The Mechanism of Restructuring in Geometry

Stellan Ohlsson
The Learning Research and Development Center.
University of Pittsburgh, Pittsburgh, PA 15260

Technical Report No. KUL-90-04
May, 1990
The Mechanism of Restructuring in Geometry

Stellan Ohlsson
The Learning Research and Development Center,
University of Pittsburgh, Pittsburgh, PA 15260

Technical Report No. KUL-90-04
May, 1990

Preparation of this manuscript was supported, in part, by ONR grant N00014-89-J-1681. Approved for public release; distribution unlimited. The opinions expressed do not necessarily reflect the positions of the sponsoring agency, and no endorsement should be inferred. This report is a substantially rewritten version of an earlier technical report: Ohlsson, S. (1983). Restructuring revisited. III. Re-describing the problem situation as a heuristic in geometric problem solving (Technical Report No. 353). Uppsala, Sweden: Department of Psychology, University of Uppsala.
Restructuring consists of a change in the representation of the current search state, a process which breaks an impasse during problem solving by opening up new search paths. A corpus of 52 think-aloud protocols from the domain of geometry was scanned for evidence of restructuring. The data suggest that restructuring is accomplished by re-parsing the geometric diagram.
Knowledge and Understanding in Human Learning

Knowledge and Understanding in Human Learning (KUL) is an umbrella term for a loosely connected set of activities lead by Stellan Ohlsson at the Learning Research and Development Center, University of Pittsburgh. The aim of KUL is to clarify the role of world knowledge in human thinking, reasoning, and problem solving. World knowledge consists of concepts and principles, and contrasts with facts (episodic knowledge) and with cognitive skills (procedural knowledge). The long term goal is to answer six questions: How can the concepts and principles of particular domains be identified? How are concepts and principles acquired? How can the acquisition of concepts and principles be assessed? How are concepts and principles encoded in the mind? How are concepts and principles utilized in performance and learning? How can instruction facilitate the acquisition and utilization of concepts and principles (as opposed to episodic or procedural knowledge)? Different methodologies are used to investigate these questions: Psychological experiments, protocol studies, computer simulations, historical studies, semantic, logical, and mathematical analyses, instructional intervention studies, and so on. A list of KUL reports appear at the back of this report.
Table of Contents

Abstract 4

Introduction 5

Method 6

Results 7

Case 1: Deliberate restructuring 7

Case 2: Goal-driven restructuring 8

Case 3: Hint-driven restructuring 9

Discussion 10

References 11

List of KUL reports 12
Abstract

Restructuring consists of a change in the representation of the current search state, a process which breaks an impasse during problem solving by opening up new search paths. A corpus of 52 think-aloud protocols from the domain of geometry was scanned for evidence of restructuring. The data suggest that restructuring is accomplished by re-parsing the geometric diagram.
Introduction

A wide variety of problem solving processes have been analyzed in terms of heuristic search (Newell & Simon, 1972). For example, in geometry proofs the geometric theorems (operators) are applied to the mental representation of the diagram (the knowledge state) until the desired proposition (the goal state) has been attained (Anderson, 1981). The stepwise character of heuristic search contrasts with the Gestalt hypothesis that problem solving proceeds through (a) an initial, unsuccessful, attack on the problem, (b) a more or less protracted impasse, and (c) a restructuring of the problem, which is typically, but not necessarily, followed by insight (Ohlsson, 1984a).

Several attempts have been made to reconcile the information processing and Gestalt hypotheses. Simon (1966) proposed that it helps to sleep on a problem, because goal tree information is forgotten faster than problem information. After a pause, a new goal tree is built on the basis of more knowledge about the problem. Langley and Jones (1988) interpret an impasse as a failure to retrieve the relevant problem solving operator. Insight occurs when some external stimulus causes enough activation to spread to that operator to allow its retrieval. A related hypothesis claims that insight occurs when an appropriate analogy is retrieved (Keane, 1988). Both the differential rate of forgetting hypothesis and the spread of activation hypothesis require that the problem solver moves attention away from the problem, and so cannot explain insight during ongoing problem solving. Greeno and Berger (1987) have proposed that insights occur when a problem solver breaks an impasse by constructing new functional knowledge, i.e., new problem solving operators. A new operator is constructed by inferring that an object can fulfill a particular function, e.g., that a screwdriver can be used to complete an electric circuit. This follows from the fact that the screwdriver is made of metal, in conjunction with the general principle that metallic objects conduct electricity. Several researchers have proposed that problem representations can be improved by the construction of macro-operators (Amarel, 1968; Korf, 1985). Koedinger and Anderson (in press) have proposed the related idea that geometry experts combine geometric theorems into larger inference schemas, called diagram configuration schemas, which allow them to find a proof without step-by-step search of the proof space. The macro-operator and diagram configuration hypotheses explain expert performance, but they do not explain insights by novices. All of these hypotheses locate restructuring in the processes of problem solving.

In contrast, I have proposed that restructuring involves a change in the mental representation of the current search state (Ohlsson, 1984b). A change in the representation implies that objects, relations, and properties which initially are seen as instances of certain concepts are being re-encoded as instances of other concepts.
For example, an object which is initially encoded as a *hammer* might in the course of problem solving become re-encoded as a *pendulum weight*, a *line* may be re-encoded as a *triangle side*, and so on. Re-encoding a search state changes the set of operators which are applicable in that state, and thus breaks an impasse by opening up new search paths. A similar theory has been proposed by Kaplan and Simon (in press) to explain restructuring in the Mutilated Checker Board Problem. The critique by Montgomery (1988) does not touch those aspects of the theory that are of main concern in this paper. The purpose of the present paper is to provide evidence for re-encoding from the domain of geometry, and to propose a mechanism for re-encoding in that domain.

Table 1. Geometric theorems acquired by the subjects.

Theorem 1. Supplementary angles are congruent.

Theorem 2. Vertical angles are congruent.

Theorem 3. The supplementary angle of a right angle is a right angle.

Theorem 4. If two angles and their common side in one triangle are congruent to the corresponding angles and their common side in another triangle, then the two triangles are congruent.

Theorem 5. If two sides in a triangle are congruent, then their opposite angles are congruent; and vice versa.

Method

Three undergraduate psychology students participated in an experimental course in elementary geometry. The experimenter saw each subject individually in sessions that lasted approximately one hour each. The subjects learned basic theorems of plane geometry, the first five of which are shown in Table 1. A typical session began with free recall of previously learned theorems, continued with the introduction of new theorems, and ended with problem solving practice. The subjects had the theorems available during problem solving, and they were instructed to think aloud. The data consist of 52 think-aloud protocols, representing a total of approximately nine hours of problem solving effort.
Results

The protocols were scanned for the occurrence of restructuring events. Ten such events were found. The three most informative events will be analyzed below. They illustrate deliberate restructuring, goal driven restructuring, and restructuring in response to a hint.

Case 1: Deliberate restructuring. Subject S3 was given the problem in Figure 1 after she had studied Theorems 1-5 (see Table 1). She began by proving that triangles AED and BEC are congruent, and then entered an impasse. In fragments F65-F67 (see Table 2) she deliberately sets out to see the problem from many viewpoints. The process of restructuring proceeds through three steps. First, she mentally cuts the figure along the diagonal CA, forming the triangles CDA and CBA (F68-F70). She then mentally cuts the figure along the other diagonal, forming the triangles DCB and DBA (F71-F74). Finally, she keeps one triangle from each pair, as it were, and sets herself the task of proving them congruent (F75-F77). Figure 2 gives a diagrammatic analysis of the process. The geometric objects perceived by the subject are drawn in bold lines, while the rest of the diagram is drawn in broken lines. Restructuring was not followed by insight in this case. The subject worked on the problem for twelve minutes without solving it.

Table 2. Protocol excerpt from Subject S3.

| F65. but perhaps one can see this in some other way also |
| F66. one can perhaps see this from many viewpoints here |
| F67. now we shall see |
| F68. one can see it as |
| F69. CDA and CBA |
| F70. triangles |
| F71. one can see it on |
| F72. DCB and DBA instead |
| F73. yes exactly yes |
| F74. those two |
| F75. well |
| F76. now I can see this in another way |
| F77. CDB and CAD ought to be congruent here in some way |
Case 2: Goal-driven restructuring. S1 was given the problem in Figure 1 as his first problem after studying Theorems 1-5 (see Table 1). S1 misunderstood the goal of the problem to be to prove that angle ADC is congruent to angle BCD. When the protocol excerpt in Table 3 begins, he has proved that angles EDA and ECB are congruent by proving them corresponding parts of the congruent triangles EDA and ECB. He then sets himself the goal of proving that the remaining parts, i.e., angles EDC and ECD, are equal (F43). His plan is to prove that they are equal by proving that the sides of the triangle EDC are equal (F42-F45).

Table 3. Protocol excerpt from Subject S1.

F42	yes now I am thinking about whether one can prove that these two sides [DE, EC] are equally long
F43	because if they are then those two angles [EDC, ECD] which are just the remaining parts of those angles which I want to get [ADE, BCD] must be equally long
F44	so then this and that angle [ADE, BCD] must be equally big
F45	and then the problem is solved
F46	so it is now a question of proving that it is isosceles
F47	that triangle [EDC]
F48	and that I cannot
F49	but perhaps one can do it in some other way
(What are you thinking?)	
F50	well now I am thinking
F51	well it is the same problem
F52	but from another angle
F53	yes if this one
F54	is those two lines [ED, EC] are equally long
F55	I am thinking
F56	yes but they must be
F57	since they are parts of
F58	it is congruent
F59	these two here are congruent [triangles EDA, ECB]
F60	and it is [ED, EC] corresponding sides in the triangles [EDA, ECB]
F61	therefore these two sides [ED, EC] are equally long

This goal is reformulated as proving that the triangle EDC is isosceles (F46-F47). This view of the problem leads to an impasse (F48-F49). Prompted by the experimenter to continue to think-aloud, he states that he is thinking about the same
Prove angles ECD and CDE congruent.

Figure 1. Problem 1.

Prove line segments AG and BD congruent.

Figure 4. Problem 2.

Figure 5. Analysis of S2's re-encoding process. Perceived geometric figures are drawn in bold lines, the rest of the figures in broken lines.
problem but from another angle (F50-F52): he has re-encoded ED and EC as lines (F54). The goal is still to prove them congruent (F53-F55). He suddenly realizes that ED and EC are corresponding sides of the two triangles EDA and ECB, which he has already proved congruent (F56-F61). Figure 3 shows a diagrammatic analysis of the process with perceived geometric objects in bold lines and the rest of the diagram--the background--in broken lines. The subject quickly completed the correct solution.

Case 3: Hint-driven restructuring. S2 attempted Problem 2 (see Figure 4) after having learned the five theorems in Table 1, plus four others. She decided to prove triangles AED and BEG congruent and quickly reached an impasse. The protocol excerpt in Table 4 begins

<table>
<thead>
<tr>
<th>Table 4. Protocol excerpt from Subject S2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(What other triangles could be congruent?)</td>
</tr>
<tr>
<td>F109. what others</td>
</tr>
<tr>
<td>F110. could there be others which are congruent</td>
</tr>
<tr>
<td>F111. huh</td>
</tr>
<tr>
<td>(That could be. You have now been working the hypothesis that the whole point is to prove that those two triangles [AED, BEG] are congruent.)</td>
</tr>
<tr>
<td>F112. yes</td>
</tr>
<tr>
<td>(And just now you reached the conclusion that you cannot do that with the information you have. Can you find two other triangles which one can find which one could believe could be congruent?)</td>
</tr>
<tr>
<td>F113. congruent exactly alike</td>
</tr>
<tr>
<td>F114. no that is impossible there are no others</td>
</tr>
<tr>
<td>F115. it cannot be</td>
</tr>
<tr>
<td>F116. there are only one other</td>
</tr>
<tr>
<td>F117. also hypothetically then this line here</td>
</tr>
<tr>
<td>F118. then there are two here</td>
</tr>
<tr>
<td>F119. and those two here can surely never be congruent</td>
</tr>
<tr>
<td>F120. these two here can surely never be congruent</td>
</tr>
<tr>
<td>F121. no I do not understand that</td>
</tr>
<tr>
<td>F122. but</td>
</tr>
<tr>
<td>F123. now I see it</td>
</tr>
<tr>
<td>F124. I have forgotten this one here [AGB or BDA]</td>
</tr>
</tbody>
</table>
Figure 2. Analysis of S's re-encoding process. Perceived geometric objects are drawn in bold lines, the rest of the figures in broken lines.

Figure 3. Analysis of S's re-encoding process. Perceived geometric figures are drawn in bold lines, the rest of the figures in broken lines.
when the experimenter gives her the hint that there are other pairs of triangles in the figure that might be congruent. She first rejects this suggestion (F113-F115). She then runs through the triangles in the figure (F113-F121), and concludes that there are no other congruent triangles in the figure (F121). She then suddenly sees the triangles AEG and BDA (F123-F124). Figure 5 shows a diagrammatic analysis of the process with perceived geometric objects drawn in bold lines and the rest of the diagram drawn in broken lines. In spite of this restructuring, the subject failed to solve the problem.

Discussion

The restructuring process revealed in these three protocol excerpts consists in re-encoding the given figure. The diagram—the set of lines on the paper—contains within it a large number of different geometric objects (angles, sides, triangles, etc.). Only some of those geometric objects are perceived at any one time. The others recede into the background. In particular, if a line configuration is perceived in one way, then alternative encodings of that same line configuration recede into the background. Restructuring consists of switching to one of the alternative encodings. How does the switching mechanism work? The data suggest that re-encoding is done by re-parsing the diagram. During initial problem perception complex objects (e.g., triangles) are constructed out of simpler objects (e.g., lines). This process is a search through a description space (Ohlsson, 1984b). Alternative interpretations of the perceptual information are possible, so some choices are made, resulting in a particular encoding of the given diagram. When an impasse forces the problem solver to re-encode the problem, he/she backs up in the description space, dismantles his/her previous encoding, and traverses another path through the description space. This process breaks an impasse by allowing other operators (geometric theorems) to apply to the current state. Restructuring is a rare event: There was approximately one restructuring event per hour of problem solving effort in the present study. Restructuring does not necessarily lead to insight: In two of the three excerpts presented above, the subject failed to solve the problem. This study supports the idea that diagram parsing is central in geometry (Koedinger & Anderson, in press), but the validity of the re-parsing mechanism for other domains than geometry remains an open question. For example, a different mechanism seems to be responsible for re-encoding of the Mutilated Checker Board Problem (Kaplan & Simon, in press).
References

KUL Reports

1985

1986

1987

May
1988

1989

Distribution List

Ms. Lisa B. Acathe
Code 5500
Naval Research Lab
Overlook Drive
Washington, DC 20375-5000

Dr. Fred Ackermans
Media Laboratory
E15-111
28 Amst Street
Cambridge, MA 02139

Dr. Beth Adelson
Department of Computer Science
Tufts University
Medford, MA 02155

Technical Document Center
APHSR/LRS-TDC
Wright-Patterson AFB
Natl Airforce
AFHRL/LRS TDC

Dr. Roger Ackers
Computer Science Department
Vanderbilt University
Dr. RuthW.
Technical Document Center
Box Medford, Tufts
Department of Computer Science
Braintree, PA
Dr. Beth Adelson
Cambridge, MA
20 Ames Street
EIS-311
Media
Dr. Edith Acker
intelligent robotics
Washington, Overlook Drive

Allen Corporation
Director of Automation and Research
Dr. Joanne Capra
Director Brian Dallman

Dr. Ann Arbor, MI 49125-9

UNamy of
610 School of Education
Dr. Joseph
Dr. Patricia Bawer
Washington, Code 6121210

Dr. Robert M. Aiken
Code 943
Wright-Patterson AFB
Natl Airforce

Mr. Tejasi Bhatia
Scribner Schedule Center

Dr. Robert Aiken
Code NT1
Human Factors Laboratory
Naval Training Systems Center
Orlando, FL 32813

Dr. Robert M. Aiken
Computer Science Department
Temple University
Philadelphia, PA 19122

Mr. Tejas B. Anand
Philips Laboratories
345 Shoreham Road
Barrcliff Manor
New York, NY 10520

Dr. James Anderson
Brown University
Department of Psychology
Providence, RI 02912

Dr. John R. Anderson
Department of Psychology
Carnegie-Mellon University
Scrubn Park
Pittsburgh, PA 15213

Dr. Thomas H. Anderson
Center for the Study of Reading
174 Children's Research Center
51 Gerty Drive
Champaign, IL 61820

Dr. Stephen J. Andriola, Chairman
Department of Information Systems
and Systems Engineering
George Mason University
4500 University Drive
Fairfax, VA 22030

Prof. John Amerell
University of Warwick
Department of Psychology
CowperTV4, TAIL
ENGLAND

Edward A schem
Code 6122120
Naval Sea Systems Command
Washington, DC 20362-5101

Dr. Patricia Barger
School of Education
610 E. University, Rm 1302D
University of Michigan
Ann Arbor, MI 48109-1259

Dr. James D. Baker
Director of Automation and Research
Allen Corporation of America
280 Madison Street
Alexandria, VA 22314

Dr. Merryl S. Baker
Navy Personnel R&D Center
San Diego, CA 92152-6000

prof. doct. Bruno G. Barra
Unita di ricerca di
intelligenza artificiale
Università di Milano
20122 Milano - via F. Sforza 23
ITALY

Dr. Jonathan Baron
88 Glen Avenue
Beverly, PA 19912

Dr. Gustavo Biemio
Department of Computer Science
Box 1688, Station B
Vanderbilt University
Nashville, TN 37235

Dr. John Black
Teachers College, Box 8
Columbia University
525 West 120th Street
New York, NY 10027

Dr. Michael Blackburn
Code 943
Naval Ocean Systems Center
San Diego, CA 92152-5000

Dr. Arthur S. Baisa
Code NT13
Naval Training Systems Center
Orlando, FL 32813-7100

Dr. Deborah A. Boesek-Davis
Department of Psychology
George Mason University
4400 University Drive
Fairfax, VA 22030

Dr. Sue Bogner
Army Research Insturate
ATTN: PERI-SP
5001 Eisenhower Avenue
Alexandria, VA 22333-5400

Dr. Jeff Bonsen
Guidance Technology, Inc.
800 Vinal Street
Pittsburgh, PA 15212

Dr. J. C. Boudreau
Center for Manufacturing
Engineering
National Bureau of Standards
Gaithersburg, MD 20899

Dr. Lyle E. Bourne, Jr.
Department of Psychology
Box 345
University of Colorado
Boulder, CO 80309

Dr. Hugh Burne
Department of English
University of Texas
Austin, TX 78713

Dr. Robert Coffee
School of Education
Stanford University
Stanford, CA 94305

Dr. Joseph C. Campione
Center for the Study of Reading
University of Illinois
51 Gerty Drive
Champaign, IL 61820

Dr. Joanne Capper, Director
Center for Research into Practice
3345 Allen Street
Washington, DC 20008

Dr. James G. Carbone
Computer Science Department
Carnegie-Mellon University
Schreiber Park
Pittsburgh, PA 15213

Dr. Gail Carpenter
Center for Adaptive Systems
111 Cummington St., Room 244
Boston University
Boston, MA 02215

Dr. John M. Carroll
IBM Watson Research Center
User Interface Institute
P.O. Box 704
Yorktown Heights, NY 10598

Dr. Jack G. Chabey
CDEC, Huntslt Hall
Carnegie Mellon University
Pittsburgh, PA 15213

Dr. Fred Chang
Pacific Bell
2600 Casutive Ramon
Room 35-450
San Ramon, CA 94583

Dr. David Charnley
English Department
Penn State University
University Park, PA 16802

Mrs. Lee Clarke
818 South George Mason Drive
Arlington, VA 22204

Dr. Norman Cliff
Department of Psychology
Univ. of So. California
Los Angeles, CA 90099-1061

Dr. Stanley Colley
Office of Naval Technology
Code 222
800 N. Quincy Street
Arlington, VA 22217-6000

Dr. Jere Conley
Cornell University
Dept. of Education
Room 400 Roberts
Ithaca, NY 14853

Dr. Lynn A. Cooper
Department of Psychology
Columbia University
New York, NY 10027

Dr. Meredith P. Crawford
3542 Hamlet Place
Chevy Chase, MD 20815

Dr. Hans H. Cram
Faculty of Law
University of Limburg
P.O. Box 616
Maastricht
The NETHERLANDS 6200 MD

Dr. Kenneth B. Cross
Against Sciences, Inc.
P.O. Drawer Q
Santa Barbara, CA 93102

Dr. Gary Caabe
Intelligent Instructional Systems
Texas Instruments/IT Lab
P.O. Box 602846
Dallas, TX 75266

Brian Dallman
Training Technology Branch
3400 TCH77/777/7
Lowry AFB, CO 80235-5000