y^2} + k_y \nu_g. \]

(30)

From (30) we see that

\begin{align}
\omega_r &= \frac{k_y^3 \nu_{di}}{k_y^2} + k_y \nu_g & \text{for } k_y << k_M \\
(31a) \\
\omega_r &= k_y (\nu_{di} + \nu_g) & \text{for } k_y >> k_M \\
(31b)
\end{align}

There is a significant difference in the \(k_y \) dependence of the real frequency between the ion diamagnetic drift and the gravitational drift in the long wavelength regime, \(k_y << k_M \). For the case of the lower-hybrid-drift instability (\(\nu_{di} >> \nu_g \)) it is found that \(\omega_r = k_y^3 \), while for the unmagnetized ion Rayleigh-Taylor instability (\(\nu_g >> \nu_{di} \)) \(\omega_r = k_y \).

The growth rate is determined by the expression \(\gamma = -D_1(\omega_r, k_y)/(3D_r/\partial \omega_r) \) where the subscripts \(r \) and \(i \) refer to the real and imaginary components of \(D \), respectively. We find that

\[\gamma = \sqrt{\frac{k_y^2}{k_y^2 + k_y^2}} \left(\frac{2 \nu_{di}}{\nu_i} \frac{k_y^2}{k_y^2} + \frac{\nu_g}{\nu_i} \frac{\nu_{di}}{\nu_i} \right) \]

(32)

For the case \(\nu_g = 0 \), (30) and (32) reduce to the expressions for \(\omega_r \) and \(\gamma \) derived in Davidson et al. (1977) for the lower-hybrid-drift
instability. It can be shown that the growth rate maximizes at $k_y = k_M$; the growth rate and real frequency at $k_y = k_M$ are given by

$$\gamma_M = \frac{\sqrt{2\pi}}{8} \frac{V_{di}^2}{v_i^2} \omega_L h$$ \hspace{1cm} (33)$$

$$\omega_M = \frac{1}{2} k_M V_{di}$$ \hspace{1cm} (34)

In the opposite limit, when the gravitational drift dominates (i.e., $V_g >> V_{di}$) we find that the maximum growth rate occurs at $k_y = k_M/\sqrt{3}$; the corresponding values of the growth rate and real frequency are given by

$$\gamma_M = \left(\frac{2\pi}{3}\right)^{1/2} \frac{9 g}{16 \frac{V_g V_{di}}{v_i}} \omega_L h$$ \hspace{1cm} (34)$$

$$\omega_M = k_M V_g$$ \hspace{1cm} (35)

One interesting difference between the growth rate in the strong drift limit and weak drift limit is the dependence on the density gradient scale length. In the former case we found that $\gamma \propto L_n^{1/2}$ (see (27)), while in the latter case $\gamma \propto L_n^{-1}$ (see (34)). The requirement for the unmagnetized ion Rayleigh-Taylor instability to be unstable in the kinetic regime is $\gamma > \Omega_i$; from (34) we find that the turn-on condition is roughly $g/L_n > (m_e/m_i)^{1/2} \Omega_i^2$. This criterion is considerably less stringent than that for the unmagnetized ion Rayleigh-Taylor instability in the fluid limit (i.e., $g/L_n > \Omega_i^2/4$).

2. Low Frequency Limit ($\omega \ll \Omega_i$)

We now consider the low frequency ($\omega \ll \Omega_i$), short wavelength ($k_y \rho_i \ll 1$) limit. In this limit we note that

$$G_i = \frac{i}{\omega} (1 + \frac{k_y V_{di}}{\omega})(1 - b_i)$$ \hspace{1cm} (36)$$

and the dispersion equation becomes
\[
1 + \frac{\omega^2}{\omega_0^2} + \frac{2\omega^2}{k_0^2} \left[1 + \left(1 + \frac{k_y v_{di}}{\omega} (1 - b_1) \right) \right] + \frac{2\omega^2}{k_0^2} \frac{k_y v_{di}}{\omega - k_y v_e} = 0 \quad (37)
\]

where \(b_1 = k_y^2 \rho_i^2 / 2 \). In the limit that \(\omega_0^2 / \omega_1^2 \gg \omega_0^2 / \omega_e^2 \gg 1 \) it is easily shown that (37) reduces to

\[
\omega^2 - (k_y v_g + k_y v_{di}) \omega + \frac{g}{L_n} = 0 \quad (38)
\]

which is the usual dispersion equation for the Rayleigh-Taylor instability in the limit of magnetized ions. In the limit \(\omega \gg k_y v_g, k_y v_{di} \), the growth rate is simply given by \(\gamma = (g/L_n)^{1/2} \). The instability is stabilized when \((k_y v_g + k_y v_{di})^2 > 4g/L_n \); this is the so-called finite Larmor radius stabilization of the Rayleigh-Taylor instability (Roberts and Taylor, 1962).

IV. APPLICATION TO VHANES

We now apply the results of the stability analysis presented in Section III to the nuclear burst parameters presented in Section II. We first write down the turn-on conditions for the instabilities discussed in the previous section. We cast these conditions in terms of the growth rate of the conventional Rayleigh-Taylor instability, i.e., \(\gamma_0 = (g/L_n)^{1/2} \).

<table>
<thead>
<tr>
<th>Instability</th>
<th>Turn-on Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unmagnetized Ion Rayleigh-Taylor: Fluid Limit</td>
<td>(\gamma_0 > Q_1 / 2)</td>
</tr>
<tr>
<td>Unmagnetized Ion Rayleigh-Taylor: Kinetic Limit</td>
<td>(\gamma_0 > (m_e / m_i)^{1/4} Q_1)</td>
</tr>
<tr>
<td>Magnetized Ion Rayleigh-Taylor: MHD Limit</td>
<td>(\gamma_0 > (k_y v_g + k_y v_{di}) / 2)</td>
</tr>
</tbody>
</table>

In Fig. 3 we plot \(\gamma_0 / Q_1 \) vs. \(\Delta R \) for the burst parameters shown in Fig. 1. In calculating \(\gamma_0 \) we have taken the density gradient scale length to be \(L_n = 50 \) km. We also indicate the turn-on values for the unmagnetized ion Rayleigh-Taylor instabilities: \(\gamma_0 / Q_1 > 0.5 \) the fluid mode is unstable,
and $\gamma_0/Q_i > 0.066$ the kinetic mode is unstable. The magnetized ion Rayleigh-Taylor instability will be unstable for sufficiently small wavenumbers (i.e., $k_y p_i << 1$). For the burst at altitude $h = 400$ km (Starfish), we note that $Q_i = Q_0 (V_d/V_{ai}) (1 + R^3/R_M^3)^{-1}$ which is based on the relationship $B^2 = 4\pi m a V_d^2$. Thus, we account for the compression of the magnetic field in the debris shell which occurs in a super-Alfvenic expansion. We see that $\gamma_0/Q_i < 0.02$ for $R \leq R_M$ so that the debris shell is stable to the unmagnetized ion Rayleigh-Taylor instabilities. For the burst at $h = 1,000$ km we find that the kinetic instability may go unstable at $R = R_B$. However, the burst at $h = 10,000$ km is strongly unstable to both the kinetic instability (which turns-on at $R = 400$ km) and the fluid instability (which turns-on at $R = 4000$ km).

An important consideration in the above discussion is the sensitivity of the stability criterion to the density gradient scale length. For example, if we had chosen $L_n = 5$ km for the burst at $h = 400$ km, then the curve γ_0/Q_i would be increased by a factor of 3 and the kinetic instability would be unstable near $R = R_M$. On the other hand, if the density gradient scale length were $L_n = 100$ km for the burst at $h = 1,000$ km, then the expansion would be predicted to be stable to the unmagnetized ion Rayleigh-Taylor instability. Moreover, the density gradient scale length will probably not be constant during the expansion; clearly, computer simulations are needed to better determine the thickness of the debris shell as it expands and decelerates.

Finally, we present Fig. 4 which is a plot of γ/Q_i versus $k_y p_i$. We solve (22) numerically for a set of parameters relevant to the burst at $h = 10,000$ km at an expansion radius $R = 5,000$ km. We consider the following parameters: $V_g/V_i = 4.0$, $V_d/V_i = 0.014$, $L_n = 50$ km, $T_e/T_i = 1.0$, $T_i = T_d = T_a = 50$ ev, $\beta_i = 0.0$, $\omega p_e/e = 10.0$, $Z = 2$, and $\nu_d = 28$ (aluminum). The two branches of unstable modes are apparent. In the low frequency ($\gamma < Q_i$), long wavelength limit ($k_y p_i << 1$) we obtain the conventional magnetized ion Rayleigh-Taylor instability; for $k_y p_i << 1$ we find that the growth rate asymptotes to the standard growth rate $\gamma_0 = (g/L_n)^{1/2} = 0.335 Q_i$. The local approximation breaks down for $k_y L_n \lesssim 1$ which occurs for $k_y p_i = 0.028$ so that the results presented are valid. As $k_y p_i$ increases above $k_y p_i = 0.15$ we see that the mode becomes stable because of finite Larmor radius effects and the real frequency associated
with the gravitational drift wave. In the high frequency \((\gamma > \Omega_i)\), short wavelength limit \((k_y \rho_i >> 1)\) we find the unmagnetized ion Rayleigh-Taylor instability which is driven by a coupling between the gravitational drift wave and the lower hybrid wave. The growth rate maximizes for \(\omega_z = \omega_{lh}\) where \(\omega_{lh} = (e \rho_i)^{1/2}\) is the lower hybrid frequency. For the parameters chosen, we find that the growth rate maximizes at \(k_y \rho_i = 40\) which corresponds to a wavelength \(\lambda = 200\) m. On the other hand, if we were to assume that the dominant wavelength is \(\lambda = L_n\), this would correspond to \(k_y \rho_i = 0.176\) which is stable for the parameters chosen.

We add that we have chosen a single set of parameters; based on these parameters our results suggest that the unmagnetized ion Rayleigh-Taylor instability (or the large Larmor radius instability) can play a dominant role in the structuring of the debris shell for a VHANE. However, the results are sensitive to several parameters, in particular the density gradient scale length, and simulation studies are needed to better determine the macroscopic parameters associated with a VHANE (Thomas and Brecht, 1988; Winske, 1989).

V. DISCUSSION

The stability of the debris shell of a nuclear burst at altitudes \(h > 400\) km is investigated. A set of relatively simple expressions are derived to estimate the effective gravitational acceleration associated with the deceleration of the shell (by mass 'pick-up' and magnetic field 'sweep-up') and the curvature of the magnetic field. We then present a stability analysis based on the recent kinetic theory developed by Huba et al. (1989). In particular, the 'turn-on' conditions for the unmagnetized ion Rayleigh-Taylor instability are derived for both the fluid and kinetic regimes, as well as the finite Larmor radius stabilization criterion for the magnetized ion Rayleigh-Taylor instability. We apply these results to 1 MT bursts at altitudes \(h = 400\) km, 1,000 km, and 10,000 km. We find the burst at \(h = 400\) km to be stable to the unmagnetized ion Rayleigh-Taylor instability; the burst at \(h = 1,000\) is marginally unstable to the kinetic instability; and the burst at \(h = 10,000\) km is strongly unstable to both the kinetic and fluid unmagnetized ion Rayleigh-Taylor instabilities. On the other hand, the magnetized ion Rayleigh-Taylor instability is unstable at all altitudes and may cause structuring of the debris shell depending.
on the growth rate of the instability. A critical parameter in determining the stability properties of the debris shell is the density gradient scale length (or shell thickness). It is recommended that detailed 2D and/or 3D computer simulations be performed to quantify the macroscopic parameters associated with the expansion of the debris shell (Thomas and Brecht, 1988; Winske, 1989)

ACKNOWLEDGMENTS

This research was supported by the Defense Nuclear Agency.
REFERENCES

TABLE I: BURST PARAMETERS

<table>
<thead>
<tr>
<th>Burst Altitude h (km)</th>
<th>400</th>
<th>1,000</th>
<th>10,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial expansion velocity (V_{do})</td>
<td>2000 km/sec</td>
<td>2000 km/sec</td>
<td>2000 km/sec</td>
</tr>
<tr>
<td>Mass of burst (M_0)</td>
<td>5.0×10^5 gm</td>
<td>5.0×10^5 gm</td>
<td>5.0×10^5 gm</td>
</tr>
<tr>
<td>Ambient magnetic field (G)</td>
<td>0.28</td>
<td>0.21</td>
<td>0.020</td>
</tr>
<tr>
<td>Debris atomic number (u_d)</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Background atomic number (u_a)</td>
<td>16</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ambient density (n_a)</td>
<td>5.0×10^5 cm$^{-3}$</td>
<td>1.0×10^3 cm$^{-3}$</td>
<td>1 cm$^{-3}$</td>
</tr>
<tr>
<td>Debris temperature (T_d)</td>
<td>18.5 ev</td>
<td>18.5 ev</td>
<td>18.5 ev</td>
</tr>
<tr>
<td>Debris thermal velocity (v_d)</td>
<td>18.5 km/sec</td>
<td>18.5 km/sec</td>
<td>18.5 km/sec</td>
</tr>
<tr>
<td>Debris charge state (Z)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Density gradient scale length (L_n)</td>
<td>50 km</td>
<td>50 km</td>
<td>50 km</td>
</tr>
<tr>
<td>Ambient cyclotron frequency (Ω_i)</td>
<td>188 rad/sec</td>
<td>146 rad/sec</td>
<td>13.3 rad/sec</td>
</tr>
<tr>
<td>Directed Larmor radius (V_{do}/Ω_i)</td>
<td>10.6 km</td>
<td>13.7 km</td>
<td>150 km</td>
</tr>
<tr>
<td>Ambient Alfvén velocity (V_{da})</td>
<td>2×10^2 km/sec</td>
<td>2×10^4 km/sec</td>
<td>4×10^4 km/sec</td>
</tr>
<tr>
<td>Alfvén Mach number (M_A)</td>
<td>9.43</td>
<td>0.136</td>
<td>0.047</td>
</tr>
<tr>
<td>Equal mass radius (R_M)</td>
<td>2.0×10^2 km</td>
<td>4.1×10^3 km</td>
<td>4.1×10^4 km</td>
</tr>
<tr>
<td>Magnetic confinement radius (R_B)</td>
<td>9.1×10^2 km</td>
<td>1.1×10^3 km</td>
<td>5.3×10^3 km</td>
</tr>
</tbody>
</table>
Fig. 1 — Plot of g (cm/sec2) vs R (km) for a 1 MT burst at altitudes $h = 400$ km, 1,000 km, and 10,000 km. The parameters used are the following: $h = 400$ km [$n_n = 5.0 \times 10^5$ cm$^{-3}$ and $m_n = 16 m_p$ (oxygen background)]; $h = 1,000$ km [$n_n = 1.0 \times 10^5$ cm$^{-3}$ and $m_n = m_p$ (hydrogen background)]; and $h = 100,000$ km [$n_n = 1.0$ cm$^{-3}$ and $m_n = m_p$ (hydrogen background)]. In all cases we have taken $V_{\infty} = 2.0 \times 10^8$ cm/sec, $M_0 = 5.0 \times 10^4$ gm, $m_d = 28 m_p$ (aluminum debris), and $Z = 2$. These parameters are shown in Table I along with the relevant expansion parameters.
Fig. 2 — Slab geometry and plasma configuration used in the stability analysis
Fig. 3 — Plot of γ_0/Ω_i vs R for the burst parameters shown in Fig. 1. In calculating γ_0 we have taken the density gradient scale length to be $L_n = 50$ km. We also indicate the turn-on values for the unmagnetized ion Rayleigh-Taylor instabilities: $\gamma_0/\Omega_i > 0.5$ the fluid mode is unstable, and $\gamma_0/\Omega_i > 0.066$ the kinetic mode is unstable. The magnetized ion Rayleigh-Taylor instability will be unstable for sufficiently small wavenumbers (i.e., $k_\perp \rho_i << 1$).
h = 10,000 km
R = 5,000 km

Fig. 4 — Plot of γ/Ω_i vs $k_y\rho_i$ for a set of parameters relevant to the burst at $h = 10,000$ km at an expansion radius $R = 5,000$ km. We consider the following parameters: $V_e/v_i = 4.0$, $V_d/v_i = 0.014$, $L_m = 50$ km, $T_e/T_i = 1.0$, $T_i = T_d = T_s = 50$ ev, $\beta_i = 0.0$, $\omega_{pe}/\Omega_i = 10.0$, $Z = 2$, and $\mu_d = 28$ (aluminum).
DISTRIBUTION LIST
(Unclassified Only)

DEPARTMENT OF DEFENSE

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, DC 20305
03CY ATTN TITL
03CY ATTN RAAE

CHIEF
LIVERMORE DIVISION FLG COMMAND DNA
DEPARTMENT OF DEFENSE
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
01CY ATTN FCPRL

COMMANDER
NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO, CA 92152
01CY ATTN J. FERGUSON

NAVAL RESEARCH LABORATORY
WASHINGTON, DC 20375-5000
26CY ATTN CODE 4700/S. OSSAKOW
10CY ATTN CODE 4780/B. RIFIN
01CY ATTN CODE 4701
01CY ATTN CODE 4780.1EM/E. MCLEAN
20CY ATTN CODE 4781/4782
20CY ATTN CODE 4785
20CY ATTN CODE 2628
01CY ATTN CODE 1004/P. MANGE
01CY ATTN CODE 8344/M. KAPLAN

OFFICE OF NAVAL RESEARCH
ARLINGTON, VA 22217
01CY ATTN CODE 1125

AIR FORCE GEOPHYSICS LABORATORY
HANSCOM AFB, MA 01731
01CY ATTN OPR/HAROLD GARDNER
01CY ATTN LKB/
KENNETH S.W. CHAMPION
01CY ATTN OPR/ALVA T. STAIR
01CY ATTN PHD/JURGEN BUCHAU
01CY ATTN PHD/JOHN F. MULLEN

AF WEAPONS LABORATORY
KIRTLAND AFB, NM 87117
01CY ATTN SUL

WRIGHT AERONAUTICAL LABORATORIES
WRIGHT-PATTERSON AFB, OH 45433-6543
01CY ATTN AAAI/VADE HUNT
01CY ATTN AAAI/ALLEN JOHNSON

HEADQUARTERS
ELECTRONIC SYSTEMS DIVISION
DEPARTMENT OF THE AIR FORCE
HANSOM AFB, MA 01731-5000
01CY ATTN J. DEAS
ESB/SCD-4

COMMANDER
ROME AIR DEVELOPMENT CENTER, AFSC
GRIFFIN AFB, NY 13441
01CY ATTN DOC LIBRARY/TSLD
01CY ATTN OCSE/V. COYNE

COMMANDER
ROME AIR DEVELOPMENT CENTER, AFSC
HANSCOM AFB, MA 01731
01CY ATTN EEP/A. LORENTZEN

UNIVERSITY OF CALIFORNIA
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
01CY ATTN DOC CON FOR
TECH INFO DEPT
01CY ATTN DOC CON FOR
L-389/R. OTT
01CY ATTN DOC CON FOR
L-31/R. HAGER

LOS ALAMOS NATIONAL LABORATORY
P.O. BOX 1663
LOS ALAMOS, NM 87545
01CY ATTN J. VOLCOTT
01CY ATTN E. JONES
01CY ATTN J. MALIK
01CY ATTN R. JEFFRIES
01CY ATTN J. ZINN
01CY ATTN D. WESTERVELE
01CY ATTN D. APPENFIELD

LOS ALAMOS NATIONAL LABORATORY
MS D438
LOS ALAMOS, NM 87545
01CY ATTN S.P. GARY
01CY ATTN J. BOROVSKY
DISTRIBUTION LIST
(Unclassified Only)

DEPARTMENT OF DEFENSE
DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, DC 20305
01CY ATTN TITL
03CY ATTN RAAE

CHIEF
LIVERMORE DIVISION FLD COMMAND DNA
DEPARTMENT OF DEFENSE
LAURENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
01CY ATTN FCPRL

COMMANDER
NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO, CA 92152
01CY ATTN J. F. FERGUSON

NAVAL RESEARCH LABORATORY
WASHINGTON, DC 20375-5000
26CY ATTN CODE 4700/S. OSSAKOW
10CY ATTN CODE 4780/B. RIPIN
01CY ATTN CODE 4701
01CY ATTN CODE 4780.1EM/E. MCLEAN
20CY ATTN CODE 4781/4782
01CY ATTN CODE 4785
20CY ATTN CODE 2628
01CY ATTN CODE 1004/P. MANGE
01CY ATTN CODE 8344/M. KAPLAN

OFFICE OF NAVAL RESEARCH
ARLINGTON, VA 22217
01CY ATTN CODE 1125

AIR FORCE GEOPHYSICS LABORATORY
HANSCOM AFB, MA 01731
01CY ATTN OPR/HAROLD GARDNER
01CY ATTN LKB/
01CY ATTN OPR/ALVA T. STAIR
01CY ATTN OPR/ALVA T. STAIR
01CY ATTN PHD/JURGEN BUCHA'
01CY ATTN PHD/JOHN P. MULLEN

AF WEAPONS LABORATORY
KIRTLAND AFB, NM 87117
01CY ATTN SUL

WRIGHT AERONAUTICAL LABORATORIES
WRIGHT-PATTERSON AFB, OH 45433-6543
01CY ATTN AAAI/VADE HUNT
01CY ATTN AAAI/ALLEN JOHNSON

HEADQUARTERS
ELECTRONIC SYSTEMS DIVISION
DEPARTMENT OF THE AIR FORCE
HANSCOM AFB, MA 01731-5000
01CY ATTN J. DEAS
01CY ATTN J. DEAS

COMMANDER
ROME AIR DEVELOPMENT CENTER, AFSC
GRIFFIN AFB, NY 13441
01CY ATTN DOC LIBRARY/TSDL
01CY ATTN OCSE/V. COYNE

COMMANDER
ROME AIR DEVELOPMENT CENTER, AFSC
HANSCOM AFB, MA 01731
01CY ATTN EFPA/A. LORENTZEN

UNIVERSITY OF CALIFORNIA
LAURENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
01CY ATTN DOC CON FOR
01CY ATTN DOC CON FOR
01CY ATTN DOC CON FOR

LOS ALAMOS NATIONAL LABORATORY
P.O. BOX 1663
LOS ALAMOS, NM 87545
01CY ATTN J. VOLCOTT
01CY ATTN E. JONES
01CY ATTN J. MALIK
01CY ATTN R. JEFFRIES
01CY ATTN J. ZINN
01CY ATTN D. WESTERVETL
01CY ATTN D. SAPPENFIELD

LOS ALAMOS NATIONAL LABORATORY
MS D438
LOS ALAMOS, NM 87545
01CY ATTN S.P. GARY
01CY ATTN J. BOROVSKY