The important issue of how the superconducting transition temperature T_c in disordered systems changes near the N-I transition where strong localization ($x^{-1} \ll 1$) is expected has been studied in the No-Ge system. In the high No concentration, which is in the weakly localized regime, T_c decreases linearly with increasing No concentration from 7.56K (\approx at 5% No) at a rate of 0.18° K/atom of No. In this region the ratio of electron-phonon coupling constant λ to the bare density of states $V(0)$ is constant, which is consistent with the Varma-Dynes tight-binding model. An extrapolation of the linear behavior of T_c in this regime yields the disappearance of T_c near 33 at 6% No. However, measurements show that T_c exists down to 13.5 at 6% No. A non-superconducting metallic phase is found to exist between 13.5 at 10.4 at 6% No at which concentration the insulating phase occurs.

14. SUBJECT TERMS

15. NUMBER OF REFRES

16. NUMBER OF PAGES

17. SECURITY CLASSIFICATION OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF ABSTRACT

Unclassified
Superconductivity in very thin films of niobium has been investigated. By use of the ion gun which has been installed in the evaporator it has been possible to identify 3 separate mechanisms which contribute to the reduction in T_C as the film thickness is decreased, namely lifetime broadening, proximity effect and localization. Then upon elimination of the first two, the effect of localization in the weakly localized limit is found to agree quantitatively with theory except for $< 15\AA$ where the fall off of T_C is less than expected.

A small single grid ion source has been constructed in order to promote the growth of metastable films at low temperatures. A high flux of N$_2$ at energies as low as 20 eV has been achieved. Studies indicate that the ion beam promotes the growth of single crystal A15 compounds at lower temperatures. Preliminary studies on the growth of transistor metal nitrides have been initiated.

Progress has been made on a new ultra high vacuum M.B.E. evaporator being constructed at Stanford with funds from the DOD Instrumentation Program. A vendor has been selected and a purchase order made for the design-study of the load-lock/transfer arm and substrate configuration. This is the most sensitive and critical part of our unique concept of load-locking and transferring the complete substrate configuration into and out of the evaporation chamber. Sputtering of molybdenum disulfide onto the disassembled parts - balls, races, and retainers has been chosen as the first step in improving the reliability of the ball bearings used in the present method of evaporation rate control.
INTERIM TECHNICAL REPORT
FOR
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
Contract No. F49620-82-C-0014
1 October 1984 - 31 March 1985

SUPERCONDUCTING THIN FILMS, COMPOSITES AND JUNCTIONS

By
Professor T. H. Geballe
Principal Investigator

Department of Applied Physics
Stanford University
Stanford, California 94305

G. L. Report 3904

August 1985
PUBLICATIONS

(1 October 1984 - 31 March 1985)

5. "Specific Heat of Thin Film Amorphous Molybdenum Based Alloys," by D. Mael, W. L. Carter, S. Yoshizumi and T. H. Geballe, accepted to Phys. Rev. B.

Visitors and Seminars

1. D. McWhan, AT&T Bell Labs, January 15, 1985
3. P. W. Anderson, Princeton University, February 8, 1985
4. S. Schultz, University of California, San Diego, February 21-22, 1985
5. P. Grant, IBM Research, San Jose, February 25, 1985
8. J. Krim, University of Marseille, "Wetting and Non-Wetting of Rare Gases on Au and Graphite: Recent Results" February 21, 1985
9. J. Talvacchio, Westinghouse Research Labos "Recent Thin-Film Research at Westinghouse" April 26, 1985
Interim Technical Report - AFOSR Contract No. F49620-C-0014
Period: 1 October 1984 - 31 March 1985 (PI: T. H. Geballe)

Committees

The National Research Council

Solid State Science Committee

Ad Hoc Committee for NSF-MRL Directors

Member, Editorial Board of Chinese Physics, AIP

Member, Editor for Materials Letters, North-Holland Publishing Company, The Netherlands

Member, Committee for the American Physical Society International Prize for New Materials

Member, Advisory Board of the Miller Institute for Basic Research in Science

Member, Program Committee for meeting on "Materials and Mechanisms of Superconductivity" in Ames, Iowa 5/29-31/85

Scientific projects are being carried out in close collaboration with industry:

R. M. White, Control Data, Minneapolis, MN
J. Boyce, Xerox Corp., Palo Alto, CA
 M. Hong, AT&T Bell Labs, Murray Hill, NJ
W. P. Lowe, AT&T Bell Labs, Murray Hill, NJ
R. Greene, IBM, San Jose, CA
J. Harper, IBM, Yorktown Heights, NY
A. Braginski, Westinghouse Research Ctr., Pittsburgh, PA
A. Green, Naval Res. Lab., China Lake, CA
V. Rehn, Naval Res. Lab., China Lake, CA

New discoveries, inventions or patent disclosures

NONE
Persons working on contract during the period
1 October 1984 - 31 March 1985

Hammond, Robert H. Senior Research Associate
Hellman, Frances Ph.D. expected Summer 1985
Mael, David Ph.D. expected Summer 1986
Broussard, Phillip Ph.D. expected Summer 1986
Park, Sung Ph.D. expected Summer 1986
Kent, Andrew Ph.D. expected Summer 1987
Ch., Byungdu Ph.D. expected Summer 1987