(U) Microstructural Models of Interactions that Govern Protein Conformations

A methodology for calculating hydrodynamic friction coefficients for globular proteins of complex shape is described and applied to the calculation of rotational and translation diffusion coefficients of lysozyme. The new algorithm is stable with respect to geometrical complexity and amenable to iterative solution on parallel computers. Our current work clarifies the role of three sets of assumptions: (1) Assumptions associated with the generalized Stokes-Einstein theory; (2) Assumptions on how to generate an appropriate surface (using atomic coordinates) to use in the theory; (3) Assumptions on how to calculate the mobility of a rigid body defined by a molecular surface.

Plans for next year include: (1) computations involving internal motions, on high-performance parallel computer architectures; and (2) simulation of folding of protein fragments. Both efforts are planned as first steps in describing the tertiary dynamics from interactions between secondary structures.
ANNUAL PROGRESS REPORT

GRANT #: N00014-89-j-3001

PRINCIPAL INVESTIGATOR: Sangtae Kim

INSTITUTE: University of Wisconsin - Madison

GRANT TITLE: Microstructural Models of Interactions that Govern Protein Conformations

PERIOD OF PERFORMANCE: 1 July 1989 - 31 May 1990

OBJECTIVE: To apply computational methods for microstructures suspended in a viscous fluid to the calculation of the slower dynamic processes in protein folding. The concerted motion of the entire tertiary structure will be considered with the secondary constituents modeled as solid segments. The short term objective is to determine diffusion/friction coefficients, first, for the overall protein and then for the larger sub-structures.

ACCOMPLISHMENTS (last 12 months): My students and I have completed the interfacing of the Brookhaven Protein Database to our simulation code for the hydrodynamic mobility/friction factor, the Completed Double Layer Boundary Integral Equation Method (CDL-BIEM). The key step was accomplished by converting M.L. Connolly's Molecular Surface Package (Piecewise Quartic Molecular Surface, Surface Rendering by Foliation, Triangulation by Recursive Bisection) into a boundary element mesh generator for CDL-BIEM. This process creates realistic three-dimensional rendering of surfaces of smaller protein residues using about 300 boundary elements. An entire enzyme such as lysozyme (Figure 1) can be rendered using about 3000 boundary elements.

For N boundary elements, the CDL-BIEM calculation involves the iterative solution of a $3N$ by $3N$ dense linear system, as discussed in our publication [1]. For compact, sphere-like shapes, the Jacobi iteration of the form, $x = Mx + b$, converges very quickly, in as few as five iterations. For more complex shapes associated with tertiary structures of globular proteins, the procedure converges too slowly. We have implemented more powerful iterative methods based on the residual reduction methods of Eisenstat et al. (SIAM J. Numerical Analysis 20, pp. 231-154, 1983). Typical convergence behavior of the mobility coefficient (which is directly proportional to the diffusion coefficient) is shown in Figure 2 for a fairly difficult but representative problem from the viewpoint of numerical analysis: a composite object formed by joining a thin rod with a sphere.

The largest system attempted to date involved the calculation of the mobility/diffusion coefficient (or equivalently, the friction factor) of lysozyme, using the shape obtained from the Brookhaven protein database. With about 3000 triangular boundary elements, the resulting linear system of equations is 9000 by 9000. Using a memory-saving version in which the matrix elements are recalculated as needed, an iteration takes about 10 hours on a super-minicomputer running at 10 MFlops, and a complete calculation requires about...
10 iterations. In other words, a Gigaflop computer will be able to perform the entire calculation in about 1 hour.

SIGNIFICANCE: It is well known that there is a systematic pattern of deviation between the theoretical predictions and experimental measurements of diffusion coefficients as a function of protein shape. The more simple, spherical shapes are adequately explained by theories based on the hydrodynamic radius and the radius of gyration. The 'outliers' are invariably those proteins with contorted surface shapes. The CDL-BIEM calculations show great promise in predicting both translational and rotational diffusion coefficients of these difficult proteins from first principles.

The significance of predicting protein diffusion coefficients using CDL-BIEM lies in the fact that we will be able to test the Stokes-Einstein theory without making any assumptions on how to calculate the mobility of the rigid bodies we use to model the proteins. Past calculations of diffusion coefficients have relied on three sets of assumptions:
1. Assumptions associated with the generalized Stokes-Einstein theory.
2. Assumptions on how to generate an appropriate molecular surface (using the given atomic coordinates) to use in the theory.
3. Assumptions on how to calculate the mobility of the rigid body defined by the molecular surface.

We can eliminate the third set of assumptions, thus shedding light on the first two sets. Since the first two are also involved in the more complicated problem of protein folding (or dynamics of internal motions) we gain information of use in future calculation of these motions.

WORK PLAN (next 12 months): The objective next year is to move our work to a new generation, GigaFlop computer architecture, featuring many processors (supercomputers-on-a-chip) running in parallel, to be located in the new Center for Parallel Computational Engineering, UW-Madison. Our iterative methods are highly parallel and should achieve close to the theoretical speedups in a multi-processor environment. Runs on the IBM 3090, Sequent Symmetry and the Intel iPSC/860 have all confirmed this expectation.

PUBLICATIONS TO DATE:
1. A theoretical paper (submitted before the contract was awarded) has appeared.

2. An abstract was recently submitted to the session on Molecular Biophysics of Proteins, Peptides and Polynucleotides, chaired by M.L. Yarmush, in the 1990 national meeting of the American Institute of Chemical Engineers (copy enclosed).

Figure 1. Triangulation of lysozyme for the boundary element calculation of the friction coefficients.

Figure 2. Convergence of the generalized conjugate residual method of Eisenstat et al. as compared to the conjugate gradient method applied to the normal equations.
Highlights: Microstructural Models of Interactions that Govern Protein Conformations

Objectives

- Develop computational methods for tertiary level interactions in proteins
- Determine applicability to protein folding at the tertiary level

Accomplishments

- Generation of boundary elements starting from Brookhaven databank
- New computational method tested on uniprocessors and parallel computers
- Accelerated convergence achieved using residual reduction methods

Significance

- Friction factors (mobilities) determined from surface geometry without a priori hydrodynamic approximations

S. Kim, UW-Madison; 1990
ANNUAL REPORT QUESTIONNAIRE

Principal Investigator: Sangtae Kim
Institute: University of Wisconsin-Madison

Grant title: Microstructural Models of Interactions that Govern Protein Conformations
Period of performance: July 1, 1989 - May 31, 1990
Number of publications last year: 5

Number of patents/inventions: 0

Total number of students/trainees: 7
 How many are female? 2
 How many are minority students (e.g. Black, Hispanic)? 2
 How many are not US citizens? 4

Awards/Honors to PI and/or to members of PI's research group (please describe):
 S. Kim 1989 Allan P. Colburn Memorial Lecture, U. of Delaware
 S. Kim Distinguished Visiting Scholar, U. of Massachusetts
 S. Kim H.I. Romnes Faculty Fellow, U. of Wisconsin
 G.A. Huber National Science Foundation Fellowship

Equipment purchased (# and description of items >$1500): None

Your Email address: kim@che.wisc.edu

Our Email address on Internet is: marron@ccf3.nrl.navy.mil
This address can be reached via Arpanet or Bitnet. We read our mail daily.
HAYGOOD, Margo
Marine Biology Research Division
Scripps Institution of Oceanography
University of California, San Diego
La Jolla, CA 92093

JENSEN, Roy A.
Department of Microbiology
University of Florida
Gainesville, FL 32611

KELLY, Robert M.
Dept. of Chemical Engineering
The Johns Hopkins University
Baltimore, MD 21218

KIRCHMAN, David L.
College of Marine Studies
University of Delaware
Robinson Hall
Newark, DE 19716

KONISKY, Jordan
Department of Microbiology
University of Illinois
809 South Wright Street
Champaign, IL 61820

LEADBETTER, Edward R.
Dept. of Molecular and Cell Biology
University of Connecticut
Box U-131
Storrs, CT 06268

LIAO, Hans H.
Biotechnology Center
University of Wisconsin
1710 University Avenue
Madison, WI 53705

LIDSTROM, Mary E.
Keck Laboratories 138-78
California Institute of Technology
Pasadena, CA 91125

MITCHELL, Ralph
Division of Applied Sciences
Harvard University
125 Pierce Hall
Cambridge, MA 02138

MORSE, Daniel E.
Marine Science Institute
University of California
Santa Barbara, CA 93106

NADATHUR, Govind S.
Marine Science Institute
Univ Cal-Santa Barbara
Santa Barbara, CA 93106
NEALSON, Kenneth H.
Center for Great Lakes Studies
University of Wisconsin-Milwaukee
600 E. Greenfield Avenue
Milwaukee, WI 53204

OLSEN, Gary J.
Indiana University
Department of Biology
Jordan Hall 138
Bloomington, Indiana 47405

PACE, Norman R.
Department of Biology
Indiana University
Bloomington, IN 47405

PREZELIN, Barbara B.
Marine Science Institute
University of California
Santa Barbara, CA 93106

REEVE, John N.
Department of Microbiology
Ohio State University
484 West 12th Avenue
Columbus, OH 43210-1292

ROSEMAN, Saul
Department of Biology
Johns Hopkins University
Baltimore, MD 21218

SEARCY, Dennis G.
Zoology Department
University of Massachusetts
Amherst, MA 01003

SILVERMAN, Michael
Agouron Institute
505 Coast Blvd. South
La Jolla, CA 92037

SMIT, John
Department of Microbiology
University of British Columbia
#300 - 6174 University Blvd
Vancouver, British Columbia
V6T 1W5 CANADA

SPUDICH, John L.
Dept of Anat and Structural Biology
Albert Einstein College of Medicine
1300 Morris Park Avenue
Bronx, NY 10461

STAHL, David A.
College of Veterinary Medicine
University of Illinois
Urbana, IL 61801

SWIFT, Hewson
Dept of Molec Genetics
and Cell Biology
University of Chicago
1103 East 57th Street
Chicago, IL 60637

TAYLOR, Gordon T.
Hawaii Institute of Geophysics
University of Hawaii
2525 Correa Road
Honolulu, HI 96822

TOSTESON, Thomas R.
Department of Marine Sciences
University of Puerto Rico
Mayaguez, PR 00709

TRENCH, Robert K.
Marine Science Institute
University of California-Santa Barbara
Santa Barbara, CA 93106

WALEH, Nahid
Molecular Biology Department
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

WHITE, David
Institute of Applied Microbiology
University of Tennessee
P. O. Box X, Building 1503/6
Oak Ridge, TN 37831

WOESE, Carl R.
Genetics Department
University of Illinois
515 Morrill Hall
Urbana, IL 61801

YAYANOS, A. Aristides
Physiological Research Laboratory
Scripps Institution of Oceanography
University of California-San Diego
La Jolla, CA 92093

ZINDER, Stephen H.
Department of Microbiology
Cornell University
Stocking Hall
Ithaca, NY 14853
AMZEL, L. Mario
Department of Biophysics
Johns Hopkins School of Medicine
725 North Wolfe Street
Baltimore, MD 21205

ANDERSEN, Niels H.
Department of Chemistry
University of Washington
Seattle, WA 98195

ARNOLD, Frances H.
Dept of Chemical Engineering
California Institute of Technology
Pasadena, CA 91125

AUGUST, J. Thomas
Department of Pharmacology
Johns Hopkins Medical School
725 North Wolfe Street
Baltimore, MD 21205

BEVERIDGE, David L
Department of Chemistry
Wesleyan University
Hall-Altwater Laboratories
Middletown, CT 06457

BRAMSON, H. Neal
Department of Biochemistry
Univ of Rochester Medical Center
601 Elmwood Avenue
Rochester, NY 14642

BRUCE, Thomas C.
Department of Chemistry
University of California-Santa Barbara
Santa Barbara, CA 93106

CASE, Steven T.
Department of Biochemistry
Univ of Mississippi Medical Center
2500 North State Street
Jackson, MS 39216-4505

CHANG, Eddie L.
Bio/Molecular Engineering
Naval Research Laboratory
Code 6190
Washington, D.C. 20375-5000

CHRISTIANSON, David W.
Department of Chemistry
University of Pennsylvania
231 South 34th Street
Philadelphia, PA 19104-6323

CORDINGLEY, John S.
Department of Molecular Biology
University of Wyoming
Box 3944 University Station
Laramie, WY 82071

DeGRADO, William F.
E. I. du Pont de Nemours & Co
Central R & D, Experimental Station
P. O. Box 80323
Wilmington, DE 19880-0328

EVANS, David R.
Department of Biochemistry
Wayne State Univ School of Medicine
540 E. Canfield Street
Detroit, Michigan 48201

FEIGON, Juli F.
Department of Chem & Biochemistry
UCLA
405 Hilgard Avenue
Los Angeles, CA 90024-1569

FICHT, Allison R.
Dept of Med Biochem & Genetics
Texas A&M University
College Station, TX 77843

FRAUENFELDER, Hans
Department of Physics
University of Illinois
Urbana, IL 61801

GABER, Bruce
Naval Research Laboratory
Bio/Molecular Engineering Branch
Code 6190
Washington, DC 20375

GETZOFF, Elizabeth D.
Scripps Clinic & Research Foundation
Department of Molecular Biology
10666 North Torrey Pines Road
La Jolla, CA 92037

GOODMAN, Eugene M.
Biomedical Research Institute
University of Wisconsin
P. O. Box 2000
Kenosha, WI 53141

HO, Pui Shing
Department of Biochemistry and Biophysics
Oregon State University
Corvallis, OR 97331

HOGAN, Michael E.
Baylor Center for Biotechnology
4000 Research Forest Drive
The Woodlands, TX 77381

HONIG, Barry
Columbia University
Dept of Biochem and Molec Biophys
630 West 168th St.
New York, NY 10032

HOPKINS, Paul B.
Department of Chemistry
University of Washington
Seattle, WA 98195

KAHNE, Daniel
Department of Chemistry
Princeton University
Princeton, NJ 08544

KEMP, Robert G.
Chicago Medical School
Dept of Biological Chemistry
3333 Green Bay Rd.
North Chicago, IL 60064

KHORANA, Gobind H.
Department of Biology
MIT
77 Massachusetts Ave.
Cambridge, MA 02139

KIM, Sangtae
Chemical Engineering
University of Wisconsin
1415 Johnson Drive
Madison, WI 53706

LANSBURY, Peter T.
Department of Chemistry
MIT
Cambridge, MA 02139

LAURSEN, Richard A.
Chemistry Department
Boston University
590 Commonwealth Avenue
Boston, MA 02215

LENZ, Robert W.
Chemical Engineering Department
University of Massachusetts
Amherst, MA 01003

LEWIS, Randolf V.
Molecular Biology Department
University of Wyoming
University Station Box 3944
Laramie, WY 82071