This report compares the relative deteriorative effects of typical suppliers' lots of MIL-H-6083 and MIL-H-46170 hydraulic fluids on off-the-shelf elastomeric seal and O-ring compounds. Comparisons are also made with results obtained using NBR-L, a reference material cited in AMS 3217.
PREFACE

This report details investigations conducted and results obtained in efforts to compare the relative deteriorative effects of typical suppliers’ lots of MIL-H-6083 and MIL-H-46170 hydraulic fluids on off-the-shelf elastomeric seal compounds obtained from various vendors. Concurrent comparative studies were conducted using NBR-L, a standard reference compound cited in Aerospace Materials Specification (AMS) 3217. Volume change data for each of the fluid/seal compound iterations were supplemented by measurement of ultimate deteriorated physical properties—tensile strength, elongation, modulus, and hardness. Significant observations made and conclusions derived are summarized herein.

Acknowledgement is given to PVT Michael Robinson, who performed the laboratory seal/compound/fluid immersion testing, and to all seal vendors who supplied the compounds used in this work.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>BACKGROUND</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>INVESTIGATION</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Materials Used</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Tests Conducted</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Results</td>
<td>3</td>
</tr>
<tr>
<td>III</td>
<td>DISCUSSION</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Performance Factors</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Original Physical Properties</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Data Translation</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Interpretation of Data</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Tensile Product</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Volume Change</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mixed Immersions</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Graphed Data</td>
<td>6</td>
</tr>
<tr>
<td>IV</td>
<td>CONCLUSIONS</td>
<td>8</td>
</tr>
</tbody>
</table>

APPENDIX OF TABLES AND FIGURES...A-1
SECTION I. BACKGROUND

The degree of adequacy employed in military specifications for hydraulic fluids when attempting to correlate fluid performance criteria with those of system seals and O-rings has often been questioned. Specifications for seals are quite comprehensive, citing both requirements for original physical characteristics and limitations on the amount of acceptable deterioration after a period of seal/fluid exposure under accelerated conditions. Hydraulic fluid specifications properly reference essential factors such as the chemical nature of constituents, viscosity, and other flow-related parameters. At most, these documents only casually consider the critical elastomeric components of hydraulic systems. This is usually in the form of a limiting value for volume change at a specified temperature, usually 70°C, of a standard reference material such as NBR-L, cited in AMS 3217. Obviously, requirements for fluids and for seals are both dictated by the needs of the particular hydraulic system-configuration, operating temperatures, and pressures encountered. The formulations for the NBR-L and other reference compounds have remained unchanged for several years, while seal suppliers have continually upgraded their product's performance. Thus, it is felt that volume change requirements of the fluid specifications are meaningless. A gap may have been created between the two interdependent and highly-specialized fields of seal and hydraulic fluid formulation.

Voluntary consensus standards organizations in the elastomer, POL, and related fluids areas—such as SAE Committees G-4 and A-6, and ASTM Committees D-11 and D-2—have recently increased their efforts to promote mutual understanding of the complexities of rubber/fluid compatibility. Ad-hoc committees comprised of members from both sides have been formed and, when possible, joint sessions of the relevant main committees have been held. Concurrently, fluid compatibility studies, such as detailed herein, have been conducted to ascertain areas of agreement and disagreement relative to fluid and seal specification performance criteria.
SECTION II. INVESTIGATION

MATERIALS USED

Examples of typical seal compounds, furnished as ASTM test slabs, were solicited from industry suppliers. A total of 17 materials encompassing nitrile, silicone, and fluorocarbon were received from the following sources:

- **CR Industries**
 - Elgin, IL
- **Federal Mogul**
 - Detroit, MI
- **International Packings**
 - Bristol, NH
- **John Crane**
 - Morton Grove, IL
- **Parker Seal**
 - Lexington, KY
- **Precision Rubber**
 - Lebanon, TN
- **Acushnet**
 - New Bedford, MA
- **Greene Tweed**
 - Kulpsville, PA

In addition to the above, two other compounds were included: the NBR-L reference compound previously cited, and a hydrogenated nitrile, which was developed in-house for other applications but known to have good fluid resistance properties.

Alphanumeric codes were assigned to all compounds. Numbers are not sequential because other compounds were solicited for concurrent grease studies. Thus, resultant data can be furnished to vendors without violating their proprietary rights.

The nine hydraulic fluids used in the study were categorized according to two types:

- Four fluids (H-6000, H-6001, H-6002, and H-6004) were furnished in accordance with MIL-H-6083, *Hydraulic Fluid, Petroleum Base, For Preservation and Operation*.

- Five fluids (HF-4, HF-12, HF-15, MF-13, and MF-14) were furnished in accordance with MIL-H-46170, *Hydraulic Fluid, Rust Inhibited, Fire-Resistant, Synthetic Hydrocarbon Base*.
TESTS CONDUCTED

A modified test procedure, based on ASTM D-471, Test Method for Rubber Property—Effect of Liquids, was followed. Specimens were immersed for 14 days at 212F (100°C), after which volume change and retention of original physical properties were determined. Specimens were allowed to cool to room temperature while still immersed, and kept under these conditions until weighing and testing were completed. Each fluid/seal combination was run in triplicate. The same micro dumbbell specimens used to determine volume change were then extended to break on an Instron testing machine to obtain physical property change data.

RESULTS

Data generated in this study are summarized in Tables 1 through 14 (see Appendix). Tensile and modulus retention percentages in Tables 2 through 10 are based on swollen cross-sectional area, as cited in Federal Test Method Standard (FTMS) 601, Rubber: Sampling and Testing, Method 6111, Tensile Strength and Elongation Immediately After Immersion in Liquids, rather than computed directly as under ASTM D-471. Modulus retention is based on the 200% determination unless otherwise indicated. If specimen average break was less than 100%, no modulus retention could be determined.
SECTION III. DISCUSSION

PERFORMANCE FACTORS

Acceptance criteria used to analyze the test data evolved were:

- Candidate materials shall retain at least 80% of original tensile strength and elongation;

- Modulus and Shore A hardness changes shall not be excessive (i.e., more than 10 hardness points, or greater than 20% modulus change); and

- Volume change shall be confined to a maximum of 10 to 15% swelling, with any sign of shrinkage signifying immediate rejection.

ORIGINAL PHYSICAL PROPERTIES

Examination of the initial physical properties data of Table 1 indicates that typical seal compounds as supplied by the industry tend to display moderate tensile strength, averaging slightly above 2,000 psi. Elongation was generally low, with some compounds having values well below 200%. Shore hardnesses were in the 65 to 86 points range, while 100% or 200% moduli were indicative of a high state of vulcanization. This correlated well with intended application. Sealing effectiveness is contingent upon retention of integrity while allowing a limited degree of "fluidity" to conform to the configuration of the area to be sealed.

DATA TRANSLATION

The extensive data generated are difficult to analyze and discuss as summarized in Tables 2 through 10. Comparisons of seal material performance either within each fluid type (MIL-H-6083 or MIL-H-46170), or between types, would likewise be difficult. For these reasons, Table 11, a 1-page summarization of all negative effects of the test fluids on measured physical properties, was prepared. Here, the numbers 1 through 8 identify changes deemed excessive and thus detrimental to seal performance, using the limits cited in the previous paragraph. Blocks containing no numbers thus signify full acceptability of the fluid/rubber combination identified therein. Use of this convention obviously excludes any reference to the magnitude of nonconformance.

INTERPRETATION OF DATA

Examination of Table 11 reveals the emergence of certain patterns or trends in seal material performance. Compound 8F-29 evidenced only one failure—excessive tensile loss in fluid H-6002—and thus would head any ranking according to preference. Compounds 8F-1, 8F-4, and
8F-5, which displayed shrinkage or essentially very low swelling, would be disqualified for general use. The latter two compounds however, might be considered marginally acceptable for MIL-H-6083 use only, assuming that instances of modulus increase are not deemed critical factors. Compounds 8F-10, 8F-12, and 8F-31 (the NBR-L reference material) displayed practically identical performance patterns. Poor retention of tensile and elongation correlated with excessive swelling and softening (decrease in hardness). Compound 8F-13 was the only compound found failure-free in the MIL-H-6083 grouping. Three candidates—8F-22, 8F-29 and 8F-32—met all criteria in the MIL-H-46170 fluids. Excessive elongation loss was the most frequently observed deficiency, occurring 81 times, and at least once for all compound iterations except 8F-13, 8F-22, 8F-23, 8F-29, and 8F-32. High tensile strength losses and pronounced increases in modulus were the next most frequently occurring type of failure, but never simultaneously within a specific compound/fluid combination. The lower frequency of occurrence and erratic patterns displayed elsewhere in Table 11 are indicative of subtle differences in formulation within the two types of fluids and perhaps a tendency for suppliers to adhere as closely as possible to performance limitations.

TENSILE PRODUCT

In order to further analyze both the subtle and apparent differences between fluid types and among candidate compounds, Table 12 was prepared. Here, tensile products [percent tensile strength retained times percent elongation retained divided by 1,000] are presented for all iterations. Table 12 also includes total row averages, MIL-H-6083 fluid averages, MIL-H-46170 averages, and differences according to fluid type. With the exception of compounds 8F-14 and 8F-16, which had statistically equivalent values for both fluid types, higher tensile products were noted for those materials exposed in MIL-H-46170 fluids. Compounds 8F-19 and 8F-22 showed the greatest amount of improved performance in this regard. The previously noted similar and poor performances of compounds 8F-10, 8F-12, and 8F-31 are again evident, while the highest aggregate tensile products are observed for 8F-22 and 8F-23. Performances of 8F-13, 8F-19, 8F-26, and 8F-29 are also considered good.

VOLUME CHANGE

A similar comparison but based on volume change data is presented in Table 13. A greater amount of swelling in the MIL-H-6083 fluids was noted in all cases except, of course, when shrinkage occurred in either or both types of fluid. Swelling correlated inversely with performance as indicated by tensile product; i.e., low for highly-rated 8F-22 and 8F-23, and extremely high for the worst compounds, such as 8F-10 and 8F-12. The presence of many intermediately grouped differences reflects the inadequacy of basing performance solely on volume change information. Conversely, referring back to Table 12, tensile product data is not always infallible. Relatively good tensile product values for 8F-1, 8F-4, and 8F-5, mask the aforementioned shrinkage. Table 13 also contains a comparison of NBR-L swell data, extracted from fluid suppliers' conformance testing reports, with values obtained in this work. As noted, tests were conducted at 100°C and 70°C,
respectively. The lower exposure temperature used by the suppliers consistently resulted in higher
c swell values, a sign that choice of test conditions is critical. Additionally, it is known that testing at
100°C may, in some cases, not duplicate certain in-service conditions which may be as much as 20
or 30°C higher, or even lower than the currently referenced 70°C. Insufficient data was generated
here to conclusively establish any trends.

MIXED IMMERSIONS

Table 14 contains the results of a very limited attempt to access the effects of mixed immersion of
two compounds, using one MIL-H-6083 and one MIL-H-46170 fluid—H-6002 and HF-15,
respectively. Compounds 8F-5 and 8F-12 were immersed in each fluid for 1 week at 100°C and
then tested. Ultimate volume changes for both were intermediate, but biased toward the MIL-H-
6083 fluid. Hardness change for the 8F-5 was also intermediate but biased toward the MIL-H-
46170 fluid, while the loss for 8F-12 after mixed immersion was less than found for either
individual exposure. The final tensile product of 8F-12 was only slightly less and the corresponding
value for 8F-5 deemed essentially equivalent to that observed when singly immersed for 2 weeks in
the MIL-H-46170 fluid (HF-15). Changes in modulus retention paralleled those for
hardness—intermediate for 8F-5, but outside of the range found for 8F-12. It is apparent that one
cannot assume mixed immersions will always effect an across-the-board intermediate change in all
physical properties. Therefore, indiscriminate use or improper citing of correct hydraulic fluids
entails a certain amount of risk relative to the adequacy of seal performance.

GRAPHED DATA

To further emphasize performance differences between MIL-H-6083 and MIL-H-46170 hydraulic
fluids and illustrate the shortcomings of NBR-L as a reference elastomer compound in fuel and fluid
qualification work, Figures 1 and 2 were prepared (see Appendix pages A-16 and A-17). As
indicated in Figure 1, higher tensile product averages for seal compounds exposed to MIL-H-46170
fluids generally correlated with lower volume changes. No compound immersed in MIL-H-6083
fluid evidenced a tensile product greater than 10. This plateau was reached by five materials when
exposed to the MIL-H-46170 fluids. An intermediate group of compounds is readily discernable.
These, such as 8F-2, 8F-3, 8F-14, and 8F-16, showed low volume changes, but tensile products
were only fair. The tendency for compounds displaying shrinkage or very low swelling to generate
reasonably good tensile product values (8F-1, 8F-4, and 8F-5) is also evident. Figure 2 compares
performance of reference compound NBR-L (8F-31) against all other candidates in each fluid. The
magnitude of difference (relatively inferior showing) of the NBR-L is quite apparent, indicating that
the compound is not representative of the average quality of off-the-shelf seals. Currently, NBR-L
is used to qualify fluids, but solely based on satisfying a stipulated volume change level. Volume
change averages for all compounds in each of the fluid type groups were derived from Table 13 and
compared with that for NBR-L in the following table:
Table of Volume Change Averages

<table>
<thead>
<tr>
<th></th>
<th>MIL-H-6083</th>
<th>MIL-H-46170</th>
</tr>
</thead>
<tbody>
<tr>
<td>All compounds</td>
<td>12.06</td>
<td>5.22</td>
</tr>
<tr>
<td>NBR-L</td>
<td>23.90</td>
<td>17.15</td>
</tr>
<tr>
<td>Difference</td>
<td>11.84</td>
<td>11.93</td>
</tr>
</tbody>
</table>

The above figures include all outliers; i.e., compounds displaying shrinkage or very high swelling (8F-1, 8F-4, 8F-5, 8F-10, and 8F-12). If these were excluded from consideration, compound averages would be lower and the gap even greater. Thus, one would surmise that the state-of-the-art relative to selection of reference compounds is not consistent with the quality of off-the-shelf seal materials. Here, only two classes of hydraulic fluid have been screened. Whether this tendency persists throughout the range of other hydraulic fluid compliance standards is unknown. It is known that AMS 3217, the document citing NBR-L and other standard elastomer compounds, is considered outdated and, as demonstrated in this study, revision is needed.
SECTION IV. CONCLUSIONS

- Performance of typical suppliers' off-the-shelf seal compounds, in terms of volume change and retention of physical properties, is better in MIL-H-46170 hydraulic fluids than in fluids conforming to MIL-H-6083.

- Reliance on volume change as the sole criterion for seal/fluid compatibility is risky. Extent of swelling or shrinkage does not always correlate with exposure-inflicted deterioration in tensile strength and elongation, changes in modulus, and hardening or softening.

- The performance of standard reference compound NBR-L, cited in AMS 3217, in both types of hydraulic fluid used in this study was generally inferior to that observed for the representative suppliers' compounds.

- Fluid qualification, based on volume change data from NBR-L immersions, does not sufficiently focus on the actual in-service exposure conditions typically encountered.

- Use of one reference test temperature (70° or 100°C) may be inadequate to accurately assess potential in-service performance. Limited comparisons derived from this work indicate that volume changes at elevated temperatures are lower than at the cited levels.

- Likewise, use of one volume swell limit (such as 15% minimum swell) for differing classes or types of hydraulic fluid may, in some instances, be unrealistic.

- Alternating exposure of elastomeric seals to hydraulic fluids satisfying dissimilar qualification standards may effect synergistic changes in physical properties, rather than the assumed intermediate changes.
APPENDIX OF TABLES AND FIGURES

<table>
<thead>
<tr>
<th>Table</th>
<th>Caption</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Original Physical Properties—Fluid-Resistant Compounds</td>
<td>A-2</td>
</tr>
<tr>
<td>2</td>
<td>Retention of Properties—Fluid H-6000</td>
<td>A-3</td>
</tr>
<tr>
<td>3</td>
<td>Retention of Properties—Fluid H-6001</td>
<td>A-4</td>
</tr>
<tr>
<td>4</td>
<td>Retention of Properties—Fluid H-6002</td>
<td>A-5</td>
</tr>
<tr>
<td>5</td>
<td>Retention of Properties—Fluid H-6004</td>
<td>A-6</td>
</tr>
<tr>
<td>6</td>
<td>Retention of Properties—Fluid HF-4</td>
<td>A-7</td>
</tr>
<tr>
<td>7</td>
<td>Retention of Properties—Fluid HF-12</td>
<td>A-8</td>
</tr>
<tr>
<td>8</td>
<td>Retention of Properties—Fluid HF-15</td>
<td>A-9</td>
</tr>
<tr>
<td>9</td>
<td>Retention of Properties—Fluid MF-13</td>
<td>A-10</td>
</tr>
<tr>
<td>10</td>
<td>Retention of Properties—Fluid MF-14</td>
<td>A-11</td>
</tr>
<tr>
<td>11</td>
<td>Effect of Fluids on Physical Properties</td>
<td>A-12</td>
</tr>
<tr>
<td>12</td>
<td>Seal/Fluid Compatibility—Tensile Product</td>
<td>A-13</td>
</tr>
<tr>
<td>13</td>
<td>Seal/Fluid Compatibility—Volume Change</td>
<td>A-14</td>
</tr>
<tr>
<td>14</td>
<td>Retention of Properties—Mixed Fluid Immersion</td>
<td>A-15</td>
</tr>
</tbody>
</table>

Figure

<table>
<thead>
<tr>
<th>Figure</th>
<th>Caption</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tensile Product and Volume Change Averages, MIL-H-6083 vs. MIL-H-46170</td>
<td>A-16</td>
</tr>
<tr>
<td>2</td>
<td>Tensile Product and Volume Change, NBR-L vs. Group Average</td>
<td>A-17</td>
</tr>
<tr>
<td>Compound</td>
<td>Tensile Str. psi</td>
<td>Elong. %</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>8F-1</td>
<td>2500.00</td>
<td>211.00</td>
</tr>
<tr>
<td>8F-2</td>
<td>2603.00</td>
<td>389.00</td>
</tr>
<tr>
<td>8F-3</td>
<td>2487.00</td>
<td>140.00</td>
</tr>
<tr>
<td>8F-4</td>
<td>2230.00</td>
<td>178.00</td>
</tr>
<tr>
<td>8F-5</td>
<td>1990.00</td>
<td>178.00</td>
</tr>
<tr>
<td>8F-9</td>
<td>2705.00</td>
<td>531.00</td>
</tr>
<tr>
<td>8F-10</td>
<td>1211.00</td>
<td>149.00</td>
</tr>
<tr>
<td>8F-12</td>
<td>2160.00</td>
<td>272.00</td>
</tr>
<tr>
<td>8F-13</td>
<td>1916.00</td>
<td>170.00</td>
</tr>
<tr>
<td>8F-14</td>
<td>1802.00</td>
<td>142.00</td>
</tr>
<tr>
<td>8F-16</td>
<td>1981.00</td>
<td>73.00</td>
</tr>
<tr>
<td>8F-19</td>
<td>1983.00</td>
<td>204.00</td>
</tr>
<tr>
<td>8F-22</td>
<td>1934.00</td>
<td>281.00</td>
</tr>
<tr>
<td>8F-23</td>
<td>1761.00</td>
<td>166.00</td>
</tr>
<tr>
<td>8F-26</td>
<td>2054.00</td>
<td>250.00</td>
</tr>
<tr>
<td>8F-27</td>
<td>1930.00</td>
<td>120.00</td>
</tr>
<tr>
<td>8F-29</td>
<td>1995.00</td>
<td>86.00</td>
</tr>
<tr>
<td>8F-31</td>
<td>2896.00</td>
<td>242.00</td>
</tr>
<tr>
<td>8F-32</td>
<td>4967.00</td>
<td>484.00</td>
</tr>
</tbody>
</table>
Table 2. Retention of Properties—Fluid H-6000

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8F-1</td>
<td>111.47</td>
<td>65.88</td>
<td>*167.86</td>
<td>11.00</td>
<td>-9.56</td>
</tr>
<tr>
<td>8F-2</td>
<td>97.10</td>
<td>75.32</td>
<td>124.94</td>
<td>-1.00</td>
<td>7.78</td>
</tr>
<tr>
<td>8F-3</td>
<td>89.42</td>
<td>50.71</td>
<td>-</td>
<td>-6.00</td>
<td>8.14</td>
</tr>
<tr>
<td>8F-4</td>
<td>105.10</td>
<td>85.96</td>
<td>*131.03</td>
<td>-2.00</td>
<td>5.31</td>
</tr>
<tr>
<td>8F-5</td>
<td>105.47</td>
<td>80.34</td>
<td>*133.46</td>
<td>0.00</td>
<td>3.03</td>
</tr>
<tr>
<td>8F-9</td>
<td>83.06</td>
<td>72.50</td>
<td>115.01</td>
<td>-4.00</td>
<td>9.02</td>
</tr>
<tr>
<td>8F-10</td>
<td>48.21</td>
<td>67.11</td>
<td>*58.92</td>
<td>-20.00</td>
<td>63.06</td>
</tr>
<tr>
<td>8F-12</td>
<td>66.19</td>
<td>63.97</td>
<td>*133.46</td>
<td>-15.00</td>
<td>24.77</td>
</tr>
<tr>
<td>8F-13</td>
<td>105.82</td>
<td>91.18</td>
<td>*116.67</td>
<td>-5.00</td>
<td>7.67</td>
</tr>
<tr>
<td>8F-14</td>
<td>94.16</td>
<td>70.42</td>
<td>*129.84</td>
<td>-5.00</td>
<td>8.63</td>
</tr>
<tr>
<td>8F-16</td>
<td>96.67</td>
<td>82.19</td>
<td>-</td>
<td>-5.00</td>
<td>9.46</td>
</tr>
<tr>
<td>8F-19</td>
<td>65.03</td>
<td>78.92</td>
<td>*84.01</td>
<td>-5.00</td>
<td>9.73</td>
</tr>
<tr>
<td>8F-22</td>
<td>72.51</td>
<td>100.36</td>
<td>65.20</td>
<td>-5.00</td>
<td>7.21</td>
</tr>
<tr>
<td>8F-23</td>
<td>68.79</td>
<td>122.89</td>
<td>*69.54</td>
<td>-4.00</td>
<td>4.44</td>
</tr>
<tr>
<td>8F-26</td>
<td>80.33</td>
<td>50.00</td>
<td>*144.70</td>
<td>-6.00</td>
<td>14.50</td>
</tr>
<tr>
<td>8F-27</td>
<td>77.13</td>
<td>64.17</td>
<td>-</td>
<td>-4.00</td>
<td>6.45</td>
</tr>
<tr>
<td>8F-29</td>
<td>89.40</td>
<td>98.84</td>
<td>-</td>
<td>-7.00</td>
<td>10.82</td>
</tr>
<tr>
<td>8F-31</td>
<td>56.90</td>
<td>63.64</td>
<td>*98.19</td>
<td>-15.00</td>
<td>20.87</td>
</tr>
<tr>
<td>8F-32</td>
<td>76.87</td>
<td>92.15</td>
<td>94.63</td>
<td>-8.00</td>
<td>14.63</td>
</tr>
</tbody>
</table>

* = 100% Mod.
Table 3. Retention of Properties—Fluid H-6001

<table>
<thead>
<tr>
<th>Compound</th>
<th>Tensile Ret. %</th>
<th>Elong. Ret. %</th>
<th>200% Mod. Ret. - %</th>
<th>Hard. Chge. pts.</th>
<th>Vol. Chge. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>8F-1</td>
<td>107.12</td>
<td>70.62</td>
<td>*148.78</td>
<td>11.00</td>
<td>-8.72</td>
</tr>
<tr>
<td>8F-2</td>
<td>95.59</td>
<td>81.23</td>
<td>108.85</td>
<td>-1.00</td>
<td>8.42</td>
</tr>
<tr>
<td>8F-3</td>
<td>74.80</td>
<td>70.71</td>
<td>-</td>
<td>-4.00</td>
<td>7.90</td>
</tr>
<tr>
<td>8F-4</td>
<td>103.33</td>
<td>87.64</td>
<td>*116.07</td>
<td>-1.00</td>
<td>6.69</td>
</tr>
<tr>
<td>8F-5</td>
<td>103.15</td>
<td>85.39</td>
<td>*117.76</td>
<td>1.00</td>
<td>4.06</td>
</tr>
<tr>
<td>8F-9</td>
<td>78.37</td>
<td>82.49</td>
<td>101.02</td>
<td>-2.00</td>
<td>9.04</td>
</tr>
<tr>
<td>8F-10</td>
<td>48.91</td>
<td>46.31</td>
<td>-</td>
<td>-18.00</td>
<td>65.25</td>
</tr>
<tr>
<td>8F-12</td>
<td>72.44</td>
<td>77.21</td>
<td>88.46</td>
<td>-12.00</td>
<td>27.08</td>
</tr>
<tr>
<td>8F-13</td>
<td>106.68</td>
<td>91.76</td>
<td>*106.24</td>
<td>-6.00</td>
<td>8.93</td>
</tr>
<tr>
<td>8F-14</td>
<td>99.22</td>
<td>85.21</td>
<td>*112.28</td>
<td>-5.00</td>
<td>10.06</td>
</tr>
<tr>
<td>8F-16</td>
<td>101.02</td>
<td>90.41</td>
<td>-</td>
<td>-6.00</td>
<td>9.26</td>
</tr>
<tr>
<td>8F-19</td>
<td>78.88</td>
<td>92.16</td>
<td>*85.36</td>
<td>-4.00</td>
<td>3.46</td>
</tr>
<tr>
<td>8F-22</td>
<td>86.81</td>
<td>110.32</td>
<td>76.58</td>
<td>-7.00</td>
<td>4.87</td>
</tr>
<tr>
<td>8F-23</td>
<td>75.96</td>
<td>138.55</td>
<td>*67.35</td>
<td>-6.00</td>
<td>3.99</td>
</tr>
<tr>
<td>8F-26</td>
<td>77.33</td>
<td>150.00</td>
<td>57.40</td>
<td>-11.00</td>
<td>15.64</td>
</tr>
<tr>
<td>8F-27</td>
<td>87.40</td>
<td>66.67</td>
<td>-</td>
<td>-5.00</td>
<td>8.67</td>
</tr>
<tr>
<td>8F-29</td>
<td>88.72</td>
<td>105.81</td>
<td>-</td>
<td>-7.00</td>
<td>12.35</td>
</tr>
<tr>
<td>8F-31</td>
<td>60.77</td>
<td>70.25</td>
<td>*84.31</td>
<td>-16.00</td>
<td>25.42</td>
</tr>
<tr>
<td>8F-32</td>
<td>71.64</td>
<td>95.45</td>
<td>84.57</td>
<td>-8.00</td>
<td>16.11</td>
</tr>
</tbody>
</table>

* = 100% Mod.
<table>
<thead>
<tr>
<th>Compound</th>
<th>Tensile Ret. %</th>
<th>Elong. Ret. %</th>
<th>200% Mod. Ret. %</th>
<th>Hard. Chge. pts.</th>
<th>Vol. Chge. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>8F-1</td>
<td>120.10</td>
<td>87.20</td>
<td>*150.95</td>
<td>7.00</td>
<td>-12.39</td>
</tr>
<tr>
<td>8F-2</td>
<td>94.17</td>
<td>71.98</td>
<td>123.28</td>
<td>-3.00</td>
<td>7.92</td>
</tr>
<tr>
<td>8F-3</td>
<td>79.67</td>
<td>70.00</td>
<td>-</td>
<td>-7.00</td>
<td>10.36</td>
</tr>
<tr>
<td>8F-4</td>
<td>101.34</td>
<td>85.96</td>
<td>*120.88</td>
<td>-3.00</td>
<td>7.26</td>
</tr>
<tr>
<td>8F-5</td>
<td>102.98</td>
<td>80.34</td>
<td>*126.79</td>
<td>-1.00</td>
<td>4.33</td>
</tr>
<tr>
<td>8F-9</td>
<td>76.24</td>
<td>79.47</td>
<td>97.55</td>
<td>-6.00</td>
<td>8.90</td>
</tr>
<tr>
<td>8F-10</td>
<td>47.39</td>
<td>36.91</td>
<td>-</td>
<td>-21.00</td>
<td>65.45</td>
</tr>
<tr>
<td>8F-12</td>
<td>69.85</td>
<td>66.18</td>
<td>*113.56</td>
<td>-14.00</td>
<td>27.91</td>
</tr>
<tr>
<td>8F-13</td>
<td>106.82</td>
<td>90.59</td>
<td>*115.03</td>
<td>-6.00</td>
<td>8.94</td>
</tr>
<tr>
<td>8F-14</td>
<td>85.45</td>
<td>64.08</td>
<td>-</td>
<td>-4.00</td>
<td>10.51</td>
</tr>
<tr>
<td>8F-16</td>
<td>94.48</td>
<td>79.45</td>
<td>-</td>
<td>1.00</td>
<td>9.62</td>
</tr>
<tr>
<td>8F-19</td>
<td>89.80</td>
<td>114.22</td>
<td>85.63</td>
<td>-1.00</td>
<td>1.79</td>
</tr>
<tr>
<td>8F-22</td>
<td>95.10</td>
<td>106.05</td>
<td>86.82</td>
<td>-4.00</td>
<td>2.36</td>
</tr>
<tr>
<td>8F-23</td>
<td>83.61</td>
<td>114.46</td>
<td>*83.07</td>
<td>-2.00</td>
<td>1.49</td>
</tr>
<tr>
<td>8F-26</td>
<td>78.45</td>
<td>138.40</td>
<td>60.74</td>
<td>-10.00</td>
<td>15.21</td>
</tr>
<tr>
<td>8F-27</td>
<td>88.81</td>
<td>78.33</td>
<td>-</td>
<td>-5.00</td>
<td>7.71</td>
</tr>
<tr>
<td>8F-29</td>
<td>68.63</td>
<td>80.23</td>
<td>-</td>
<td>-7.00</td>
<td>12.61</td>
</tr>
<tr>
<td>8F-31</td>
<td>53.59</td>
<td>58.68</td>
<td>*99.13</td>
<td>-18.00</td>
<td>25.74</td>
</tr>
<tr>
<td>8F-32</td>
<td>74.88</td>
<td>90.08</td>
<td>90.07</td>
<td>-9.00</td>
<td>16.50</td>
</tr>
</tbody>
</table>

* = 100% Mod.
Table 5. Retention of Properties—Fluid H-6004

<table>
<thead>
<tr>
<th>Compound</th>
<th>Tensile Ret. %</th>
<th>Elong. Ret. %</th>
<th>200% Mod. Ret. - %</th>
<th>Hard. Chge. pts.</th>
<th>Vol. Chge. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>8F-1</td>
<td>111.41</td>
<td>78.67</td>
<td>*147.98</td>
<td>12.00</td>
<td>-8.97</td>
</tr>
<tr>
<td>8F-2</td>
<td>100.01</td>
<td>82.26</td>
<td>121.38</td>
<td>-2.00</td>
<td>7.62</td>
</tr>
<tr>
<td>8F-3</td>
<td>89.86</td>
<td>77.14</td>
<td>*109.91</td>
<td>-5.00</td>
<td>8.73</td>
</tr>
<tr>
<td>8F-4</td>
<td>99.65</td>
<td>88.76</td>
<td>*116.66</td>
<td>-1.00</td>
<td>5.36</td>
</tr>
<tr>
<td>8F-5</td>
<td>101.27</td>
<td>87.64</td>
<td>*118.08</td>
<td>1.00</td>
<td>2.97</td>
</tr>
<tr>
<td>8F-9</td>
<td>76.80</td>
<td>80.79</td>
<td>94.34</td>
<td>-3.00</td>
<td>9.34</td>
</tr>
<tr>
<td>8F-10</td>
<td>44.26</td>
<td>52.35</td>
<td>—</td>
<td>-18.00</td>
<td>65.17</td>
</tr>
<tr>
<td>8F-12</td>
<td>67.56</td>
<td>76.84</td>
<td>82.87</td>
<td>-5.00</td>
<td>23.94</td>
</tr>
<tr>
<td>8F-13</td>
<td>100.59</td>
<td>97.06</td>
<td>*100.55</td>
<td>-4.00</td>
<td>7.29</td>
</tr>
<tr>
<td>8F-14</td>
<td>98.11</td>
<td>88.73</td>
<td>*109.90</td>
<td>-4.00</td>
<td>8.17</td>
</tr>
<tr>
<td>8F-16</td>
<td>85.22</td>
<td>80.82</td>
<td>—</td>
<td>-3.00</td>
<td>8.26</td>
</tr>
<tr>
<td>8F-19</td>
<td>57.14</td>
<td>87.25</td>
<td>*69.79</td>
<td>-2.00</td>
<td>4.24</td>
</tr>
<tr>
<td>8F-22</td>
<td>78.28</td>
<td>103.20</td>
<td>73.18</td>
<td>-6.00</td>
<td>5.40</td>
</tr>
<tr>
<td>8F-23</td>
<td>64.61</td>
<td>138.55</td>
<td>*61.56</td>
<td>-6.00</td>
<td>4.55</td>
</tr>
<tr>
<td>8F-26</td>
<td>75.15</td>
<td>142.00</td>
<td>56.33</td>
<td>-7.00</td>
<td>13.44</td>
</tr>
<tr>
<td>8F-27</td>
<td>76.55</td>
<td>80.00</td>
<td>—</td>
<td>0.00</td>
<td>5.48</td>
</tr>
<tr>
<td>8F-29</td>
<td>86.78</td>
<td>108.14</td>
<td>—</td>
<td>-4.00</td>
<td>10.10</td>
</tr>
<tr>
<td>8F-31</td>
<td>49.42</td>
<td>63.64</td>
<td>*80.20</td>
<td>-14.00</td>
<td>23.55</td>
</tr>
<tr>
<td>8F-32</td>
<td>74.39</td>
<td>93.18</td>
<td>88.17</td>
<td>-11.00</td>
<td>14.87</td>
</tr>
</tbody>
</table>

* = 100% Mod.
Table 6. Retention of Properties—Fluid HF-4

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8F-1</td>
<td>116.58</td>
<td>74.41</td>
<td>*78.18</td>
<td>11.00</td>
<td>-10.93</td>
</tr>
<tr>
<td>8F-2</td>
<td>103.64</td>
<td>70.95</td>
<td>142.53</td>
<td>2.00</td>
<td>3.71</td>
</tr>
<tr>
<td>8F-3</td>
<td>89.68</td>
<td>72.86</td>
<td>*119.39</td>
<td>4.00</td>
<td>4.52</td>
</tr>
<tr>
<td>8F-4</td>
<td>106.31</td>
<td>75.84</td>
<td>*144.09</td>
<td>3.00</td>
<td>.78</td>
</tr>
<tr>
<td>8F-5</td>
<td>119.75</td>
<td>79.78</td>
<td>*153.33</td>
<td>5.00</td>
<td>-2.26</td>
</tr>
<tr>
<td>8F-9</td>
<td>87.99</td>
<td>78.91</td>
<td>114.70</td>
<td>.00</td>
<td>5.27</td>
</tr>
<tr>
<td>8F-10</td>
<td>76.04</td>
<td>65.77</td>
<td>—</td>
<td>-14.00</td>
<td>20.71</td>
</tr>
<tr>
<td>8F-12</td>
<td>83.64</td>
<td>69.49</td>
<td>*124.41</td>
<td>-12.00</td>
<td>17.00</td>
</tr>
<tr>
<td>8F-13</td>
<td>111.70</td>
<td>82.94</td>
<td>*133.78</td>
<td>-3.00</td>
<td>3.16</td>
</tr>
<tr>
<td>8F-14</td>
<td>100.99</td>
<td>71.83</td>
<td>*138.27</td>
<td>1.00</td>
<td>3.66</td>
</tr>
<tr>
<td>8F-16</td>
<td>101.54</td>
<td>72.60</td>
<td>—</td>
<td>-4.00</td>
<td>3.94</td>
</tr>
<tr>
<td>8F-19</td>
<td>83.43</td>
<td>106.86</td>
<td>77.02</td>
<td>-8.00</td>
<td>2.97</td>
</tr>
<tr>
<td>8F-22</td>
<td>112.13</td>
<td>109.96</td>
<td>95.54</td>
<td>-5.00</td>
<td>3.01</td>
</tr>
<tr>
<td>8F-23</td>
<td>83.47</td>
<td>138.55</td>
<td>*75.78</td>
<td>-7.00</td>
<td>2.87</td>
</tr>
<tr>
<td>8F-26</td>
<td>83.83</td>
<td>123.60</td>
<td>70.28</td>
<td>-11.00</td>
<td>11.90</td>
</tr>
<tr>
<td>8F-27</td>
<td>85.02</td>
<td>67.50</td>
<td>—</td>
<td>.00</td>
<td>2.48</td>
</tr>
<tr>
<td>8F-29</td>
<td>95.40</td>
<td>97.67</td>
<td>—</td>
<td>-5.00</td>
<td>6.03</td>
</tr>
<tr>
<td>8F-31</td>
<td>76.14</td>
<td>72.73</td>
<td>*105.95</td>
<td>-14.00</td>
<td>17.97</td>
</tr>
<tr>
<td>8F-32</td>
<td>85.18</td>
<td>81.61</td>
<td>119.64</td>
<td>-6.00</td>
<td>11.30</td>
</tr>
</tbody>
</table>

* = 100% Mod.
Table 7. Retention of Properties—Fluid HF-12

<table>
<thead>
<tr>
<th>Compound</th>
<th>Tensile Ret. %</th>
<th>Elong. Ret. %</th>
<th>200% Mod. Ret. %</th>
<th>Hard. Chge. pts.</th>
<th>Vol. Chge. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>8F-1</td>
<td>116.58</td>
<td>74.41</td>
<td>*78.18</td>
<td>11.00</td>
<td>-10.93</td>
</tr>
<tr>
<td>8F-2</td>
<td>103.64</td>
<td>70.95</td>
<td>142.53</td>
<td>2.00</td>
<td>3.71</td>
</tr>
<tr>
<td>8F-3</td>
<td>89.68</td>
<td>72.86</td>
<td>*119.30</td>
<td>4.00</td>
<td>4.52</td>
</tr>
<tr>
<td>8F-4</td>
<td>106.31</td>
<td>75.84</td>
<td>*144.00</td>
<td>3.00</td>
<td>.78</td>
</tr>
<tr>
<td>8F-5</td>
<td>119.75</td>
<td>79.78</td>
<td>*153.30</td>
<td>5.00</td>
<td>-2.26</td>
</tr>
<tr>
<td>8F-9</td>
<td>87.99</td>
<td>78.91</td>
<td>114.70</td>
<td>0.00</td>
<td>5.27</td>
</tr>
<tr>
<td>8F-10</td>
<td>76.04</td>
<td>65.77</td>
<td>—</td>
<td>-14.00</td>
<td>20.71</td>
</tr>
<tr>
<td>8F-12</td>
<td>83.64</td>
<td>69.49</td>
<td>124.41</td>
<td>-12.00</td>
<td>17.00</td>
</tr>
<tr>
<td>8F-13</td>
<td>111.70</td>
<td>82.94</td>
<td>*133.78</td>
<td>-3.00</td>
<td>3.16</td>
</tr>
<tr>
<td>8F-14</td>
<td>100.99</td>
<td>*71.83</td>
<td>138.27</td>
<td>1.00</td>
<td>3.66</td>
</tr>
<tr>
<td>8F-16</td>
<td>101.54</td>
<td>72.60</td>
<td>—</td>
<td>-4.00</td>
<td>3.94</td>
</tr>
<tr>
<td>8F-19</td>
<td>83.43</td>
<td>106.86</td>
<td>77.02</td>
<td>-8.00</td>
<td>2.97</td>
</tr>
<tr>
<td>8F-22</td>
<td>112.13</td>
<td>109.96</td>
<td>95.54</td>
<td>-5.00</td>
<td>3.01</td>
</tr>
<tr>
<td>8F-23</td>
<td>83.47</td>
<td>138.55</td>
<td>*75.78</td>
<td>-7.00</td>
<td>2.87</td>
</tr>
<tr>
<td>8F-26</td>
<td>83.83</td>
<td>123.60</td>
<td>*70.28</td>
<td>-11.00</td>
<td>11.90</td>
</tr>
<tr>
<td>8F-27</td>
<td>85.02</td>
<td>67.50</td>
<td>—</td>
<td>0.00</td>
<td>2.48</td>
</tr>
<tr>
<td>8F-29</td>
<td>95.40</td>
<td>97.67</td>
<td>—</td>
<td>-5.00</td>
<td>6.03</td>
</tr>
<tr>
<td>8F-31</td>
<td>76.14</td>
<td>72.73</td>
<td>*105.95</td>
<td>-14.00</td>
<td>17.97</td>
</tr>
<tr>
<td>8F-32</td>
<td>85.18</td>
<td>81.61</td>
<td>119.64</td>
<td>-6.00</td>
<td>11.30</td>
</tr>
</tbody>
</table>

* = 100% Mod.
Table 8. Retention of Properties—Fluid HF-15

<table>
<thead>
<tr>
<th>Compound</th>
<th>Tensile Ret. %</th>
<th>Elong. Ret. %</th>
<th>200% Mod. Ret. - %</th>
<th>Hard. Chge. pts.</th>
<th>Vol. Chge. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>8F-1</td>
<td>121.41</td>
<td>67.30</td>
<td>*184.26</td>
<td>6.00</td>
<td>-11.15</td>
</tr>
<tr>
<td>8F-2</td>
<td>105.29</td>
<td>81.23</td>
<td>128.82</td>
<td>-2.00</td>
<td>3.49</td>
</tr>
<tr>
<td>8F-3</td>
<td>91.09</td>
<td>69.29</td>
<td>-</td>
<td>-1.00</td>
<td>3.50</td>
</tr>
<tr>
<td>8F-4</td>
<td>114.73</td>
<td>87.64</td>
<td>*136.51</td>
<td>3.00</td>
<td>-0.61</td>
</tr>
<tr>
<td>8F-5</td>
<td>114.92</td>
<td>76.97</td>
<td>*152.23</td>
<td>6.00</td>
<td>-3.00</td>
</tr>
<tr>
<td>8F-6</td>
<td>76.74</td>
<td>80.98</td>
<td>100.26</td>
<td>-1.00</td>
<td>5.48</td>
</tr>
<tr>
<td>8F-7</td>
<td>77.39</td>
<td>73.15</td>
<td>*91.98</td>
<td>-14.00</td>
<td>20.11</td>
</tr>
<tr>
<td>8F-8</td>
<td>89.85</td>
<td>80.15</td>
<td>105.22</td>
<td>-10.00</td>
<td>15.22</td>
</tr>
<tr>
<td>8F-9</td>
<td>117.22</td>
<td>90.00</td>
<td>*127.23</td>
<td>-4.00</td>
<td>1.77</td>
</tr>
<tr>
<td>8F-10</td>
<td>103.26</td>
<td>73.24</td>
<td>*132.59</td>
<td>1.00</td>
<td>1.63</td>
</tr>
<tr>
<td>8F-11</td>
<td>105.09</td>
<td>82.19</td>
<td>-</td>
<td>-2.00</td>
<td>3.49</td>
</tr>
<tr>
<td>8F-12</td>
<td>91.86</td>
<td>114.22</td>
<td>83.35</td>
<td>-4.00</td>
<td>2.59</td>
</tr>
<tr>
<td>8F-13</td>
<td>103.41</td>
<td>114.59</td>
<td>86.98</td>
<td>-5.00</td>
<td>1.96</td>
</tr>
<tr>
<td>8F-14</td>
<td>84.94</td>
<td>138.55</td>
<td>*77.35</td>
<td>4.00</td>
<td>2.23</td>
</tr>
<tr>
<td>8F-15</td>
<td>105.00</td>
<td>58.40</td>
<td>*171.96</td>
<td>-4.00</td>
<td>8.70</td>
</tr>
<tr>
<td>8F-16</td>
<td>89.73</td>
<td>77.50</td>
<td>-</td>
<td>3.00</td>
<td>.71</td>
</tr>
<tr>
<td>8F-17</td>
<td>102.14</td>
<td>115.12</td>
<td>-</td>
<td>.00</td>
<td>2.91</td>
</tr>
<tr>
<td>8F-18</td>
<td>76.38</td>
<td>74.38</td>
<td>*101.13</td>
<td>-7.00</td>
<td>16.55</td>
</tr>
<tr>
<td>8F-19</td>
<td>84.29</td>
<td>90.50</td>
<td>108.06</td>
<td>-3.00</td>
<td>10.80</td>
</tr>
</tbody>
</table>

* = 100% Mod.
Table 9. Retention of Properties—Fluid MF-13

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8F-1</td>
<td>123.60</td>
<td>79.15</td>
<td>*171.38</td>
<td>13.00</td>
<td>-11.00</td>
</tr>
<tr>
<td>8F-2</td>
<td>103.95</td>
<td>76.35</td>
<td>133.18</td>
<td>.00</td>
<td>3.64</td>
</tr>
<tr>
<td>8F-3</td>
<td>92.24</td>
<td>75.00</td>
<td>*121.07</td>
<td>-2.00</td>
<td>4.08</td>
</tr>
<tr>
<td>8F-4</td>
<td>111.05</td>
<td>76.97</td>
<td>*148.51</td>
<td>4.00</td>
<td>.22</td>
</tr>
<tr>
<td>8F-5</td>
<td>120.99</td>
<td>78.65</td>
<td>*158.80</td>
<td>6.00</td>
<td>-2.28</td>
</tr>
<tr>
<td>8F-9</td>
<td>85.53</td>
<td>80.60</td>
<td>115.06</td>
<td>-3.00</td>
<td>6.44</td>
</tr>
<tr>
<td>8F-10</td>
<td>78.09</td>
<td>64.43</td>
<td>—</td>
<td>-12.00</td>
<td>20.52</td>
</tr>
<tr>
<td>8F-12</td>
<td>85.85</td>
<td>71.32</td>
<td>*119.46</td>
<td>-9.00</td>
<td>15.30</td>
</tr>
<tr>
<td>8F-13</td>
<td>118.31</td>
<td>88.24</td>
<td>*131.63</td>
<td>-1.00</td>
<td>2.14</td>
</tr>
<tr>
<td>8F-14</td>
<td>105.74</td>
<td>70.42</td>
<td>*142.60</td>
<td>3.00</td>
<td>2.65</td>
</tr>
<tr>
<td>8F-16</td>
<td>108.97</td>
<td>76.71</td>
<td>—</td>
<td>-1.00</td>
<td>3.52</td>
</tr>
<tr>
<td>8F-19</td>
<td>94.94</td>
<td>117.16</td>
<td>86.03</td>
<td>-3.00</td>
<td>2.67</td>
</tr>
<tr>
<td>8F-22</td>
<td>98.07</td>
<td>104.98</td>
<td>92.93</td>
<td>-3.00</td>
<td>2.17</td>
</tr>
<tr>
<td>8F-23</td>
<td>84.94</td>
<td>141.57</td>
<td>*76.13</td>
<td>-2.00</td>
<td>2.64</td>
</tr>
<tr>
<td>8F-26</td>
<td>92.28</td>
<td>140.00</td>
<td>69.02</td>
<td>-7.00</td>
<td>10.02</td>
</tr>
<tr>
<td>8F-27</td>
<td>100.00</td>
<td>67.50</td>
<td>—</td>
<td>4.00</td>
<td>1.32</td>
</tr>
<tr>
<td>8F-29</td>
<td>95.77</td>
<td>97.67</td>
<td>—</td>
<td>.00</td>
<td>3.50</td>
</tr>
<tr>
<td>8F-31</td>
<td>72.91</td>
<td>64.05</td>
<td>*117.55</td>
<td>-10.00</td>
<td>16.95</td>
</tr>
<tr>
<td>8F-32</td>
<td>78.65</td>
<td>84.50</td>
<td>113.54</td>
<td>-4.00</td>
<td>15.04</td>
</tr>
</tbody>
</table>

* = 100% Mod.
<table>
<thead>
<tr>
<th>Compound</th>
<th>Tensile Ret. %</th>
<th>Elong. Ret. %</th>
<th>200% Mod. Ret. - %</th>
<th>Hard. Chge. pts.</th>
<th>Vol. Chge. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>8F-1</td>
<td>123.05</td>
<td>85.31</td>
<td>*161.31</td>
<td>13.00</td>
<td>-11.10</td>
</tr>
<tr>
<td>8F-2</td>
<td>105.33</td>
<td>79.18</td>
<td>129.87</td>
<td>2.00</td>
<td>3.92</td>
</tr>
<tr>
<td>8F-3</td>
<td>93.60</td>
<td>77.86</td>
<td>*121.73</td>
<td>2.00</td>
<td>4.68</td>
</tr>
<tr>
<td>8F-4</td>
<td>111.09</td>
<td>84.27</td>
<td>*134.78</td>
<td>3.00</td>
<td>1.13</td>
</tr>
<tr>
<td>8F-5</td>
<td>111.51</td>
<td>80.34</td>
<td>*137.66</td>
<td>3.00</td>
<td>-1.55</td>
</tr>
<tr>
<td>8F-6</td>
<td>88.28</td>
<td>84.75</td>
<td>107.53</td>
<td>-4.00</td>
<td>5.83</td>
</tr>
<tr>
<td>8F-7</td>
<td>79.34</td>
<td>79.87</td>
<td>*89.65</td>
<td>-11.00</td>
<td>22.65</td>
</tr>
<tr>
<td>8F-8</td>
<td>87.71</td>
<td>79.78</td>
<td>102.97</td>
<td>-9.00</td>
<td>16.86</td>
</tr>
<tr>
<td>8F-9</td>
<td>124.07</td>
<td>99.41</td>
<td>*124.76</td>
<td>-7.00</td>
<td>3.86</td>
</tr>
<tr>
<td>8F-10</td>
<td>95.60</td>
<td>71.13</td>
<td>*132.03</td>
<td>3.00</td>
<td>3.26</td>
</tr>
<tr>
<td>8F-11</td>
<td>83.42</td>
<td>68.49</td>
<td>-</td>
<td>-2.00</td>
<td>4.52</td>
</tr>
<tr>
<td>8F-12</td>
<td>67.94</td>
<td>114.71</td>
<td>66.24</td>
<td>-4.00</td>
<td>3.10</td>
</tr>
<tr>
<td>8F-13</td>
<td>116.21</td>
<td>120.28</td>
<td>87.78</td>
<td>3.00</td>
<td>2.38</td>
</tr>
<tr>
<td>8F-14</td>
<td>83.03</td>
<td>148.80</td>
<td>*76.17</td>
<td>-4.00</td>
<td>2.56</td>
</tr>
<tr>
<td>8F-15</td>
<td>81.66</td>
<td>201.60</td>
<td>91.70</td>
<td>-8.00</td>
<td>11.36</td>
</tr>
<tr>
<td>8F-16</td>
<td>82.53</td>
<td>59.17</td>
<td>-</td>
<td>-10.00</td>
<td>2.47</td>
</tr>
<tr>
<td>8F-17</td>
<td>94.39</td>
<td>104.65</td>
<td>-</td>
<td>-2.00</td>
<td>4.64</td>
</tr>
<tr>
<td>8F-18</td>
<td>72.34</td>
<td>73.97</td>
<td>*95.69</td>
<td>-12.00</td>
<td>18.35</td>
</tr>
<tr>
<td>8F-19</td>
<td>88.01</td>
<td>93.80</td>
<td>102.52</td>
<td>-4.00</td>
<td>11.76</td>
</tr>
</tbody>
</table>

* = 100% Mod.
Table 11. Effect of Fluids on Physical Properties

<table>
<thead>
<tr>
<th>ID</th>
<th>H-6000</th>
<th>H-6001</th>
<th>H-6002</th>
<th>H-6004</th>
<th>HF-4</th>
<th>HF-12</th>
<th>HF-15</th>
<th>MF-13</th>
<th>MF-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>8F-1</td>
<td>2, 3, 5, 7</td>
<td>2, 3, 5, 7</td>
<td>3, 5</td>
<td>3, 5</td>
<td>2, 3, 5, 7</td>
<td>2, 3, 5, 7</td>
<td>2, 3, 5</td>
<td>2, 3, 5</td>
<td>3, 5, 7</td>
</tr>
<tr>
<td>8F-2</td>
<td>2, 3</td>
<td>1, 2</td>
<td>3</td>
<td>3</td>
<td>2, 3</td>
<td>2, 3</td>
<td>3</td>
<td>2, 3</td>
<td>2, 3</td>
</tr>
<tr>
<td>8F-3</td>
<td>2</td>
<td>1, 2</td>
<td>1, 2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2, 3</td>
<td>2, 3</td>
</tr>
<tr>
<td>8F-4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>2, 3</td>
<td>2, 3</td>
<td>3, 5</td>
<td>2, 3</td>
<td>3</td>
</tr>
<tr>
<td>8F-5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>2, 3, 5</td>
<td>2, 3, 5</td>
<td>2, 3, 5</td>
<td>2, 3, 5</td>
<td>3, 5</td>
</tr>
<tr>
<td>8F-9</td>
<td>2</td>
<td>1</td>
<td>1, 2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8F-10</td>
<td>1, 2, 4, 6, 8</td>
<td>1, 2, 6, 8</td>
<td></td>
</tr>
<tr>
<td>8F-12</td>
<td>1, 2, 6, 8</td>
<td>1, 2, 6, 8</td>
<td>1, 2, 6, 8</td>
<td>1, 2, 6, 8</td>
<td>2, 3, 6, 8</td>
<td>2, 3, 6, 8</td>
<td>8</td>
<td>2</td>
<td>2, 6</td>
</tr>
<tr>
<td>8F-13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8F-14</td>
<td>2, 3</td>
<td></td>
<td></td>
<td></td>
<td>2, 3</td>
<td>2, 3</td>
<td>2, 3</td>
<td>2, 3</td>
<td>2, 3</td>
</tr>
<tr>
<td>8F-16</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>8F-19</td>
<td>1, 2</td>
<td>1</td>
<td></td>
<td>1, 4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8F-22</td>
<td>1, 4</td>
<td>4</td>
<td></td>
<td>1, 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8F-23</td>
<td>1, 4</td>
<td>1, 4</td>
<td>1, 4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8F-26</td>
<td>2, 3</td>
<td>1, 4, 8</td>
<td>1, 4, 8</td>
<td>1, 4</td>
<td>4, 8</td>
<td>4, 8</td>
<td>2, 3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8F-27</td>
<td>1, 2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8F-29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8F-31</td>
<td>1, 2, 6, 8</td>
<td></td>
</tr>
<tr>
<td>8F-32</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1, 6</td>
<td>1, 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 = excessive tensile loss
2 = excessive elongation loss
3 = excessive modulus increase
4 = excessive modulus decrease
5 = shrinkage
6 = excessive swelling
7 = excessive hardness increase
8 = excessive hardness decrease
Table 12. Seal/Fluid Compatibility—Tensile Product

<table>
<thead>
<tr>
<th>Comp.</th>
<th>MIL-H-6083 Fluids</th>
<th>MIL-H-46170 Fluids</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H-6000</td>
<td>H-6001</td>
</tr>
<tr>
<td>8F-1</td>
<td>7.34</td>
<td>7.56</td>
</tr>
<tr>
<td>8F-2</td>
<td>7.31</td>
<td>7.76</td>
</tr>
<tr>
<td>8F-3</td>
<td>4.53</td>
<td>5.29</td>
</tr>
<tr>
<td>8F-4</td>
<td>9.03</td>
<td>9.06</td>
</tr>
<tr>
<td>8F-5</td>
<td>8.47</td>
<td>8.81</td>
</tr>
<tr>
<td>8F-9</td>
<td>6.02</td>
<td>6.46</td>
</tr>
<tr>
<td>8F-10</td>
<td>3.24</td>
<td>2.26</td>
</tr>
<tr>
<td>8F-12</td>
<td>4.23</td>
<td>5.59</td>
</tr>
<tr>
<td>8F-14</td>
<td>6.63</td>
<td>8.45</td>
</tr>
<tr>
<td>8F-16</td>
<td>7.95</td>
<td>9.13</td>
</tr>
<tr>
<td>8F-19</td>
<td>5.13</td>
<td>7.27</td>
</tr>
<tr>
<td>8F-22</td>
<td>7.28</td>
<td>9.58</td>
</tr>
<tr>
<td>8F-23</td>
<td>8.45</td>
<td>10.52</td>
</tr>
<tr>
<td>8F-26</td>
<td>4.02</td>
<td>11.60</td>
</tr>
<tr>
<td>8F-27</td>
<td>4.95</td>
<td>5.83</td>
</tr>
<tr>
<td>8F-31</td>
<td>3.62</td>
<td>4.27</td>
</tr>
<tr>
<td>8F-32</td>
<td>7.08</td>
<td>6.84</td>
</tr>
<tr>
<td>Avg.</td>
<td>6.51</td>
<td>7.66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Row H Fluid</th>
<th>Avg.</th>
<th>HF/MF</th>
<th>Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8F-1</td>
<td>8.96</td>
<td>9.29</td>
<td>.76</td>
</tr>
<tr>
<td>8F-2</td>
<td>7.83</td>
<td>8.08</td>
<td>.56</td>
</tr>
<tr>
<td>8F-3</td>
<td>6.21</td>
<td>6.71</td>
<td>1.13</td>
</tr>
<tr>
<td>8F-4</td>
<td>9.10</td>
<td>9.25</td>
<td>.34</td>
</tr>
<tr>
<td>8F-5</td>
<td>8.99</td>
<td>9.30</td>
<td>.70</td>
</tr>
<tr>
<td>8F-9</td>
<td>6.68</td>
<td>7.07</td>
<td>.89</td>
</tr>
<tr>
<td>8F-10</td>
<td>4.05</td>
<td>5.38</td>
<td>2.99</td>
</tr>
<tr>
<td>8F-12</td>
<td>5.88</td>
<td>6.66</td>
<td>1.75</td>
</tr>
<tr>
<td>8F-13</td>
<td>10.20</td>
<td>10.58</td>
<td>.86</td>
</tr>
<tr>
<td>8F-14</td>
<td>7.31</td>
<td>7.31</td>
<td>-.01</td>
</tr>
<tr>
<td>8F-16</td>
<td>7.87</td>
<td>7.86</td>
<td>-.01</td>
</tr>
<tr>
<td>8F-19</td>
<td>8.69</td>
<td>10.11</td>
<td>3.20</td>
</tr>
<tr>
<td>8F-22</td>
<td>10.74</td>
<td>12.33</td>
<td>3.58</td>
</tr>
<tr>
<td>8F-23</td>
<td>10.88</td>
<td>12.08</td>
<td>2.71</td>
</tr>
<tr>
<td>8F-26</td>
<td>10.05</td>
<td>10.66</td>
<td>1.38</td>
</tr>
<tr>
<td>8F-27</td>
<td>6.12</td>
<td>6.25</td>
<td>.28</td>
</tr>
<tr>
<td>8F-29</td>
<td>9.37</td>
<td>10.25</td>
<td>1.97</td>
</tr>
<tr>
<td>8F-31</td>
<td>4.55</td>
<td>5.36</td>
<td>1.82</td>
</tr>
<tr>
<td>8F-32</td>
<td>7.19</td>
<td>7.43</td>
<td>.53</td>
</tr>
</tbody>
</table>
Table 13. Seal/Fluid Compatibility—Volume Change

<table>
<thead>
<tr>
<th>Comp.</th>
<th>H-6000</th>
<th>H-6001</th>
<th>H-6002</th>
<th>H-6004</th>
<th>HF-4</th>
<th>HF-12</th>
<th>HF-15</th>
<th>MF-13</th>
<th>MF-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>8F-2</td>
<td>7.78</td>
<td>8.42</td>
<td>7.92</td>
<td>7.62</td>
<td>3.71</td>
<td>3.64</td>
<td>3.49</td>
<td>3.64</td>
<td>3.92</td>
</tr>
<tr>
<td>8F-3</td>
<td>8.14</td>
<td>7.90</td>
<td>10.36</td>
<td>8.73</td>
<td>4.52</td>
<td>4.62</td>
<td>3.50</td>
<td>4.08</td>
<td>4.68</td>
</tr>
<tr>
<td>8F-4</td>
<td>5.31</td>
<td>6.69</td>
<td>7.26</td>
<td>5.36</td>
<td>7.78</td>
<td>-0.06</td>
<td>-0.61</td>
<td>0.22</td>
<td>1.13</td>
</tr>
<tr>
<td>8F-5</td>
<td>3.03</td>
<td>4.06</td>
<td>4.33</td>
<td>2.97</td>
<td>-2.26</td>
<td>-2.04</td>
<td>-3.00</td>
<td>-2.28</td>
<td>-1.55</td>
</tr>
<tr>
<td>8F-9</td>
<td>9.02</td>
<td>9.04</td>
<td>8.90</td>
<td>9.34</td>
<td>5.27</td>
<td>5.38</td>
<td>5.48</td>
<td>6.44</td>
<td>5.83</td>
</tr>
<tr>
<td>8F-10</td>
<td>63.06</td>
<td>65.25</td>
<td>65.45</td>
<td>65.17</td>
<td>20.71</td>
<td>21.61</td>
<td>20.11</td>
<td>20.52</td>
<td>22.65</td>
</tr>
<tr>
<td>8F-12</td>
<td>24.77</td>
<td>27.08</td>
<td>27.91</td>
<td>23.94</td>
<td>17.00</td>
<td>14.91</td>
<td>15.22</td>
<td>15.30</td>
<td>16.86</td>
</tr>
<tr>
<td>8F-13</td>
<td>7.67</td>
<td>8.93</td>
<td>8.94</td>
<td>7.29</td>
<td>3.16</td>
<td>3.90</td>
<td>1.77</td>
<td>2.14</td>
<td>3.86</td>
</tr>
<tr>
<td>8F-14</td>
<td>8.63</td>
<td>10.06</td>
<td>10.51</td>
<td>8.17</td>
<td>3.66</td>
<td>2.27</td>
<td>1.63</td>
<td>2.65</td>
<td>3.26</td>
</tr>
<tr>
<td>8F-16</td>
<td>9.46</td>
<td>9.26</td>
<td>9.62</td>
<td>8.26</td>
<td>3.94</td>
<td>3.70</td>
<td>3.49</td>
<td>3.52</td>
<td>4.52</td>
</tr>
<tr>
<td>8F-19</td>
<td>9.73</td>
<td>3.46</td>
<td>1.79</td>
<td>4.24</td>
<td>2.97</td>
<td>2.34</td>
<td>2.59</td>
<td>2.67</td>
<td>3.10</td>
</tr>
<tr>
<td>8F-22</td>
<td>7.21</td>
<td>4.87</td>
<td>2.36</td>
<td>5.40</td>
<td>3.01</td>
<td>2.36</td>
<td>1.96</td>
<td>2.17</td>
<td>2.38</td>
</tr>
<tr>
<td>8F-23</td>
<td>4.44</td>
<td>3.99</td>
<td>1.49</td>
<td>4.55</td>
<td>2.87</td>
<td>2.44</td>
<td>2.23</td>
<td>2.64</td>
<td>2.56</td>
</tr>
<tr>
<td>8F-26</td>
<td>14.50</td>
<td>15.64</td>
<td>15.21</td>
<td>13.44</td>
<td>11.90</td>
<td>9.11</td>
<td>8.70</td>
<td>10.02</td>
<td>11.36</td>
</tr>
<tr>
<td>8F-27</td>
<td>6.45</td>
<td>8.67</td>
<td>7.71</td>
<td>5.48</td>
<td>2.48</td>
<td>.86</td>
<td>.71</td>
<td>1.32</td>
<td>2.47</td>
</tr>
<tr>
<td>8F-29</td>
<td>10.82</td>
<td>12.35</td>
<td>12.61</td>
<td>10.10</td>
<td>6.03</td>
<td>3.32</td>
<td>2.91</td>
<td>3.50</td>
<td>4.64</td>
</tr>
<tr>
<td>8F-31</td>
<td>20.87</td>
<td>25.42</td>
<td>25.74</td>
<td>23.55</td>
<td>17.97</td>
<td>15.91</td>
<td>16.55</td>
<td>16.95</td>
<td>18.35</td>
</tr>
<tr>
<td>8F-32</td>
<td>14.63</td>
<td>16.11</td>
<td>16.50</td>
<td>14.87</td>
<td>11.30</td>
<td>11.45</td>
<td>10.80</td>
<td>11.76</td>
<td>11.76</td>
</tr>
<tr>
<td>Avg.</td>
<td>11.89</td>
<td>12.55</td>
<td>12.22</td>
<td>11.55</td>
<td>5.69</td>
<td>4.97</td>
<td>4.55</td>
<td>5.07</td>
<td>5.83</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.57</td>
<td>7.94</td>
<td>3.68</td>
<td>4.26</td>
</tr>
<tr>
<td>6.28</td>
<td>8.78</td>
<td>4.28</td>
<td>4.50</td>
</tr>
<tr>
<td>2.90</td>
<td>6.16</td>
<td>.29</td>
<td>5.86</td>
</tr>
<tr>
<td>.36</td>
<td>3.60</td>
<td>-2.23</td>
<td>5.82</td>
</tr>
<tr>
<td>7.19</td>
<td>9.07</td>
<td>5.68</td>
<td>3.39</td>
</tr>
<tr>
<td>4.05</td>
<td>46.73</td>
<td>21.12</td>
<td>43.61</td>
</tr>
<tr>
<td>20.33</td>
<td>25.93</td>
<td>15.86</td>
<td>10.07</td>
</tr>
<tr>
<td>5.30</td>
<td>8.21</td>
<td>2.97</td>
<td>5.24</td>
</tr>
<tr>
<td>5.65</td>
<td>9.34</td>
<td>2.69</td>
<td>6.65</td>
</tr>
<tr>
<td>6.20</td>
<td>9.15</td>
<td>3.83</td>
<td>5.32</td>
</tr>
<tr>
<td>3.65</td>
<td>4.81</td>
<td>2.73</td>
<td>2.07</td>
</tr>
<tr>
<td>3.52</td>
<td>4.96</td>
<td>2.38</td>
<td>2.58</td>
</tr>
<tr>
<td>3.02</td>
<td>3.62</td>
<td>2.55</td>
<td>1.07</td>
</tr>
<tr>
<td>12.21</td>
<td>14.70</td>
<td>10.22</td>
<td>4.48</td>
</tr>
<tr>
<td>4.02</td>
<td>7.08</td>
<td>1.57</td>
<td>5.51</td>
</tr>
<tr>
<td>7.36</td>
<td>11.47</td>
<td>4.08</td>
<td>7.39</td>
</tr>
<tr>
<td>20.15</td>
<td>23.90</td>
<td>17.15</td>
<td>6.75</td>
</tr>
<tr>
<td>13.24</td>
<td>15.53</td>
<td>11.41</td>
<td>4.11</td>
</tr>
</tbody>
</table>

NBR-L (8F-31) Comparison

<table>
<thead>
<tr>
<th>Fluid Mfr. R & CF</th>
<th>70°C</th>
<th>100°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-6000</td>
<td>25.0</td>
<td>20.0</td>
</tr>
<tr>
<td>H-6001</td>
<td>26.0</td>
<td>25.4</td>
</tr>
<tr>
<td>H-6002</td>
<td>26.5</td>
<td>25.7</td>
</tr>
<tr>
<td>H-6004</td>
<td>—</td>
<td>23.6</td>
</tr>
<tr>
<td>HF-4</td>
<td>21.4</td>
<td>18.0</td>
</tr>
<tr>
<td>HF-12</td>
<td>19.9</td>
<td>15.9</td>
</tr>
<tr>
<td>HF-15</td>
<td>19.5</td>
<td>16.6</td>
</tr>
<tr>
<td>MF-13</td>
<td>20.0</td>
<td>17.0</td>
</tr>
<tr>
<td>MF-14</td>
<td>23.2</td>
<td>18.4</td>
</tr>
</tbody>
</table>
Table 14. Retention of Properties—Mixed Fluid Immersion

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td></td>
<td>pts.</td>
<td>%</td>
</tr>
<tr>
<td>8F-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-6002</td>
<td>103</td>
<td>80</td>
<td>*127</td>
<td>-1</td>
<td>4.3</td>
</tr>
<tr>
<td>HF-15</td>
<td>115</td>
<td>77</td>
<td>*152</td>
<td>6</td>
<td>-3.0</td>
</tr>
<tr>
<td>Mixed</td>
<td>115</td>
<td>78</td>
<td>*138</td>
<td>1</td>
<td>-1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8F-12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-6002</td>
<td>70</td>
<td>66</td>
<td>*114</td>
<td>-14</td>
<td>27.9</td>
</tr>
<tr>
<td>HF-15</td>
<td>90</td>
<td>80</td>
<td>105</td>
<td>-10</td>
<td>15.2</td>
</tr>
<tr>
<td>Mixed</td>
<td>84</td>
<td>82</td>
<td>95</td>
<td>-8</td>
<td>16.6</td>
</tr>
</tbody>
</table>

* = 100% Mod.

Tensile Product

<table>
<thead>
<tr>
<th></th>
<th>H-6002</th>
<th>HF-15</th>
<th>Mixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>8F-5</td>
<td>8.27</td>
<td>8.85</td>
<td>8.94</td>
</tr>
<tr>
<td>8F-12</td>
<td>4.62</td>
<td>7.20</td>
<td>6.86</td>
</tr>
</tbody>
</table>
Figure 1. Tensile Product and Volume Change Averages, MIL-H-6083 vs. MIL-H-46170
Figure 2. Tensile Product and Volume Change, NBR-L vs. Group Average
DISTRIBUTION FOR REPORT NO. 2496

DEPARTMENT OF DEFENSE

1 Director, Technical Information
 Defense Advanced Research Projects Agency
 1400 Wilson Blvd.
 Arlington, VA 22209

1 Director
 Defense Nuclear Agency
 ATTN: TITL
 Washington, DC 20305

2 Defense Technical Information Center
 Cameron Station
 ATTN: DTIC-FDAC
 Alexandria, VA 22304-6145

DEPARTMENT OF THE ARMY

1 HQDA (DAMA-AOA-M)
 Washington, DC 20310

1 HQDA (DALO-TSM)
 Washington, DC 20310

1 HQDA (DAEN-RDL)
 Washington, DC 20314

1 DALO-TSE-W
 Washington, DC 20314

1 HQDA (DAEN-MPE-T)
 Washington, DC 20314

1 Commander
 US Army Missile Research & Development Command
 ATTN: AMSMI-PR
 Redstone Arsenal, AL 35809

1 Director
 Army Materials and Mechanics Research Center
 ATTN: AMXMR-RL Technical Library
 Watertown, MA 02172-0001

1 Commander
 Chemical Research R&D Center
 ATTN: SMCCR-SPS (Tech Library)
 Aberdeen Proving Ground, MD 21005

1 Commander
 US Army Aberdeen Proving Ground
 ATTN: STEAP-MT-U (GE Branch)
 Aberdeen Proving Ground, MD 21005

1 Director
 US Army Materiel Systems Analysis Agency
 ATTN: AMXSY-MP
 Aberdeen Proving Ground, MD 21005-5071

1 Director
 US Ballistics Research Laboratory
 ATTN: AMXBR-OD-ST (STINFO)
 Aberdeen Proving Ground, MD 21005-5066

1 Director
 US Army Engineer Waterways Experiment Station
 ATTN: Chief, Library Branch
 Technical Information Center
 Vicksburg, MS 39180

1 Commander
 US Army Armament Research & Development Command
 ATTN: SMCAR-TSS
 Dover, NJ 07801-5001

2 Commander
 US Army Troop Support Command
 ATTN: AMCPM-PWL
 4300 Goodfellow Blvd.
 St. Louis, MO 63120

2 Commandant
 US Army Quartermaster School and Center
 ATTN: ATSM-CDM
 Ft. Lee, VA 23801
BELVOIR RD&E CENTER

Circulate

1 Commander STRBE-Z
 Deputy Commander STRBE-ZD
 Technical Director STRBE-ZT
 Assoc Tech Dir (E&A) STRBE-ZTE
 Assoc Tech Dir (R&D) STRBE-ZTR
 Sergeant Major STRBE-ZM
 Advanced Systems Concept Dir STRBE-H
 Program Planning Div STRBE-HP
 Foreign Intelligence Div STRBE-HF
 Systems and Concepts Div STRBE-HC

5 STRBE-V
10 STRBE-VF
10 STRBE-VU

2 Tech Reports Office ASQNK-BVP-G
3 Security Ofc (for liaison officers) STRBE-S
2 Tech Lib STRBE-BT
1 Public Affairs Office STRBE-I
1 Office of Chief Counsel STRBE-L
5 STRBE-FS

DEPARTMENT OF THE NAVY

1 Director
 Physics Program (421)
 Office of Naval Research
 Arlington, VA 22217

2 Commander
 Naval Facilities Engineering Command
 Department of the Navy
 ATTN: Code 032-B
 062
 200 Stovall Stree.
 Alexandria, VA 22332

1 US Naval Oceanographic Office
 Navy Library/NSTL Station
 Bay St. Louis, MO 39522

 Civil Engineering Laboratory
 Naval Construction Battalion Center
 1 Library (Code L08A)
 3 Code L-66
 Port Hueneme, CA 93043

1 Director
 Earth Physics Program
 Code 464
 Office of Naval Research
 Arlington, VA 22217

1 Naval Training Equipment Center
 ATTN: Technical Library
 Orlando, FL 32813

3 Naval Sea Systems Command
 ATTN: P. Schneider PMS377J1
 Washington, DC 20362-5101

1 Naval Air Development Center
 ATTN: V. S. Agarwala, Code 6062
 Warminster, PA 18974

3 David W. Taylor Naval Research Center
 ATTN: A. G. S. Morton
 Code 2813
 Annapolis, MD 21402

Distribution-3
DEPARTMENT OF THE AIR FORCE

1 HQ USAF/RDPT
 ATTN: Commander
 Washington, DC 20330

1 HQ USAF/PREEU
 Chief, Utilities Branch
 Washington, DC 20330

1 HQ Air Force Engineering & Services Ctr
 Technical Library FL7050
 Tyndall AFB, FL 32403

1 US Air Force
 Warner Robins Air Logistics Center
 WR-ALC/MMEM
 Warner-Robins AFB, GA 31098

1 Chief, Lubrications Branch
 Fuels & Lubrications Div
 ATTN: AFWAL/POSL
 Wright-Patterson AFB, OH 45433