The Use of Optical Electronegativities to Assign Electronic Spectra of Semiquinone Complexes

By

Elaine S. Dodsworth and A.B.P. Lever*

in

Chemical Physical Letters

York University
Department of Chemistry, 4700 Keele St., North York
Ontario, Canada M3J 1P3

Reproduction in whole, or in part, is permitted for any purpose of the United States Government

*This document has been approved for public release and sale; its distribution is unlimited

*This statement should also appear in Item 10 of the Document Control Data-DD form 1473. Copies of the form available from cognizant contract administrator
The Use of Optical Electronegativities to Assign Electronic Spectra of Semiquinone Complexes

Elaine S. Dodsworth and A.B.P. Lever

Technical

From Aug. 89 to Aug. 90

August 3, 1990

Optical Electronegativity, Electronic Spectra, Semiquinones

Semiquinone complexes of a wide range of transition metals show ligand to metal charge transfer transitions in their electronic spectra. Using the optical electronegativity approach it has been shown that these assignments are consistent with one another. The optical electronegativity of 3,5-di-t-butylsemiquinone is found to vary from 1.2 to 1.5, depending on the metal ion. In cases where the optical electronegativity appears to lie outside these limits, alternative assignments are discussed. Optical electronegativities for 2,2'-bipyridine, 2,2'-bipyrazine and 2-picolinic acid N-oxide are also reported.
<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>Dr. Robert Green, Director</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry Division, Code 1113</td>
<td>Chemistry Division, Code 385</td>
</tr>
<tr>
<td>800 North Quincy Street</td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td>Arlington, Virginia 22217-5000</td>
<td>China Lake, CA 93555-6001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commanding Officer</th>
<th>Chief of Naval Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Weapons Support Center</td>
<td>Special Assistant for Marine</td>
</tr>
<tr>
<td>Dr. Bernard E. Douda</td>
<td>Corps Matters</td>
</tr>
<tr>
<td>Crane, Indiana 47522-5050</td>
<td>Code 00MC</td>
</tr>
<tr>
<td></td>
<td>800 North Quincy Street</td>
</tr>
<tr>
<td></td>
<td>Arlington, VA 22217-5000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. Richard W. Drisko</th>
<th>Dr. Bernadette Eichinger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>Naval Ship Systems Engineering</td>
</tr>
<tr>
<td>Code L52</td>
<td>Station</td>
</tr>
<tr>
<td>Port Hueneme, CA 93043</td>
<td>Code 053</td>
</tr>
<tr>
<td></td>
<td>Philadelphia Naval Base</td>
</tr>
<tr>
<td></td>
<td>Philadelphia, PA 19112</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>David Taylor Research Center</th>
<th>Dr. Sachio Yamamoto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Eugene C. Fischer</td>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td>Annapolis, MD 21402-5067</td>
<td>Code 52</td>
</tr>
<tr>
<td></td>
<td>San Diego, CA 92152-5000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dr. James S. Murday</th>
<th>Dr. Harold H. Singerman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry Division, Code 6100</td>
<td>David Taylor Research Center</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td>Code 283</td>
</tr>
<tr>
<td>Washington, D.C. 20375-5000</td>
<td>Annapolis, MD 21402-5067</td>
</tr>
</tbody>
</table>

Defense Technical Information Center	

Building 5, Cameron Station	
Alexandria, VA 22314	
ONR Electrochemical Sciences Program
Robert J. Nowak, Program Manager

Professor Hector Abreuña
Department of Chemistry
Cornell University
Ithaca, NY 14853
413d018

Professor Allen Bard
Department of Chemistry
The University of Texas at Austin
Austin, TX 78712-1167
413a002

Professor James Brophy
Department of Physics
University of Utah
Salt Lake City, UT 84112
413d015

Professor Bruce Dunn
Department of Materials Science and Engineering
University of California, Los Angeles
Los Angeles, CA 90024
413d011

Professor Gregory Farrington
Laboratory for Research on the Structure of Matter
3231 Walnut Street
Philadelphia, PA 19104-6202
413d003

Professor Martha Greenblatt
Department of Chemistry
Rutgers University
Piscataway, NJ 08854
413d008

Professor Adam Heller
Department of Chemical Engineering
University of Texas at Austin
Austin, TX 78712-1062
413h007

Professor C. A. Angell
Arizona State University
Department of Chemistry
Tempe, AZ 85287
413d007

Professor Lesser Blum
Department of Physics
University of Puerto Rico
Rio Piedras, PUERTO RICO 00931
4133002

Professor Daniel Buttry
Department of Chemistry
University of Wyoming
Laramie, WY 82071
4133019

Professor Andrew Ewing
Department of Chemistry
152 Davey Laboratory
Pennsylvania State University
University Park, PA 16802
4133030

Professor W. R. Fawcett
Department of Chemistry
University of California, Davis
Davis, CA 95616
4133020

Professor Joel Harris
Department of Chemistry
University of Utah
Salt Lake City, UT 84112
413a005

Professor Pat Hendra
The University
Southampton SO9 5NH
ENGLAND
4134001
ONR Electrochemical Sciences Program
Robert J. Nowak, Program Manager

Professor Joseph Hupp
Department of Chemistry
Northwestern University
Evanston, IL 60208
4133025

Professor D. E. Irish
Department of Chemistry
University of Waterloo
Waterloo, Ontario, CANADA N2L 3G1
4133017

Professor A. B. P. Lever
Department of Chemistry
York University
4700 Keele Street
North York, Ontario M3J 1P3
413-025

Professor Nathan S. Lewis
Division of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, CA 91125
413d017

Professor Rudolph Marcus
Division of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, CA 91125
4133004

Professor Charles Martin
Department of Chemistry
Texas A&M University
College Station, TX 77843
413d005

Professor Royce W. Murray
Department of Chemistry
University of North Carolina
Chapel Hill, NC 27514
4133015

Dr. Michael R. Philpott
IBM Research Division
Almaden Research Center
650 Harry Road
San Jose, CA 95120-6099
4133011

Professor Richard Pollard
Department of Chemical Engineering
University of Houston, University Park
4800 Calhoun, Houston, TX 77004
413d016

Professor B. S. Pons
Department of Chemistry
University of Utah
Salt Lake City, UT 84112
4133010

Dr. Donald Sandstrom
Boeing Aerospace Company
P.O. Box 3999, M/S 87-08
Seattle, WA 98124-2499
4133007

Professor Jack Simons
Department of Chemistry
University of Utah
Salt Lake City, UT 84112
4131050
ONR Electrochemical Sciences Program
Robert J. Novak, Program Manager

Dr. H. Gilbert Smith
EG&G Mason Research Institute
57 Union Street
Worcester, MA 01608
413k003

Dr. Stanislaw Szpak
Code 634
Naval Ocean Systems Center
San Diego, CA 92152-5000
4131006

Professor Michael Weaver
Department of Chemistry
Purdue University
West Lafayette, IN 49707
4133001

Professor Geroge Wilson
Department of Chemistry
University of Kansas
Lawrence, KS 66045
413k002

Professor Ernest Yeager
Case Center for Electrochemical Sciences
Case Western Reserve University
Cleveland, OH 44106
4133008

Professor Ulrich Stimming
Department of Chemical Engineering
and Applied Chemistry
Columbia University
New York, NY 10027
4133014

Professor Petr Vanýsek
Department of Chemistry
Northern Illinois University
Dekalb, IL 60115
413k001

Professor Henry White
Department of Chemical Engineering
and Materials Science
421 Washington Ave., SE
Minneapolis, MN 55455
400o027yip

Professor Mark S. Wrighton
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, MA 02139
4131027
The use of Optical Electronegativities to Assign Electronic Spectra of Semiquinone Complexes

Elaine S. Dodsworth and A.B.P. Lever
Department of Chemistry, York University, North York, Ontario, Canada, M3J 1P3.

Abstract

Semiquinone complexes of a wide range of transition metals show ligand to metal charge transfer transitions in their electronic spectra. Using the optical electronegativity approach it has been shown that these assignments are consistent with one another. The optical electronegativity of 3,5-di-t-butylsemiquinone is found to vary from 1.2 to 1.5, depending on the metal ion. In cases where the optical electronegativity appears to lie outside these limits alternative assignments are discussed. Optical electronegativities for 2,2'-bipyridine, 2,2'-bipyrazine and 2-picolinic acid N-oxide are also reported.

Introduction

Catechols, semiquinones and quinones, known as dioxolenes, are non-innocent ligands, related to one another by one-electron transfers. These ligands are of interest for their biological importance, redox and magnetic properties.[1-4]. Although their complexes usually display rich electronic spectra few detailed studies and assignments of these spectra have been reported [5-10].

The spectra of dioxolene complexes are often dominated by charge transfer and intraligand transitions [5-10]. The visible spectra of
catechol and quinone complexes are relatively easy to assign, as they tend to show ligand to metal charge transfer (LMCT) and metal to ligand charge transfer (MLCT) respectively. The spectra of semiquinone complexes are more complicated because of several internal ligand transitions in the near-ultraviolet to near-infrared (NIR) region [11,12] and the possibility of either MLCT or LMCT transitions.

We investigate here the use of optical electronegativities because the usual methods for assigning CT transitions [13] cannot always be applied for semiquinone complexes. For example, CT and interligand transitions may shift in parallel when ligand substituents are changed and shifts are sometimes small and may be misleading [5,7-9,14]. Correlations with redox potentials can also be used to identify CT transitions [15,16] but the relevant redox potentials are generally unavailable for semiquinone complexes.

The concept of optical electronegativity was introduced by Jørgensen as a means of rationalising the LMCT spectra of metal complexes [17,18]. It has been used fairly extensively for LMCT [19-39], and generalised to include MLCT spectra of various pyridine N-oxide complexes [40-42]. This paper extends the optical electronegativity database for MLCT to include 2,2'-bipyridine (bpy), 2,2'-bipyrazine (bpz) and 3,5-di-t-butylsemiquinone (DTBSq). This provides an insight into the use of optical electronegativities for non-innocent ligands and enables us to make new assignments and show that, in most cases, previously suggested assignments are consistent with one another. Our discussion is restricted to complexes of DTBSq because of the large amount of data available for this ligand.
Theory and Background

Optical electronegativities

The optical electronegativity approach [17,43] assumes that the energy of a CT transition is proportional to the difference in electronegativity between the donor and acceptor orbitals involved in the transition. A correction is made for the change in spin-pairing energy (ΔSPE) occurring on the metal ion, and the constant 30,000 cm⁻¹ is used to relate the electronegativities to the Pauling electronegativity scale. For a MLCT transition (in cm⁻¹) [17,43]:

\[\nu_{\text{CT'}} = 30,000(X_M - X_L) \]

where \(\nu_{\text{CT'}} = \nu_{\text{CT(obsd)}} - \Delta\text{SPE} \)

(1)

(2)

\(X_M \) and \(X_L \) are the optical electronegativities of the metal and ligand respectively. \(X_M \) is taken as the energy of the (presumed) non-bonding \(t_2g \) orbitals in an octahedral complex and a correction of 10Dq is included in equation 2 for transitions involving the \(e_g \) orbitals. π-bonding effects on the \(t_2g \) orbitals are not taken into account.

The optical electronegativity is assumed in principle to be constant for a metal ion in a particular oxidation state and stereochemistry, though variations have been found for complexes containing the strongly π-donating oxo group [17]. Hollebone also found a dependence of \(X_M \) of copper on \(X_L \) in a series of pseudo-halide complexes [21].

Spectra of semiquinone complexes

The transitions expected in semiquinone complexes (see Table 1) have been discussed by Benelli et al. who have compared the spectra of mono-semiquinone complexes of Cr, Co, Ni and Zn with both DTBSq and tetrachlorosemiquinone (TC1Sq) and an innocent cis-bound aza-macrocycle
as the co-ligand [8-10]. Two intraligand transitions to the semiquinone singly occupied molecular orbital (SOMO) are expected, a weak band around 13000 cm\(^{-1}\) (n-\(\pi^*\)) and a stronger band around 28000 cm\(^{-1}\) (\(\pi-\pi^*\)). Other intense visible region transitions in the Ni, Cr and Co complexes were assigned as MLCT, based on the absence of corresponding bands in the spectra of the Zn analogues and the free ligand, and the shift to lower energy of these bands upon substitution of DTBSq by the more electron-withdrawing TCLSq.

Detailed assignments of the spectra of ruthenium mixed ligand bpy-dioxolene species have also been made [5-7]. These typically show MLCT to both semiquinone and bpy with most of the intraligand transitions being obscured.

LMCT assignments have been suggested for Fe\(^{III}\) and Co\(^{III}\) semiquinone complexes [49,52,56]. Such transitions are expected at higher energy than those in similar catecholate species. LMCT from catechol to metal normally occurs in the visible region only in complexes where the metal is readily reducible (e.g. V\(^{IV}\), Mn\(^{IV}\), Fe\(^{III}\), Mo\(^{VI}\), Re\(^{VI}\) [57-81], not in Cr\(^{III}\), Rh\(^{II}\), most M\(^{II}\), etc. [9,62,63]). In complexes of metals which have a filled t\(_{2g}\) set (Co\(^{III}\), Ni\(^{II}\) etc.) the lowest energy LMCT transition would be \(\pi^*\rightarrow\sigma^*\) in nature, and therefore relatively weak.

Calculations

Few optical electronegativity values are available for M\(^{II}\). We have recalculated some \(\chi_m\) values from the data of Byers et al. [40] for picolinic acid N-oxide complexes, using Jørgensen's method [17,43], with \(\chi_m(Ni) = 2.1\) as a standard (Table 2). Reasonable agreement is found with gas-phase values reported by Jørgensen [64]. A value of \(\chi_m\) for
RuII of 1.7 was obtained by extrapolation from Jørgensen's values for RuIV and RuIII [17]. These values of χ_M and the literature value for CrIII [17] were then used to calculate χ_L for bpy and bpz in complexes in which the MLCT assignments are secure, to check the consistency of the results for MLCT transitions. Consistent values of χ_L for bpy and bpz in the various complexes are obtained. Some variation in χ_L(bpy) might be expected in parallel with the bpy/bpy$^-$ reduction potential which depends strongly upon the metal oxidation state [71].

χ_L(DTBSq) was then calculated for the underlined transitions in Table 1, assuming they correspond to MLCT to the semiquinone SOMO (3bi in the free ligand). The assignments are those in the literature, or, where data were previously unassigned, the most prominent band in the visible region was chosen (apart from the n-π^* band around 700 nm). For example, in the chromium complexes the intense band around 500 nm was chosen, consistent with the assignment of Benelli et al. for the mono-DTBSq complex [10]. This band seems to be characteristic of Cr-semiquinone species and shifts consistently, albeit a small amount, to the red with increasing charge on the complex, as expected for MLCT. In many cases it is a double band, probably due to splitting of the t$_{2g}$ orbitals.

Calculated values of χ_L(DTBSq) for most complexes lie in the range 1.2-1.5 electronegativity units (Table 3). In the case where transitions to both bpy and DTBSq are observed in the same molecule $\Delta\chi_L$(bpy - DTBSq) can be obtained directly from the difference in transition energy without calculation of the spin pairing contributions or knowledge of χ_M. Differences of \sim0.3 are obtained for the ruthenium species which show CT to both bpy and DTBSq and also for Cr(bpy)(DTBCat)(DTBSq) if the band at 27600 cm$^{-1}$ is assigned as
Discussion

The values of $\chi_L(\text{DTBSq})$ are consistently higher than those of bpy, as expected for the easily reduced semiquinone ligand. The variation from 1.2 to 1.5 is not unreasonable, given the variation in values for bpy and the large variation (>1 V) in the reduction potential of DTBSq in its complexes (Table 3) as a function of metal oxidation state. There are various possible sources of error, such as the estimation of the Racah parameter, B. Errors in B are unlikely to be more than ±200 cm$^{-1}$ which gives a maximum error of ±0.1 (for high sp.3 d5) and considerably less for most metal ions. There are also some uncertainties in the values of χ_M which we have minimised by checking against bpy and bpz.

χ_M for MnII is questionable because of uncertainty in the assignment. The relatively high intensity suggests that the transition is from the t_{2g} orbitals (a transition from the e_g would then be expected at roughly the same energy as the n-π^* band), whereas the value of χ_M for MnII was calculated assuming the transition in the picolinic acid complex was from the e_g set, in agreement with the assignments of the original authors [40].

The data in Table 3 appear to show some variation in $\chi_L(\text{DTBSq})$ for series of complexes of the same metal ion, e.g. CrIII. Most of this variation is probably due to variation in χ_M, and may result from differences in π-bonding abilities of the other ligands. Any real variation in $\chi_L(\text{DTBSq})$ for a given metal ion is a secondary effect (therefore smaller), caused by changes in χ_M. Thus the variations in χ_M and χ_L for a particular metal ion cannot be deconvoluted and it is more
reasonable to assume that χ_L is constant. For example, for CrIII, if $\chi_L(DTBSq)$ remains constant at ~ 1.4, $\chi_M(Cr^{III})$ decreases from 1.95 to 1.75 as the charge on the complex becomes more negative. These values of χ_M are well within the range given in the literature and the decrease is in the expected direction, the metal becoming less electronegative as more charge is donated by the ligands. Similarly for the other metals χ_L can be assumed constant for complexes of a given ion without assuming any undue variation in χ_M.

As expected, results for the FeIII complexes are inconsistent with those of the other metals if the transitions are assumed to be MLCT. It is likely that the transitions are intraligand and LMCT transitions, in agreement with previous assignments [49,56].

Other complexes which give relatively extreme values of $\chi_L(DTBSq)$ are those of CoIII, RhIII and NiII. The transitions in the Ni-CTH complexes shift in the direction expected for MLCT when DTBSq is compared to TClSq and are too intense for d-d bands. There are no other transitions in the visible region (where the transition must lie) which could be assigned to Ni\rightarrowDTBSq.

Similarly for the RhIII complexes, there are no reasonable alternative assignments. There are no other bands in the visible region that could be the expected MLCT band and the observed band at 20000 cm$^{-1}$ in Rh(DTBSq)$_3$ is much too intense (it is very broad) and too low in energy for a d-d transition [55]. The band in [Rh(bpy)$_2(DTBSq)$]$^{2+}$ occurs at lower energy than any band of comparable intensity in the corresponding DTBCat species and is therefore unlikely to be an LMCT or d-d transition [54]. It is possible that the value of χ_M for Rh may be slightly too high; in general second row transition metals have lower values than first row metals in the same group, whereas Jørgensen's
values for CoIII and RhIII are the same [17]. A decrease in χ_M of 0.1 would decrease χ_L to 1.35-1.45 which would agree well with the rest of the data.

Both [CoIIICTH(DTBSq)]$^{2+}$ and its TC1Sq analogue show two main bands in the 18000-30000 cm$^{-1}$ region [8]. The higher is assigned as $\pi-\pi^*$ and the lower to MLCT; both shift to the red when TC1Sq replaces DTBSq. The so-called $\pi-\pi^*$ band is noticeably more prominent in the Co complexes than in the analogous Ni and Zn complexes [8,9]. A plausible alternative assignment for the ~19000 cm$^{-1}$ band is to the lowest spin-allowed d-d transition, with its intensity increased by mixing with the nearby MLCT transition which would then be a component of the absorption around 27000 cm$^{-1}$. The position of the lower band is appropriate for a d-d transition in a CoIIO$_2$N4 chromophore and a band of similar energy is found in the catechol analogues [8]. The prominence of the higher band is then explained since it contains both the $\pi-\pi^*$ and MLCT absorptions. The 19000 cm$^{-1}$ (d-d) band is more intense in the TC1Sq complex because it lies closer to the MLCT transition than in the DTBSq species. Similar assignments are also possible for the other two CoIII complexes in Table 1. Using these alternative assignments, χ_L(DTBSq) is 1.35-1.4 for the CoIII complexes, in agreement with data for other metals.

Values of χ_L(DTBSq) are then:

RhIII > CrIII > CoIII = RuIII > MnII = FeII = RuII > CoII > NiII
1.5 1.4 1.35 1.3 1.2 1.1

showing a clear dependence on metal oxidation state. However it should be borne in mind that some of this variation may be due to variation in χ_M.

In general the reduction potentials for DTBSq bound to MIII are more
positive than those for DTBSq bound to M^{III}, in agreement with the lower values of χ_L for the latter. However, the ligand reduction potentials also depend on the charge on the complex (Table 3). Considering complexes of a given charge, it appears that there is at least a qualitative correlation between χ_L(DTBSq) and the reduction potential.

Summary

The spectra of semiquinone complexes can be interpreted using the optical electronegativity method. A range of values for χ_L(DTBSq) of 1.1-1.5 is found, with generally higher values for M^{III} than for M^{II} complexes. These numbers relate to the semiquinone SOMO.

Assignments of metal to ligand charge transfer transitions in complexes of CrIII, MnII, FeII, CoII, CoIII, NiII, RuII, RuIII and RhIII give consistent results which support some of the previous assignments and enable previously unassigned spectra and our own new data to be understood. Alternative assignments do not lead to the consistency observed here.

The fact that semiquinone is a non-innocent ligand and that some of the species are highly delocalised, i.e. the metal "oxidation state" is poorly defined [7], does not seem to be a problem. The relatively large variation in both χ_L and the ligand reduction potential is probably due more to the small size of the aromatic system in these ligands (compared to bpy or a phthalocyanine for example) than to non-innocence.

Acknowledgement

We thank the Office of Naval Research (Washington) for support of this work.
References

43. Ref. 13, pp. 218-225.
46. P.R. Auburn, E.S. Dodsworth and A.B.P. Lever, work in progress.
55. E.S. Dodsworth and A.B.P. Lever, to be submitted to Inorg. Chem.
Table 1. Visible-NIR electronic spectra of semiquinone complexes

<table>
<thead>
<tr>
<th>Complexa,b</th>
<th>(\lambda_{\text{max}} / \text{cm}^{-1}) (10⁻³ε/M⁻¹ cm⁻¹)c</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\text{M} \rightarrow \text{Sq}) (\text{n} \rightarrow \pi^*) Other</td>
<td></td>
</tr>
<tr>
<td>Metal(II)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn⁴(DTBSq)⁶</td>
<td>24400(4.5) 13200(2.5)</td>
<td>44</td>
</tr>
<tr>
<td>t-Mn(py)₂(DTBSq)₂</td>
<td>23600</td>
<td>44</td>
</tr>
<tr>
<td>Fe(bpy)(DTBSq)₂</td>
<td>215600</td>
<td>45</td>
</tr>
<tr>
<td>Co⁴(DTBSq)⁶</td>
<td>13200(2.5) 26300(4.8)</td>
<td>44</td>
</tr>
<tr>
<td>Co(bpy)(DTBSq)₂</td>
<td>18200(2.0) 13000(2.7)</td>
<td>44</td>
</tr>
<tr>
<td>Ni⁴(DTBSq)⁶</td>
<td>23300(4.5) 13700(2.5)</td>
<td>44</td>
</tr>
<tr>
<td>Ni(bpy)(DTBSq)₂</td>
<td>23300(4.3) 13100(2.5)</td>
<td>44</td>
</tr>
<tr>
<td>[Ni(CTH)(DTBSq)]⁺</td>
<td>21200(1.3) 13000(0.46)</td>
<td>9</td>
</tr>
<tr>
<td>[Zn(CTH)(DTBSq)]⁺</td>
<td>13000(0.39) 26600(1.5)</td>
<td>9</td>
</tr>
<tr>
<td>[Ru(bpy)₂(DTBSq)]⁺</td>
<td>11850(15) 28750(13)</td>
<td>5</td>
</tr>
<tr>
<td>Ru(bpy)(DTBSq)₂</td>
<td>10500(12.1) 16500(11.6) 26700(5.7)</td>
<td>7</td>
</tr>
<tr>
<td>[Ru(DTBSq)₃]⁻</td>
<td>10750(17) 16200(2.5)</td>
<td>46</td>
</tr>
</tbody>
</table>

Metal(III)

	\(\text{n} \rightarrow \pi^* \)	
[Cr(CTH)(DTBSq)]²⁺	22800(4.5) 11500(0.5) 25000(3.7)	10
[Cr(DTBQ)(DTBSq)₂]⁺	21100(6.5) 13100(2.0) 23800(5.2)	47
[Cr(bpy)(DTBSq)₂]⁺	20400(7.2) 19200(4.7) 23800(5.0)	44,47

\(\text{Ref.} \): Reference numbers for the spectra.
<table>
<thead>
<tr>
<th>Complex</th>
<th>λ (nm) with ε (10000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr(DTBSq)₃</td>
<td>19000(18)</td>
<td>12900(4.2)</td>
<td>27300(6.2) f</td>
<td>47-49</td>
</tr>
<tr>
<td>Cr(bpy)(DTBCat)(DTBSq)</td>
<td>18900(6.5)</td>
<td>11500(2.3) i</td>
<td>27600(4.8) f</td>
<td>47</td>
</tr>
<tr>
<td>[Cr(DTBCat)(DTBSq)₂]⁻</td>
<td>17600(5.1)</td>
<td>13700(4.1)</td>
<td>26200(2.5) f</td>
<td>48</td>
</tr>
<tr>
<td>[Cr(DTBCat)₂(DTBSq)]²⁻</td>
<td>12900(4.2)</td>
<td>22300(2.9) f</td>
<td>19200 (3.2)</td>
<td>48</td>
</tr>
<tr>
<td>Fe(bpy)(DTBCat)(DTBSq)</td>
<td>13000</td>
<td></td>
<td>27700, f 18500 j</td>
<td>45</td>
</tr>
<tr>
<td>Fe(DTBSq)₃</td>
<td>15400(17) j</td>
<td>26600(22) f, j</td>
<td></td>
<td>49,50</td>
</tr>
<tr>
<td>Fe₄(DTBCat)₄(DTBSq)₄</td>
<td>14700(10) j</td>
<td>25500(14) f, j</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>[Co(CTH)(DTBSq)]²⁺</td>
<td>18100(0.98)</td>
<td>12000(0.17)</td>
<td>26000(1.5) f</td>
<td>8</td>
</tr>
<tr>
<td>[Co(trien)(DTBSq)]²⁺</td>
<td>18500(1.3)</td>
<td></td>
<td>27800(1.1) f</td>
<td>51</td>
</tr>
<tr>
<td>Co(bpy)(DTBCat)(DTBSq)</td>
<td>16400</td>
<td>13000</td>
<td>27800, f 7690</td>
<td>52</td>
</tr>
<tr>
<td>Ru(DTBSq)₃(hexane)</td>
<td>17900(12)</td>
<td>12000(9.4)</td>
<td>8170(4.7)</td>
<td>46,53</td>
</tr>
<tr>
<td>[Rh(bpy)₂(DTBSq)]²⁺</td>
<td>23400(2.1)</td>
<td>11000</td>
<td>29100(1.8) f</td>
<td>54</td>
</tr>
<tr>
<td>Rh(DTBSq)₃</td>
<td>20300(6.2)</td>
<td>10700(6.5)</td>
<td></td>
<td>55</td>
</tr>
</tbody>
</table>

a) py = pyridine, CTH = 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraaza-cyclotetradecane, DTBQ = 3,5-di-t-butylquinone, DTBCat = 3,5-di-t-butylcatechol.

b) For solvents and conditions see original literature. Note that there are some wide variations in ε for different reports of the same complex.

c) Only main bands and well-defined shoulders whose assignment is clear are reported.

d) Solvent dependent, reported in toluene. Band may also contain Fe→bpy transition.

e) No band consistent with MLCT is reported.
f) Internal ligand $\pi \rightarrow \pi^*$ transition.

g) $M \rightarrow bpy \pi^*$ transition; in Ru complexes bands around 20,000 cm$^{-1}$ are to the bpy LUMO and bands around 28,000 cm$^{-1}$ are to the next highest bpy π^* level and overlap the sq $\pi \rightarrow \pi^*$ transition.

h) May be an intensity-enhanced spin forbidden d-d transition, see Ref. 10.

i) May be intervalence DTBCat\rightarrowDTBSq, or contain a component of this.

j) Probably has LMCT component.

k) Probably 6-coordinate in solution, with coordinated solvent molecule.

l) Solvent dependent, reported in hexane. Assignment tentative as "oxidation state" is uncertain.
Table 2. Optical electronegativity data for picolinic acid N-oxide, 2,2'-bipyridine and 2,2'-bipyrazine complexes

<table>
<thead>
<tr>
<th>Complex</th>
<th>MLCT/cm⁻¹</th>
<th>B* /cm⁻¹</th>
<th>(\chi_M)</th>
<th>(\chi_L)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn(pico)₂(H₂O)₂ ᵇ</td>
<td>24700</td>
<td>835</td>
<td>1.6°</td>
<td>1.02°</td>
<td>41</td>
</tr>
<tr>
<td>Fe(pico)₂(H₂O)₂</td>
<td>21000</td>
<td>800</td>
<td>2.2(HS)°</td>
<td>1.02°</td>
<td>41</td>
</tr>
<tr>
<td>Co(pico)₂(H₂O)₂</td>
<td>23800</td>
<td>770</td>
<td>2.15°</td>
<td>1.02°</td>
<td>41</td>
</tr>
<tr>
<td>Ni(pico)₂(H₂O)₂</td>
<td>24400</td>
<td>900</td>
<td>2.1</td>
<td>1.02°</td>
<td>41</td>
</tr>
<tr>
<td>[Cr(bpy)₃]³⁺</td>
<td>29000</td>
<td>495</td>
<td>1.85</td>
<td>1.05</td>
<td>65</td>
</tr>
<tr>
<td>[Fe(bpy)₃]²⁺</td>
<td>19200</td>
<td>600</td>
<td>1.75(LS)°</td>
<td>1.0</td>
<td>66</td>
</tr>
<tr>
<td>[Ni(bpy)₃]²⁺</td>
<td>26000</td>
<td>800</td>
<td>2.1</td>
<td>1.0</td>
<td>67</td>
</tr>
<tr>
<td>[Ru(bpy)₃]²⁺</td>
<td>22300</td>
<td>350</td>
<td>1.7</td>
<td>0.9</td>
<td>68</td>
</tr>
<tr>
<td>[Cr(bpz)(H₂O)₄]³⁺</td>
<td>27940</td>
<td>650</td>
<td>1.85</td>
<td>1.1</td>
<td>69</td>
</tr>
<tr>
<td>[Fe(bpz)₃]²⁺</td>
<td>19700</td>
<td>600</td>
<td>1.75(LS)°</td>
<td>1.0</td>
<td>69</td>
</tr>
<tr>
<td>[Co(bpz)₃]²⁺</td>
<td>26400</td>
<td>750</td>
<td>2.15</td>
<td>0.95</td>
<td>69</td>
</tr>
<tr>
<td>[Ni(bpz)₃]²⁺</td>
<td>27600</td>
<td>800</td>
<td>2.1</td>
<td>0.95</td>
<td>69</td>
</tr>
<tr>
<td>[Ru(bpz)₃]²⁺</td>
<td>22700</td>
<td>350</td>
<td>1.7</td>
<td>0.9</td>
<td>70</td>
</tr>
</tbody>
</table>

a) Data from Refs. 40 and 13, Ch. 5 and 9 (estimated where data unavailable).

b) Transition is assumed to be from the \(e_m\) orbitals; a value of 8000 cm⁻¹ is used for \(10Dq\), as in Ref. 40.

c) Recalculated from data in Ref. 40, using Jørgensen's method [17,43] and \(\chi_M(Ni^{II}) = 2.1\) as a standard.

d) Calculated from data for bpy and bpz.
HS = high spin; LS = low spin.
Table 3. Optical electronegativity data for DTBSq complexes.

<table>
<thead>
<tr>
<th>Complex</th>
<th>\mathbf{B}/\mathbf{cm}^{-1}</th>
<th>$\mathbf{X}_\mathbf{M}$</th>
<th>$\mathbf{X}_\mathbf{L}$</th>
<th>$\mathbf{E(\mathbf{L//L}^\mathbf{-})}$/$\mathbf{V}$</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal(II)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn$_4$(DTBSq)$_8$</td>
<td>850</td>
<td>1.6</td>
<td>1.3d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t-Mn(py)$_2$(DTBSq)$_2$</td>
<td>850</td>
<td>1.6</td>
<td>1.35d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe(bpy)(DTBSq)$_2$</td>
<td>600</td>
<td>2.2(HS)</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co(bpy)(DTBSq)$_2$</td>
<td>800</td>
<td>2.15</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni$_4$(DTBSq)$_8$</td>
<td>800</td>
<td>2.1</td>
<td>1.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni(bpy)(DTBSq)$_2$</td>
<td>800</td>
<td>2.1</td>
<td>1.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Ni(CTH)(DTBSq)]$^+$</td>
<td>800</td>
<td>2.1</td>
<td>1.15</td>
<td>-0.64</td>
<td>9</td>
</tr>
<tr>
<td>[Ru(bpy)$_2$(DTBSq)]$^+$</td>
<td>350</td>
<td>1.7</td>
<td>1.25</td>
<td>-0.49</td>
<td>5</td>
</tr>
<tr>
<td>Ru(bpy)(DTBSq)$_2$</td>
<td>350</td>
<td>1.7</td>
<td>1.3</td>
<td>-0.82e</td>
<td>7</td>
</tr>
<tr>
<td>[Ru(DTBSq)$_3$]$^-$</td>
<td>350</td>
<td>1.7</td>
<td>1.3</td>
<td>-0.64</td>
<td>46</td>
</tr>
<tr>
<td>Metal(III)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Cr(CTH)(DTBSq)]$^{2+}$</td>
<td>600</td>
<td>1.85</td>
<td>1.3</td>
<td>0.21</td>
<td>10</td>
</tr>
<tr>
<td>[Cr(DBTQ)(DTBSq)$_2$]$^{2+}$</td>
<td>500</td>
<td>1.85</td>
<td>1.3</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>[Cr(bpy)(DTBSq)$_2$]$^{2+}$</td>
<td>500</td>
<td>1.85</td>
<td>1.35</td>
<td>0.2</td>
<td>47</td>
</tr>
<tr>
<td>Cr(DTBSq)$_3$</td>
<td>500</td>
<td>1.85</td>
<td>1.4</td>
<td>0.21</td>
<td>72</td>
</tr>
<tr>
<td>Cr(bpy)(DTBCat)(DTBSq)</td>
<td>600</td>
<td>1.85</td>
<td>1.4</td>
<td>-0.3</td>
<td>47</td>
</tr>
<tr>
<td>[Cr(DTBCat)(DTBSq)$_2$]$^-</td>
<td>700</td>
<td>1.85</td>
<td>1.5</td>
<td>-0.72</td>
<td>72</td>
</tr>
<tr>
<td>[Co(CTH)(DTBSq)]$^{2+}$</td>
<td>550</td>
<td>2.3</td>
<td>1.6</td>
<td>0.34</td>
<td>8</td>
</tr>
<tr>
<td>[Co(trien)(DTBSq)]$^{2+}$</td>
<td>550</td>
<td>2.3</td>
<td>1.55</td>
<td>0.12</td>
<td>51</td>
</tr>
<tr>
<td>Co(bpy)(DTBCat)(DTBSq)</td>
<td>550</td>
<td>2.3</td>
<td>1.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ru(DTBSq)$_3$</td>
<td>300</td>
<td>2.05</td>
<td>1.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Rh(bpy)$_2$(DTBSq)]$^{2+}$</td>
<td>400</td>
<td>2.3</td>
<td>1.45</td>
<td>0.32</td>
<td>54</td>
</tr>
<tr>
<td>Rh(DTBSq)₃</td>
<td>400</td>
<td>2.3</td>
<td>1.55</td>
<td>-0.13</td>
<td>55</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>----</td>
</tr>
</tbody>
</table>

a) Data from Ref. 13, Ch. 5 and 9 (estimated where data unavailable).
b) Data from Table II and Ref. 17.
c) DTBSq/DTBCat reduction potential vs. SCE.
d) Transition assumed to be from the t₂ₛ orbitals because the intensity is comparable to other t₂ₛ→Sₗ transitions. If it is from the eₛ set Xₛ is 0.3 units lower.
e) Not a simple DTBSq/DTBCat reduction - see ref. 7.