NATIONAL MOBILE COMMUNICATION SYSTEMS

by

William Joseph Schworer III

June 1990

Volume 3

Appendix B - D

Thesis Advisor: Dan C. Boger

Approved for public release; distribution is unlimited
APPENDIX B

COMMUNICATION, SATELLITE, AND NAVIGATION CONCEPTS

A. PURPOSE
This technical exposition is limited in breadth and depth, and is presented to provide a broad overview for readers who have little or no technical background.

B. FUNDAMENTALS
To understand how these systems function it is first necessary to be familiar with basic electrical concepts.

1. Electromagnetism
Electricity and magnetism are familiar to everyone. The effects of static electricity on a dry, wintry day, the attraction of a compass needle to the Earth's magnetic poles, and the propagation and reception of radio waves are all examples of electromagnetic phenomena.

Electromagnetic fields are a space and time-dependent pattern of energy. The analysis of electromagnetic fields, their interrelationships and their interaction with matter forms the basis of all electrical laws. These basic electrical properties form the building blocks for more complex configurations called networks or circuits. [Ref. 16:ch. 1, p. 1]
2. Electrical Currents

Electricity is composed of electrons moving through a substance, most typically a metal such as copper. Energy must be applied to move electrons through a conductor. Typically, this occurs by a chemical reaction in a battery, the effects of an electromagnetic field created by the conversion of mechanical energy in a generator, or sunlight interacting with a solar cell.

Voltage is a measure of the potential difference across an electrical circuit and can be thought of as pressure. Current or amperage is the amount of electrons moving through a circuit, and is analogous to volume of flow. The unit of electrical power is the watt and is equal to voltage multiplied by current.

a. Direct Current

In considering electrical current flow, it is natural to think of a single, constant force causing electrons to move. When this is so, the electrons always move in the same direction through a path or circuit of conductors connected together in a continuous chain. Such a current is called direct current, abbreviated dc. It is the type of current furnished by batteries, solar cells, and dc generators. Dc is illustrated in Figure 119. [Ref. 16:ch. 2, p. 14]
Figure 119. Direct Current
b. Alternating Current

It is also possible to have a current that periodically reverses its direction of flow. This is called alternating current, abbreviated ac. The reversals (alternations) may occur at any rate from a few per second to up to billions per second. Two reversals make a cycle. The number of cycles that occur per second is called the frequency and is abbreviated Hz. Alternating currents are created by ac generators and special electrical circuits called oscillators. Alternating current makes radio communication possible.

c. Frequency Bands

Ac frequencies ranging from 20 to 20,000 Hz are called audio frequencies, or AF, because this is the frequency range of air vibration that humans can hear. Ac frequencies above 20,000 Hz are called radio frequencies, abbreviated as RF. Radio frequencies of up to 100,000,000,000 Hz are used in radio transmission. At higher radio frequencies, it is convenient to use a unit of frequency larger than the Hz. Three larger units are the kilohertz (KHz), equal to 1000 Hz, the megahertz (MHz), equal to one million hertz, and the gigahertz (GHz), equal to one billion hertz.

For classification purposes, ranges of frequencies are divided into bands. Figure 120 illustrates band designations and the relative location of systems within the radio spectrum. Frequency sub-bands are also designated by the letters listed in Table 31 [Ref. 52:pp. 212-213].

492
## Band Designation and Frequency Ranges

Relative Position of Communication and Navigation Systems

<table>
<thead>
<tr>
<th>Band</th>
<th>Description</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLF</td>
<td>AUDIO FREQUENCY</td>
<td>10 - 30 KHz</td>
</tr>
<tr>
<td>LF</td>
<td>LORAN - C</td>
<td>30 - 300 KHz</td>
</tr>
<tr>
<td>MF</td>
<td>AM RADIO</td>
<td>300 KHz - 3 MHz</td>
</tr>
<tr>
<td>HF</td>
<td>LONG DISTANCE AERONAUTICAL AND MARITIME MOBILE COMMUNICATIONS</td>
<td>3 - 30 MHz</td>
</tr>
<tr>
<td>VHF</td>
<td>METEOR BURST</td>
<td>TV &amp; FM RADIO</td>
</tr>
<tr>
<td>UHF</td>
<td>TRANSIT &amp; ARGOS</td>
<td>SMR &amp; CELLULAR</td>
</tr>
<tr>
<td>SHF</td>
<td>OMNITRACS</td>
<td>3 - 30 GHz</td>
</tr>
<tr>
<td>EHF</td>
<td></td>
<td>30 - 300 GHz</td>
</tr>
</tbody>
</table>

**Figure 120.** Band Designation and Frequency Ranges; Relative Position of Communication and Navigation Systems
TABLE 31
LETTER BAND DESIGNATIONS

<table>
<thead>
<tr>
<th>Band</th>
<th>Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3.7-6.425 GHz</td>
</tr>
<tr>
<td>K</td>
<td>10.7-18 GHz</td>
</tr>
<tr>
<td>K_a</td>
<td>18-304 GHz</td>
</tr>
<tr>
<td>K_b</td>
<td>10.7-18 GHz</td>
</tr>
<tr>
<td>L</td>
<td>1.5-1.6 GHz</td>
</tr>
<tr>
<td>S</td>
<td>2.5-2.7 GHz</td>
</tr>
<tr>
<td>X</td>
<td>7.25-8.4 GHz</td>
</tr>
</tbody>
</table>

3. Analog

a. Waveform Mixing

Ac is typically represented as a sine wave, as shown in Figure 121. Ac does not always take the form of a sine wave, and can assume an infinite variety waveforms. Ac waveforms are known as analog signals because they vary in a continuous manner.

Ac waveforms can be added together to form a more complex waveform. This is illustrated in Figure 122. Two waveforms added, point by point at each instant of time, will form a resultant waveform. When two waveforms at a given instant have the same direction of flow or polarity, the resulting waveform is the sum of the two. When they have opposite polarities, the resulting waveform is the difference; if one polarity component is larger, the resultant is the same polarity as that larger component.
Figure 121. Alternating Current
Addition of Waveforms

Figure 122. Addition of Waveforms
The mixing waveforms are used extensively in radio circuitry and enables the transmission of information. [Ref. 16:ch. 1, pp. 2-5]

b. Phase

The term phase essentially means time or the interval between the instant when one event occurs and the instant when a second related event takes place. In ac circuits the current and voltage amplitude (instantaneous values) change continuously, so the concept of phase or time is important. Like the mixing of waveforms, phase changes or shifts can be used to convey information.

Since each ac cycle occupies exactly the same amount of time as every other cycle of the same frequency, the cycle itself can be used as the time unit. Using the cycle as the time unit makes the specification of phase independent of the frequency of the current, as long as the frequency does not change.

The interval or phase difference under consideration usually will be less than one cycle. As shown in Figure 123, phase measurements are made in degrees, where one cycle is divided into 360 parts. The phase difference between two currents of the same frequency is the angular difference between corresponding parts of cycles. This is illustrated in Figure 124. [Ref. 16:ch. 2, p. 6]
Phase Measurements

Figure 123. Phase Measurements
Phase Differences

Figure 124. Phase Differences
4. Digital

Unlike analog signals, where the ac waveforms vary in a continuous manner, digital waveforms can have only a finite number of states. In binary digital systems, there are only two distinct states, represented in base-2 arithmetic by the numbers zero and one. These binary digits are known as bits. The binary states described as zero and one may represent on and off or, in a communications transmission, a mark and a space. This is shown in Figure 125. Bits are usually conveyed by dc voltage levels. Because it is not always possible to achieve exact voltages, digital circuits consider the signal to be a zero or a one if the voltage comes within certain bounds, as illustrated in Figure 126. [Ref. 16:ch. 8, p. 1]

Multiple sequences of bits must be grouped together to provide more than two values. Commonly, eight bits are grouped together to form a byte. A byte can represent one of 256 values ($2^8$). Bytes can also be combined to represent a greater number of values. Byte sequences are used to convey information, such as numbers or letters, and instructions to digital circuits.

In digital circuits, a combination of binary inputs results in a specific binary output or combination of outputs. These circuits are used to implement digital devices ranging from simple switches to supercomputers. [Ref. 16:ch. 8, p. 1]
Figure 125. Binary States
Binary State Voltage Levels

Figure 126. Binary State Voltage Levels
5. Building Blocks of Radio Communications Systems

a. Amplifiers

An amplifier is an electronic circuit that increases the power of an input analog or digital waveform. Amplifiers are designed to reproduce the input waveform with very low distortion. Amplifiers rely on various devices such as transistors, tubes, and integrated circuits to perform their power-increase function. There are many different types of amplifiers and their use depends primarily on application and frequency range. Audio frequency (AF) amplifiers are designed to operate in the frequency range of 20 to 20,000 Hz, while radio frequency (RF) amplifiers function in the frequencies above 20,000 Hz. RF power amplifiers are used to boost the output power of a transmitter before the signal is sent to the antenna.

b. Oscillators

An oscillator is a special type of low-power amplifier that generates alternating current at a specific frequency or over a range of frequencies. The tube, transistor, or integrated circuit in the oscillator amplifies the ac signal applied to its input just as any amplifier does. The basic difference between an amplifier and an oscillator is that an oscillator feeds a portion of its output through a tuned circuit back into the input. A tuned circuit allows only a narrow range of frequencies to pass through, and blocks all other frequencies. Changing the values of the tuned
circuit controls the oscillator frequency. This process is called positive feedback or regeneration.

The input to the oscillator amplifier can come from several types of circuitry.

1. **Crystal Oscillators.** One method is to apply a current across a specially-ground quartz crystal to generate an oscillation which is then fed into the amplifying stage of the oscillator. This type of oscillator functions on only one frequency. Each additional frequency requires an additional crystal. A crystal oscillator circuit may be modified to operate over a very limited frequency range with addition of extra components. This type of oscillator is called a variable frequency crystal oscillator (VXO). The primary advantage of crystal oscillators is their simplicity and frequency stability. Common devices which use crystal-controlled oscillators include automatic garage door openers, transmitters and inexpensive citizens-band (CB) walkie-talkies. [Ref. 16:ch. 10, pp. 1-4]

2. **Variable Frequency Oscillators.** A variable frequency oscillator (VFO) is tunable over a wider range of frequencies than the VXO. Here, the input oscillation comes from a capacitor and inductor circuit instead of a quartz crystal. The capacitor and inductor function together, or resonate, to allow only a very narrow range of frequencies to pass through them and into the amplifier. The oscillator output frequency is changed by varying either the value of the...
capacitor or the inductor. The advantage of this oscillator is that it is capable of covering a range of frequencies which would otherwise require many separate crystal oscillators. The major drawback of a VFO is its lack of frequency stability and accuracy. [Ref. 16:ch. 10, pp. 4-8]

VFOs are used in low-cost transistor radios. Rotating the tuning knob changes the value of the capacitor in the tuning circuit. This changes the frequencies allowed to pass further on into the radio circuitry.

c. Frequency Synthesizers

Like oscillators, frequency synthesizers are circuits which are designed to produce RF output at a desired frequency. In a synthesizer the output signal is a function of the input. This input may come from electrical logic signals or mechanical switches. Synthesizers tend to be much more complicated than oscillators.

The range of frequencies from synthesizers varies according to application. The smallest frequency change that can be accommodated is called the resolution. Usually the resolution is in steps of a power of ten. The major attribute of synthesizers is frequency accuracy and stability. Synthesizers are in some manner locked on to the frequency of a crystal oscillator. The synthesizer's frequency stability is determined by the stability of the crystal oscillator. [Ref. 16:ch. 10, pp. 8-9]
(1) Direct Frequency Synthesis. Direct synthesis is accomplished by mixing the output of one or more oscillators to produce a new frequency. The number of frequencies, or channels, that are available is dependent on the type of oscillator circuitry and number of crystals used. A drawback of direct synthesis is that the synthesizer frequency accuracy and stability are a function of the accuracy of each crystal. Also, the cost and physical space required by multiple crystals and the related circuitry can be relatively expensive. The older 23-channel citizens-band radios used direct frequency synthesis. [Ref. 16:ch. 10, pp. 9-10]

(2) Indirect Synthesis. Indirect synthesis uses a circuit called a phase-locked loop (PLL). The description "indirect" refers to the method of generating the output frequency by stabilizing a voltage-controlled oscillator (VCO). A VCO operates similarly to a variable frequency oscillator, except that a device called a varactor diode is used in place of the variable capacitor. The capacitance of a varactor diode is changed by varying the voltage applied to it.

Five elements make up the phase-lock loop: a VCO, a programmable divider, a phase detector, a loop filter, and a reference frequency source. This is shown in Figure 127.
Phase - Lock Loop

Figure 127. Phase-Lock Loop
A PLL synthesizer is "programmed" by an external source to generate a particular frequency. The desired frequency is input into the programmable divider. The PLL operates by taking the signal from the VCO, dividing this frequency by a number stored in the programmable digital divider, and comparing this frequency to a precise and stable reference frequency in a phase detector. The phase detector produces an electrical output that indicates a positive or negative phase difference between the VCO output and the reference oscillator. The phase detector output is fed back into the VCO through a filtering circuit which removes any extraneous signals that would adversely affect the operation of the VCO. The loop quickly adjusts the output of the phase detector to zero. When the output of the phase detector reaches zero the output of the programmable divider is equal to the reference frequency. The advantage of a PLL synthesizer is that it can be designed to cover a very wide range of frequencies with high resolution, and by using integrated circuits requires less components than direct synthesis. The advent of low-cost integrated circuits have made PLL synthesizers relatively inexpensive. PLL synthesizers are used extensively in consumer electronics to provide digital tuning of radios and television sets. [Ref. 16:ch. 10, pp. 11-13]
d. Frequency Multipliers

Oscillators and synthesizers may have good frequency stability when operated at lower frequencies, but at higher frequencies this is often not true. A frequency multiplier circuit solves this problem by multiplying the oscillator or synthesizer output frequency two, three, four or five times. The stability and frequency output is always an exact multiple of the oscillator or synthesizer. Frequency multiplier stages are commonly found in communications systems operating at HF and higher frequencies. [Ref. 16: ch. 11, pp. 4-5]

e. Mixers and Modulators

As mentioned above, analog waveforms can be combined together to form a resultant waveform. As illustrated in Figure 128, when two signals at different frequencies are combined in a mixing circuit, the resulting output will contain each of the original input frequencies and signals at their sum and difference frequencies. These four output signals are sent into a tuned circuit which allows only one signal to pass through. Various types of mixers are used, depending on the application. Mixers which are used to combine information to be transmitted along with the transmitter primary waveform, known as the carrier, are generally known as modulators. [Ref. 16: ch. 9, p. 1]
Figure 128. Frequency Mixing
f. Antennas

The antenna is a physical device used for transmitting and receiving electromagnetic radiation. Radio frequency current from a transmitter causes the electrons in the antenna to move rapidly back and forth. This generates electrical and magnetic fields which together form an electromagnetic wave that radiates from the antenna. When this electromagnetic wave sweeps across the receiving antenna it sets electrons into motion and causes weak electrical currents to flow. These currents have the same frequency and waveforms as the electromagnetic waves striking the antenna.

Although antennas are physical devices constructed primarily of metal, at radio frequencies they exhibit characteristics similar to a network of electronic components. Antennas are integral parts of the transmitter and receiver, and must be carefully designed to operate efficiently. In general, the higher the operating frequency, the more critical the design tolerances.

Omni-directional antennas send and receive with equal performance over a 360-degree range. Directional antennas exhibit gain, or the ability to concentrate their transmitted and received energy in a general direction, usually over an arc of 90 degrees or less. This has the effect of increasing the relative transmitter power and the received signal to background noise ratio.

511
g. Radio Wave Propagation

Figure 129 illustrates the ways in which radio waves travel.

(1) **Ground Waves.** Ground waves are the portion of radiated energy which follows the surface of the earth. Low-frequency (long wavelength) radio waves propagate by ground wave for hundreds or thousands of miles. As frequency increases, the ground wave will travel over shorter distances because its energy is more easily absorbed by the surface of the earth.

(2) **Direct Waves.** Direct waves travel the general line of sight between the transmitter and the receiver.

(3) **Sky Waves.** The atmosphere above 60 miles is quite thin, and radiated energy from the sun ionizes the widely-spaced air molecules. This region, known as the ionosphere, is capable of refracting, or bending, radio waves. This permits signals which are radiated towards space to be bent back towards the earth. The amount of refraction is dependent on many variables, such as solar activity (the solar flux), time of day, season of the year, and the frequency and angle of the transmission. These refracted signals are known as sky waves, and permit long-distance communication over thousands of miles.

Sky waves generally occur from 500 KHz to 30 MHz. Signals between 30 and 100 MHz are occasionally
Radio Wave Propagation

Figure 129. Radio Wave Propagation
refracted, but are considered unreliable for long-distance communication. Signals above 100 MHz are rarely refracted. [Ref. 16:ch. 22, pp. 1-8]

Figure 130 illustrates the daily and seasonal HF propagation over a Monterey, California to Washington, D.C. path. Figure 131 also illustrates how HF propagation varies over different paths at the same time.

(4) **General Frequency Usage.** Low frequencies are used primarily for their ability to propagate by ground wave over long distances. Various long-range radionavigation systems, such as the 100 KHz Loran-C system, make use of the low frequency band. Medium frequencies, such as the AM broadcast band, use ground wave to provide coverage up to several hundred miles. Frequencies from three to 30 MHz are used primarily for long distance communication via sky wave. Direct wave propagation is generally used above 30 MHz.

6. **Basics of Radio Communications**

A transmitter in its simplest form consists of an oscillator to generate an alternating current at the required transmission frequency, a modulator to superimpose the information to be conveyed on the oscillator output (known as a carrier), one or more amplifiers to boost the modulated

---

\(^1\)Generated using "BandAid" HF propagation prediction software.

\(^2\)Generated using "Muf Map" propagation prediction software.
HIGH FREQUENCY PROPAGATION OVER A 24 HOUR PERIOD

TARGET: WASHINGTON DC - WASHINGTON DC (USA)
BEARING: 70 degrees  DISTANCE: 2494 miles  DATE: 07/01
A-INDEX: 12  FLUX: 175
Ionospheric Conditions: High Normal

Figure 130. High Frequency Propagation Over a 24-Hour Period
WORLDWIDE HIGH FREQUENCY PROPAGATION
FROM MONTEREY, CA

Figure 131. Worldwide High Frequency Propagation from Monterey, CA.
signal to the desired power level, and an antenna to radiate the electromagnetic energy.

In a simplified receiver, the weak currents from the antenna are amplified and processed through a mixer and tuner. The desired frequency is selected and sent to a circuit known as a detector or demodulator. This circuit separates the modulated information from the carrier. The information output is further amplified before being sent to a speaker or other circuitry.

a. Commonly Used Types of Modulation

As mentioned above, modulation is the process of varying a characteristic of a carrier wave in accordance with the signal to be conveyed. Demodulation is the process of recovering the original modulation signal from a modulated carrier wave. In the simplest of transmitters, information is sent simply by turning the transmitter on and off in a coded sequence. Early radio transmitters used the Morse Code in this manner. These are known as continuous wave (CW) transmitters because the oscillator's alternating current waveform is not modified in any manner, just switched on and off.

Many other more efficient methods exist for conveying information via radio. Instead of turning the transmitter on and off, these techniques involve changing the transmitter's RF waveform in some manner. These methods are capable of carrying voice (analog) and digital information, although some are better suited for certain applications.
(1) **Double Sideband Amplitude Modulation (DSB AM).** As illustrated in Figure 132, in DSB AM the carrier is mixed directly with the information to be conveyed. This produces a composite signal consisting of: (1) the carrier, (2) a signal which has a frequency equal to the difference between the modulating signal and the carrier, called the Lower Sideband (LSB), and (3) a signal which has a frequency equal to the sum of the modulating signal and the carrier, called the Upper Sideband (USB). The amplitude of the upper and lower sidebands also varies, while carrier remains constant. Next to CW, this is the simplest type of transmitter. [Ref. 16:ch. 9, pp. 2-3]

DSB AM is also the easiest signal to demodulate. The received AM signal is passed through a detection circuit which uses the carrier and only one of the sidebands to recreate the original information. The demodulated intelligence is equal to the difference in frequency between the carrier and the sideband. The amplitude (loudness) of the intelligence is proportional to the amplitude of the sideband.

This type of modulation and detection is used in commercial AM radio. While DSB AM modulation and detection may be electronically easy, it does have several limitations. Two sidebands are created, yet only one is necessary to convey the intelligence. The six KHz to ten KHz-wide AM signal uses up twice as much spectrum as is required to convey the
Amplitude Modulation

(A) WAVESHAPE OF MODULATING SIGNAL

(B)

(C)

Figure 132. Amplitude Modulation
information. The carrier conveys no intelligence, but consumes about two-thirds of the transmitter's power. [Ref. 16:ch. 18, pp. 1-2]

(2) **Single Sideband (SSB).** SSB overcomes these difficulties by removing the carrier and one sideband prior to sending the signal to the RF power amplifier. This enables all the transmitter's power to be contained in the sideband, and cuts the required bandwidth in half. The signal is demodulated at the receiver by replacing the missing carrier at the proper frequency. Several different methods are used to generate and demodulate SSB transmissions. A single sideband signal occupies about three KHz of spectrum. [Ref. 16:ch. 9, pp. 5-6]

(3) **Frequency Modulation (FM).** With FM, the carrier amplitude remains constant, while the carrier frequency is shifted proportionally with the intelligence to be conveyed. The intelligence amplitude is represented by the amount the carrier deviates from its center frequency. In other words, a 1000 Hz tone causes the carrier to shift back and forth in frequency 1000 times per second, while the volume of the tone is represented by how far the carrier swings from its center frequency (Figure 133). A narrow-band FM signal occupies a bandwidth of 20 KHz. [Ref. 16:ch. 18, pp. 1-2]

(4) **Phase Modulation (PM).** In PM, the phase shift of the signal is proportional to both the amplitude and frequency of the signal. This differs from FM where the
Frequency Modulation

Figure 133. Frequency Modulation
frequency deviation is proportional to the amplitude of the modulating signal. [Ref. 16:ch 18, pp. 1-2]

(5) **Audio Frequency Shift Keying (AFSK).** AFSK can use any of the above modulation techniques to transmit digital information. A Modulator-Demodulator (MODEM) is used to convert digital signals to audio tones. These tones are usually several hundred Hz apart in frequency, with the "zero state" represented by one tone and the "one state" represented by another. These tones are superimposed on the carrier in the same manner as other analog signals. When these tones are received, they are sent to a MODEM where they are converted back to a binary output readable by digital circuitry. [Ref. 16:ch. 10, pp. 11-12]

(6) **Frequency-Shift Keying (FSK).** Digital signals can also be sent by shifting the carrier between two frequency states. One frequency represents a mark, or one, and the other frequency represents a space, or zero. In order to preserve bandwidth the frequency shift is usually one KHz or less. [Ref. 16:ch. 10, pp. 11-12]

(7) **Phase-Shift Keying (PSK).** PSK conveys digital information by shifting the phase of the carrier relative to a reference phase. As shown in Figure 134, one shift of phase represents a positive state, the other shift represents an inverted state. This is termed binary phase-shift keying (BPSK) [Ref. 16:ch. 19, pp. 31-32]. PSK is not limited to just two phase shifts. PSK systems which use four
Phase - Shift Keying

Figure 134. Phase-Shift Keying
or eight phase shift states are capable of conveying more information at any given carrier frequency, and are more spectrum efficient. PSK is used for conveying information and in generating direct sequence spread-spectrum transmissions [Ref. 16: ch. 21, p. 9].

b. Advantages and Disadvantages of Modulation Methods

As mentioned above, DSB-AM is the simplest modulation method. However, DSB-AM uses twice the bandwidth required to convey the intelligence, and the majority of the transmitter output power is used to broadcast the carrier. SSB and FSK solve these problems with much more complicated circuitry. However, both DSB-AM, SSB, and FSK suffer from fading, static, and background noise when the received signal is of moderate or less strength. The primary advantages of FM, PM, and PSK are the ability to produce a higher demodulated signal-to-noise ratio than other systems and their relative immunity from RF background noises which vary in amplitude, such as static. Their main disadvantage is that a much higher bandwidth is required to convey the intelligence. The limitation faced by all of these modulation schemes is only one signal at any time can occupy the same frequency without causing interference.

C. SPECIALIZED MODULATION TECHNIQUES

Several types of modulation have been developed to partially overcome the above limitations. Spread-spectrum or
code division multiple access (CDMA) disperses the transmitted signal over a wider frequency range than conventional modulation. This method of digital communications allows many users to simultaneously use the same frequencies. Amplitude-compandored single-sideband (ACSSB) allows the transmission of more analog voice signals in a given frequency spectrum than FM and is more immune to fading than SSB. Low data rate digital voice has the advantage of occupying a narrow bandwidth, requires less power than ACSSB, is more immune to radio frequency noise, and can be processed and filtered by digital circuitry. These advanced modulation techniques are required to support the numbers of users sharing the limited frequency ranges assigned to RDSS and MSS. CDMA, ACSSB and digital voice require much more complicated electronic circuitry than in conventional modulation systems.

1. **Code Division Multiple Access**
   a. Characteristics

   Geostar, OmniTRACS, Global Positioning System (GPS), and the Soviet Glonass system depend on spread-spectrum transmissions. The type of spread-spectrum signal used in these systems is termed code division multiple access (CDMA). Code division refers to the method of modulating each carrier frequency with a different binary spreading code. Multiple access implies that more than one transmitter-receiver pair is able to simultaneously use the frequency. CDMA has several
distinct advantages over the conventional narrow-band modulation techniques discussed above.

(1) **No Requirement for Transmission Timing.** A properly designed spread-spectrum system can allow random transmissions. This enables ground stations to transmit data randomly or on a scheduled basis with little chance of "colliding" with another signal and preventing communications. In the event that two stations transmit at exactly the same time and the message is not received, system logic can cause one or both stations to retransmit at a later time to be sure the message was received properly. [Ref. 16:ch. 21, pp. 7-8]

(2) **No Frequency Separation is Required.** As illustrated in Figure 135, spread-spectrum signals have a much greater bandwidth than conventional transmissions. The signals are spread by modulating them with special binary sequences. This dilutes the signal energy so that while occupying a very large bandwidth, the amount of power density present at any frequency within the spread signal is very low. The amount of signal dilution depends on transmitter power, distance from the transmitter, and the bandwidth of the spread signal. This spreading allows signals from many different transmitters to be simultaneously present over the assigned range of frequencies. The low power density enables the signals to be below the noise floor of a conventional narrow-band receiver, and thus invisible to it. This can permit spread-spectrum signals to share frequencies with conventional
A graphic representation of the distribution of power as the signal bandwidth increases. The unspread signal (A) contains most of its energy around a center frequency. As the bandwidth increases (B), the power about the center frequency falls. At C and D, more energy is being distributed in the spread signals's wider bandwidth. At E, the energy is diluted as the spreading achieves a very wide bandwidth. Bandwidth is roughly twice the bit speed of the PN code generator. [Ref. 16:ch 21, p. 9]
transmissions without causing or experiencing interference. [Ref. 16:ch. 21, pp. 8-9]

3 Ability to Reject Undesired Signals. The intended receiver uses the same copy of the transmitter's binary spreading sequence to despread the received signals and receive the transmitted data. Conventional transmissions and spread-spectrum signals which do not use the specific despreading code are suppressed in the signal processing. This enables spread-spectrum receivers to reject undesired spread-spectrum signals and conventional signals which are much stronger than the spread-spectrum power density. [Ref. 16:ch 21, pp. 8-9]

4 Number of Users. Since CDMA is purposely designed to operate with interference from other signals, the total communications capacity can be quite large. CDMA system performance is statistically governed by the number and signal strength of users simultaneously transmitting over the same bandwidth. CDMA system design and service quality is based on the expected average amount of use. Greater than expected use causes a reduction in the digital signal to background noise ratio. This produces an increase in the reception (bit) error rate experienced by all users and a gradual decline in service quality as the number of users increases. This contrasts with other types of modulations (such as FM, ACSSB etc.) and multiple access formats (FDMA and TDMA) where performance is governed by the amount of interference experienced on the same
frequency or time interval. These systems degrade quickly and must be designed with a worst case scenario in mind. With properly chosen parameters, CDMA characteristics can allow many transmitters, ranging from thousands to millions, to efficiently share an allocated frequency spectrum. [Ref. 8:pp. 121-123]

(5) Range Determination. The structure of spread-spectrum signals also permits highly accurate timing and ranging measurements. Geostar and GPS use their binary signal-spreading sequence for range timing and position determination. [Ref. 8:p. 36]

b. Pseudorandom Noise Code

The binary sequence used to spread out the transmitted signal and despread the received signal is called a pseudo-random noise (PRN) code. The PRN code is created in a spreading-sequence generator. These are digital circuits located in the transmitter and receiver which are designed to produce a high-speed binary code output. This binary sequence is carefully designed to appear to be random and have approximately an equal mix of "zero" and "one" bits. A PRN bit is called a chip. PRN chip sequences are generated at a much higher rate, typically 100 or more times faster than the data bits which are being transmitted. [Ref. 8:pp. 36-38]

PRN codes are carefully chosen for certain properties which determine how well the spread-spectrum system will perform. One of the important considerations in
determining and designing a spreading-sequence generator is the amount of statistical similarity a PRN sequence has with conventional signals and with sequences used by other spread-spectrum systems. The greater the degree of similarity, the less the spread-spectrum receiver will be able to reject interference. This is because a statistical process known as correlation is physically realized in the receiver electronics to identify and detect signals with the desired PRN code. Signals spread with other PRN codes, time-shifted signals using the same PRN code, or signals which are not spread will differ statistically from the desired signal and produce a lower output from the correlator circuitry. A signal using the correct PRN code will produce a larger output from the correlator and will accurately convey the transmitted data. [Ref. 16:ch. 21, pp. 9-10]

Many different types of PRN codes can be used in spread-spectrum systems. PRN code selection and generation is beyond the scope of this presentation.

c. Generic Theory of Operation

A simplified block diagram of a direct sequence spread-spectrum transmitter and receiver is shown in Figure 136. Block diagrams and circuitry for actual systems are far more complicated than shown in this conceptual illustration.

(1) **Transmitter Operation.** Synchronization is the most important item in spread-spectrum system. Unless both the transmitter and receiver are synchronized, the PRN
Direct Sequence Spread Spectrum Transmitter and Receiver

The block diagram of a direct sequence transmitter is shown at A. The digital modulation source is mixed with a combination of the PN sequence mixed with the carrier oscillator. The PN sequence is clocked at a much faster rate than the digital modulation; a very fast composite signal emerges as a result of the mixing. The preamble is selected at the start of the transmission. Part B shows a direct sequence receiver. The wideband signal is translated down to a baseband (common) frequency. The signal is then routed to a correlator, mixing a baseband oscillator with the PN source and then mixing the result against the incoming baseband RF. The synchronization process keeps the PN sequence in step by varying the clock for optimal lock. After mixing, the information is contained as a digital output signal and all interference is spread to noise. The low-pass filter removes some of this noise. Notice that the transmitter and receiver employ very similar designs, one to perform spreading, the other to despread. (Ref. 16: ch 21, p. 10)

Figure 136. Direct Sequence Spread-Spectrum Transmitter and Receiver
codes will not correlate and demodulation of the signal cannot take place. Synchronization is accomplished through a preamble signal that is sent by the spread-spectrum transmitter immediately before the transmitter enters the spread-spectrum mode. The preamble signal contains special binary sequences which enable the receiver to acquire and lock on the spread-spectrum signal.

The preamble performs three functions. First, the radio frequency carrier must be acquired by the receiver. Second, the receiver's local clock synchronization is established, and third, the spreading code must be synchronized. [Ref. 16:ch. 16, p. 12]

Once the preamble is sent, the transmitter enters the spread-spectrum mode. The pseudo-random noise generator is started and its output is mixed with the digital-modulation source. This mixing process is called bit inversion and is illustrated in Figure 137. An information bit of "one" causes all the PRN chips to be inverted, while an information bit of "zero" will leave the PRN code unchanged. The combined bit stream is routed to the balanced mixer circuit to modulate the carrier. The balanced mixer shifts the carrier phase between 0 and 180 degrees, depending if the PRN chip is a "zero" or "one." This is called Binary Phase Shift Keying (BPSK). A property of BPSK is that signal phase changes will also cause the signal's frequency to change. The more phase changes per unit of time, the more the signal will
In bit-inversion modulation, a digital information stream is combined with a PN bit stream, which is clocked at many times the information rate. The combination is the exclusive-or sum of the two. Notice that an information bit of one inverts the PN bits in the combination, while an information bit of zero causes the PN bits to be transmitted without inversion. The combination bit stream has the speed characteristics of the original PN sequence, so it has a wider bandwidth than the information stream. [Ref. 16: ch. 21, p. 9]
spread in frequency. The resultant spread-spectrum waveform is then amplified to the desired power levels before being routed to the antenna. [Ref. 16:ch. 21, pp. 9-10]

In some systems a special sequence called epoch synchronization is used to maintain transmitter and receiver PRN-chip synchronization. Commonly, this is a short-bit sequence which is easily detected by a simple correlator called a digital matched filter. If the transmitter and receiver PRN code are out of synchronization, the epoch synchronization will bring the receiver's PRN code back in step with the transmitter's PRN sequence. [Ref. 16:ch. 21, p. 12]

(2) Receiver Operation. The received direct sequence spread-spectrum signal contains two types of modulation; one conveys information and the other contains the spreading sequence. To recover the information the spreading sequence must first be removed. This process is termed despreading.

After the spread-spectrum signal is received by the antenna it is routed through a broad-band radio frequency amplifier to boost the signal's power. The signal is mixed with the output of an oscillator and transformed to a lower baseband frequency. The signal is then routed into the correlator.

When the preamble is received, it starts the local receiver clock and synchronizes the receiver PRN
generator. A replica of the transmitter's PRN code is generated and routed to a second mixer where it is combined with an oscillator output that is the same as the receiver's baseband frequency. PRN synchronization is maintained by a delay-locked loop which corrects any timing offsets in the local code generator. This circuit is necessary because a one chip-synchronization error will prevent the receiver from recovering the message intelligence.

The received and locally-generated signals are combined in a third mixer. The bit-inversion modulation is detected at this point. When the intelligence was transmitted, a "one" data bit caused the PN code to be inverted, and a "zero" data bit left the PN code unchanged. When the received and locally-generated PRN sequences are combined, the received "zero" data bit contains uninverted PRN code chips that match up, or correlate, with the PRN code generated by the receiver. However, the received "one" bit will not correlate since its PRN code chips are inverted. Since these chips are "opposite" of each other, the correlator circuit will produce no output for a "one" data bit.

Unless the spread-spectrum transmission is very strong, it is likely that undesired signals or background noise received within the passband will be present and corrupt some of the desired signal. These interfering signals will not correlate with the locally-generated PRN code and will fall in and out of match on a random chip-by-chip basis.
However, since a data bit is typically composed of 100 or more chips, corrupting some of the chips in each bit will not destroy the intelligence. For example, in a 100-chip bit, a randomly distributed corruption of 25 chips still results in 75% of the chips being correctly received. If a perfect match of PRN codes in each data bit equals a value of one, than the correlation would be 0.75. So, for a "zero" data bit where the PRN codes were not inverted, the average output level over the time it took to transmit all 100 chips would be equal to 0.75. Conversely, for a "one" data bit where the PRN codes were inverted, the average output level would be 0.25. As illustrated in Figure 138, a perfect correlation results in two values, zero and one. With 75% correlation, the two values represented would be 0.25 and 0.75. Even though perfect correlation was not obtained, there is enough difference between these values to discern the difference in binary state and reconstruct the original transmission. This difference is reflected in changing voltage level output from an averaging circuit. This demodulated digital signal is then sent farther into the equipment where it is processed. [Ref. 16:ch. 21, pp. 10-12]

The averaging process over time is the key to interference rejection. Background noise and interfering signals do not destroy the intelligence, they just reduce the statistical correlation. Much lower correlations than in the
Averaging Circuit Output Levels

AVERAGE AMPLITUDE

TIME

75% CORRELATION
PERFECT CORRELATION

Figure 138. Averaging Circuit Output Levels
example can be used with properly chosen parameters and error-checking routines. This allows processing gain, or the ability to use lower transmitter power and receiver gain than would be required in conventional communication systems. Processing gain allows spread-spectrum satellite systems to use lower power transmitters on vehicles and in orbit. It is a factor which enables antennas to be smaller and have lower gain than would be required with other types of modulation. [Ref. 8:pp. 35-36]

d. Frequency Hopping and Hybrid Systems

PRN and other types of codes can be used in a different manner to control the specific frequency of a carrier, independent of the type of modulation used. The transmitter's frequency synthesizer output is controlled by the code sequence, and is termed frequency hopping. Unless the receiver uses a copy of the hopping code to control its frequency synthesizer, it will not be able to lock on and track the received signal [Ref. 16:ch. 21, pp. 8-9]. Frequency hopping is illustrated in Figure 139. Qualcomm uses a hybrid CDMA and frequency-hopping system to control the frequency distribution and power density of all transmitting OmniTRACS terminals [Ref. 94:p. 204].

e. Range Determination

Ranging provides a measurement of range (distance) between two points. Measurement of distance is accomplished by transmitting a signal from one point to the other and back,
Figure 139. Frequency Hopping
and measuring the round trip transit time. Assuming no other propagation delays, range is equal to one-half the signal transit time multiplied by the speed of light (300,000 Km/sec or 186,000 Mi/sec). Accuracy of the range measurement is dependent upon clock timing accuracy. Radar is based on this principle.

PRN codes can also be used to measure range. The correlation between the transmitted and received signals is monitored, and the number of code chip shifts needed to align the two signals is counted. Since the chips have a known time duration, the total number of chips is equal to the time delay. The smaller the chip's time duration, the higher the range resolution. To obtain accuracies higher than one chip resolution, it is necessary to phase-lock onto the incoming signal and measure fractions of a chip shift. As in radar, assuming there are no other propagation delay, range is equal to one-half the time delay (number of chips multiplied by the chip duration) multiplied by the speed of light. [Ref. 8:p. 41-42]

2. Amplitude Comandored Single Sideband
   a. Pilot Tone

SSB uses about one-fifth the spectrum required by narrow-band FM. This is an obvious advantage when attempting to maximize the limited spectrum which has been assigned to mobile satellites. Using SSB at the higher frequencies presents problems because it is difficult to be sure the
original carrier at the transmitter and the carrier which is reinserted by the receiver are at precisely the same frequency. This error causes an unpleasant change in the pitch of the received audio, and can make the signal unintelligible. An operator can compensate for the error by adjusting a receiver-tuning circuit to bring the carrier frequencies into alignment. In mobile operations this has proven to be an aggravation and is difficult for untrained operators.

ACSSB avoids this problem by transmitting one sideband and a special pilot tone as shown in Figure 140. The pilot tone is sufficiently separated in frequency from the sideband that the two signals do not interfere with each other. The tone is transmitted at a power level below the maximum sideband amplitude. The transmitter operates at about 10% power when there is no analog signal.

In the receiver, the pilot tone is compared with a reference oscillator in a phase-lock-loop (PLL) circuit. The difference voltage produced by the PLL is used to shift the receiver tuning until the frequency error is eliminated.

The pilot tone serves other functions as well. It is used to control squelch and automatic gain control (AGC) circuits, and can be modulated to convey data. [Ref. 16:ch. 18, p. 17]
Amplitude Compandored Single Sideband

Figure 140. Amplitude Compandored Single Sideband
b. Compandor

The term "compandor" is short for "compressor" and "expander." In ACSSB, the analog voice is compressed for transmission and expanded in the receiver. Compandoring allows a higher signal-to-noise ratio and voice quality at a much lower transmitter power than with SSB. This is important because of the limited antenna gain and transmitter power available in mobile and satellite systems.

(1) **Compression.** It is difficult to maintain a constant voice intensity when speaking into a microphone. This can cause large fluctuations in the transmitter's peak-to-average-power ratio and make reception more difficult. As illustrated in Figure 141, compression reduces the peak-to-average ratio, and raises the average power level of a SSB signal. Compression can be accomplished in several ways, but unfortunately all have a shortcoming. By compressing the amplitude peaks, the background noise picked up by the microphone increases compared to the peak audio signal. The transmitted waveform also picks up noises from the radio channel and the added compression circuitry. These higher intensity background noises can make listening more difficult. This is particularly true in transmissions from vehicles where there is a lot of ambient background noise.

(2) **Expansion.** Passing the received signal through an expander reverses most of the bad effects of compression. This improves the signal-to-noise ratio and
Compandoring

(A)

(B)

(C)

Figure 141. Compandoring
makes listening easier by providing a cleaner signal over a wider dynamic range. The expander will continue to operate with weak ACSSB signals as long as they are above the background radio-noise level. This reduces the effect of signal fading. However, when the ACSSB signal falls into the background radio noise the expander will lose its reference signal and will not work properly. [Ref. 16:ch. 7, pp. 7-8]

3. Digital Voice

As its name implies, digital-voice modulation converts an analog-voice signal into a digital-data stream. The data are decoded by the receiver and converted back to an analog voice signal. Digital voice has several advantages over ACSSB. Digital speech is easily encrypted for security. Unlike ACSSB, where transmitter output power fluctuates with modulation amplitude, digital voice has a constant modulation envelope and power requirement. This makes the design of mobile and satellite RF power amplifiers less demanding. Digital signals, when used with error correction, allow lower power levels than ACSSB. In an all-digital network, the same modems can be used for speech, data, and system control. Future generations of satellites will require signals to be digital to allow onboard signal processing and routing. Digital-voice modulation can be divided into two broad categories.
a. Waveform Coding

This method represents an analog signal with a digital data stream which, when decoded, produces a replica as close as possible to the analog signal. This technique is illustrated in Figure 142, and is used in compact disk players and telephone systems to produce high quality music and natural sounding speech. The main disadvantage of waveform coding is the requirement for high data rates, which for voice communications range from 16 kilobits per second (kbps) to 64 kbps. Using the general rule that one bps requires one Hz of bandwidth, waveform coding uses between 16 and 64 Khz of RF spectrum. This far exceeds the maximum ACSSB bandwidth of five Khz, and drastically reduces the numbers of channels available in a satellite communication system. Attempting to conserve bandwidth by reducing the waveform coding to below 16 kbps results in unacceptable voice quality. This is because there is not enough data to accurately represent the analog waveform, and the large errors distort the decoded analog signal. [Ref. 16:n. 8, pp. 21-22]

b. Source Coding

To operate below 16 kbps requires mathematically modeling human voice-production. The goal with source coding is to reproduce the sound, not the waveform. Most source code systems model speech as the output of a vocal tract, with the goal of preserving the significant properties of the waveform
Waveform Coding

Figure 142. Waveform Coding
for synthesizing a signal at the receiver which sounds very much like the original. [Ref. 98]

The core of most voice coders (vocoders) is the analysis-synthesis model. Figure 143 is an example of one type of vocoder. The speech is sampled over very brief intervals and routed to a speech analyzer. Parameters such as pitch, volume, short-term and random waveform variations are quantized and encoded. In the receiver, these parameters are inserted into the model to produce the synthetic speech. [Ref. 99:insert E]

Early low data-rate vocoders sounded mechanical. The challenge for mobile-satellite voice communications is to develop 4800 bps systems which sound similar to a long-distance telephone call, provide good performance with mobile background noise, are signal-fade resistant, are inexpensive and available in a small electronics package. Several promising 4.8 kpbs source coding models which meet these criteria are being evaluated under the NASA Mobile Satellite Experiment (MSAT-X) program for use in the mobile satellite systems. [Ref. 100]

D. ADVANTAGES OF DIGITAL COMMUNICATION

Digital communication systems use binary numbers to convey information. The ability to process and store digital information has many advantages over conventional analog communication systems. Some of these are discussed below.
Figure 143. Source Coding
1. **Error Detection and Correction**

There is no such thing as an error-free communications channel, although many approach the level of perfection. In conventional systems, an erroneous-information segment is a piece of information lost. Lost information can be reduced or completely eliminated by using digital processing and communication protocols.

Most background noise is analog and randomly distributed. Special digital filters and processing circuits are able to remove random noise as long as it does not exceed certain values. Breaking digital data and text streams up into blocks allows the use of error detection. The data are processed prior to transmission and a unique error-checking code is added. After the receiver demodulates the signal the data are again processed. The transmitted code is checked against the code calculated by the receiver. If the two codes do not agree, the receiver assumes the data block is incorrect and a retransmission is requested. Two types of error-checking codes are the cyclic-redundancy check (CRC) and the frame-check sequence (FCS). [Ref. 101]

Forward-error correction (FEC) allows the receiver to reconstruct missing or incorrectly received data and text as long as certain levels are not exceeded. The data stream is routed through a FEC encoder prior to transmission. Additional code symbols may be added, and the data structure is changed. Upon reception, the FEC data are processed
through a decoder and reconstructed. Error-checking codes can also be incorporated to request retransmission in the event that FEC was not successful. Viterbi encoders are widely used in satellite and data communications systems. FEC is quite complicated and a further discussion is beyond the scope of this thesis. [Ref. 16:ch. 21, p. 6]

2. Packet Communications

Unlike analog modulation which requires a dedicated and continuous communications circuit between the transmitter and receiver, a digital data and text stream can be subdivided and transmitted in segments called packets. At a minimum, each packet will contain the identification of the sender and receiver, the packet-sequence number, the information to be conveyed, and control and error-checking information. Some packet systems also incorporate FEC. These packets are individually transmitted and routed according to their destination address by packet-network controllers. Equipment along the communication path and at the destination uses the error-checking code to determine if the packet was correctly received. Correctly received packets are acknowledged, while an incorrectly received packet generates a request for retransmission. This ensures that data are received without error. The data are extracted at the destination from each packet and put back together to reform the original transmission.
The X.25 packet-communication protocol is used by many nationwide-packet networks and much of the communication industry. This standardized interface enables many different types of data and computing equipment to efficiently and inexpensively share common packet-communication systems. [Ref. 101]

3. Data Management and Communication Efficiencies

From a communications-throughput standpoint, text and data communications are more efficient in certain applications than analog or digital voice. This is because text and data can be electronically conveyed at a far higher rate than a person is capable of speaking. This reduces costs because less transmission time is required and more users can be accommodated by the communication system.

Sender entry of keyboard text and data also permits direct input to computerized systems and eliminates receiver transcription errors. The ability of computerized equipment to store, retrieve, manipulate, and display messages and data can be much more efficient than manual, hand-transcription systems.

E. SATELLITE COMMUNICATIONS

1. Satellite Orbits
   a. Geostationary

   A satellite launched into orbit with an inclination to the equator of zero degrees will always remain above
the equator. If this satellite has a circular orbit and travels from West to East, at a height of about 35,800 kilometers (22,250 miles) above the Earth, the satellite's angular velocity will equal the rotation of the Earth about its axis. Thus, this satellite will have an orbit with a period of 24 hours and, to an observer on the ground, appear to be hanging motionless in the sky. [Ref. 102:ch. 8, p. 15]

The geostationary orbit is ideal for a communications satellite. Ground-station antennas can remain pointed in the direction of the satellite without complicated tracking mechanisms. Since the relative position of the satellite does not change, doppler shifts (changes of frequency due to relative motion) do not occur. As illustrated in Figures 144 and 145, at geostationary altitude the satellite has almost complete coverage of one-third of the Earth. This allows the use of fewer communication satellites than would be required with other types of orbits.

The major disadvantage of geostationary orbits occurs at high latitudes, where the elevation angle of the satellites are low to the horizon and the signals can be blocked by buildings, foliage, and hilly terrain. Latitudes in Northern and Southern hemispheres greater than approximately 80 degrees are not covered at all. Also, the signal spreading loss over the 35,800 kilometer path requires higher

---

3Generated using "GrafTrac II" software.

553
EARTH COVERAGE FROM GEOSTATIONARY ORBIT

Figure 144. Earth Coverage from Geostationary Orbit
VIEW FROM GEOSTATIONARY ORBIT

35790 km over
0.4 n 92.6 w

18101 km across
SSI GrafTrak II

Figure 145. View from Geostationary Orbit
transmit power, more sensitive receivers, and higher gain
antenna systems than do lower orbiting satellites.

b. Non-geostationary Orbits

A satellite in any orbit which is not geostationary will always move relative to an earth station. As shown in Figures 146 and 147, a satellite in a low altitude orbit has visibility of a much smaller portion of the Earth. However, a low altitude satellite placed in a polar orbit can cover the entire Earth one or more times a day. Complete and continuous worldwide coverage can be obtained by placing a constellation of satellites in several orbital planes which are inclined to the equator.

To place a satellite into low orbit requires less energy than to boost a satellite to geostationary altitude. Besides polar coverage, low altitude orbits offer the advantages of reduced transmitter power, receiver sensitivity, and lower gain antennas. The doppler shift exhibited by low orbiting satellites can be used to determine location on the earth and satellite orbital data.

To overcome the problems of low geostationary satellite elevation angles at high latitudes, the Molniya orbit can also be used. As illustrated in Figure 148, this type of orbit is elliptical, inclined to the equator at approximately 63 degrees, and has a period of eight to 12 hours. The perigee (lowest point of the orbit) is in the Southern hemisphere. Apogee (highest point), where the
EARTH COVERAGE FROM LOW ALTITUDE ORBIT

Figure 146. Earth Coverage from Low Altitude Orbit
VIEW FROM LOW ALTITUDE ORBIT

844 km over
36.8 n 101.6 w

6229 km across
SSI GrafTrak II

Figure 147. View from Low Altitude Orbit
Molniya Orbit

Figure 148. Molniya Orbit
satellite moves slowly, always occurs over 63 degrees North latitude. At apogee, nearly one-half of the Earth, most in the Northern hemisphere, is in view. A series of three satellites in 12 hour Molniya orbits provides continuous coverage of most of the Northern hemisphere. [Ref. 103:ch. 8, pp. 16-17] Coverage of the Soviet Molniya 1-74 satellite at apogee is shown in Figure 149. This type of orbit has been suggested for MSS use in high latitudes where terrain and buildings could easily block out low-elevation geosynchronous MSS satellites.

2. Communication Satellite Configuration

A communications satellite usually acts as a "bent pipe" or a repeater, transforming the received signals to a different frequency for retransmission back to earth. This general arrangement is illustrated in Figure 150. Separate stations on the ground each transmit their individual signals to the satellite, which in turn simultaneously relay these signals to other ground stations. [Ref. 103:p. 21]

Communications satellites are designed to use different uplink and downlink frequencies. Uplink is the term for the segment of the communications path between the earth and the satellite. Conversely, downlink is the term for the portion of the communications between the satellite and the ground. The uplink and downlink paths are on different frequencies to permit simultaneous satellite relay of signals without interference.
VIEW FROM MOLNIYA ORBIT AT APOGEE

Figure 149. View from Molniya Orbit at Apogee
"Bent Pipe" Communication Satellite

Figure 150. "Bent-Pipe" Communication Satellite
Communication satellite transponders can relay many independent signals through frequency translation and amplification. Received uplink signals within the passband are routed through a low-noise preamplifier and are down converted to an intermediate frequency. The signals are filtered to limit the bandwidth of the relayed spectrum and amplified. Mixers then up convert the signals to the transmit frequency. The RF is then sent through power amplifiers and to the downlink antennas. [Ref. 67:p. 41]

Very substantial costs are involved in the construction, launch, and operation of a communications satellite. In order for satellite communication to be cost effective, the system must be able to handle enough traffic to generate sufficient revenue to cover capital costs, operating expenses, and provide a profit. This requires that systems be designed to maximize the number of users to keep individual costs affordable. Frequency spectrum, orbital positions, satellite antenna size and transponder power are limited, and they must be used as efficiently as possible.

a. Frequency Reuse

Figure 151 illustrates the use of dual polarization and spot beams to reuse the assigned spectrum. [Ref. 103:p. 127]

(1) Dual Polarization. Radio waves are composed of electrical and magnetic fields. Polarization refers to the orientation of these fields. When radio waves are
Frequency Reuse Methods

Figure 151. Frequency Reuse Methods
transmitted, they are polarized in a certain direction (e.g., horizontal and vertical). A receiving antenna which is oriented in the same polarization will receive a stronger signal than if it was oriented to the opposite polarization. With dual polarization, the same band of frequencies can be reused by transmitting two oppositely polarized beams. As long as the polarizations are maintained between points, and the antenna systems aligned with each polarization, the transmissions can be separated with no interference. Depolarization occurs when the atmosphere and water droplets cause a change in polarization. This can couple one channel into the other and produce interference. Atmospheric depolarization is negligible below 10 GHz, but can make use of polarization difficult between 10-30 GHz. [Ref. 103:pp. 122-126]

(2) **Spot Beams.** A global beam will send the same carrier and information to all points which are visible to the satellite. Spot beams can be used to send different information to different points while using the same carrier frequency. Spot beams also have the advantage of condensing energy which would have been distributed over the visible surface of the Earth into a smaller area. This effectively increases the received signal strength at both the earth station and the satellite receiver.

The main problem with multiple spot-beam frequency re-use is avoiding interference between adjacent
beams. This requires careful shaping of each spot-beam pattern to reduce beam spillover. Several methods are available to reduce interference. Different frequency bands can be used for adjacent beams. Frequency reuse is still accomplished since every third beam can have the same carrier frequency. Beam separation can also be accomplished by polarization. Different PRN codes can be used in adjacent spot beams to increase the capacity of spread-spectrum systems. Finally, spot beams can hop in a time sequence over the Earth's surface, staying on a location just long enough for burst transmissions to be sent and received. [Ref. 103:pp. 126-130]

Multiple beams can be produced in one of the three ways illustrated in Figure 152. The simplest uses separate antennas for each beam. Multiple beams can also be generated from a reflector fed by multiple feed elements. The feed elements reflect off a common parabolic dish, with each feed being focused in a separate direction. Each beam will have the same polarization as its feed. A third method is using a phased-array antenna. The direction and shape of a beam can be controlled by shifting the phase of the modulated carrier that is transmitted through multiple antenna elements. A different frequency band can be formed by separately phasing a different carrier frequency into another spot. Only a single antenna array is used, but the phase-shifting mechanism
Multiple Beam Generation

Multiple beam antennas. (a) Separate antennas. (b) Multiple feed, single reflector. (c) Array

Figure 152. Multiple Beam Generation
becomes complicated. The smaller the spot beam to be formed, the larger the antenna array.

A disadvantage of multiple beam antennas is the increase in complexity and weight of the satellite. Beam pointing also becomes more critical than with a global coverage antenna. A two-degree shift in pointing accuracy will move the spot beam pattern approximately 800 miles. The additional hardware and structure needed for spot beams can greatly add to the cost of the satellite. [Ref. 103:pp. 128-130]

b. Multiple Access

Communication satellites are designed to handle multiple simultaneous uplinks and downlinks. Since all uplink carriers must pass through the common satellite to complete their downlink transmissions, the general system operation is called multiple-access communications. All receivers observe the same satellite transmissions, and therefore the multiple-access system must allow separation of the downlink segments. Separation is achieved by requiring all uplink transmissions to conform to a specific format. Three basic forms of multiple-access formats are shown in Figure 153. Each of these can be used separately or in combination, and are not just limited to satellite systems. [Ref. 103:pp. 20-23]

(1) **Frequency Division Multiple Access (FDMA)**. FDMA is the simplest multiple-access format. Earth stations are assigned specific uplink and downlink frequencies within
## Basic Multiple Access Techniques

<table>
<thead>
<tr>
<th>Multiple-access</th>
<th>Designation</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency division</td>
<td>FDMA</td>
<td>Frequency separation</td>
</tr>
<tr>
<td></td>
<td></td>
<td><img src="image" alt="Frequency bands" /></td>
</tr>
<tr>
<td>Time division</td>
<td>TDMA</td>
<td>Time separation</td>
</tr>
<tr>
<td></td>
<td></td>
<td><img src="image" alt="Carrier time slots" /></td>
</tr>
<tr>
<td>Spread spectrum</td>
<td>SSMA</td>
<td>Coded carrier spectra</td>
</tr>
<tr>
<td></td>
<td></td>
<td><img src="image" alt="Frequency spectra" /></td>
</tr>
</tbody>
</table>

Figure 153. Basic Multiple-Access Techniques
the satellite transponder bandwidth. Separation of stations is achieved by frequency division. The entire uplink spectrum received by the satellite is frequency translated into the downlink. A receiving station receives the desired uplink transmitter by tuning to the proper channel in the downlink. Home TV satellite receivers are an example of FDMA.  [Ref. 103:pp. 192-193]

(2) **Demand-assignment Multiple Access (DAMA).** DAMA is similar to FDMA, but instead uplink frequencies are shared by many users. Individual frequencies are automatically assigned depending on user need and channel availability. DAMA systems can serve a greater number of users if each does not frequently access the satellite. DAMA systems are much more complex than FDMA systems because satellite and ground hardware are required to keep track of unused channels and assign frequencies to requesting stations. [Ref. 103:p. 193]

(3) **Time Division Multiple Access (TDMA).** With TDMA, all stations, whether transmitting or receiving, are part of a synchronized network. Uplink stations are separated in time rather than frequency, and a specific interval is assigned to each uplink station. TDMA uses very short digital bursts to accommodate many users. The decoding of each TDMA burst requires synchronization within each interval in addition to the network timing. TDMA is also more complicated than FDMA because of the requirement for system timing,
synchronization, and the assignment of unused time segments to requesting stations. [Ref. 103:pp. 229-233]

(a) Slotted ALOHA. This is a form of random access TDMA, where stations randomly transmit but only in synchronization with the system. Data collisions will only occur as certain times, and thus the channel's throughput is limited to about 36% of the channel's theoretical data capacity. Slotted ALOHA is more efficient than non-synchronized random-access systems, where capacity is limited to about 18% of the channel's theoretical capacity because collisions can occur at any time. [Ref. 52:pp. 528-539]

(4) Spread Spectrum Multiple Access (SSMA). As discussed above, SSMA carriers are separated by assigning specific PRN codes. Information is conveyed by mixing it with the specific PRN code and modulating the combined waveform onto the carrier. A station is able to use the entire satellite transponder bandwidth and transmit at any time. This allows the carriers to overlap. Carrier separation is achieved in the receiver by demodulating the proper PRN waveform. [Ref. 52:pp. 417-418]

c. Link Budgets

Geosynchronous satellite communication systems must be able to successfully send and receive signals over a 42,000 km (26,100 mile) slant-range path.

A link budget is used to calculate the system configuration and capacity. Elements of the link budget are
subject to physical laws, and they range from very large \((10^7)\) to very small \((10^{-23})\) values. Link budget elements are multiplicative, so they are converted to decibels (dB) by the formula \(10\log_{10}(X)\). This makes computation of link-budget performance easier by enabling elements to be added and subtracted from each other.

Given known physical and economic constraints, system design parameters can be computed and trade-offs analyzed. To determine if a given configuration will function, the positive and negative link budget data elements are added up. The sum must show a sufficient positive value or the system will not function as desired. Too low a margin shows one or more parameters will have to be varied. Too high a margin suggests the system may be inefficient because excess power or equipment capability is being used. [Ref. 52:pp. 365-368]

(1) **Spreading Loss.** A major portion of the link budget is the long-distance spreading loss. The wave front moving away from an antenna expands spherically. The surface area of a sphere is calculated as \(4\pi R^2\), where \(R\) is the radius. Because the transmitted power spreads out over larger areas as \(R\) increases, the density of the power per square area decreases as \(1/(4\pi R^2)\). This means that a one-watt signal, transmitted from a non-directional (isotropic) antenna, has a power density of \(0.0000000000000004511\) watts.
per square meter (-163.5 dBW) at 42,000 km (the edge of Earth coverage). This is a tremendous reduction in signal strength and a major hurdle to be overcome in satellite communication system design. [Ref. 52:p. 221]

(2) **Limited Satellite Downlink Power.** Satellite downlink power can be the weakest link in the communication chain. Unlike earth stations which generally do not have a problem obtaining electrical power, communication satellites must function from solar cells. Satellite electrical power generation is a function of solar cell efficiency, amount of sun light exposure, and total cell area. The number of cells is limited because of weight and design constraints. This places an upward bound on maximum satellite transponder power. [Ref. 52:pp. 602-630]

(3) **Other Elements.** Other link-budget elements also reduce the signal-to-noise ratio. High data rates require greater signal strengths. The atmosphere absorbs a certain amount of RF, depending on the frequency and the weather. Background cosmic radiation, thermal RF noise radiated by the earth, and noise inherent in the receiver circuitry also act to mask the received signals. [Ref. 52:pp. 354-368]

(4) **Overcoming Link Budget Deficits.** One obvious way to overcome these limitations is to increase the RF power of the transmitted signal. Using a gain antenna focuses the RF energy into a narrow beam, increasing the effective
radiated power. A large surface area, high-gain antenna will increase the strength of the received signals. Use of a low-noise amplifier (LNA) allows the detection of very weak signals that would be masked by the internal circuit noise of a conventional RF receiving amplifier.

(5) **Processing Gain.** The use of data coding methods can provide additional gain to improve the link budget.

Error rates for all types of transmissions are determined by the signal-to-noise ratio at the receiver. In conventional modulation systems, a bit in error is a piece of information lost. An analogy is trying to listen in a crowd where the person speaking is occasionally drowned out by background noise. Once the information is obscured, there is no way to exactly recover it without the speaker repeating himself.

Digital data transmissions provide a way to increase the apparent signal-to-noise ratio. Most background noise is analog and randomly distributed. Special digital filters and processing circuits are able to remove random noise, as long as it does not exceed certain levels. Forward-error correction (FEC) can also be encoded into the digital data stream. This allows the receiver to recover lost data bits from the correctly received information, again as long as the missing data does not exceed critical amounts [Ref. 52:p. 416]. In spread-spectrum systems, information bits are
composed of many chips. An error results in the loss of only a chip. Since a bit can be reconstructed despite the loss of many chips, spread-spectrum systems have the ability to operate with lower signal-to-noise ratios than other types of modulations [Ref. 52:p. 519]. Processing gain is taken into account by the link budget and can allow operation of a system in cases where conventional modulation and bandwidth are inadequate.

d. Trends of Satellite Design

The early communication satellites were very simple in design and construction. They were spin-stabilized and used low-gain antennas which radiated a low-power, 360 degree doughnut-shaped beam into space. Only 17% of this beam struck the earth. A "brute-force" ground segment approach was used to overcome these satellite transmit and receive losses. Massive $10 million, 30 meter, 63 dBi parabolic antennas (a gain factor of 2,000,000) were used. They were supplied by 3500 watt RF power amplifiers. [Ref. 104]

As launch vehicles became capable of lifting bigger and heavier payloads, successive generations of satellites were able to provide stronger down-link signals by using high gain directional antennas and much greater transponder power. Communications capacity increased through frequency reuse, utilization of higher frequency bands, and different modulation methods. Twenty-four years after the 1965 launch of Intelsat 1 (Early Bird), weighing only 85 lbs,

575
the link budget has been rearranged to allow the use of small earth antennas and power amplifiers of only a few watts.

Despite the high technology design and construction, communication satellites have essentially remained "dumb" signal repeaters. Future generations of satellites will be increasingly complex. Fixed and hopping spot beams will transmit and receive signals. Rather than simply transforming the uplink to a downlink, all received signals will be demodulated to baseband and routed through on board processors and digital switching circuitry. System logic will decide which spot beam will return the signal to earth. On board processing will allow the satellite to meet the needs of the user, rather than the user fitting in with the satellite. This will enable users with different equipment and capabilities to communicate directly via the "intelligent" satellite, which will automatically adapt to the signaling formats and rates of each user.

This concentration of complexity in the satellite will reduce the complexity and cost of the ground segment equipment. The expenses of the improved space segment, shared by many earth stations, will be more then offset by the reduced cost of the earth segment. [Ref. 105]
F. SATELLITE RANGING

1. Theory

As shown in Figure 154, the expanding signal transmitted from a satellite is spherical in shape. The distance and elapsed time between any point on the wave front and the antenna is the same. The signal first strikes the Earth at a point directly beneath the satellite. When viewed from the satellite, the signal forms an expanding circle as it passes over the earth. Geometrically, this expanding circle is formed by the intersection of two spheres. Assuming the atmosphere does not distort the transmitted signal, and that the earth is perfectly smooth and spherical, at any instant all points on this circle are the same distance from the satellite.

If a transponder receives this signal and instantaneously relays it back to the satellite, the round-trip distance will be equal to the speed of light multiplied by the elapsed time. One-way distance will be half this amount. While this gives the range between the satellite and transponder, there is no way to determine where on the range circle the transponder is located.

As shown in Figure 155, if two satellites are used, then two range circles will intersect the transponder. Geometrically, the transponder lies at the intersection of three spheres. Two spheres are centered at the satellite locations with radii equal to the measured ranges to the
transponder. The third sphere is centered about the Earth's center with a radius equal to the Earth's radius. Knowing the exact position of the satellites with reference to the center of the Earth enables calculating the longitude and latitude of the two possible transponder locations. While still ambiguous, this solution can be used if the general location of the transponder is known. For example, tracking a vehicle using two geostationary satellites would produce a North and South solution. If the vehicle was known to be in the Northern hemisphere, than the Southern position could be discarded. [Ref. 106]

As illustrated in Figure 156, the addition of a third satellite will result in a single point fix as long as one satellite is not in the same orbital plane as the other two. This implies that one or more satellites are in a non-geostationary orbit. Here, the single point fix is the intersection of three-satellite range spheres. Use of three or more satellites enables the direct calculation of longitude, latitude, and height above the center of the Earth without reference to an earth sphere. Altitude above the geoid or ellipsoid (models representing the surface of the Earth) can be determined by subtracting the distance between the center of the Earth and the geoid or ellipsoid from the transponder's calculated height above the center of the earth. [Ref. 106]
Satellite Ranging
Three Satellites

Figure 156. Satellite Ranging, Three Satellites
In reality, the satellite range spheres are not uniform. The earth's atmosphere slows down and bends the ranging signals. The amount of distortion is dependent upon several variables, such as the RF frequency and the angle at which the signal intersects the atmosphere. This distortion changes the signal travel time, and introduces range errors. Additional errors are introduced by the transponder reply delay and the difference between the calculated and actual satellite positions.

These errors can be reduced by mathematical modeling and the use of benchmarks. These are transponders dispersed over the area of coverage at precisely located sites. Their locations are computed from ranging data and compared with their known positions. Differences between the calculated and known locations are due to system errors and random variations. Mobile transponder position fixes are refined by applying the correction applicable to the nearest benchmark. [Ref. 8:pp. 36-58]

Position accuracy can be improved in a two-satellite ranging system by applying a correction to account for the irregularity of the earth's surface. This is because, as mentioned above, the position fix is calculated based on the intersection of the two-satellite ranging spheres and an earth sphere. An external altitude reference, such as a digital terrain map or an altimeter, provides a value to add to the geoid or ellipsoid to represent the true height above the
center of the earth. The effects of this correction are variable depending upon actual altitude and transponder location. [Ref. 8:pp. 43, 54]

Positioning accuracy is also a function of satellite geometry and range-timing precision. To improve position fix accuracy, orbits should be configured to create large crossing angles where the satellite range spheres intersect. Additional satellites can improve fix accuracy by providing additional range observations. Timing precision also determines fix resolution. An error of one millionth of a second can result in a ranging error of approximately 300 meters or 985 feet.

2. **Tone Ranging**

Tone ranging can be used on narrow-band satellite voice and data communication circuits. This enables satellite communication equipment to be used for ranging with a minimum of additional circuitry and costs. Experiments have shown accuracies of about 160 m (0.1 mile). [Ref. 8:p. 65]

Tone ranging is accomplished with analog or digital modulation.

a. **Analog**

With analog ranging, one or more sinusoidal audio tones are modulated onto a carrier. Assuming no other propagation or transponder time delays, the distance traveled by the carrier during each audio cycle will be equal to the speed of light divided by the audio frequency. The signal is
sent from the ground station network management facility (NMF) via satellite to a ground transceiver, where it is retransmitted up to the satellite and back down to the NMF. As illustrated in Figure 157, the phase of the return signal is compared with the phase of the transmitted signal, and the difference computed. While it is not possible to tell the whole number of audio cycles in the round-trip path, the phase difference corresponds to the fraction of a wavelength which remains.

To eliminate the cycle-count ambiguity, additional low frequency, ambiguity-removal signals are transmitted. By comparing the phase angles of all return audio frequencies, it is possible to determine the whole-number cycle count of the primary ranging frequency. This can also be accomplished by coding the ranging signals at periodic time intervals. The number of whole and fractional wavelengths is summed and divided by the speed of light to give total round-trip ranging time. [Ref. 8:p. 66]

Range resolution is dependent on phase measurement accuracy and the audio frequency of the primary ranging signal. Benchmark transponders can be used to provide corrections for satellite position deviation, effects of the atmosphere on propagation, and delay through system electronics (except the ground transceivers). Standard values for delays introduced by ground transceivers are determined through engineering and actual testing. [Ref. 107]
Tone Ranging

Figure 157. Tone Ranging
b. Digital

Digital tone ranging is similar to analog, except that a rectangular waveform is used. The advantage of this method is that less ambiguity-removal signals are required.

A small portion of the rectangular waveform is coded and synchronized with a low-frequency, ambiguity-removal signal. The carrier is phase modulated by the digital signal. Comparison of return-signal coding with the ambiguity-removal signal indicates the whole number of rectangular waveforms in the round-trip path. A comparison of the phase difference between the transmitted and received rectangular waveform reveals the fraction remaining. [Ref. 8:p. 67]

c. Multipath Effects

Analog and digital tone ranging are vulnerable to multipath effects. This occurs when part of the downlink signal is reflected by objects before reaching the transceiver. The transit time of the reflected signal is greater than that of the directly-received signal. This may cause range ambiguities by making it difficult to separate both signals.

Multipath tends to occur when satellite elevation angles are low. Multipath reception may be diminished by vehicle-antenna design and mounting location. Ambiguity effects can be reduced at the NMF by using electronic filtering to average the received waveforms. [Ref. 99:insert I]
3. **Spread-Spectrum Ranging**

   a. **Ranging**

   To compute the two-way distance, the NMF generates a PRN code signal which is relayed through the satellite to the ground segment. User transceivers synchronize and track this signal. Upon command the transceiver will send a different PRN-coded signal back through the satellite to the NMF. The NMF receiver acquires and demodulates the signal. Round-trip time delay is determined by comparing the phase of the receiver's PRN code generator to the phase of the transmitter's code generator that sent the command sequence.

   Range ambiguity is dependent on the PRN-code repetition period. Range resolution is a function of the chip rate and the receiver's ability to track and measure fractions of a chip. As in tone ranging, bench-mark transceivers enable differential corrections to be made to transit time measurements. Adjustments to round-trip time are made by subtracting the known period between the time of transceiver reception and transmission. [Ref. 103:pp. 450-454]

   b. **Multipath**

   Spread-spectrum signals delayed by one chip or more will not correlate and therefore have little effect on the correctly received signal. This enables spread spectrum to be relatively immune to multipath effects from objects away from the immediate area of the receiver. Multipath effects from signals reflecting off nearby objects, such as a metal
car body, can result in a series of overlapping PRN chips slightly off-set from each other. This smears the signal acquired by the receiver, and can make precise tracking difficult. Antenna design and positioning can reduce this problem.

4. **Pseudo-ranging**

In conventional two-way ranging, timing is controlled by only one clock. With one-way ranging, timing is controlled by a clock in the transmitter and the receiver. The transmitter clock generates the signal, and the receiver clock records when the signal arrives. The receiver "knows" when the signal was transmitted, and computes the propagation delay through subtraction.

As illustrated in Figure 158, one-way range in spread-spectrum systems is determined by the time shift required to line up a replica of the code generated in the receiver with the code generated by the transmitter. Assuming no other propagation delays, distance between the transmitter and receiver is equal to the elapsed time multiplied by the speed of light. Ideally, the time shift is the difference between the time of signal reception and the time of transmission. In reality, the two clocks will not be exactly synchronized, and a bias will be introduced into the time measurement. These biased time-delay measurements are termed pseudo-ranges. [Ref. 108:ch. 4, p. 12]
Pseudo-range Measurements

Figure 158. Pseudo-range Measurements
One-way satellite ranging systems use a transmitter on the ground and a satellite relay, or place the transmitter in orbit. In either case, ground stations measure the elapsed time and compute their pseudo-ranges from the transmitter. The STARFIX system generates spread-spectrum signals at its network management facility (NMF) and relays them to earth receivers via four geosynchronous C-band communication satellites [Ref. 109]. The U.S. Global Positioning System (GPS) and Soviet Glonass system generates spread-spectrum signals directly from orbiting satellites. In both cases, the ground user is able to compute his position through precision timing and knowledge of where each of the satellites are in orbit.

G. POSITION DETERMINATION SYSTEMS

Position determination systems which can be used to provide land-mobile location data for relay via satellite and HF communications systems are summarized in Table 32.

1. Doppler Positioning

The Doppler effect is familiar to anyone who has heard the changing pitch of a moving source of sound, such as a train whistle or police siren. The pitch is high as the sound source approaches, drops markedly as the source passes, and maintains a lower pitch as it recedes. This same phenomenon holds true for electromagnetic radiation. Frequency is shifted when the transmitted and the receiver are in relative
**TABLE 32**

**WIDE AREA POSITION DETERMINATION PERFORMANCE** [Ref. 110]

<table>
<thead>
<tr>
<th>Method</th>
<th>GPS (SPS-SA)</th>
<th>LORAN-C</th>
<th>TRANSIT</th>
<th>ARGOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satellite</td>
<td>Hyperbolic</td>
<td>Doppler</td>
<td>Doppler</td>
<td></td>
</tr>
<tr>
<td>Pseudo-range</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCURACY</td>
<td>100 m. horiz.</td>
<td>460 m</td>
<td>27-500 m</td>
<td>150 m</td>
</tr>
<tr>
<td>(predictable)</td>
<td>156 m. vert.</td>
<td></td>
<td>to 9 km</td>
<td></td>
</tr>
<tr>
<td>ACCURACY</td>
<td>100 m. horiz.</td>
<td>18-90 m</td>
<td>15-27 m</td>
<td>N/A</td>
</tr>
<tr>
<td>(repeatable)</td>
<td>450 m. vert.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCURACY</td>
<td>30 m. horiz.</td>
<td>18-90 m</td>
<td>11 m</td>
<td>N/A</td>
</tr>
<tr>
<td>(relative)</td>
<td>46 m. vert.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIX</td>
<td>3-D, time &amp; 2-D</td>
<td>2-D</td>
<td>2-D</td>
<td></td>
</tr>
<tr>
<td>velocity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIX RATE</td>
<td>10-20/minute</td>
<td>10-20/min</td>
<td>1/hr (+/-)</td>
<td>6-20/day</td>
</tr>
<tr>
<td>COVERAGE</td>
<td>Worldwide</td>
<td>Regional</td>
<td>Worldwide</td>
<td>Worldwide</td>
</tr>
<tr>
<td>AMBIGUITY</td>
<td>None</td>
<td>Possible</td>
<td>None</td>
<td>Poss.</td>
</tr>
<tr>
<td>AVAILABILITY</td>
<td>99+%</td>
<td>99+%</td>
<td>99%</td>
<td>99%</td>
</tr>
<tr>
<td>1990 USERS</td>
<td>Unk</td>
<td>450 K</td>
<td>95 K</td>
<td>Unk</td>
</tr>
<tr>
<td>(maritime)</td>
<td></td>
<td>(4 K max)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOD PHASE-OUT</td>
<td>N/A</td>
<td>1994</td>
<td>1996</td>
<td>N/A</td>
</tr>
<tr>
<td>DOT PLANS</td>
<td>Evaluate</td>
<td>2000</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>(Decision)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Repeatable accuracy is the measure of the ability to return to a previous location using the navigation system. Relative accuracy is the ability to determine a geographic position from a navigation system.

591
motion because the amount of wave crests received per unit of time is changed. More wave crests are received when the transmitter and receiver are moving towards each other, thus the received frequency is higher. Conversely, when the transmitter and receiver are moving apart the received frequency will be lower.

The shift of frequency is dependent upon the relative speed between the transmitter and the receiver, and the angle formed between the receiver and the transmitter's path of motion. At any point along this angle the instantaneous doppler shift will be the same, but because of greater angular velocity, the rate of frequency change will be higher the closer the transmitter and receiver are together. As shown in Figure 159, this forms a cone with a satellite at its apex and the orbital track as its axis. The instantaneous frequency shift is identical anywhere on the cone, but the rate of change depends on the distance between the satellite and the receiver. [Ref. 8:p. 60]

When a satellite's orbit and speed are precisely known, it is possible to determine the location of the satellite at any instant in time. This, combined with the frequency and rate of the satellite's doppler shift, enables computing the slant-range distance between the receiver and the satellite. Since the satellite's azimuth and elevation from the receiver are not known, three or more observations are required during the same satellite pass to accurately
Doppler Positioning

Figure 159. Doppler Positioning
determine the two possible position fixes. If the satellite is in a polar orbit, it is possible to resolve the ambiguity created by the symmetry of fixes on each side of the satellite track. This is possible because the earth's rotation also generates a doppler component that can be measured. [Ref. 113]

The transmitter carrier oscillator and the receiver local oscillator must be very accurate or errors will be introduced into the frequency-shift measurements. Motion on the ground can also affect the doppler measurement and accuracy. A ground speed of one meter per second (2.2 miles per hour) can lead to a location error of 200-300 meters (650 to 980 feet) when using a doppler satellite in a 850 Km (530 mile) orbit [Ref. 8:pp. 62-63]. Corrections can be made if speed and direction are known. The basic model used to determine position assumes all locations are at sea level. When on land, corrections for altitude above sea level must be applied to maintain position accuracy. Since doppler satellite coverage is not continuous, position fixes can only be made periodically. Estimated position between fixes can be determined by dead reckoning if speed and direction are known [Ref. 111].

a. Transit

The Transit Satellite system was designed by the U.S. Navy to enable position determination to within one-quarter mile. The first prototype Transit satellite was
launched in 1961. The classified system was declared operational in 1964. In 1967 the system was declassified and became available for general use. [Ref. 111]

In 1988 the system consisted of seven active satellites and four spares in circular polar orbit [Ref. 112]. As shown in Figure 160, the satellites have an altitude of approximately 1100 km (680 miles) and a period of 107 minutes. The transit satellites are controlled by the U.S. Naval Astronautics Group (NAG) at Point Magu, California. Four tracking stations in the U.S. serve as benchmarks for the system, gathering doppler data which are sent to Point Magu. The NAG computes each orbit from this data and extrapolates into the future. Twice each day these data are loaded into the satellite where they are stored for continuous broadcast. [Ref. 113]

Each satellite transmits on frequencies close to 150 MHz and 400 MHz. These two frequencies are used to enable the receiver to correct for atmospheric refraction effects and improve the position solution. Superimposed on both carriers is the satellite broadcast message which repeats itself every two minutes. From this message the satellite's instantaneous orbital position can be computed every two minutes or less, depending on the receiver sophistication.

The two received signals are compared with frequencies generated within the Transit receiver, and the doppler shift is computed over a time interval. The doppler
Transit

Figure 160. Transit
information is combined with orbit data and used to determine the slant range between the satellite and the receiver. At least three observations and slant ranges are determined to establish a position fix. To ensure an accurate fix, the receiver's velocity, heading, antenna height, and altitude above sea level must be input.

Since Transit satellites are in a low altitude orbit, they do not provide continuous coverage and position data. Dead-reckoning equipment is used to provide estimated positions when Transit satellites are not visible. [Ref. 113]

DoD intends to maintain the Transit system through 1996, when it will be phased out in favor of GPS. Popularity of the system and large-scale custom-integrated circuits enable lower accuracy single-channel Transit receivers to be sold at prices beginning at about $1000. [Ref. 112]

b. Argos

Argos was used in Geostar System 1.0. Argos operates similar to Transit, except that the position of ground transmitters is determined by the doppler shift received by the satellite. The Argos system is a cooperative effort between the National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), and the French space agency Centre National d'Etudes Spatiales (CNES). Argos receivers are located aboard NOAA/Tiros-N weather satellites which are in a 101-minute
circular polar orbit at an altitude of approximately 830 km (515 miles).

Argos ground transmitters periodically emit a 401.65 MHz formatted signal which carries sensor data. Message duration and transmission repetitions are randomly distributed within certain design parameters. The signal is received by a Tiros-N satellite and the doppler shift and sensor data are recorded for playback when in range of a tracking station. The downlinked Tiros-N satellite data is relayed to a NOAA processing center where the Argos data are separated and routed to CNES in Toulouse, France. CNES computes the position of the transmitter and decodes the sensor data. This information is subsequently passed to the user. [Ref. 8:pp. 59-65]

Depending on the frequency stability and ground speed of the transmitter, the Argos system is accurate to within several kilometers. Unlike Transit, Argos is unable to determine which side of the orbital track the transmitter is located on. This ambiguity can be resolved with multiple satellite observations, previous location information, or by using dead reckoning from the last known position. Up to 4000 transmitters can be handled by the Argos system, assuming they are randomly distributed over the Earth's surface. [Ref. 108:ch. 3, p. 7]
2. The Navstar Global Positioning System

a. Definition and History

The Navstar (NAVigation Satellite Time and Ranging) Global Positioning System (GPS) is a satellite-based positioning system now being implemented by the Department of Defense. Work on the system began in 1973 as a result of the merger of the U.S. Navy's TIMATION Program and the U.S. Air Force's 621 B Project. Both of these programs were established in the mid-1960's to develop a worldwide, all-weather, real-time, passive navigation system using measured ranges from satellites. [Ref. 108:ch. 3, p. 8]

Eleven Block I GPS satellites were launched between February 1978 and October 1985 for test and evaluation purposes. There were not enough of these satellites to provide continuous worldwide coverage. As of January 1989 only seven of the original 11 Block I satellites remained operational. [Ref. 114]

The Challenger disaster and lack of alternate launch vehicles set the GPS program back several years. New Delta II missiles were obtained from McDonell Douglas to augment the Space Shuttle. The current Block II schedule calls for the launching of six GPS satellites per year in 1989, 1990, and 1991, with the last three to be orbited in 1992. Initial operational capability (IOC) will be in late 1990 when 12 satellites will provide continuous two dimensional (longitude and latitude) coverage. Full
operational capability (FOC) providing three-dimensional coverage is scheduled for 1992'. The first Block II satellite was launched by a Delta II on 14 February 1989.

b. System Overview

(1) **Satellite segment.** When fully operational in early 1992, GPS will consist of a constellation of 24 operational satellites (21 plus three operating spares). As shown in Figure 161, these satellites will be in six orbital planes inclined 55 degrees to the equator and have approximately 12-hour, 20,230 km (12,570 mile) orbits. This configuration allows the simultaneous visibility of five to 11 satellites at any time almost anywhere in the world. [Ref. 114]

(2) **Control Segment.** The control segment includes a master control station (MCS) located at The Consolidated Space Operations Center in Colorado Springs and five other monitor stations spread around the world. The control segment monitors the health of the satellites, determines their orbits and the drift of the atomic clocks, and updates the broadcast navigation message transmitted by each satellite. [Ref. 108:ch. 4, p. 9]

(3) **User Segment.** The user segment consists of military and civilian users. User equipment is designed to receive and process the signals from satellites which are in view from the receiver's location. The receiver processor

---

'Telephone conversation between Ltc Overtuff, GPS project officer, U.S. Space Command, and the author, 6 February 1989.'
GPS Satellite Constellation

Figure 161. GPS Satellite Constellation
converts the received signals from three or more satellites into highly accurate time and position data. [Ref. 115]

c. Basics of GPS Position Determination

GPS uses one-way ranging for the determination of user position. Highly accurate receiver clocks are not needed because precise time is also derived from the solution. A minimum of three GPS satellites are required to determine longitude and latitude. Four or more satellites permit accurate altitude measurement. [Ref. 114]

(1) GPS Satellite Position. As in other satellite ranging and doppler systems, the orbital location of each visible GPS satellite must be known to enable solving for the variables of position and time. Each GPS satellite modulates a low data-rate (50 bits per second) navigation broadcast onto the 1575.42 MHz L1 and 1227.6 MHz L2 frequencies. This broadcast provides the receiver with ephemeris data to determine each of the satellite's positions, the time corrections to make to each satellite's clock, the operational status of each satellite, and other information. [Ref. 108: ch. 4, p. 10]

(2) One-way ranging. GPS one-way ranging is electronically much more complicated than the two-way satellite ranging discussed above, although much of the concept is the same. The major difference is signals are only transmitted one-way from the satellite to the ground receiver.
This requires extremely precise, synchronized time between all satellites and receivers. An error of one microsecond (millionth of a second) equates to a distance of 300 meters (985 feet).

Each GPS satellite is equipped with atomic clocks. Although extremely accurate, each atomic clock will drift very slightly and thus keep different time. Since it is not practical to physically synchronize all the atomic clocks, they can be mathematically synchronized by adding or subtracting the amount of drift. This is achieved by ground stations monitoring the differences in GPS clock-signal timing. Mathematical corrections are periodically uploaded by the Master Control Station into the GPS satellites for continuous rebroadcast in the navigation message. Users can then assume that all GPS ranges measured by their receiver are related to the same (fictitious) clocks aboard each of the satellites. [Ref. 108:ch. 4, p. 12]

The clocks aboard each satellite control the generation of two unique pseudo-random noise (PRN) spread-spectrum transmissions. The receiver knows the different PRN sequences of each satellite in the constellation. The receiver's clock synchronizes the generation of the local PRN sequence with the satellite's PRN sequence. When the signal is first received it will not correlate with the locally-generated PRN code because of the propagation delay. The local PRN code is shifted in intervals until correlation is
achieved. Tracking is maintained to a fraction of a chip. The time difference in shifted PRN chips multiplied by the velocity of light, and corrected for atmospheric effects, will equal the distance between the transmitter and receiver. This is known as the pseudo-range. [Ref 108:ch. 4, p. 14]

(3) Carrier Phase Ranging. Carrier phase measurement is a more precise method of determining range to the GPS satellite. Although it is not possible to directly measure the integer amount of frequency wavelengths between the satellite and the receiver, a phase measurement can determine what fraction of a wavelength remains. This information is combined with other distance calculations to increase the range accuracy. Carrier phase-ranging is only used in precision survey work and is not used in mobile applications. [Ref. 108:ch. 4, p. 15]

d. GPS Signal Characteristics

GPS signals are modulated by two PRN codes. The coarse acquisition (C/A) code and the precision (P) code are repeating PRN sequences unique to each satellite. Spread-spectrum modulation is used to prevent jamming and permit more accurate range measurements.

The C/A-code, transmitted only on the L1 frequency at a 1.023 MHz PRN chip rate, allows position determination with an accuracy of approximately 60 meters (200 feet) horizontally and 100 meters (330 feet) vertically. The P-code
is broadcast on the L₁ and L₂ frequencies at a chip rate of 10.23 MHz. This is the most precise service and is accurate to approximately 18 meters (60 feet) horizontally and 28 meters (92 feet) vertically.

The difference of code rates and frequencies is significant. The higher code rate of the Precision Positioning Service (PPS) provides ten times the range resolution of the C/A-code Standard Positioning Service (SPS). The use of both frequencies by PPS improves the ability to correct for atmospheric propagation effects and reduces positioning errors.

The C/A code is generated by unclassified circuits and equations. The equations and circuitry which generate the P-code are classified and permit only authorized users (generally U.S. and Allied forces) to obtain the most accurate GPS position information [Ref. 108:ch. 4, p. 10]. When GPS becomes operational, the SPS will be intentionally degraded (Selective Availability) to limit the horizontal accuracy to 100 meters (328 feet) and 156 meters (511 feet) vertically [Ref. 114].

e. General GPS Receiver Operation

When the receiver is turned on it first enters a self-test mode. The receiver then searches for and locks on to the C/A-code of one visible GPS satellite. The navigation broadcast data are collected, and the receiver's clock is
initially set from message-timing data. The signal travel time is estimated. The receiver continues its search until at least four satellites are found and their navigation data are collected. The first receiver position is then computed using initial time measurements from these satellites. The computed position will be off due to the clock setting inaccuracy. Using this first position, the receiver's clock timing will be adjusted and another round of timing measurements taken. The calculated positions and times will converge over several iterations to the correct value. From this point on the receiver will continue measuring pseudo-ranges and updating position and receiver timing. This subsequently enables the receiver to compute and display velocity and heading information. [Ref. 116]

f. Accuracy When Used for Land Vehicle Navigation

The U.S. Department of Transportation conducted GPS road and highway tests in Massachusetts. A drop in signal strength was noted when passing under overpasses, bridges, and in high foliage areas. However, the GPS receivers continued to track unless the vehicle stopped under structures. The only major problem was the blockage of GPS signals in downtown Boston. The GPS receivers were unable to maintain an accurate navigation position when driven through areas where the streets were flanked by high rise buildings greater than ten stories. Placing a receiver in an altitude hold configuration, which requires only three satellites for a
two-dimensional fix, improved the position accuracy on certain downtown runs.

A 30-minute interval GPS Block II visibility profile was developed for the Boston area. The analysis shows that continuous visibility of four satellites at this latitude (approximately 42.5 degrees North) requires an unobstructed horizon to the 20 degree level. Three or more satellites are continuously visible if the receiver has an unobstructed horizon to 30 degrees. The authors concluded that using GPS for navigation in high skyline areas will require dead-reckoning equipment to provide estimated positions when satellites are blocked. [Ref. 117]

e. GPS Receiver Cost and Availability

Single-quantity GPS receivers cost between $3000 and $25,000, depending on their features. Part of the reason for this cost is that GPS is pending full implementation, the electronics are complex, and the production volume of GPS receivers has been small.

Several manufacturers have developed specialized GPS Very-Large-Scale Integrated circuits (VLSI chips) which dramatically reduce the receiver parts count and cost. In 1988, one manufacturer offered a basic single-channel receiver for $3000 [Ref. 61]. As the Block II constellation takes shape, GPS receiver demand and production economies of scale

---

"Interview between Mr. Tom Carpenter, independent marine electronics engineer, and the author, April 1989."
will increase. It is expected that hand-held GPS receivers will eventually cost less than $1000 [Ref. 108:ch. 4, p. 29]. The Director General of INMARSAT has predicted that in the early 1990's it would cost only a few hundred dollars to add a set of GPS chips to a mobile satellite terminal for full position determination and reporting capability [Ref. 61].

4. **Glonass**

The Soviet Glonass system is similar in concept to GPS. The system is designed to provide position measurements accurate to within 100 m horizontally and 150 m vertically. Like GPS, Glonass uses two L-band frequencies modulated by a C/A code and a P code. The major difference is that whereas GPS satellites all use one frequency pair but different codes, Glonass satellites transmit on different frequencies but use the same codes. The Soviets have stated they will make Glonass available for public use [Ref. 67:pp. 273-275].

5. **Loran-C**

   a. **Definition and History**

   Loran stands for **LONG RANGE Navigation**. Loran was developed during World War II for the precision radio-navigation of ships and aircraft. The first system, Loran-A, was in use from World War II through the early 1970's. Loran-B was an experimental system designed and tested in the 1950's. This system had so many technical problems that the project was canceled. Loran-A was succeeded by Loran-C. Loran-C offers increased navigational accuracy, reduced
interference, and a larger geographical coverage area. [Ref. 118:ch. 2, pp. 9-13]

b. Theory of Operation

Loran-C operates in the low-frequency spectrum of 90 to 110 KHz with a carrier frequency of 100 KHz. Loran-C consists of transmitting stations arranged in groups forming a loran chain. Three to five transmitting stations make up a chain. The station in the center of the chain is designated the master while the others are called secondaries. The chain coverage area is determined by the power transmitted from each station, the distance between the stations, and the physical orientation of the chain.

Loran-C relies on two basic principles: radio waves travel at a constant speed and the location at which the signals are received is directly proportional to the elapsed time between the transmission and the reception of the signal.

Loran-C determines location through the use of constant time difference line of positions (LOP's). These LOP's are plotted on a navigation chart as hyperbolas. A hyperbola is a line generated by a point so moving that the difference of the distances or times from two fixed points is constant. Hyperbolas from a Loran master and secondary are illustrated in Figure 162 [Ref. 118:ch. 4, p. 57].

The Loran-C master station transmits a series of coded pulses, and after a specified period of time each of the secondary stations also transmits a series of coded pulses.
Loran-C Hyperbolic Lines of Position

Figure 162. Loran-C Hyperbolic Lines of Position
The time lag is different for each secondary station. The coded pulses identify each loran chain station and provide other information. The Loran-C receiver measures the difference in time it takes to receive the signals from a master and secondary station. The time difference (TD) is measured in microseconds (millionths of a second). This TD is constant along the hyperbolic LOP, and by itself provides no absolute position information.

To determine position, at least one other LOP must be developed. To do this, the Loran-C receiver measures the TD between the master and a different secondary station. This establishes a second hyperbolic LOP. Where these two LOP's intersect is the receiver's position. Loran-C chains are configured so that at least two LOP's are available for any point within the coverage area. [Ref. 118:ch. 4, pp. 1-86]

Traditionally, the plotting of fixes has been a matter of interpolating the measured TD's between the standard hyperbolic TD's overprinted on a navigation chart. These standard TD's are plotted in ten microsecond (millionths of a second) intervals. Once the fix is plotted, longitude and latitude can be read from the chart.

This manual procedure can be performed electronically to provide a direct reading of longitude and latitude. This is accomplished by building a small computer into the Loran-C receiver which "knows" the locations and other specifications of the Loran-C chains. The computer measures
the TD's, computes the intersection of LOP's, and calculates the longitude and latitude. This information is digitally displayed. [Ref. 119:p. 33]

c. Propagation of Loran-C Transmissions

Loran-C signals propagate from the transmitter by groundwave and skywave. Loran-C is designed to primarily use the groundwave signal. Groundwave transmissions travel at a constant velocity over water, but vary in speed over land. This characteristic can change the time difference (TD) and effect land-position fix accuracy. Skywave transmissions may be used outside Loran-C coverage areas where groundwave reception is not possible, but navigational accuracy will be reduced. This is because skywave transmissions reflect off the ionosphere rather than travelling a direct path from the transmitter to the receiver. The varying ionospheric height, reflection angle, and intensity of reflection are variables which affect the skywave TD. A skywave may arrive at a receiver as little as 35 microseconds or as much as 1000 microseconds after the ground wave would have. Specialized signal-shaping and phase-change patterns are used to prevent the skywave signals from causing interference received ground wave signals. [Ref. 119:pp. 76-77]

d. Loran-C Coverage Areas

Loran-C groundwave propagation enables reliable survey and mathematical prediction of time difference lines of position over wide service areas. Service areas are defined
as the portion of the Earth's surface over which the signal parameters of a station-referenced system, as affected by geometry and nature, remain within specified tolerances at least 95% of the time. These tolerances are a 3:1 Signal-to-Noise Ratio groundwave coverage and a 460 m (1/4 nautical mile) or less predictable fix accuracy. [Ref. 119:p. 82]

(1) Current Coverage. Loran-C coverage is provided in the Continental United States, Alaska, and Hawaii. Additional maritime service areas are located on the East and West Coasts of Canada, and in areas of the North Atlantic, Norwegian Sea, the Mediterranean, and Northwest Pacific. Only the Continental U.S. service areas will be discussed.

Loran-C covers the East and West Coast waters (the coastal confluence zone) of the Continental United States out to several hundred miles. Inland coverage on the West Coast extends over Oregon, Nevada, Utah, and most of Washington, Idaho, and California. Inland coverage on the opposite side of the U.S. extends Eastward from a line running approximately through mid-Minnesota to the southern tip of Texas.

The inland area of the U.S. that is not contained within any Loran-C service area extends roughly from mid-Washington Eastward to mid-Minnesota, and southward to Arizona, New Mexico, and Texas. This area is referred to as the mid-continent gap. Loran-C service in this area is less accurate than the 1/4 nautical mile specification. Reception
relies on a combination of groundwave and skywave signals and contain LOP crossing angles of less than 30 degrees. This adversely effects position accuracy. [Ref. 119:pp. 59-67]

(2) **Future coverage.** The popularity of Loran-C for aircraft use, the availability of relatively inexpensive Loran receivers, and the delay in implementing the Global Positioning System (GPS) have prompted the U.S. Government to expand the Loran system to eliminate the mid-Continent gap. The Midcontinent Loran-C Expansion Project is expected to be completed by the beginning of 1991 at a cost of $40 million. Figures 163 and 164 illustrate the placement of the new Loran-C chains. [Ref. 120]

e. **Accuracy at Sea**

As stated above, the minimum predictable accuracy within the service area is 460 m (1/4 Nautical Mile). Accuracies higher than this are typically experienced when used at sea. Repeatable and relative accuracy typically range from 18-90 m (60 to 300 ft). [Ref. 110]

f. **Accuracy When Used for Land Navigation**

(1) **Additional Secondary Phase Factor.** Loran-C ground-wave signals propagate at constant speeds over water, but travel at varying speeds over land. This phenomenon is known as the additional secondary-phase factor, and is

---

North Central U.S. Loran-C Chain

Figure 163. North Central U.S. Loran-C Chain
South Central U.S. Loran-C Chain

Figure 164. South Central U.S. Loran-C Chain
measured in microseconds. This is the time difference that an actual Loran-C signal, which has traveled over varied terrain, differs from an ideal signal which has been predicted for travel over an all-seawater path. Additional secondary phase factors can be measured and calculated, and their effect is taken into account when making nautical charts. Latitude-longitude conversion circuits in Loran receivers designed for sea navigation generally use equations that compute position based on an all-seawater path between the transmitters and the receiver. When used on land this degrades the position accuracy. Applying an average secondary-phase correction factor for an all-land groundwave signal may improve the accuracy of receiver position calculations, but the results will not be as accurate as theoretically possible. This is because each type of terrain, such as mountains, desert, snow, lakes, farmland, and urban areas effects groundwave propagation differently and effects the TD. [Ref. 119:p. 28]

(2) **Power-Line Interference.** Power-line noise and power-line carrier-communication systems can interfere with the reception of Loran-C signals. This is not generally a problem when briefly driving under a power line because the Loran receiver positioning-determination process averages many Loran pulses. However, a Loran-C experimenter found that driving parallel to a large power line for a mile or so can cause a receiver to lose track of Loran transmissions or
display an erroneous position. Driving near a power station also produced the same effects. [Ref. 121]

(3) **Highrise Effects.** Clusters of highrise buildings can cause a reduction of signal strength, an increase in background radio noise levels, and a general distortion of the TD and signal waveform. This will affect position-determination accuracy. Fortunately, this problem is limited to a relatively small region within cities. [Ref. 122]

(4) **Operation in the Midcontinent Gap.** As stated above, operation of a Loran-C receiver outside of the service area will result in greater position errors. Unsuitable Loran chain geometry, reduced signal strength, the spreading of the hyperbolic lines of position (LOP), reduction of the LOP crossing angles used to determine a fix, and the time delays associated with skywave propagation will also reduce position accuracy. These effects are not possible to accurately quantify because of the many variables. This will cease to be a problem for the continental U.S. when the Midcontinent Expansion Project is completed by the end of 1990. [Ref. 120]

g. **Loran-C Receiver Cost and System Continuation**

Specialized VLSI chips and production economies of scale enable Loran-C receivers, which automatically display longitude and latitude, to be sold on the retail market for
between $400 and $2000\textsuperscript{7}. Because of the large user base (estimated at 450,000) and the delay in implementing GPS, the Department of Transportation will fund Loran operation through at least the year 2000 [Ref. 110].

\textsuperscript{7}Interview between Mr. Carpenter, independent marine electronics installation engineer, and the author, April 1989.
APPENDIX C

MOBILE COMMUNICATIONS COST/BENEFIT SPREADSHEET

A. STRUCTURE

The template is divided into several major and minor sections. These are listed in the Macro Menu area at the top of the spreadsheet. Macros will automatically move the user to the desired area. The "Home" key is used to return to the Macro Menu from any location.

Motor-carry expenses, revenues, operating statistics, and the assumed benefits and costs of a nationwide tracking and communication systems are applied against the purchase and installation cost of the fixed and mobile equipment. Lease and financing options are not performed. The spreadsheet analysis assumes the firm is federally taxed at the highest rate and that earnings are sufficient to take full advantage of depreciation writeoffs. State tax and depreciation schedules are not included. The template accounts for tax effects and depreciation over six and eight-year periods using the IRS five and seven-year Modified Accelerated Cost Recovery System (MACRS) and the optional straight line methods. The yearly depreciation percentages are based on a midyear convention [Ref. 46]. The useful economic life of the equipment is expected to be the length of the depreciation period. Disposal value is assumed to be zero. Inflation
factors are not included. The model evaluates the cash flows under the regular payback, net present value (NPV), and internal rate of return (IRR) procedures.

A sensitivity analysis is also performed for each type of investment evaluation method to enable the user to gauge the effects of cash flow changes. The tabular results of the sensitivity analysis can be displayed as a graph by using the appropriate macro command.

B. DATA INPUT

The Cash Flow Effects section of the spreadsheet utilizes detailed carrier operating data, costs, expenses, and assumptions about the benefits and costs of RDSS and LMSS. The user inputs this information in the "Required" column and the spreadsheet computes the monthly cash flow per equipped vehicle. When each subsection is completed the result is also displayed in the Monthly Summary per Unit section at the top of the spreadsheet.

The calculations and assumptions made in the template are self-explanatory except for driver and equipment productivity and deadhead avoidance. Although in reality these categories are interrelated, the spreadsheet treats them separately. The model measures the effect of deadhead avoidance by increasing the percentage of loaded miles driven. The additional loaded miles are multiplied by the contribution margin per mile
(revenue minus variable costs) to derive the amount of expense savings or additional gross profit.

Input for the driver and equipment productivity calculation is based on the additional hours per month that the vehicle can be operated. Driver and equipment productivity increases are measured by the model as the added loaded distance, above the amount computed in the deadhead reduction category, that the vehicle is able to travel during a one-month period. The additional loaded miles are determined by multiplying the total extra distance traveled by the revised loaded mile percentage taken from the deadhead avoidance category. The additional loaded miles driven are multiplied by the contribution per mile to give the impact on operating profits or expenses. The calculated increases in both categories are then added together to give the total impact on operating profits or expenses.

The user can bypass the Cash Flow Effects section and place values directly into the Monthly Summary per Unit. Users are reminded this will break the cell links between these two sections and are cautioned to ensure a back-up copy of the original spreadsheet template is maintained.

Costs of the equipment and installation are inserted in the Cash Flow and Present Value section. The user's marginal tax rate and the discount rate are required in the Discounted Cash Flow Analysis section. The user is also required to
provide an initial guess of the IRR to perform the IRR analysis.

C. SOURCE

The template is written in Borland Quattro, but can be converted to Lotus 123 and Symphony formats. A copy of the spreadsheet in any of these formats is available on a 360K disk from:

Lcdr W. J. Schworer
3023 Gayla Court
Spring Valley, Ca 92078
## Macro Menu

**Return to Macro Menu**

### Financial Analysis

<table>
<thead>
<tr>
<th>Module</th>
<th>Expense Reductions</th>
<th>GRAPEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT A</td>
<td>Cash Flow &amp; Present Value</td>
<td>ALT R  Deadhead Reduction</td>
</tr>
<tr>
<td>ALT B</td>
<td>Payback Period</td>
<td>ALT T  NPV Sensitivity</td>
</tr>
<tr>
<td>ALT C</td>
<td>Discounted Cash Flow</td>
<td>ALT X  Payback Period</td>
</tr>
<tr>
<td>ALT D</td>
<td>Present Value Summary</td>
<td>ALT Y  PPI Sensitivity</td>
</tr>
<tr>
<td>ALT E</td>
<td>Internal Rate of Return</td>
<td>ALT Z  Internal Rate of Return</td>
</tr>
</tbody>
</table>

### Cash Flow Effects

<table>
<thead>
<tr>
<th>Module</th>
<th>Module</th>
<th>Module</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT F</td>
<td>Revenue and Cost Information</td>
<td>ALT G  Premium Service Revenue</td>
<td></td>
</tr>
</tbody>
</table>

### Monthly Summary Per Unit

Note: Figures are automatically inserted when the appropriate modules are completed.

<table>
<thead>
<tr>
<th>Revenue:</th>
<th>Net per month</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premium service contribution</td>
<td>$8.00</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>0.00</td>
</tr>
</tbody>
</table>

**Operating Efficiency:**

<table>
<thead>
<tr>
<th>Module</th>
<th>Module</th>
<th>Module</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT R</td>
<td>Deadhead Reduction</td>
<td>ALT T  Driver Productivity</td>
<td></td>
</tr>
<tr>
<td>ALT S</td>
<td>Driver Productivity</td>
<td>ALT U  Payback Period</td>
<td></td>
</tr>
<tr>
<td>ALT V</td>
<td>Driver Productivity</td>
<td>ALT W  PPI Sensitivity</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module</th>
<th>Module</th>
<th>Module</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT X</td>
<td>Deadhead Avoidance</td>
<td>ALT Y  Driver Productivity</td>
<td></td>
</tr>
<tr>
<td>ALT Z</td>
<td>Layover Pay</td>
<td>ALT A  Payback Period</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module</th>
<th>Module</th>
<th>Module</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT B</td>
<td>Layover Pay</td>
<td>ALT C  PPI Sensitivity</td>
<td></td>
</tr>
<tr>
<td>ALT D</td>
<td>Dispatcher Productivity</td>
<td>ALT E  Internal Rate of Return</td>
<td></td>
</tr>
<tr>
<td>ALT F</td>
<td>Safety, Security, and Insurance</td>
<td>ALT G  Premium Service Revenue</td>
<td></td>
</tr>
</tbody>
</table>

### Telephone Expenditures

<table>
<thead>
<tr>
<th>Module</th>
<th>Module</th>
<th>Module</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT H</td>
<td>Reduction of Expenditures</td>
<td>ALT I  Monthly Service Charge</td>
<td></td>
</tr>
<tr>
<td>ALT J</td>
<td>Miscellaneous</td>
<td>ALT K  Equipment Lease Expenses</td>
<td></td>
</tr>
<tr>
<td>ALT L</td>
<td>Miscellaneous</td>
<td>ALT M  Nationwide Pager Service (if used)</td>
<td></td>
</tr>
</tbody>
</table>

**Subtotal: Gross Increases**

$233.42

<table>
<thead>
<tr>
<th>Module</th>
<th>Module</th>
<th>Module</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT N</td>
<td>Monthly Service Charge</td>
<td>ALT O  Equipment Lease Expenses</td>
<td></td>
</tr>
<tr>
<td>ALT P</td>
<td>Nationwide Pager Service (if used)</td>
<td>ALT Q  Miscellaneous</td>
<td></td>
</tr>
</tbody>
</table>

### Loss:

<table>
<thead>
<tr>
<th>Module</th>
<th>Module</th>
<th>Module</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT R</td>
<td>Monthly Charge for Communication with the Network Management Center</td>
<td>ALT S  Maintenance</td>
<td></td>
</tr>
<tr>
<td>ALT T</td>
<td>Miscellaneous</td>
<td>ALT U  Miscellaneous</td>
<td></td>
</tr>
</tbody>
</table>

**Total Expense**

$155.93

<table>
<thead>
<tr>
<th>Module</th>
<th>Module</th>
<th>Module</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT V</td>
<td>Maintenance</td>
<td>ALT W  Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>ALT X</td>
<td>Miscellaneous</td>
<td>ALT Y  Miscellaneous</td>
<td></td>
</tr>
</tbody>
</table>

**Gain / (Loss) per unit per month**

$137.40
CASE FLOW AND PRESENT VALUE MODULE

Note: This module performs a discounted cash flow analysis and includes income tax and depreciation effects. Depreciation is figured under both the 5 and 7 year MACRS schedule and the alternate straight line method in accordance with IRS pub 534 (Rev. Dec. 87).

<table>
<thead>
<tr>
<th>TOTAL CAPITAL OUTLAYS</th>
<th>REQUIRED INFORMATION</th>
<th>COMPUTED TOTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of units installed</td>
<td>446</td>
<td>446</td>
</tr>
<tr>
<td>Cost of equipment per unit</td>
<td>$4,500</td>
<td>$2,067,000</td>
</tr>
<tr>
<td>Cost of installation per unit</td>
<td>100</td>
<td>44,600</td>
</tr>
<tr>
<td>Cost of software package</td>
<td>3,000</td>
<td>3,000</td>
</tr>
<tr>
<td>Cost of additional AR/HR equipment</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

SYSTEM TOTAL COST

$2,054,600

Total system cost per unit

$4,607

PAYBACK PERIOD ANALYSIS

System Total Cost

$2,054,600

Total Gain (Loss) per Month

$61,319

Payback Period in Months

33.5

Payback Period in Years

2.8

PAYBACK PERIOD SENSITIVITY ANALYSIS

<table>
<thead>
<tr>
<th>MONTHLY CASH FLOW GAIN</th>
<th>PAYBACK PERIOD IN YEARS</th>
<th>EQUIVALENT ADDITIONAL LOADED HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PER UNIT AFTER ALL EXPENSES:</td>
<td>8/16</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>19.2</td>
<td>77</td>
</tr>
<tr>
<td>40</td>
<td>9.6</td>
<td>154</td>
</tr>
<tr>
<td>60</td>
<td>6.4</td>
<td>221</td>
</tr>
<tr>
<td>80</td>
<td>4.8</td>
<td>300</td>
</tr>
<tr>
<td>100</td>
<td>3.0</td>
<td>385</td>
</tr>
<tr>
<td>120</td>
<td>2.2</td>
<td>468</td>
</tr>
<tr>
<td>140</td>
<td>1.7</td>
<td>530</td>
</tr>
<tr>
<td>160</td>
<td>2.4</td>
<td>615</td>
</tr>
<tr>
<td>180</td>
<td>2.1</td>
<td>682</td>
</tr>
<tr>
<td>200</td>
<td>1.9</td>
<td>760</td>
</tr>
</tbody>
</table>
### DISCOUNTED CASH FLOW ANALYSIS

#### REQUIRED ASSUMPTIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marginal Tax Rate (%)</td>
<td>34.00%</td>
</tr>
<tr>
<td>Discount Rate (%)</td>
<td>21.00%</td>
</tr>
</tbody>
</table>

#### CASH FLOW - 5 YEAR PROPERTY

<table>
<thead>
<tr>
<th>SYSTEM YEAR</th>
<th>CASH FLOW TOTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

#### MACRS DEPRECIATION METHOD

<table>
<thead>
<tr>
<th>Recurring Operations Savings</th>
<th>-2054600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less: Income Tax Effects</td>
<td>250183</td>
</tr>
<tr>
<td>Net Cash Flow from Operations Savings</td>
<td>-2054600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System Year</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

#### MACRS System Cost

| 10.00%      | 20.00% | 30.00% | 40.00% | 50.00% |

#### MACRS Depreciation (%)

| 10.00%      | 20.00% | 30.00% | 40.00% | 50.00% |

#### Tax Effects of MACRS Depreciation

<table>
<thead>
<tr>
<th>-2054600</th>
</tr>
</thead>
</table>

#### Plus: Net Cash Flow from Operations Savings

| 485650   | 485650 | 485650 | 485650 | 485650 | 485650 |

#### Net Increase (Decrease) in Cash Flow

| -2054600 | 681110 | 806570 | 806570 | 806570 | 806570 | 681110 |

### OPTIMAL STRAIGHT LINE METHOD

#### MACRS System Cost

| 2054600 |

#### Optimal Straight Line Deprec. (%)

| 10.00%      | 20.00% | 30.00% | 40.00% | 50.00% |

#### Tax Effects of Optimal S. L.

<table>
<thead>
<tr>
<th>-2054600</th>
</tr>
</thead>
</table>

#### Plus: Net Cash Flow from Operations

| 485650   | 485650 | 485650 | 485650 | 485650 | 485650 |

#### Net Increase (Decrease) in Cash Flow

| -2054600 | 681110 | 806570 | 806570 | 806570 | 806570 | 681110 |
### Case Flow - 7 Year Property

<table>
<thead>
<tr>
<th>System Year</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>-2054600</td>
<td>735833</td>
<td>735833</td>
<td>735833</td>
<td>735833</td>
<td>735833</td>
<td>735833</td>
<td>735833</td>
</tr>
</tbody>
</table>

#### Depreciation Method

<table>
<thead>
<tr>
<th>Recurring Operation Savings</th>
<th>-2054600</th>
<th>485650</th>
<th>485650</th>
<th>485650</th>
<th>485650</th>
<th>485650</th>
<th>485650</th>
<th>485650</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Less: Income Tax Effects</th>
<th>250183</th>
<th>250183</th>
<th>250183</th>
<th>250183</th>
<th>250183</th>
<th>250183</th>
<th>250183</th>
<th>250183</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Net Cash Flow from Operation Savings</th>
<th>-2054600</th>
<th>485650</th>
<th>485650</th>
<th>485650</th>
<th>485650</th>
<th>485650</th>
<th>485650</th>
<th>485650</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>RDSS System Cost</th>
<th>2054600</th>
<th>2054600</th>
<th>2054600</th>
<th>2054600</th>
<th>2054600</th>
<th>2054600</th>
<th>2054600</th>
<th>2054600</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>MACS Depreciation (%)</th>
<th>14.290%</th>
<th>24.490%</th>
<th>17.490%</th>
<th>12.490%</th>
<th>8.930%</th>
<th>8.930%</th>
<th>8.930%</th>
<th>4.450%</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tax Effects of MACS Depreciation</th>
<th>-2054600</th>
<th>293602</th>
<th>503172</th>
<th>359350</th>
<th>256620</th>
<th>183476</th>
<th>183476</th>
<th>81430</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Plus: Net Cash Flow from Operations Savings</th>
<th>485650</th>
<th>485650</th>
<th>485650</th>
<th>485650</th>
<th>485650</th>
<th>485650</th>
<th>485650</th>
<th>485650</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Net Increase (Decrease) in Case Flow</th>
<th>-2054600</th>
<th>779252</th>
<th>988022</th>
<th>742270</th>
<th>669126</th>
<th>669126</th>
<th>577080</th>
<th>577080</th>
</tr>
</thead>
</table>

#### Optional Straight Line Method

<table>
<thead>
<tr>
<th>RDSS System Cost</th>
<th>2054600</th>
<th>2054600</th>
<th>2054600</th>
<th>2054600</th>
<th>2054600</th>
<th>2054600</th>
<th>2054600</th>
<th>2054600</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Optional Straight Line Tax Rate</th>
<th>7.130%</th>
<th>14.290%</th>
<th>14.290%</th>
<th>14.290%</th>
<th>14.290%</th>
<th>14.290%</th>
<th>14.290%</th>
<th>7.130%</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tax Effects of Optional S. L.</th>
<th>-2054600</th>
<th>146493</th>
<th>293602</th>
<th>293602</th>
<th>293602</th>
<th>293602</th>
<th>293602</th>
<th>146493</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Plus: Net Cash Flow from Operations</th>
<th>485650</th>
<th>485650</th>
<th>485650</th>
<th>485650</th>
<th>485650</th>
<th>485650</th>
<th>485650</th>
<th>485650</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Net Increase (Decrease) in Case Flow</th>
<th>-2054600</th>
<th>632142</th>
<th>779252</th>
<th>779252</th>
<th>779252</th>
<th>779252</th>
<th>779252</th>
<th>632142</th>
</tr>
</thead>
</table>

#### Present Value Summary

<table>
<thead>
<tr>
<th>MACS 5 Year Depreciation</th>
<th>S. L. 5 Year Depreciation</th>
<th>MACS 7 Year Depreciation</th>
<th>S. L. 7 Year Depreciation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurring Operations Savings</td>
<td>2387496</td>
<td>2387496</td>
<td>2741603</td>
</tr>
<tr>
<td>Less: Income Tax Effects</td>
<td>811749</td>
<td>811749</td>
<td>932077</td>
</tr>
<tr>
<td>Net Cash Flow from Operations Savings</td>
<td>1575747</td>
<td>1575747</td>
<td>1809226</td>
</tr>
<tr>
<td>Plus: Tax Effects of Depreciation</td>
<td>1250721</td>
<td>1250721</td>
<td>1106289</td>
</tr>
<tr>
<td>Total Net Present Value of Cash Flows</td>
<td>2836669</td>
<td>2836669</td>
<td>2915615</td>
</tr>
<tr>
<td>Less: Procurement and Installation</td>
<td>2054600</td>
<td>2054600</td>
<td>2054600</td>
</tr>
<tr>
<td>Net Present Value</td>
<td>771869</td>
<td>771869</td>
<td>861915</td>
</tr>
<tr>
<td>Net Present Value per Installed Unit</td>
<td>1.731</td>
<td>1.731</td>
<td>1.380</td>
</tr>
</tbody>
</table>

### Net Present Value Summary

<table>
<thead>
<tr>
<th>MACS 5 Year Depreciation</th>
<th>S. L. 5 Year Depreciation</th>
<th>MACS 7 Year Depreciation</th>
<th>S. L. 7 Year Depreciation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurring Operations Savings</td>
<td>2387496</td>
<td>2387496</td>
<td>2741603</td>
</tr>
<tr>
<td>Less: Income Tax Effects</td>
<td>811749</td>
<td>811749</td>
<td>932077</td>
</tr>
<tr>
<td>Net Cash Flow from Operations Savings</td>
<td>1575747</td>
<td>1575747</td>
<td>1809226</td>
</tr>
<tr>
<td>Plus: Tax Effects of Depreciation</td>
<td>1250721</td>
<td>1250721</td>
<td>1106289</td>
</tr>
<tr>
<td>Total Net Present Value of Cash Flows</td>
<td>2836669</td>
<td>283669</td>
<td>2915615</td>
</tr>
<tr>
<td>Less: Procurement and Installation</td>
<td>2054600</td>
<td>2054600</td>
<td>2054600</td>
</tr>
<tr>
<td>Net Present Value</td>
<td>771869</td>
<td>771869</td>
<td>861915</td>
</tr>
<tr>
<td>Net Present Value per Installed Unit</td>
<td>1.731</td>
<td>1.731</td>
<td>1.380</td>
</tr>
</tbody>
</table>
**HYT SENSITIVITY ANALYSIS**

### MONTHLY CASH FLOW GAIN (LOSS) RELATED TO OPERATIONS PER UNIT AFTER ALL EXPENSES:

<table>
<thead>
<tr>
<th>AMOUNT</th>
<th>HACCS 5 YEAR DEPRECIATION</th>
<th>S. L. 5 YEAR DEPRECIATION</th>
<th>HACCS 7 YEAR DEPRECIATION</th>
<th>S. L. 7 YR DEPRECIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(2,838)</td>
<td>(2,173)</td>
<td>(2,387)</td>
<td>(2,675)</td>
</tr>
<tr>
<td>20</td>
<td>(2,310)</td>
<td>(2,659)</td>
<td>(2,716)</td>
<td>(2,999)</td>
</tr>
<tr>
<td>40</td>
<td>(1,902)</td>
<td>(2,165)</td>
<td>(2,125)</td>
<td>(2,499)</td>
</tr>
<tr>
<td>60</td>
<td>(1,280)</td>
<td>(1,631)</td>
<td>(1,536)</td>
<td>(1,948)</td>
</tr>
<tr>
<td>80</td>
<td>(775)</td>
<td>(1,117)</td>
<td>(946)</td>
<td>(1,319)</td>
</tr>
<tr>
<td>100</td>
<td>(261)</td>
<td>(683)</td>
<td>(374)</td>
<td>(723)</td>
</tr>
<tr>
<td>120</td>
<td>258</td>
<td>(90)</td>
<td>234</td>
<td>(130)</td>
</tr>
<tr>
<td>140</td>
<td>767</td>
<td>425</td>
<td>824</td>
<td>452</td>
</tr>
<tr>
<td>160</td>
<td>1,281</td>
<td>839</td>
<td>1,415</td>
<td>1,042</td>
</tr>
<tr>
<td>180</td>
<td>1,795</td>
<td>1,453</td>
<td>2,005</td>
<td>1,632</td>
</tr>
<tr>
<td>200</td>
<td>2,300</td>
<td>1,967</td>
<td>2,595</td>
<td>2,222</td>
</tr>
<tr>
<td>220</td>
<td>2,823</td>
<td>2,481</td>
<td>3,185</td>
<td>2,813</td>
</tr>
<tr>
<td>240</td>
<td>$3,337</td>
<td>$2,995</td>
<td>$3,775</td>
<td>$3,463</td>
</tr>
</tbody>
</table>

### INTERNAL RATE OF RETURN ESTIMATES

Note: A guess of the Internal Rate of Return is required to run this module. The guess is entered as a decimal and converted by the program to a percent figure. An "ERR" response is displayed if the spread sheet cannot reach an IRR. In this case you should try a different guess.

<table>
<thead>
<tr>
<th>IRR ESTIMATE</th>
<th>15.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>HACCS 5 YEAR DEPRECIATION</td>
<td>27%</td>
</tr>
<tr>
<td>S. L. 5 YEAR DEPRECIATION</td>
<td>32%</td>
</tr>
<tr>
<td>HACCS 7 YEAR DEPRECIATION</td>
<td>32%</td>
</tr>
<tr>
<td>S. L. 7 YR DEPRECIATION</td>
<td>32%</td>
</tr>
</tbody>
</table>

**Recurring Operations Savings**

<table>
<thead>
<tr>
<th>AFTER THE NET CASH FLOW FROM OPERATIONS SAVINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>11%</td>
</tr>
</tbody>
</table>

**NET INCREASE (DECREASE) IN CASH FLOW**

| 37% |
| 32% |
| 38% |
| 32% |
### SENSITIVITY ANALYSIS

#### MONTHLY CASH FLOW GAIN (LOSS) PER UNIT AFTER ALL EXPENSES:

<table>
<thead>
<tr>
<th>AMOUNT</th>
<th>RACES 5 YEAR DEPRECIATION</th>
<th>S. L. 5 YEAR DEPRECIATION</th>
<th>RACES 7 YEAR DEPRECIATION</th>
<th>S. L. 7 YEAR DEPRECIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>-6%</td>
<td>-6%</td>
<td>8%</td>
<td>-8%</td>
</tr>
<tr>
<td>20</td>
<td>7%</td>
<td>6%</td>
<td>7%</td>
<td>6%</td>
</tr>
<tr>
<td>40</td>
<td>14%</td>
<td>13%</td>
<td>13%</td>
<td>12%</td>
</tr>
<tr>
<td>60</td>
<td>18%</td>
<td>15%</td>
<td>18%</td>
<td>16%</td>
</tr>
<tr>
<td>80</td>
<td>22%</td>
<td>20%</td>
<td>24%</td>
<td>23%</td>
</tr>
<tr>
<td>100</td>
<td>29%</td>
<td>25%</td>
<td>28%</td>
<td>26%</td>
</tr>
<tr>
<td>120</td>
<td>33%</td>
<td>29%</td>
<td>32%</td>
<td>28%</td>
</tr>
<tr>
<td>140</td>
<td>37%</td>
<td>33%</td>
<td>36%</td>
<td>32%</td>
</tr>
<tr>
<td>160</td>
<td>42%</td>
<td>37%</td>
<td>40%</td>
<td>36%</td>
</tr>
<tr>
<td>180</td>
<td>46%</td>
<td>41%</td>
<td>44%</td>
<td>40%</td>
</tr>
<tr>
<td>200</td>
<td>50%</td>
<td>45%</td>
<td>48%</td>
<td>44%</td>
</tr>
</tbody>
</table>

37708.00

### REVENUE AND COST INFORMATION

REQUIRED COMPUTED

- Average number of linehaul units in use per month: 446.0
- Average revenue per mile: $1.580
- Average variable operating expenses per mile: $1.320
- Average contribution: $9.260

629
**REVENUE INCREASES**

**Premium service:**

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing premium service revenues per month</td>
<td>$0</td>
</tr>
<tr>
<td>Projected improvement with the satellite system (%)</td>
<td>$2</td>
</tr>
<tr>
<td>Sales and marketing expense ratio (%)</td>
<td>$2</td>
</tr>
<tr>
<td>Current premium service costs per month</td>
<td>$0</td>
</tr>
<tr>
<td>Projected increase in premium service costs (%)</td>
<td>$2</td>
</tr>
<tr>
<td>Increase in marketing revenues per month</td>
<td>$0</td>
</tr>
<tr>
<td>Applied sales and marketing expense ratio</td>
<td>$0</td>
</tr>
<tr>
<td>Projected cost increase per month</td>
<td>$0</td>
</tr>
<tr>
<td>Contribution per linehaul unit per month</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

**Miscellaneous**

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total miscellaneous contribution increase per month</td>
<td>$0</td>
</tr>
<tr>
<td>Miscellaneous contribution per line haul unit per month</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

**EXPENSE REDUCTION MODULE**

**Deadhead reduction:**

<table>
<thead>
<tr>
<th>Description</th>
<th>Required</th>
<th>Computed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average number of miles per month per linehaul unit</td>
<td>5,952</td>
<td>5,952</td>
</tr>
<tr>
<td>Average loaded miles (%)</td>
<td>85%</td>
<td>85%</td>
</tr>
<tr>
<td>Average loaded miles</td>
<td>5,959</td>
<td>5,959</td>
</tr>
<tr>
<td>Estimated increase in loaded miles (%)</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Estimated loaded miles per month</td>
<td>5,565</td>
<td>5,565</td>
</tr>
<tr>
<td>Estimated increase in contribution per month</td>
<td>$131.54</td>
<td>$131.54</td>
</tr>
</tbody>
</table>
### Driver and equipment productivity:

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average number of linehaul drivers per month</td>
<td>446.0</td>
</tr>
<tr>
<td>Average on-duty driving hours per month</td>
<td>161.6</td>
</tr>
<tr>
<td>Average on-duty NON-driving hours per month</td>
<td>0.0</td>
</tr>
<tr>
<td>Projected improvement with satellite system in hours per month</td>
<td>17.0</td>
</tr>
<tr>
<td>Average speed in MPH</td>
<td>40.0</td>
</tr>
<tr>
<td>Average miles per driver per month</td>
<td>6,720</td>
</tr>
<tr>
<td>Increase in total miles per month per driver at average speed</td>
<td>660</td>
</tr>
<tr>
<td>Increase in loaded miles per driver per month</td>
<td>666</td>
</tr>
<tr>
<td>Improvement in revenue per driver per month</td>
<td>$1,021</td>
</tr>
<tr>
<td>Variable expense per driver per month impact</td>
<td>$298</td>
</tr>
<tr>
<td>Increase in contribution per driver per month</td>
<td>$133.00</td>
</tr>
<tr>
<td>Increase in contribution per linehaul unit per month</td>
<td>$133.00</td>
</tr>
</tbody>
</table>

### Layover pay:

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total layover pay per month</td>
<td>$6.00</td>
</tr>
<tr>
<td>Estimated average reduction (%)</td>
<td>%</td>
</tr>
<tr>
<td>Projected layover expense reduction</td>
<td>$0.00</td>
</tr>
<tr>
<td>Average number of linehaul units per month</td>
<td>446.0</td>
</tr>
<tr>
<td>Reduction in average layover expense per linehaul unit</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

### Dispatcher productivity:

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing dispatcher hours per month</td>
<td>0.0</td>
</tr>
<tr>
<td>Projected reduction with satellite system (%)</td>
<td>%</td>
</tr>
<tr>
<td>Average dispatcher wages and fringes per hour</td>
<td>$0.00</td>
</tr>
<tr>
<td>Projected impact in hours per month</td>
<td>0.0</td>
</tr>
<tr>
<td>Projected monthly reduction in labor costs</td>
<td>$0.00</td>
</tr>
<tr>
<td>Average number of linehaul units per month</td>
<td>446.0</td>
</tr>
<tr>
<td>Reduction of dispatcher wages and fringes per linehaul unit per month</td>
<td>$0.00</td>
</tr>
</tbody>
</table>
### Security, Safety, and Insurance:

<table>
<thead>
<tr>
<th>Item</th>
<th>Estimated</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total insurance premium expense per month</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Estimated premium reduction (%)</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Projected premium savings per month</td>
<td>$0.00</td>
<td></td>
</tr>
<tr>
<td>Total claims expense per month</td>
<td>$2</td>
<td></td>
</tr>
<tr>
<td>Estimated claims reduction (%)</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Projected claims savings per month</td>
<td>$0.00</td>
<td></td>
</tr>
<tr>
<td>Total insurance premium and claims savings per month</td>
<td>$2.00</td>
<td></td>
</tr>
<tr>
<td>Insurance and claims expense reduction per linehaul unit per month</td>
<td>$0.00</td>
<td></td>
</tr>
</tbody>
</table>

### Administrative expenses:

<table>
<thead>
<tr>
<th>Item</th>
<th>Estimated</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing administrative expenses per month</td>
<td>$39.30</td>
<td>$39.30</td>
</tr>
<tr>
<td>Projected improvement with satellite system (%)</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Estimated monthly administrative expense reduction</td>
<td>$3.30</td>
<td></td>
</tr>
<tr>
<td>Estimated monthly admin expense reduction per linehaul unit per month</td>
<td>$3.30</td>
<td></td>
</tr>
</tbody>
</table>

### Telecommunications expense:

<table>
<thead>
<tr>
<th>Item</th>
<th>Estimated</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing telephone expense per linehaul unit per month</td>
<td>$64.66</td>
<td>$64.66</td>
</tr>
<tr>
<td>Projected reduction with satellite system (%)</td>
<td>60.00%</td>
<td></td>
</tr>
<tr>
<td>Estimated reduction per month</td>
<td>$38.80</td>
<td></td>
</tr>
</tbody>
</table>

### Miscellaneous:

<table>
<thead>
<tr>
<th>Item</th>
<th>Estimated</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated reduction in miscellaneous expenses</td>
<td>$9.30</td>
<td>$9.30</td>
</tr>
<tr>
<td>Estimated reduction per linehaul unit per month</td>
<td>$9.30</td>
<td></td>
</tr>
</tbody>
</table>
COST INCREASES MODULUS

Monthly charges for the satellite service:

- Monthly charge per installed unit $150.00
- Equipment lease expenses per unit (if required) $0.00
- Nationwide pager service per unit (if required) $0.00

Total $150.00

Telecommunications expenses:

- Total estimated costs for communication with the network management center $785.60
- Estimated costs per linehaul unit $1.76

Maintenance expense PER YEAR:

- Office equipment $0.00
- Software updates $0.00
- Per linehaul unit $56.00

Cost per linehaul unit per month $4.17

Miscellaneous

- Total miscellaneous cost increases per month $0
- Miscellaneous cost increases per linehaul unit per month $0.00
Figure 165. Payback Period Sensitivity Per Installed Unit
NET PRESENT VALUE SENSITIVITY
PER INSTALLED UNIT

Figure 166. Net Present Value Sensitivity Per Installed Unit
IRR SENSITIVITY
PER INSTALLED UNIT

Figure 167. IRR Sensitivity Per Installed Unit
G1: [W9] 'MACRO MENU
B3: [W9] 'HOME
B3: [W9] 'Return to Macro Menu
Q3: [W9] 'goto)a62"
S3: [W9] 'goto)a451"
W4: [W9] 'goto)a111"
T6: [W9] 'goto)a462"
C5: [W9] 'FINANCIAL ANALYSIS
E5: [W11] 'EXPENSE REDUCTIONS
N5: [W9] 'GRAPHS
Q5: [W9] 'goto)a123"
S5: [W9] 'goto)a476"
H6: [W9] 'ALT R
C6: [W11] 'Deadhead Reduction
N6: [W9] 'ALT R
C6: [W9] 'Payback Period
B6: [W9] 'goto)a213"
T6: [W9] 'goto)a490"
B7: [W9] 'ALT A
C7: [W9] 'Cash Flow & Present Value
B7: [W9] 'ALT I
I7: [W11] 'Driver and Equipment Productivity
B7: [W9] 'ALT S
N7: [W9] 'BPV Sensitivity
Q7: [W9] 'goto)a262"
S7: [W9] 'goto)a497"
B8: [W9] 'ALT B
C8: [W9] 'Payback Period
B8: [W9] 'ALT J
B8: [W9] 'Layover Pay
B9: [W9] 'ALT T
B9: [W9] 'HRP Sensitivity
W6: [W9] 'goto)a110"
T8: [W9] 'goto)a110"
B9: [W9] 'ALT C
C9: [W9] 'Discounted Cash Flow
B9: [W9] 'ALT X
I9: [W11] 'Dispatcher Productivity
Q9: [W9] 'goto)a239"
B10: [W9] 'ALT D
C10: [W9] 'Present Value Summary
H10: [W9] 'ALT E
H10: [W9] 'goto)a361"
S10: [W9] 'Graph, Name, Use}"{esc}
B11: [W9] 'ALT X
C11: [W9] 'Internal Rate of Return
H11: [W9] 'ALT R
I11: [W11] 'Administrative Expense
Q11: [W9] 'goto)a377"
H12: [W9] 'ALT H
I12: [W11] 'Telecommunications Expense
H12: [W9] 'goto)a402"{esc}
T12: [W9] 'Graph, Name, Use}"{esc}
C13: [W9] 'CASH FLOW EFFECTS
Q13: [W9] 'goto)a415"
I14: [W11] 'COST INCREASES
H14: [W9] 'goto)a422"
R15: [W9] 'ALT F
C15: [W9] 'Revenue and Cost Information
H15: [W9] 'ALT O
I15: [W11] 'Monthly Service Charges
H16: [W9] 'ALT P
I16: [W11] 'Telecommunication Expense
H17: [W9] 'ALT G
C17: [W9] 'Premium Service Revenue
H17: [W9] 'ALT Q
I17: [W11] 'Maintenance Expense
B19: [W9] "----------------------------------------"
B21: [W9] 'MONTHLY SUMMARY PER UNIT
B23: [W9] 'Note: Figures are automatically inserted when the appropriate
B24: [W9] " modules are completed.
B25: [W9] 'Net per month
B26: [W9] 'Revenue:
C27: [W9] 'Premium service contribution
H27: [C2] [W9] <L351
C28: [W9] 'Miscellaneous
H28: [C2] [W9] <L57
B30: [W9] 'Operating
B31: [W9] 'Efficiency:
C32: [W9] 'Deadhead avoidance

637
132: (C2) [W9] 4L375
K9 4L375
D62- [W9] ‘CASH FLOW
AID PHY
VALUE 90OLE
C33: [K9] ‘Driver productivity
364: [KS1
370x670
12,1
182x670
4L399
327x670
discounted cash flow analysis
433x670
and
134: (2) [KS]
+L413
depreciation effects. Depreciation
C35: [W9] ‘Dispatcher productivity
5
135: [M2
166: [KS]
Layover,
PAY
B65: [K9]
includes income tax aid
136: (,2) [KS]
+L430
7 year MACRS schedule and the
137: (,2) [KS]
41460
872: (S)
-----------------
140: [KS]
‘Expenses:
G73 IKS]
RE1QUIRED
141: (KS)
‘Total Expenses
G77: (FO)
C74:
‘CAPITAL OUTLAYS
G74: [W9] ‘INFORMATION
174: [W1] ‘TOTALS
B75: [W9] ‘-----------------------------
G75: [W9] ‘-----------------------------
IT5: [W11] ‘-----------------------------
C76: [KS]
4L474
G79: (Co)
G77: [KS]
446
4500
100
106
105
3000
382: [KS]
3000
384: [KS]
383:
380x276
100
383x276
380x276
380
447
401
436x276
384x276
429x276
C78: [W5] ‘REQUIRED INFORMATION
B77: [W9] ‘Number of units installed
G77: (FO) [W9] 446
I77: (FO) [W11] +G77
B79: [W9] ‘Cost of equipment per unit
G79: (CO) [W9] 4500
B79: (CO) [W11] +1774G79
B80: [W9] ‘Cost of installation per unit
G80: (.,0) [W9] 100
180: (.,0) [W11] +1774G80
IT1: [W1] ‘Cost of software package
G81: (.,0) [W9] 2000
181: (.,0) [W11] +G81
B82: [W9] ‘Cost of additional ADP/WIS
G83: [W9] ‘equipment
B83: [W9] ‘equipment
B84: [W9] ‘Miscellaneous
G84: (.,0) [W9] 0
184: (.,0) [W11] +G84
I85: (FD) [W11] ‘---------
B86: [W9] ‘SYSTEM TOTAL COST
B86: (CO) [W11] +186/G77
187: (CO) [W11] ‘---------
B89: [W9] ‘Total system cost per unit
189: (CO) [W11] +186/G77
B91: [W9] ‘---------
I19: (W11) ‘---------
B92: [W9] ‘PAYBACK PERIOD ANALYSIS
### DISCOUNTED CASH FLOW ANALYSIS

<table>
<thead>
<tr>
<th>Period</th>
<th>Projected Net Cash Flow</th>
<th>Discounted Cash Flow</th>
<th>Present Value of Cash Flow</th>
<th>Cumulative Present Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>$100,000</td>
<td>$100,000</td>
<td>$100,000</td>
<td>$100,000</td>
</tr>
<tr>
<td>P2</td>
<td>$120,000</td>
<td>$109,900</td>
<td>$219,900</td>
<td>$319,900</td>
</tr>
<tr>
<td>P3</td>
<td>$140,000</td>
<td>$109,800</td>
<td>$329,700</td>
<td>$649,700</td>
</tr>
<tr>
<td>P4</td>
<td>$160,000</td>
<td>$109,700</td>
<td>$439,400</td>
<td>$1,089,400</td>
</tr>
<tr>
<td>P5</td>
<td>$180,000</td>
<td>$109,600</td>
<td>$549,000</td>
<td>$1,639,000</td>
</tr>
</tbody>
</table>

**Total Discounted Cash Flow:** $1,639,000

**Payback Period:** Approximately 4 years

**Present Value:** $1,639,000

**Quoted Assumptions:**
- Base Year: 2023
- Discount Rate: 10%
- Tax Rate: 30%

**Net Present Value:** $1,089,400

**Other Key Figures:**
- Payback Period in Years: 4.2
- Total Gain (Loss) per Unit: $200
- System Total Cost: $311,920
- Total Gain (Loss) per Month: $10,890
- Payback Period in Months: 48
- Payback Period in Years: 4
- Payback Period in Quarters: 12

**Notes:**
- All figures are rounded to the nearest whole number.
- The discount rate is applied to the cash flows to account for the time value of money.
- The present value calculation takes into account the time value of money and the tax effects.

**Key Calculations:**
- **Cumulative Present Value:** The sum of the present values of all cash flows up to a given period.
- **Discounted Cash Flow:** The cash flow discounted to its present value using the discount rate.
- **Present Value:** The sum of the discounted cash flows.

---

**Assumptions and Notes:**
- The assumptions are based on the historical data and market conditions.
- The calculations are performed using standard financial analysis techniques.
- The results are subject to the accuracy of the input data and the assumptions made.

---

**References:**
- Base Year: 2023
- Discount Rate: 10%
- Tax Rate: 30%

---

**Additional Analysis:**
- The sensitivity analysis considers variations in the discount rate and tax rate to assess the robustness of the project.
- The payback period analysis helps in understanding the time it takes to recover the initial investment.

---

**Technical Details:**
- The calculations are performed using a financial spreadsheet software.
- The data is compiled from various sources and verified for accuracy.

---

**Conclusion:**
- The project is financially feasible and meets the profitability criteria.
- The financial performance is robust under the given assumptions.

---

**Footnotes:**
- All figures are rounded to the nearest whole number for readability.
- The financial analysis is performed in accordance with generally accepted accounting principles.
- The project is expected to generate significant returns on investment.
OPTIMAL STRAIGHT LINE

TAX EFFECTS OF OPTIMAL S. L.

PLUS: NET CASH FLOW FROM OPERATIONS

CASH FLOW - Y'EAR PROPERTY

CASH FLOW - TOTALS

RECURRING OPERATION SAVINGS

LESS: INCOME TAX EFFECTS

641
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Formula 1</th>
<th>Formula 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A293</td>
<td>5 Year HAGS:</td>
<td>129299*(1-0.131)+(189.41149)</td>
<td>129299*(1-0.131)+(189.41149)</td>
</tr>
<tr>
<td>B293</td>
<td>(W) HAGS 5 Year</td>
<td>T293: 129299*(1-0.131)+(189.41149)</td>
<td>T293: 129299*(1-0.131)+(189.41149)</td>
</tr>
<tr>
<td>C293</td>
<td>(W) S. L. 5 Year</td>
<td>R293: 129299*(1-0.131)+(189.41149)</td>
<td>R293: 129299*(1-0.131)+(189.41149)</td>
</tr>
<tr>
<td>D293</td>
<td>(W) M. S. HAGS 7 Year</td>
<td>V293: 129299*(1-0.131)+(189.41149)</td>
<td>V293: 129299*(1-0.131)+(189.41149)</td>
</tr>
<tr>
<td>E293</td>
<td>(W) 6. L. 7 Year</td>
<td>W293: (W) 129299*(1-0.131)+(189.41149)</td>
<td>W293: (W) 129299*(1-0.131)+(189.41149)</td>
</tr>
<tr>
<td>F293</td>
<td>(W) 19. S. L. 7 Year</td>
<td>X293: (W) 129299*(1-0.131)+(189.41149)</td>
<td>X293: (W) 129299*(1-0.131)+(189.41149)</td>
</tr>
<tr>
<td>G293</td>
<td>(W) M. S. 19.</td>
<td>Y293: (W) 129299*(1-0.131)+(189.41149)</td>
<td>Y293: (W) 129299*(1-0.131)+(189.41149)</td>
</tr>
<tr>
<td>H293</td>
<td>(W) DEPRECIATION</td>
<td>Z293: (W) 129299*(1-0.131)+(189.41149)</td>
<td>Z293: (W) 129299*(1-0.131)+(189.41149)</td>
</tr>
<tr>
<td>I293</td>
<td>(W) DEPRECIATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Game</td>
<td>Score 1</td>
<td>Score 2</td>
<td>Result</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>20</td>
<td>5</td>
</tr>
</tbody>
</table>

**Revenue and Cost Information**

- **Revenue:** $1000
- **Cost:** $500

**Composed**

- Date: September 15
- Signature: [Signatures]
[Image 0x0 to 614x799]
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>634</td>
<td>[W]</td>
<td>$124G2974(1-1G131) + (189*1201)$</td>
</tr>
<tr>
<td>635</td>
<td>[W]</td>
<td>$124G2974(1-1G131) + (189*1201)$</td>
</tr>
<tr>
<td>636</td>
<td>[W]</td>
<td>$124G2974(1-1G131) + (189*1201)$</td>
</tr>
<tr>
<td>637</td>
<td>[W]</td>
<td>$124G2974(1-1G131) + (189*1201)$</td>
</tr>
<tr>
<td>638</td>
<td>[W]</td>
<td>$124G2974(1-1G131) + (189*1201)$</td>
</tr>
<tr>
<td>639</td>
<td>[W]</td>
<td>$124G2974(1-1G131) + (189*1201)$</td>
</tr>
<tr>
<td>640</td>
<td>[W]</td>
<td>$124G2974(1-1G131) + (189*1201)$</td>
</tr>
<tr>
<td>641</td>
<td>[W]</td>
<td>$124G2974(1-1G131) + (189*1201)$</td>
</tr>
<tr>
<td>642</td>
<td>[W]</td>
<td>$124G2974(1-1G131) + (189*1201)$</td>
</tr>
<tr>
<td>643</td>
<td>[W]</td>
<td>$124G2974(1-1G131) + (189*1201)$</td>
</tr>
<tr>
<td>644</td>
<td>[W]</td>
<td>$124G2974(1-1G131) + (189*1201)$</td>
</tr>
<tr>
<td>645</td>
<td>[W]</td>
<td>$124G2974(1-1G131) + (189*1201)$</td>
</tr>
<tr>
<td>646</td>
<td>[W]</td>
<td>$124G2974(1-1G131) + (189*1201)$</td>
</tr>
<tr>
<td>647</td>
<td>[W]</td>
<td>$124G2974(1-1G131) + (189*1201)$</td>
</tr>
<tr>
<td>648</td>
<td>[W]</td>
<td>$124G2974(1-1G131) + (189*1201)$</td>
</tr>
<tr>
<td>649</td>
<td>[W]</td>
<td>$124G2974(1-1G131) + (189*1201)$</td>
</tr>
<tr>
<td>650</td>
<td>[W]</td>
<td>$124G2974(1-1G131) + (189*1201)$</td>
</tr>
<tr>
<td>651</td>
<td>[W]</td>
<td>$124G2974(1-1G131) + (189*1201)$</td>
</tr>
</tbody>
</table>

**Note:** The above table contains a series of mathematical formulas, likely related to cost or projected increases. Each cell contains a formula involving variables and constants, typically used in financial or economic calculations. The formulas involve sums, products, and possibly other mathematical operations, indicated by the presence of addition (+), multiplication (*), and possibly other operations represented by the symbols in the formulas. The specific context of these calculations is not provided in the image.
Y368: (K9] [12G306541(1-G131)]*(I8P#Z01)
Y368: [W9] 12Q306541(1-G131)]*(18P#Z01)
D369: [W9] 'Average loaded miles
L369: (0] [W9] +E365x367
K369: -169
S369: [12G306541(1-G131)]*(I8P#Z01)
T369: [12G306541(1-G131)]*(I8P#Z01)
D369: [12G306541(1-G131)]*(I8P#Z01)
V369: [12G306541(1-G131)]*(I8P#Z01)
W369: [W9] [12G306541(1-G131)]*(18P#Z01)
V369: [W9] 12G306541(1-G131)]*(I8P#Z01)
T369: [W9] 12G306541(1-G131)]*(I8P#Z01)
D369: [W9] 12G306541(1-G131)]*(I8P#Z01)
E370: -169
S370: [12G306541(1-G131)]*(I8P#Z01)
T370: [12G306541(1-G131)]*(I8P#Z01)
D370: [12G306541(1-G131)]*(I8P#Z01)
V370: [12G306541(1-G131)]*(I8P#Z01)
W370: [W9] [12G306541(1-G131)]*(18P#Z01)
T370: [W9] [12G306541(1-G131)]*(18P#Z01)
D370: [W9] [12G306541(1-G131)]*(18P#Z01)
C371: [W5] 'Estimated increase in loaded miles
%)
L371: (P0] [W9] 0.1
E371: -169
S371: [12G306541(1-G131)]*(I8P#Z01)
T371: [12G306541(1-G131)]*(I8P#Z01)
D371: [12G306541(1-G131)]*(I8P#Z01)
V371: [12G306541(1-G131)]*(I8P#Z01)
W371: [W9] [12G306541(1-G131)]*(18P#Z01)
T371: [W9] [12G306541(1-G131)]*(18P#Z01)
D371: [W9] [12G306541(1-G131)]*(18P#Z01)
C373: [W5] -
D373: [W5] 'Estimated loaded miles per month
L373: (0) [W9] (1+E37134369
D375: [W9] 'Estimated increase in contribution per month
L375: (C2) [W9] +E371+L369L324
D377: [W9] 'Driver and equipment productivity:
E377: [W9] 'REQUIRED
L377: [W9] 'COMPLETED
C379: [W5] 'Average number of linehaul drivers per month
E379: (.1] [W9] 446
C381: [W5] 'Average on-duty driving hours per month
E381: (.1] [W9] 168
C383: [W5] 'Average on-duty NON-driving hours per month
E383: (.1] [W9] 0
C385: [W5] 'Projected improvement with satellite system in hours per month
E385: (.1] [W9] 17
C387: [W5] 'Average speed in MPH
E387: (.1] [W9] 40
D389: [W9] 'Average miles per driver per month
L389: (0] [W9] +E387*E381
D391: [W9] 'Increase in total miles per month per driver at average speed
L391: (.0] [W9] +E385*E387
D393: [W9] 'Increase in loaded miles per driver per month
L393: (.0] [W387+E371+L391
D395: [W9] 'Increase in revenue per driver per month
L395: (C0] [W9] +E395*E320
D397: [W9] 'Variable expense per driver per month impact
L397: (C0] [W9] +E322*E331
D399: [W9] 'Increase in contribution per driver per month
L399: (C0] [W9] +E395-L397
D401: [W9] 'Increase in contribution per linehaul unit per month
L401: (C2] [W9] +E379/E318+L399
B403: [W9] 'Larager pay:
K403: [W9] 'REQUIRED
L403: [W9] 'COMPLETED
C405: [W5] 'Total layover pay per month
E405: (C2] [W9] 0
C407: [W5] 'Estimated average reduction (%)
E407: (P0] [W9] 0
D409: [W9] 'Projected layover expense reduction
L409: (C2] [W9] +E405*E407
D411: [W9] 'Average number of linehaul units per month
L411: (.1] [W9] +E318
D413: [W9] 'Reduction in average layover expense per linehaul unit
L413: (C2] [W9] +E409/L411
H415: [W9] 'Dispatcher productivity:
K415: [W9] 'REQUIRED
L415: [W9] 'COMPLETED
C417: [W5] 'Existing dispatcher hours per month
E417: (.1] [W9] 0
C419: [W5] 'Projected reduction with satellite

652
system (%)  
x410: (P0) [W9] 0  
c421: [W5] 'Average dispatcher wages and  
fringes per hour  
x421: (C2) [W9] 0  
d423: [W9] 'Projected impact in hours per  
month  
x423: (.1) [W9] +x419*X417  
d425: [W9] 'Projected monthly reduction in  
labor costs  
x425: (C2) [W9] +x423*X421  
d427: [W9] 'Average number of linehaul units  
per month  
x427: (.1) [W9] +x418  
d429: [W9] 'Reduction of dispatcher wages and  
fringes  
x430: [W9] per linehaul unit per month  
x430: (C2) [W9] +x425/X318  
c432: [W9] 'Security, Safety, and insurance:  
x432: [W9] 'REQUIRED  
x432: [W9] 'COMPUTED  
c434: [W5] 'Total insurance premium expense  
per month  
x434: (C0) [W9] 0  
c436: [W5] 'Estimated premium reduction (%)  
x436: (P0) [W9] 0  
d438: [W8] 'Projected premium savings per  
month  
x438: (C2) [W9] +x434*X436  
c440: [W5] 'Total claims expense per month  
x440: (C0) [W9] 0  
c442: [W5] 'Estimated claims reduction (%)  
x442: (P0) [W9] 0  
d444: [W9] 'Projected claims savings per month  
x444: (C2) [W9] +x440*X442  
d446: [W9] 'Total insurance premium and claims  
savings per month  
x446: (C2) [W9] +x438+X444  
dx448: [W9] 'Insurance and claims expense  
reduction per linehaul  
dx449: [W9] 'unit per month  
x449: (C2) [W9] +x446/X318  
c451: [W9] 'Administrative expenses:  
x451: [W9] 'REQUIRED  
x451: [W9] 'COMPUTED  
c453: [W5] 'Existing administrative expenses  
per month  
x453: (C2) [W9] 0  
c455: [W5] 'Projected improvement with  
satellite system (%)  
ex455: (P0) [W9] 0  
dx457: [W9] 'Estimated monthly administrative  
expense reduction  
ex457: (C2) [W9] +x453*x455  
dx459: [W9] 'Estimated monthly admin expense  
reduction per  
dx459: (W9) 'linehaul unit per month  
ex460: (C2) [W9] +x457/X318  
dx462: [W9] 'Telecommunications expense:  
ex462: (W9) 'REQUIRED  
ex462: [W9] 'COMPUTED  
c464: [W5] 'Existing telephone expense per  
linehaul unit per month  
ex464: (C2) [W9] +x466  
c466: [W5] 'Projected reduction with satellite  
system (%)  
ex466: (P2) [W9] 0.6  
ex468: [W9] 'Estimated reduction per month  
ex468: (C2) [W9] +x466*x464  
ex470: [W9] 'Miscellaneous:  
x472: [W5] 'Estimated reduction in  
miscellaneous expenses  
ex472: (C2) [W9] 0  
d474: [W9] 'Estimated reduction per linehaul  
unit per month  
ex474: (C2) [W9] +x472/X318  
dx476: [W9] 'Total claims expense and  
insurance and claims  
ex476: (W9) 'REQUIRED  
ex476: (C2) [W9] +x446/x442  
ex478: [W5] 'Equipment lease expenses per  
unit (if required)  
ex478: (C2) [W9] +x446/x442  
ex480: [W5] 'Total claims reduction per  
month  
ex480: (W9) 0  
ex482: (C2) [W9] +x446/x442  
ex484: [W9] 'Insurance and claims expenses  
for the satellite service:  
ex484: (W9) 'REQUIRED  
ex484: [W9] 'COMPUTED  
c486: [W5] 'Monthly charge per installed unit  
ex486: (C2) [W9] 150  
c488: [W5] 'Equipment lease expenses per unit  
(if required)  
ex488: (C2) [W9] 0  
c490: [W5] 'Total  
ex490: (C2) [W9] +x486  
ex492: [W9] 'Existing telephone expenses:  
ex492: (W9) 'REQUIRED  
ex492: [W9] 'COMPUTED  
c494: [W5] 'Total estimated costs for  
inlinehaul units per month  
ex494: (C2) [W9] +x486  
ex496: [W5] 'Estimated reduction per  
month  
ex496: (W9) 0  
ex498: [W9] 'Projected reduction with over  
a month  
ex498: (C2) [W9] +x496  
ex500: [W5] 'Telecommunications expenses:  
ex500: (W9) 'REQUIRED  
ex500: [W9] 'COMPUTED  
c492: [W5] 'Total estimated costs for
communication with
D493: (WO) 'the network management center
K493: (C2) (WO) 785.4
D495: (WO) 'Estimated costs per linehaul unit
L495: (C2) (WO) +(K493/K318)
B497: (WO) 'Maintenance expense PER YEAR:
K497: (WO) 'REQUIRED
L497: (WO) 'COMPUTED
C499: (WO) 'Office equipment
K499: (C2) (WO) 0
C501: (WO) 'Software updates
K501: (C2) (WO) 0
C503: (WO) 'per linehaul unit
K503: (C2) (WO) 50
D505: (WO) 'Cost per linehaul unit per month
L505: (C2) (WO) (K499+K501+K503)/(K318/12
B507: (WO) 'Miscellaneous
C509: (WO) 'Total miscellaneous cost increases
per month
K509: (C0) (WO) 0
D511: (WO) 'Miscellaneous cost increases per
linehaul unit per month
L511: (C2) (WO) +(K509/K318

654
APPENDIX D

OPERATING STATISTICS AND COST ANALYSIS

A. PURPOSE

Consolidated motor-carrier operating data are used to derive qualitative operating statistics, costs, and revenues for a model firm in six segments of the trucking industry. The model firm data are used in a qualitative analysis to determine if mobile satellite systems may make sense for use in various segments of the trucking industry. Qualitative analysis is stressed because the model firm statistics are the result of averages and an inexact fixed and variable cost model. These figures are undoubtedly different from what actually occurs in any specific form.

B. DATA

The motor carrier industry operating statistics and costs used in the analysis are listed in Table 33. Class I carriers are defined as those companies which have an annual revenue of $5,000,000 or more. Class II carriers have a yearly revenue less than class I but greater than $1,000,000. Class III carriers are those firms which have annual revenues less than $1,000,000 and are not included in the analysis. Also not included in the analysis are private trucking fleets and household goods carriers.
C. DATA ANALYSIS

To ensure the analysis is conservative, operating costs are computed from two sources of data in the ATA report. One set of per-mile operating costs is determined by dividing the linehaul cost category amount (line 95) by the number of linehaul miles driven (line 112). A variable and fixed cost model is also constructed. As shown in Figure 168, this model allocates expenses associated with operating vehicles as variable costs and all other expenses as fixed costs. Fixed costs are those expenses which do not change during a time period despite a change in the total number of trucks operated and distance traveled. Variable costs change in direct proportion to the number of trucks operated and the total distance traveled. Fixed and variable costs are indicated in the cost category (second column) of Table 33. Depreciation is not taken into account.

Model firm operating statistics, costs, and revenues are computed in the last section of Table 33. The following data are used in the analysis:

<table>
<thead>
<tr>
<th>Description</th>
<th>Line Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average number of linehaul units</td>
<td>449</td>
</tr>
<tr>
<td>Intercity operating revenue per mile</td>
<td>201</td>
</tr>
<tr>
<td>Average miles per power unit</td>
<td>239</td>
</tr>
<tr>
<td>Communications expense per power unit</td>
<td>255</td>
</tr>
<tr>
<td>Variable operating costs per mile</td>
<td>221 &amp; 263 (which ever is greater)</td>
</tr>
</tbody>
</table>
Figure 1.68. Fixed and Variable Cost Model

- Revenue
- Total Costs = Variable Costs + Fixed Costs
- Variable Costs
- Fixed Costs
- Profit
- Breakeven
- Loss
- Distance Traveled
<table>
<thead>
<tr>
<th>LINE</th>
<th>COST ITEM</th>
<th>GENERAL FREIGHT</th>
<th>SPECIALIZED COMMON</th>
<th>OTHER THAN BGN. PAY</th>
<th>CONTRACT</th>
<th>SPECIAL, COMMON</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>REV - INTER COMMON</td>
<td>$16,045,876</td>
<td>$5,657,166</td>
<td>$4,804,650</td>
<td>$1,273,568</td>
<td>$48,225</td>
</tr>
<tr>
<td>11</td>
<td>REV - INTR CONTRACT</td>
<td>1,228,641</td>
<td>400,143</td>
<td>62,686</td>
<td>902,223</td>
<td>279,645</td>
</tr>
<tr>
<td>12</td>
<td>REV - LOCAL CARRIAGE</td>
<td>1,25,675</td>
<td>27,416</td>
<td>20,000</td>
<td>67,446</td>
<td>11,048</td>
</tr>
<tr>
<td>13</td>
<td>REV - FOR OTHER CARRIER</td>
<td>44,098</td>
<td>25,321</td>
<td>47,943</td>
<td>23,492</td>
<td>70,098</td>
</tr>
<tr>
<td>14</td>
<td>(MOVING REVENUE)</td>
<td>465</td>
<td>1,567</td>
<td>1,967</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>OTHER</td>
<td>1,22,923</td>
<td>31,605</td>
<td>79,322</td>
<td>62,204</td>
<td>17,320</td>
</tr>
<tr>
<td>16</td>
<td>TOTAL OPERATING REVENUE</td>
<td>$17,185,264</td>
<td>$1,175,943</td>
<td>$5,432,601</td>
<td>$1,452,984</td>
<td>$1,092,167</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>O.EMED TRUCKS</td>
<td>10,249</td>
<td>1,888</td>
<td>2,434</td>
<td>2,077</td>
<td>3,771</td>
</tr>
<tr>
<td>19</td>
<td>EMED TRACTORS</td>
<td>85,547</td>
<td>6,350</td>
<td>21,029</td>
<td>7,265</td>
<td>4,207</td>
</tr>
<tr>
<td>20</td>
<td>EMED TRAILERS</td>
<td>259,569</td>
<td>16,106</td>
<td>61,124</td>
<td>22,066</td>
<td>11,114</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>TOTAL POWER UNITS - INTR C.Y.</td>
<td>118,210</td>
<td>13,068</td>
<td>53,633</td>
<td>15,244</td>
<td>9,815</td>
</tr>
<tr>
<td>23</td>
<td>EMED POWER UNITS - INTR C.Y.</td>
<td>89,313</td>
<td>8,090</td>
<td>23,804</td>
<td>8,886</td>
<td>8,005</td>
</tr>
<tr>
<td>24</td>
<td>VEH RENTED M/DRIVER</td>
<td>16,700</td>
<td>3,413</td>
<td>19,563</td>
<td>5,060</td>
<td>828</td>
</tr>
<tr>
<td>25</td>
<td>VEH RENTED M/DRIVER</td>
<td>12,147</td>
<td>1,005</td>
<td>10,448</td>
<td>1,296</td>
<td>982</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>RET ON EQUITY</td>
<td>10,192</td>
<td>12,112</td>
<td>6,762</td>
<td>9,003</td>
<td>7,519</td>
</tr>
<tr>
<td>28</td>
<td>RET ON EQUITY</td>
<td>12,772</td>
<td>16,102</td>
<td>9,212</td>
<td>11,732</td>
<td>14,241</td>
</tr>
<tr>
<td>29</td>
<td>RET ON CAPITAL</td>
<td>9,632</td>
<td>10,833</td>
<td>5,962</td>
<td>7,777</td>
<td>7,852</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>FC SALARIES - OFF AND SUPER</td>
<td>$1,300,794</td>
<td>$328,827</td>
<td>$238,422</td>
<td>$63,231</td>
<td>$40,164</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>VC SALARIES - OFF AND SUPER</td>
<td>$1,314,134</td>
<td>$189,420</td>
<td>$744,732</td>
<td>$205,702</td>
<td>$256,122</td>
</tr>
<tr>
<td>34</td>
<td>VC SALARIES - OFF AND SUPER</td>
<td>68,949</td>
<td>7,419</td>
<td>57,243</td>
<td>4,243</td>
<td>2,971</td>
</tr>
<tr>
<td>35</td>
<td>VC SALARIES - OFF AND SUPER</td>
<td>632,774</td>
<td>20,029</td>
<td>123,013</td>
<td>31,024</td>
<td>32,768</td>
</tr>
<tr>
<td>36</td>
<td>VC SALARIES - OFF AND SUPER</td>
<td>604,147</td>
<td>27,056</td>
<td>96,229</td>
<td>30,845</td>
<td>22,001</td>
</tr>
<tr>
<td>37</td>
<td>VC SALARIES - OFF AND SUPER</td>
<td>842,674</td>
<td>14,187</td>
<td>(16,706)</td>
<td>661</td>
<td>792</td>
</tr>
<tr>
<td>38</td>
<td>VC SALARIES - OFF AND SUPER</td>
<td>$5,158,667</td>
<td>$263,111</td>
<td>$1,004,511</td>
<td>$272,477</td>
<td>$294,764</td>
</tr>
<tr>
<td>39</td>
<td>VC SALARIES - OFF AND SUPER</td>
<td>$378,515</td>
<td>$99,735</td>
<td>$257,852</td>
<td>$9,261</td>
<td>$50,024</td>
</tr>
<tr>
<td>40</td>
<td>VC SALARIES - OFF AND SUPER</td>
<td>147,329</td>
<td>2,354</td>
<td>9,792</td>
<td>821</td>
<td>2,594</td>
</tr>
<tr>
<td>41</td>
<td>VC SALARIES - OFF AND SUPER</td>
<td>$3,205,053</td>
<td>$12,089</td>
<td>$62,826</td>
<td>$7,102</td>
<td>$33,418</td>
</tr>
<tr>
<td>42</td>
<td>VC SALARIES - OFF AND SUPER</td>
<td>$6,684,721</td>
<td>$257,200</td>
<td>$1,067,337</td>
<td>$279,575</td>
<td>$339,182</td>
</tr>
<tr>
<td>43</td>
<td>VC SALARIES - OFF AND SUPER</td>
<td>$1,472,778</td>
<td>$60,564</td>
<td>$327,540</td>
<td>$70,094</td>
<td>$102,229</td>
</tr>
<tr>
<td>44</td>
<td>VC SALARIES - OFF AND SUPER</td>
<td>$535,350</td>
<td>$14,907</td>
<td>$28,159</td>
<td>$9,164</td>
<td>$8,488</td>
</tr>
<tr>
<td>45</td>
<td>VC SALARIES - OFF AND SUPER</td>
<td>$7,664,849</td>
<td>$351,743</td>
<td>$1,423,036</td>
<td>$238,833</td>
<td>$440,092</td>
</tr>
</tbody>
</table>

**TABLE 33**

Extracts from the American Trucking Associations 1986 Motor Carrier Annual Report

Results of Operations, Class I and II, Motor Carriers of Property Regulated by the Interstate Commerce Commission

**ALL DOLLAR FIGURES/MILEAGE IN 000's**
### TABLE 33 (CONTINUED)

**ALL DOLLAR FIGURES/MILEAGE IN 000's**

<table>
<thead>
<tr>
<th>LINE</th>
<th>COST ITEM</th>
<th>GENERAL FREIGHT</th>
<th>SPECIALIZED COMMON</th>
<th>OTHER THAN GEN FREIGHT</th>
<th>SPECIAL COMMODITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CLASS I</td>
<td>CLASS II</td>
<td>CLASS I</td>
<td>CLASS II</td>
<td>CLASS I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>VC OTHER GP SUPPLIES/EXP</td>
<td>$296,516</td>
<td>$17,036</td>
<td>$121,563</td>
<td>$28,977</td>
</tr>
<tr>
<td>55</td>
<td>VC FUEL- MV</td>
<td>605,000</td>
<td>68,375</td>
<td>249,482</td>
<td>23,771</td>
</tr>
<tr>
<td>56</td>
<td>VC OIL, LUBE, COOLANTS</td>
<td>24,177</td>
<td>1,974</td>
<td>10,257</td>
<td>2,666</td>
</tr>
<tr>
<td>57</td>
<td>VC VEHICLE PARTS</td>
<td>245,035</td>
<td>29,750</td>
<td>120,554</td>
<td>51,756</td>
</tr>
<tr>
<td>58</td>
<td>VC VEH MAINT/OUT SIDE REP</td>
<td>186,906</td>
<td>12,932</td>
<td>71,297</td>
<td>16,947</td>
</tr>
<tr>
<td>59</td>
<td>VC TIRES AND TUBES</td>
<td>177,142</td>
<td>17,480</td>
<td>84,185</td>
<td>24,938</td>
</tr>
<tr>
<td>60</td>
<td>TOTAL OPP SUPP AND EXP</td>
<td>$1,322,632</td>
<td>$147,509</td>
<td>$667,638</td>
<td>$219,005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>FC TOT GEN SUPPLY AND EXP</td>
<td>$791,465</td>
<td>$48,022</td>
<td>$196,777</td>
<td>$42,226</td>
</tr>
<tr>
<td>62</td>
<td>FC OTHER TAX AND LIC</td>
<td>$77,084</td>
<td>$4,920</td>
<td>$17,641</td>
<td>$6,034</td>
</tr>
<tr>
<td>63</td>
<td>VC POL ST AND FED</td>
<td>285,153</td>
<td>21,300</td>
<td>100,102</td>
<td>28,849</td>
</tr>
<tr>
<td>64</td>
<td>FC LIC AND REG FEES</td>
<td>204,944</td>
<td>17,024</td>
<td>90,085</td>
<td>25,905</td>
</tr>
<tr>
<td>65</td>
<td>TOTAL OPER TAX &amp; LIC</td>
<td>$567,165</td>
<td>$43,244</td>
<td>$207,829</td>
<td>$61,788</td>
</tr>
<tr>
<td>66</td>
<td>FC OTHER INSURANCE</td>
<td>$22,754</td>
<td>$5,003</td>
<td>$5,949</td>
<td>$5,510</td>
</tr>
<tr>
<td>67</td>
<td>FC PL &amp; PO</td>
<td>230,252</td>
<td>31,215</td>
<td>177,231</td>
<td>50,097</td>
</tr>
<tr>
<td>68</td>
<td>FC CARGO LOSS AND DAMAGE</td>
<td>205,845</td>
<td>7,690</td>
<td>51,680</td>
<td>8,772</td>
</tr>
<tr>
<td>69</td>
<td>FC FIRE, THEFT, COLL</td>
<td>21,403</td>
<td>5,851</td>
<td>18,018</td>
<td>8,663</td>
</tr>
<tr>
<td>70</td>
<td>TOTAL INSURANCE</td>
<td>$481,164</td>
<td>$49,799</td>
<td>$252,878</td>
<td>$73,676</td>
</tr>
<tr>
<td>71</td>
<td>FC UTILITY</td>
<td>907,746</td>
<td>7,033</td>
<td>$233,286</td>
<td>$7,124</td>
</tr>
<tr>
<td>72</td>
<td>FC COMMUNICATIONS</td>
<td>215,957</td>
<td>11,951</td>
<td>55,814</td>
<td>12,051</td>
</tr>
<tr>
<td>73</td>
<td>TOTAL</td>
<td>$2,003,703</td>
<td>$168,984</td>
<td>$791,000</td>
<td>$19,175</td>
</tr>
<tr>
<td>74</td>
<td>DEPRE - REV EQUIP</td>
<td>$227,565</td>
<td>$46,718</td>
<td>$215,213</td>
<td>$79,974</td>
</tr>
<tr>
<td>75</td>
<td>OTHER DEPRECIATION</td>
<td>179,807</td>
<td>9,107</td>
<td>38,199</td>
<td>3,250</td>
</tr>
<tr>
<td>76</td>
<td>TOTAL DEPRECIATION</td>
<td>$707,372</td>
<td>$255,825</td>
<td>$252,402</td>
<td>$83,324</td>
</tr>
<tr>
<td>77</td>
<td>FC VEHICLE RENTS W/DRIVER</td>
<td>$1,267,295</td>
<td>$222,845</td>
<td>$1,126,234</td>
<td>$350,229</td>
</tr>
<tr>
<td>78</td>
<td>VC VEHICLE RENTS W/O DRIVER</td>
<td>441,660</td>
<td>58,894</td>
<td>406,821</td>
<td>78,834</td>
</tr>
<tr>
<td>79</td>
<td>TRANSPORT FN OTHER CARRIER</td>
<td>545,310</td>
<td>44,757</td>
<td>59,557</td>
<td>34,214</td>
</tr>
<tr>
<td>80</td>
<td>SHIPPER ALLOW/EQUIP RENT</td>
<td>10,705</td>
<td>(1,073)</td>
<td>(1,042)</td>
<td>(1,010)</td>
</tr>
<tr>
<td>81</td>
<td>TOTAL</td>
<td>$2,384,970</td>
<td>$326,403</td>
<td>$1,830,564</td>
<td>$446,876</td>
</tr>
<tr>
<td>82</td>
<td>FC BUS/OFF EQUIP RENTS</td>
<td>$176,905</td>
<td>$12,879</td>
<td>$39,802</td>
<td>$11,307</td>
</tr>
<tr>
<td>83</td>
<td>DISP OF OPER ASSETS - NET</td>
<td>($2,023)</td>
<td>($3,071)</td>
<td>($24,279)</td>
<td>($8,006)</td>
</tr>
<tr>
<td>84</td>
<td>FC MISCELLANEOUS EXPENSES</td>
<td>$154,049</td>
<td>$10,355</td>
<td>$254,910</td>
<td>$19,310</td>
</tr>
<tr>
<td>85</td>
<td>LINESHAUL</td>
<td>86,904,409</td>
<td>$667,320</td>
<td>$4,225,779</td>
<td>$1,114,263</td>
</tr>
<tr>
<td>86</td>
<td>RU AND D</td>
<td>3,544,316</td>
<td>196,971</td>
<td>121,000</td>
<td>40,849</td>
</tr>
<tr>
<td>87</td>
<td>BILLING AND COLL</td>
<td>332,823</td>
<td>19,001</td>
<td>18,485</td>
<td>8,306</td>
</tr>
<tr>
<td>88</td>
<td>PLATFOM</td>
<td>2,184,245</td>
<td>31,622</td>
<td>19,212</td>
<td>3,652</td>
</tr>
<tr>
<td>89</td>
<td>TERMINAL</td>
<td>1,246,461</td>
<td>36,373</td>
<td>179,175</td>
<td>19,935</td>
</tr>
<tr>
<td>90</td>
<td>MAINTENANCE</td>
<td>282,055</td>
<td>28,946</td>
<td>138,025</td>
<td>40,717</td>
</tr>
<tr>
<td>91</td>
<td>TRAFFIC AND SALES</td>
<td>715,007</td>
<td>37,054</td>
<td>76,751</td>
<td>26,013</td>
</tr>
<tr>
<td>92</td>
<td>INSURANCE AND SAFETY</td>
<td>172,606</td>
<td>14,603</td>
<td>54,185</td>
<td>11,756</td>
</tr>
<tr>
<td>93</td>
<td>6 AND A</td>
<td>875,121</td>
<td>91,089</td>
<td>375,048</td>
<td>103,250</td>
</tr>
<tr>
<td>94</td>
<td>TOTALS</td>
<td>$16,242,043</td>
<td>$1,124,481</td>
<td>$5,224,954</td>
<td>$1,601,181</td>
</tr>
</tbody>
</table>

659
### Table 33 (continued)

<table>
<thead>
<tr>
<th>LINE ITEM</th>
<th>COST</th>
<th>ITEM</th>
<th>GENERAL FREIGHT</th>
<th>SPECIALIZED COMMON</th>
<th>CONTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR. CAT.</td>
<td></td>
<td></td>
<td>CLASS I</td>
<td>CLASS II</td>
<td>CLASS I</td>
</tr>
<tr>
<td>109 MILES-OWNED VEH</td>
<td>4,493,300</td>
<td>396,797</td>
<td>1,603,921</td>
<td>549,685</td>
<td>447,110</td>
</tr>
<tr>
<td>110 MILES-RENTED W/ DRIVER</td>
<td>1,502,616</td>
<td>277,956</td>
<td>1,250,931</td>
<td>370,820</td>
<td>94,816</td>
</tr>
<tr>
<td>111 MILES-RENTED W/O DRIVER</td>
<td>761,754</td>
<td>104,039</td>
<td>600,778</td>
<td>99,365</td>
<td>60,400</td>
</tr>
<tr>
<td>112 TOTAL MILES DRIVEN</td>
<td>8,757,976</td>
<td>777,892</td>
<td>3,823,217</td>
<td>1,019,991</td>
<td>602,646</td>
</tr>
<tr>
<td>113 FRED MILES - ANY SERVICE</td>
<td>87,123,794</td>
<td>9,109,702</td>
<td>3,432,514</td>
<td>14,866,022</td>
<td>7,054,568</td>
</tr>
<tr>
<td>114 TONS COMMON CARRIER SERVICE</td>
<td>156,690</td>
<td>45,190</td>
<td>216,359</td>
<td>89,257</td>
<td>13,150</td>
</tr>
<tr>
<td>115 TONS COMBINED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116 REVENUE PER MILE</td>
<td>$5.50</td>
<td>$1.37</td>
<td>$1.37</td>
<td>$1.37</td>
<td>$1.25</td>
</tr>
<tr>
<td>117 REV. PER TON, CENTS</td>
<td>10.70</td>
<td>11.88</td>
<td>9.77</td>
<td>8.98</td>
<td>12.80</td>
</tr>
<tr>
<td>118 PRO RATED FC OF TIME OFF</td>
<td>$107,270</td>
<td>61,980</td>
<td>14,679</td>
<td>5,947</td>
<td>3,454</td>
</tr>
<tr>
<td>119 SAFETY FUND</td>
<td>23,954</td>
<td>5,003</td>
<td>5,949</td>
<td>5,510</td>
<td>4,365</td>
</tr>
<tr>
<td>120 OTHER INSURANCE</td>
<td>23,954</td>
<td>5,003</td>
<td>5,949</td>
<td>5,510</td>
<td>4,365</td>
</tr>
<tr>
<td>121 PL &amp; PO</td>
<td>230,252</td>
<td>31,215</td>
<td>177,231</td>
<td>50,977</td>
<td>22,883</td>
</tr>
<tr>
<td>122 UTILITIES</td>
<td>21,943</td>
<td>3,081</td>
<td>18,018</td>
<td>8,685</td>
<td>1,830</td>
</tr>
<tr>
<td>123 COMMUNICATIONS</td>
<td>213,957</td>
<td>11,951</td>
<td>35,914</td>
<td>12,051</td>
<td>6,215</td>
</tr>
<tr>
<td>124 MISC EXPENSES</td>
<td>154,049</td>
<td>10,325</td>
<td>54,910</td>
<td>14,310</td>
<td>11,263</td>
</tr>
<tr>
<td>125 TOTAL FIXED COSTS</td>
<td>95,839,807</td>
<td>12,775</td>
<td>1,081,871</td>
<td>296,739</td>
<td>219,683</td>
</tr>
</tbody>
</table>

**Fixed and Variable Cost Model**

<table>
<thead>
<tr>
<th>ITEM</th>
<th>GENERAL FREIGHT</th>
<th>SPECIALIZED COMMON</th>
<th>CONTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR. CAT.</td>
<td></td>
<td></td>
<td>CLASS I</td>
</tr>
<tr>
<td>126 SALARIES - OFF AND SUPER</td>
<td>$1,500,794</td>
<td>$42,827</td>
<td>$238,42</td>
</tr>
<tr>
<td>127 CLERICAL AND ADMIN</td>
<td>604,132</td>
<td>30,056</td>
<td>30,843</td>
</tr>
<tr>
<td>128 OTHER</td>
<td>842,677</td>
<td>14,187</td>
<td>16,706</td>
</tr>
<tr>
<td>129 PRO RATED FC OF TIME OFF</td>
<td>147,528</td>
<td>2,354</td>
<td>9,747</td>
</tr>
<tr>
<td>130 PRO RATED FC OF FRINGES</td>
<td>325,250</td>
<td>14,907</td>
<td>26,164</td>
</tr>
<tr>
<td>131 TOT GEN OF SUP &amp; EXP</td>
<td>791,665</td>
<td>48,052</td>
<td>196,277</td>
</tr>
<tr>
<td>132 OTHER TAX AND LIC</td>
<td>77,086</td>
<td>4,720</td>
<td>17,641</td>
</tr>
<tr>
<td>133 LIC AND REG FEES</td>
<td>204,944</td>
<td>17,024</td>
<td>90,985</td>
</tr>
<tr>
<td>134 OTHER INSURANCE</td>
<td>23,954</td>
<td>5,003</td>
<td>5,949</td>
</tr>
<tr>
<td>135 PL &amp; PO</td>
<td>230,252</td>
<td>31,215</td>
<td>177,231</td>
</tr>
<tr>
<td>136 UTILITIES</td>
<td>21,943</td>
<td>3,081</td>
<td>18,018</td>
</tr>
<tr>
<td>137 COMMUNICATIONS</td>
<td>213,957</td>
<td>11,951</td>
<td>35,914</td>
</tr>
<tr>
<td>138 MISC EXPENSES</td>
<td>154,049</td>
<td>10,325</td>
<td>54,910</td>
</tr>
<tr>
<td>139 TOTAL FIXED COSTS</td>
<td>95,839,807</td>
<td>12,775</td>
<td>1,081,871</td>
</tr>
</tbody>
</table>
### TABLE 33 (CONTINUED)

**FIXED AND VARIABLE COST MODEL (CONTINUED)**

ALL DOLLAR FIGURES/MILEAGE IN 000's

<table>
<thead>
<tr>
<th>LINE ITEM</th>
<th>GENERAL FREIGHT</th>
<th>SPECIALIZED COMMON</th>
<th>OTHER THAN GEN FREIGHT</th>
<th>CONTRACT</th>
<th>SPECIAL COMMODITY</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>VARIABLE COSTS:</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155 DRIVERS/HELPERS</td>
<td>$3,314,134</td>
<td>$184,420</td>
<td>$744,732</td>
<td>$205,702</td>
<td>$236,122</td>
</tr>
<tr>
<td>156 OWNER-OPERATOR</td>
<td>66,949</td>
<td>7,419</td>
<td>57,243</td>
<td>4,243</td>
<td>2,971</td>
</tr>
<tr>
<td>157 VEH REPAIR/SERVICE</td>
<td>326,775</td>
<td>20,029</td>
<td>123,013</td>
<td>31,024</td>
<td>32,786</td>
</tr>
<tr>
<td>158 PRD RATED VC OF TIME OFF</td>
<td>378,515</td>
<td>9,725</td>
<td>57,022</td>
<td>6,281</td>
<td>30,824</td>
</tr>
<tr>
<td>159 PRD RATED VC OF FRINGES</td>
<td>1,424,779</td>
<td>61,636</td>
<td>327,540</td>
<td>70,094</td>
<td>103,222</td>
</tr>
<tr>
<td>160 OTHER OP SUPPLIES/EXP</td>
<td>256,516</td>
<td>17,056</td>
<td>131,561</td>
<td>28,977</td>
<td>26,548</td>
</tr>
<tr>
<td>161 FUEL - MV</td>
<td>665,000</td>
<td>66,307</td>
<td>249,482</td>
<td>93,771</td>
<td>67,568</td>
</tr>
<tr>
<td>162 OIL, LUBE, COOLANTS</td>
<td>24,177</td>
<td>1,974</td>
<td>10,557</td>
<td>2,666</td>
<td>1,906</td>
</tr>
<tr>
<td>163 VEHICLE PARTS</td>
<td>243,191</td>
<td>29,730</td>
<td>120,540</td>
<td>51,756</td>
<td>25,633</td>
</tr>
<tr>
<td>164 VEH MAINT/OUTSIDE REP</td>
<td>186,786</td>
<td>12,252</td>
<td>71,297</td>
<td>16,947</td>
<td>15,127</td>
</tr>
<tr>
<td>165 TIRES AND TUNES</td>
<td>177,162</td>
<td>17,480</td>
<td>94,185</td>
<td>24,938</td>
<td>10,998</td>
</tr>
<tr>
<td>166 POL ST AND PED</td>
<td>385,133</td>
<td>21,300</td>
<td>100,102</td>
<td>29,849</td>
<td>10,583</td>
</tr>
<tr>
<td>167 VEHICLE RENTS/W/DRIVER</td>
<td>1,387,295</td>
<td>223,845</td>
<td>1,226,244</td>
<td>330,229</td>
<td>115,493</td>
</tr>
<tr>
<td>168 VEHICLE RENTS/W/DRIVER</td>
<td>461,660</td>
<td>58,994</td>
<td>466,821</td>
<td>79,834</td>
<td>27,073</td>
</tr>
<tr>
<td>169 TOTAL VARIABLE COSTS</td>
<td>$9,161,571</td>
<td>$734,786</td>
<td>$3,571,175</td>
<td>$96,739</td>
<td>$219,853</td>
</tr>
<tr>
<td>170 CASE FIGURES WITH ATA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171 TOTAL</td>
<td>$9,161,571</td>
<td>$734,786</td>
<td>$3,571,175</td>
<td>$96,739</td>
<td>$219,853</td>
</tr>
<tr>
<td>172 CHECK FIGURES WITH ATA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>173 TFC</td>
<td>$5,039,097</td>
<td>$295,275</td>
<td>$1,061,871</td>
<td>$296,379</td>
<td>$219,853</td>
</tr>
<tr>
<td>174 TVC</td>
<td>9,161,072</td>
<td>734,786</td>
<td>3,671,175</td>
<td>996,311</td>
<td>721,756</td>
</tr>
<tr>
<td>175 DEP0</td>
<td>707,372</td>
<td>55,825</td>
<td>253,402</td>
<td>82,324</td>
<td>74,316</td>
</tr>
<tr>
<td>176 DISP OF ASSETS</td>
<td>(22,026)</td>
<td>(3,071)</td>
<td>(24,279)</td>
<td>(8,006)</td>
<td>(2,201)</td>
</tr>
<tr>
<td>177 DISOP FRGTH CARRIER</td>
<td>545,310</td>
<td>44,737</td>
<td>59,357</td>
<td>34,214</td>
<td>3,054</td>
</tr>
<tr>
<td>178 SHIPPERS ALLOW/RENT (CRED)</td>
<td>10,705</td>
<td>(1,073)</td>
<td>(14,029)</td>
<td>(1,401)</td>
<td>(485)</td>
</tr>
<tr>
<td>179 TOTAL</td>
<td>$11,424,041</td>
<td>$1,124,479</td>
<td>$5,227,678</td>
<td>$1,401,181</td>
<td>$1,016,093</td>
</tr>
<tr>
<td>180 ATA</td>
<td>$11,424,041</td>
<td>$1,124,479</td>
<td>$5,227,678</td>
<td>$1,401,181</td>
<td>$1,016,093</td>
</tr>
<tr>
<td>181 DIFFERENCE FROM ROUNDING</td>
<td>(92)</td>
<td>(81)</td>
<td>(91)</td>
<td>(81)</td>
<td>(91)</td>
</tr>
</tbody>
</table>

<p>| 182 | 661 |</p>
<table>
<thead>
<tr>
<th>ITEM</th>
<th>GENERAL FREIGHT</th>
<th>SPECIALIZED COMMON OTHER THAN GEN FREIGHT</th>
<th>CONTRACT SPECIAL COMMODITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CLASS I</td>
<td>CLASS II</td>
<td>CLASS I</td>
</tr>
<tr>
<td>199</td>
<td>TOTAL OPERATING REVENUE / MILE</td>
<td>$2.543</td>
<td>$1.512</td>
</tr>
<tr>
<td>200</td>
<td>TOTAL OPERATING REVENUE/INTERCITY (LINE 106/LINE 112)</td>
<td>$2.502</td>
<td>$1.388</td>
</tr>
<tr>
<td>201</td>
<td>TOTAL OPERATING REVENUE/PER UNIT (LINE 106/LINE 221)</td>
<td>$145.379</td>
<td>$90.402</td>
</tr>
<tr>
<td>202</td>
<td>TOTAL OPERATING REVENUE/INTERCITY PER POWER UNIT OPERATED (LINE 106/LINE 221)</td>
<td>$143.050</td>
<td>$83.011</td>
</tr>
<tr>
<td>203</td>
<td>TOTAL FIXED COSTS (LINE 152)</td>
<td>$5,839,807</td>
<td>$293,275</td>
</tr>
<tr>
<td>204</td>
<td>TOTAL VARIABLE COSTS (LINE 170)</td>
<td>$9,161,873</td>
<td>$734,786</td>
</tr>
<tr>
<td>205</td>
<td>TOTAL VARIABLE AND FIXED COSTS (LINE 215/LINE 216)</td>
<td>$15,001,680</td>
<td>$1,028,061</td>
</tr>
<tr>
<td>206</td>
<td>TOTAL MILES HIGHWAY SERVICE (LINE 112)</td>
<td>$6,757,976</td>
<td>$777,992</td>
</tr>
<tr>
<td>207</td>
<td>VARIABLE COST PER MILE (LINE 215/LINE 216)</td>
<td>$1.356</td>
<td>$0.945</td>
</tr>
<tr>
<td>208</td>
<td>CONTRIBUTION MARGINS/INTERCITY MIL (LINE 201/LINE 221)</td>
<td>$1.146</td>
<td>$0.444</td>
</tr>
<tr>
<td>209</td>
<td>OPERATING PROFIT (LINE 106 - LINE 217)</td>
<td>$1,908,210</td>
<td>$31,746</td>
</tr>
<tr>
<td>210</td>
<td>OPERATING PROFIT/MILE (LINE 229/LINE 112)</td>
<td>28.259</td>
<td>6.652</td>
</tr>
</tbody>
</table>

662
<table>
<thead>
<tr>
<th>ITEM</th>
<th>GENERAL FREIGHT</th>
<th>SPECIALIZED COMMON OTHER THAN GEN FREIGHT</th>
<th>CONTRACT SPECIAL COMMODITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CLASS I</td>
<td>CLASS II</td>
<td>CLASS I</td>
</tr>
<tr>
<td>236</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL POWER UNITS OPERATED</td>
<td>118,210</td>
<td>15,008</td>
</tr>
<tr>
<td>237</td>
<td>TOTAL NUMBER OF FIRMS IN SURVEY</td>
<td>266</td>
<td>261</td>
</tr>
<tr>
<td>238</td>
<td>AVG NR. POWER UNITS PER FIRM</td>
<td>444</td>
<td>50</td>
</tr>
<tr>
<td>239</td>
<td>AVERAGE MILES / POWER UNIT (LINE 219/LINE 236)</td>
<td>57,169</td>
<td>59,801</td>
</tr>
<tr>
<td>240</td>
<td>AVERAGE MILES / PER OWNED P. U. (LINE 109/LINE 23)</td>
<td>50,310</td>
<td>49,046</td>
</tr>
<tr>
<td>241</td>
<td>AVERAGE MILES RENTED/W DRIVER (LINE 110/LINE 24)</td>
<td>89,977</td>
<td>80,268</td>
</tr>
<tr>
<td>242</td>
<td>AVERAGE MILES RENTED W/O DRIVER (LINE 111/LINE 25)</td>
<td>62,471</td>
<td>69,129</td>
</tr>
<tr>
<td>250</td>
<td>VARIABLE COSTS / POWER UNIT (LINE 215/LINE 236)</td>
<td>$77,505</td>
<td>$56,487</td>
</tr>
<tr>
<td>251</td>
<td>TOTAL COMMUNICATIONS EXPENSE</td>
<td>$215,957</td>
<td>$11,951</td>
</tr>
<tr>
<td>252</td>
<td>COMM EXP / POWER UNIT (LINE 76/LINE 22)</td>
<td>$1,827</td>
<td>$919</td>
</tr>
<tr>
<td>253</td>
<td>COMM EXP / OWNED POWER UNIT (LINE 76/LINE 23)</td>
<td>$2,418</td>
<td>$1,477</td>
</tr>
<tr>
<td>264</td>
<td>VARIABLE COST / MILE FROM CATEGORY BREAKDOWN (LINE 95/LINE 112)</td>
<td>$1.022</td>
<td>$0.058</td>
</tr>
</tbody>
</table>

663
LIST OF REFERENCES


9. Qualcomm, Inc., "EUTELSAT and Qualcomm Team Up to Offer OmniTRACS In Europe," Transportation Times, pp. 4-5, Nr. 8910, Fall 1989.


13. AMSC, Joint Amendment to the FCC, 1 February 1988.


31. Motorola Communications and Electronics, Sales force "presell" and other marketing literature, 1989.

32. Ardis Corp. press releases and marketing literature, April 1990.


41. Map hand transcribed from Cue marketing literature dated October 1988.


44. AT&T 800 service rate tables dated 1 January 1988.


54. Attachment A to Omninet RDSS proposal, April 1985.


64. Locstar marketing literature, 1989.


77. Orbital Communications Corporation, Petition For Rulemaking, 28 February 1990.

78. Orbital Communications Corporation, Application For Authority to Construct a Low-Orbit Mobile Satellite System, 28 February 1990.


83. International Maritime Satellite Organization, Mobile Satellite Communications Brought Down To Earth, by J. Bell, undated.


96. Telesat Mobile Inc., FAX to the author, Subject: Phase 1 Mobile Data Service, 12 April 1990.


<table>
<thead>
<tr>
<th>No.</th>
<th>Distribution List</th>
</tr>
</thead>
</table>
| 1.  | Defense Technical Information Center  
Cameron Station  
Alexandria, Va 22304-6145 | 2 |
| 2.  | Library, Code 0142  
Naval Postgraduate School  
Monterey, Ca 93943-5102 | 2 |
| 3.  | Lcdr W. J. Schworer III, SC, USN  
3023 Gayla Court  
Spring Valley, Ca 92078 | 5 |
| 4.  | Dr. Dan C. Boger  
Code AS-BO  
Department of Administrative Science  
Naval Postgraduate School  
Monterey, Ca 93943-5000 | 3 |
| 5.  | Dr. Carl Jones  
Code CC  
Command, Control, and Communications Group  
Naval Postgraduate School  
Monterey, Ca 93943-5008 | 1 |
| 3.  | Mr. Sam Mishelow  
Director of Marketing  
Hellyer Communications, Inc.  
8500 Keystone Crossing, Suite 160  
Indianapolis, In 46240 | 1 |
| 4.  | Dr. Herschel Shosteck  
Herschel Shosteck Associates, Ltd.  
10 Post Office Road  
Silver Spring, Ma 20910-1192 | 1 |
| 5.  | Mr. A. C. Miller  
307 Buxton Rd.  
Falls Church, Va 22046 | 1 |
6. Mr. Carlos V. Roberts  
Executive Vice President  
Pegasus Message Corporation  
The Hallmark Building  
13873 Park Center Road  
Herndon, Va 22071

7. Captain Paul Gashler, RAN  
1 Key Street  
Campbell, ACT 2601  
Australia

8. Mr. Olof Lundberg  
Director General  
International Maritime Satellite Organization  
40 Melton Street  
Euston Square  
London NW1 2EQ  
England

9. Mr. Craig Fitzgerald  
Senior Analyst, Market Development  
AUSSAT Pty, Ltd.  
54 Garrington Street  
Sydney 2000  
Australia

10. K. S. Mohanavelu  
Deputy Director, FM  
Indian Space Research Organization Headquarters  
Antariksh Bhavan  
New B. E. L. Road  
Bangalore - 560 054  
India

11. Mr. Keith Fagan  
Manager, Product Development  
Telesat Mobile  
333 River Rd.  
Tower A, 14th Floor  
P.O. Box 7800  
Ottawa, Ontario K1L 8E4  
Canada

12. Capt Roger Bristol  
Code NSUP-XN  
Naval Supply Systems Command  
Washington, D.C. 20376
13. Ms. Grace Leone  
EFC Satellite Services  
1887 Greenfield Av., Suite 109  
Los Angeles, Ca 90025

14. Mr. Brent Taylor  
Geostar Corporation  
1011 22nd Street N.W.  
Washington, D.C. 20037

15. Ms. Fern Jarmulnek  
FCC Satellite Radio Branch  
Room 6324  
2025 M. Street N.W.  
Washington, D.C. 20554

16. Dr. Irwin Jacobs  
Qualcomm, Inc.  
10555 Sorrento Valley Road  
San Diego, Ca 92121-1617

17. American Society of Transportation Logistics  
P.O. Box 33095  
Louisville, Ky 40232

18. Mr. Gus Gyllenhoff  
American Trucking Associations  
2200 Mill Road  
Alexandria, Va 22314

19. Mr. Alan Parker  
Orbital Communications Corp.  
12500 Fair Lakes Circle  
Fairfax, Va. 22033

29. Mr. John Lambert  
Code 051  
Naval Supply Systems Command  
Washington, D.C. 20376

30. Mr. Gary Hennig  
Attn: 06T2  
Naval Sea Systems Command  
Washington, D.C. 20362-5101

31. Mr. Robert H. Moore  
Director Transportation Policy  
Office of Asst. Sec. Defense for Production & Logistics  
Washington, D.C. 20301-8000
32. Commanding Officer
Navy Material Transportation Office
Bldg. Z-133-5
Naval Base
Norfolk, Va 23511

33. Mr. Joe Kemetz
304 Central Park Way
Newport News, Va 23606

34. Commander
Military Traffic Management Command, Western Area
Oakland Army Base
Oakland, Ca 94626-5000

35. Commander
Military Traffic Management Command
5611 Columbia Pike
Falls Church, Va 22041-5050

36. U.S. Transportation Command
Attn: CCEA (Ltc Don Parker)
Scott AFB, Il 62225-7001

37. Dr. William Rafferty
NASA MSAT-X Program Manager
Mail Stop 238-420
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, Ca 91109

38. Radm David M. Cooney, USN
6203 Larstan Dr.
Alexandria, Va 22312

39. Mr. Robert Klein
RJK Labs
P.O. Drawer "Q"
Los Altos, Ca 94022

40. American Radio Relay League
225 Main Street
Newington, Ct 06111

41. Mr. Alan Reiter
Editor, Mobile Data Report
1660 L St. NW, Suite 512
Washington, D.C. 20036
42. Mr. Scott Chase
   Editor, Via Satellite Magazine
   Phillips Publishing, Inc.
   7811 Montrose Road
   Potomac, Md  20854

43. Mr. Jim Jansco
   Director of Operations
   COMSAT Mobile Communications
   950 L'enfant Plaza SW
   Washington, D.C.  20024

44. Col. W. Tiffany, Signal Corps, USA
   880 Coleman
   Menlo Park, Ca  94025

45. Cpt. T. O'Hara, Signal Corps, USA
   5119 Fair Forrest Dr.
   Stone Mountain, Ga  30088

46. Mr. Bob Carr
   4178 Oporto Place
   San Diego, Ca  92124

47. Mr. Roy Martinez
   Proteus Corp.
   2103 Wyoming N.E.
   Albuquerque, Nm  87112

48. Dr. George Tellmann
   American Mobile Satellite Corporation
   1233 20th Street N.W., Suite 301
   Washington, D.C.  20036

49. Dr. Dan Trietsch
   Code AS-TR
   Department of Administrative Science
   Naval Postgraduate School
   Monterey, Ca  93943-5000

50. National Defense Transportation Association
    50 South Pickett Street, Suite 220
    Alexandria, Va  22304

51. Space and Naval Warfare Systems Command
    Washington, D.C.  20363-5100

52. Deputy Chief of Naval Operations For Logistics (OP-04)
    Washington, D.C.  20350-2000

677
53. Commanding Officer  
Navy Transportation Management School  
Bldg. 790  
Oakland Army Base  
Oakland, Ca  94626-5790

54. Mr. Gary Tooker  
Motorola  
1303 East Algonquin  
Schaumberg, Il  60196

55. Headquarters DLA  
Attn: DLA-OT (Col Endress)  
Cameron Station  
Alexandria, Va  22304-6100

56. Director  
Office of the Chief of Transportation  
Attn: ATZF-OCT-E  
Fort Eustis, Va  23604-5407