NAME OF CONTRACTOR: Paul M. Raccah

CONTRACT NUMBER: DAAK 70-83-K-0047

EFFECTIVE DATE OF CONTRACT: 2/1/83

EXPIRATION DATE OF CONTRACT: 1/31/86

REPORTING PERIOD: SECOND QUARTER

PRINCIPAL INVESTIGATOR: PAUL M. RACCAH

PHONE NUMBER: (312) 996-3403

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U. S. Government.
NVL - SAMPLE DATA

Plasma Conditions: 60 watts RF power
+40 VDC sample bias
.5 torr O\textsubscript{2}

Samples:

#1 488\textgreek{A} Plasma oxide on LPE
6 min. growth time
Rockwell #5-271B LPE - (111), \(\lambda = 3.87 \ \mu\text{m}, 25-28 \ \mu\text{m} \) thick
p-type, \(4.8 \times 10^{15}/\text{cm}^{3} \) @ 77K
mobility \(238 \text{cm}^{2}\text{v}^{-1}\text{s}^{-1} \) @ 77K
\(x = 0.32 \pm 0.01 \) (by EER)

#2 445\textgreek{A} Plasma oxide on Bulk
5 min. growth time
Cominco #15(321)-10B - (111), Bulk
n-type, \(-2.7 \times 10^{15}/\text{cm}^{3} \) @ 300K
\(-1.7 \times 10^{14}/\text{cm}^{3} \) @ 77K
mobility \(5.6 \times 10^{3} \text{cm}^{2}\text{v}^{-1}\text{s}^{-1} \) @ 300K
\(6.4 \times 10^{4} \text{cm}^{2}\text{v}^{-1}\text{s}^{-1} \) @ 77K
\(x = 0.295 \pm 0.05 \)

#3 a 237\textgreek{A} Plasma oxide on LPE
2 min. growth time

b 363\textgreek{A} Plasma oxide on LPE
6 min growth time
Fermionics #4318 LPE - (111), \(\lambda = 12.5 \ \mu\text{m}, 20 \ \mu\text{m} \) thick
n-type, \(-1.1 \times 10^{14}/\text{cm}^{3} \) @ 77K
mobility \(1.4 \times 10^{5} \text{cm}^{2}\text{v}^{-1}\text{s}^{-1} \) @ 77K
\(x = 0.2 \)
SIMS DATA
Control - only native surface oxide
Sample #1

488K Plasma oxide on LPE (by ellipsometry)
6 min. growth time
Rockwell #5-271B LPE - (111), λ = 3.87 μm, 25-28 μm thick
p-type, $4.8 \times 10^{16} \text{cm}^{-3} @ 77K$
mobility 238 cm2/V·s @ 77K
x = .32 ± .01 (by EER)

\[488K \text{ Plasma oxide on LPE (by ellipsometry)} \]

\[6 \text{ min. growth time} \]

\[\text{Rockwell #5-271B LPE - (111), } \lambda = 3.87 \mu \text{m, 25-28 } \mu \text{m thick} \]

\[\text{p-type, } 4.8 \times 10^{16} \text{ cm}^{-3} @ 77K \]

\[\text{mobility 238 cm}^2/\text{V·s @ 77K} \]

\[x = .32 \pm .01 \text{ (by EER)} \]
Sample 2

445R Plasma oxide on Bulk (by ellipsometry)

5 min. growth time

Cominco 015(321)-10B - (111), Bulk

- n-type, $-2.7 \times 10^{15}/\text{cm}^3$ @ 300K
 - $1.7 \times 10^{14}/\text{cm}^3$ @ 77K
- Mobility 5.6 $\times 10^{3}$ cm2/V·s @ 300K
 - 6.4 $\times 10^{4}$ cm2/V·s @ 77K
- $x = 0.295 \pm 0.05$
a. 237Å Plasma oxide on LPE (by ellipsometry)
2 min. growth time

b. 363Å Plasma oxide on LPE (by ellipsometry)
6 min growth time

Fermionics #4318 LPE - (111), λ = 12.5 μm, 20 μm thick
n-type, -1.1 x 10^14 /cm³ @ 77K
mobility 1.4 x 10^2 cm²/v·s @ 77K
x = .2
Sample #3B

237\(\alpha\) Plasma oxide on LPE (by ellipsometry)
2 min. growth time

363\(\alpha\) Plasma oxide on LPE (by ellipsometry)
6 min growth time

Ferromics #4318 LPE - (111), \(\lambda = 12.5 \, \mu\text{m}\), 20,\,\mu\text{m} thick
n-type, \(-1.1 \times 10^{14} / \text{cm}^3\) \(\text{cm}^{-3}\) @ 77K
mobility \(1.4 \times 10^5 \, \text{cm}^2 / \text{V} \cdot \text{s}\) @ 77K
\(x = 0.2\)