AGARD ADVISORY REPORT NO. 267
Technical Evaluation Report
on the
Fluid Dynamics Panel Symposium
on
Computational Methods for
Aerodynamic Design (Inverse)
and Optimization
(Les Méthodes de Calcul pour la
Conception Aérodynamique (Méthodes Inverses)
et l'Optimisation)

DISTRIBUTION AND AVAILABILITY
ON BACK COVER

DISTRIBUTION STATEMENT A
Approved for public release; Distribution Unlimited
AGARD Advisory Report No.267

TECHNICAL EVALUATION REPORT

on the

FLUID DYNAMICS PANEL SYMPOSIUM

on

Computational Methods for Aerodynamic Design
(Inverse) and Optimization

(Les méthodes de calcul pour la conception aérodynamique
(méthodes inverses) et l’optimisation)

by

Preston A. Hennc
Manager — MD-90 Technical Integration
Douglas Aircraft Company
McDonnell Douglas Corporation
3855 Lakewood Blvd
Long Beach, Ca 90846
United States

Edited by

Professor Ir J.W. Slooff
National Aerospace Laboratory, NLR
1059 Amsterdam
Netherlands

This Advisory Report was produced at the request of the Fluid Dynamics Panel of AGARD.
The Mission of AGARD

According to its Charter, the mission of AGARD is to bring together the leading personalities of the NATO nations in the fields of science and technology relating to aerospace for the following purposes:

- Recommending effective ways for the member nations to use their research and development capabilities for the common benefit of the NATO community;
- Providing scientific and technical advice and assistance to the Military Committee in the field of aerospace research and development (with particular regard to its military application);
- Continuously stimulating advances in the aerospace sciences relevant to strengthening the common defence posture;
- Improving the co-operation among member nations in aerospace research and development;
- Exchange of scientific and technical information;
- Providing assistance to member nations for the purpose of increasing their scientific and technical potential;
- Rendering scientific and technical assistance, as requested, to other NATO bodies and to member nations in connection with research and development problems in the aerospace field.

The highest authority within AGARD is the National Delegates Board consisting of officially appointed senior representatives from each member nation. The mission of AGARD is carried out through the Panels which are composed of experts appointed by the National Delegates, the Consultant and Exchange Programme and the Aerospace Applications Studies Programme. The results of AGARD work are reported to the member nations and the NATO Authorities through the AGARD series of publications of which this is one.

Participation in AGARD activities is by invitation only and is normally limited to citizens of the NATO nations.
Foreword

The Fluid Dynamics Panel of AGARD organised a Specialists’ Meeting on the subject of “Computational Methods for Aerodynamic Design (Inverse) and Optimization”. The Specialists’ Meeting was motivated by the observation that “design type” of CFD (Computational Fluid Dynamics) methods appear to receive relatively little attention as compared to “analysis type” of methods; this in spite of the fact that the “design type” of methods offer unique possibilities for which there is no equivalent in experimental aerodynamics.

The Program Committee for the meeting is grateful that Mr Preston Henne of McDonnell Douglas Corporation, Douglas Aircraft Company accepted the invitation for acting as the Technical Evaluator of the meeting, in particular because he combines a detailed knowledge of “design type” CFD methods with a vast experience in aerodynamic design in an industry environment. The present report contains his observations, remarks and comments on the meeting. The 23 papers presented at the meeting have been collected in AGARD Conference Proceedings CP 463.

Le Panel AGARD de la Dynamique des Fluides a organisé une réunion de Spécialistes sur “Les méthodes de calcul pour la conception aérodynamique (métodes inverses) et l’optimisation”. En effet, le Panel a constaté que les méthodes CFD (l’aérodynamique numérique) pour la conception suscitent relativement peu d’intérêt par rapport aux méthodes pour l’analyse, et ceci malgré le fait que les méthodes pour la conception offrent des possibilités uniques, pour lesquelles il n’existe aucun équivalent dans le domaine de l’aérodynamique expérimentale.

Le comité du programme de cette réunion tient à remercier M. Preston Henne de la McDonnell Douglas Corporation, Douglas Aircraft Company, pour avoir bien voulu accepté d’exercer les fonctions d’Expert technique pour cette réunion. Le comité se félicite sur son choix d’expert, puisqu’il s’agit de quelqu’un qui sait allier des connaissances approfondies des méthodes CFD du type “conception” à une vaste expérience dans le domaine de la conception aérodynamique dans un contexte industriel.

Ce rapport contient ses réflexions, remarques et commentaires sur la réunion. Les 23 communications présentées lors de la réunion ont été rassemblées sous la forme du Compte-rendu de Conference AGARD CP 463.

J.W. Slooff
Editor
CONTENTS

FOREWORD iii
1 SUMMARY 1
2 INTRODUCTION 1
3 SESSION I – INVITED AND SURVEY PAPERS 1
4 SESSION II – INVERSE METHODS/AIRFOILS AND WINGS 2
5 SESSION III – INVERSE METHODS/TURBOMACHINERY, INTAKES, DUCTS 3
6 SESSION IV – NUMERICAL OPTIMIZATION 4
7 GENERAL COMMENTS 6
8 REFERENCES 7
APPENDIX A – PROGRAM COMMITTEE 8
APPENDIX B – LIST OF PAPERS 9
1.0 SUMMARY

The papers presented at the AGARD Specialists' Meeting on Computational Methods for Aerodynamic Design (Inverse) and Optimization are reviewed. Strengths and weaknesses are identified for many of the contributions as each is reviewed. The reviewer closes with some general comments.

2.0 INTRODUCTION

The 64th Meeting of the AGARD Fluid Dynamics Panel included a Specialists' Meeting on 22-23 May, 1989. The Specialists' Meeting was entitled "Computational Methods for Aerodynamic Design (Inverse) and Optimization." The Program committee, Appendix A, identified the theme for the meeting as the following:

"Computational Fluid Dynamics (CFD) play an increasingly important role in aerodynamic design. From the design applications point of view two categories of CFD-based design methodology may be distinguished.

The first utilizes analysis type methods in an heuristic/empirical cut-and-try type of process. In this kind of process the role of CFD is to predict the aerodynamic characteristics of a configuration (or part thereof) of given geometry provided by the designer. The second category of CFD-based methods addresses the problem of design for aerodynamic characteristics in a more direct sense. Examples are (the classical) inverse methods which provide the detailed geometry required to generate a given pressure distribution and methods utilizing numerical optimization techniques to obtain the geometry that minimizes, subject to constraints, a given aerodynamic objective function such as drag, load distribution, etc.

The purpose of the Specialists' Meeting is to stimulate communication on recent developments and current research on the second category of methods (i.e. inverse methods and methods utilizing numerical optimization techniques)."

The Specialists' Meeting was organized into the following four sessions:

Session I - Invited and Survey Papers
Session II - Inverse Methods / Airfoils and Wings
Session III - Inverse Methods / Turbomachinery, Intakes, Ducts
Session IV - Numerical Optimization

The full listing of authors and papers is included in Appendix B. The paper number, shown in Appendix B and utilized in the discussion below, is the number assigned by the program committee and does not represent the order of the program presentations.

3.0 SESSION I - INVITED AND SURVEY PAPERS

In the introductory session four presentations were made. The papers of Sobieczky, Bocci, and Koster at al. were available at the meeting. The fourth presentation, that of Jameson, was an oral briefing only. The focus of this introductory session was largely on airfoils and wings. The technical range and
contrast of the papers in this session was quite large. The presentations included reviews of remarkably
elegant and new design methods as well as applications of traditional methods with reportedly
disappointing results. The variation in success reported in these introductory papers was larger than
expected.

PAPER 1. SOBIECZKY provided the extended introductory presentation and focused on flowfield
characteristics, particularly as inferred from hodograph plane analyses. The printed version of the
Sobieczky paper highlights the different design method approaches. These approaches are the hodograph
method, the inverse method, and parametric or numerical optimization. The written version of the paper
contains a brief summary of recent work in each category of design method approaches.

In the inverse method area in particular, the Euler equation airfoil design method of Drelal was
highlighted. The Drelal method is a novel approach to airfoil design that is a natural extension of the
streaming oriented numerical scheme originally developed for an analysis method. The work of
Takanashi? is also mentioned. Takanashi utilized an approach based on a residual-correction scheme
coupled to transonic integral equation. The advantage of this approach is that the geometry correction
scheme can be maintained separate and distinct from the flow solver. The flow solver is treated as a
"black box". Hence, the scheme is applicable in principle to many existing analysis methods.

Numerical optimization works of Consentino and Holst3 and of Gregg and Misegades4 are mentioned.
Consentino and Holst utilized a gradient search strategy in combination with a parameterized definition of
a portion of a wing surface. The objective function for the numerical optimization was lift-to-drag.
Gregg and Misegades performed similar optimization but utilizing an evolution theory numerical scheme
in place of a gradient based method. The advantage reported for the evolution theory scheme is the
ability to handle a large number of design variables, coupled design variables, complex constraints, and
step functions.

Sobieczky closes his paper with a forecast dealing with Artificial Intelligence and Expert Systems.
Sobieczky states that progress should be expected in the development of Aerodynamic Expert Design Systems
in the near future.

PAPER 3. BORCCI presented a review of airfoil design techniques and design exercises accomplished at
the Aircraft Research Association Limited (ARA) over a number of years. Design studies of a combat wing
airfoil, a transport wing airfoil, laminar flow airfoils, and propeller blade airfoils are reviewed in a
summary fashion.

This paper, different from any of the other presentations made at the conference, seemed to be quite
negative on the use the recently developed design methods. Examples are shown which are reported to be
failures of the design methodology, particularly inverse supercritical methods. However, in light of a
growing volume of work to the contrary and reported by user agencies (see References 5-10 as a quick
sample), this position seems difficult to understand. Bocchi's paper seems out of line with current
capabilities and the state-of-the-art in design methodology. Review of the other papers at this
conference also support such a view.

PAPER 7. KOSTER et.al. provided only hard copies of viewfoil art at the time of the conference.
Hence, it is somewhat more difficult to critique such an effort. In the presentation reference was made to
at least five different design methods used at the DRL Institute for Design Aerodynamics, FRG. This
reference indicates a strong commitment to design methods at DRL. Examples were presented for an airfoil
application and a missile cowl development. Koster makes the point that four essential parts are needed
for the design process: (1) detailed and accurate description of the design requirements, (2) design
methods for providing the basic shape and for carrying out small changes, (3) analysis methods to confirm
the design and estimate the off-design behavior, and (4) experience in the use and combination of results
from design and analysis methods in order to perform a successful design. The fourth item cannot be
overemphasized. The finest methods available today still demand application experience if they are to be
used with confidence.

PAPER 22. JAMESON presented an oral review of recent work that he has accomplished in the area of
aerodynamic design. Specifically, Jameson has developed a design method approach by applying control
to the problem. He treats the design problem as a control problem in which the control is the shape of the aerodynamic surface. By using control theory a target pressure distribution can be sought
while additional quantities such as drag can be minimized simultaneously.

The elegant mathematical formulation presented by Jameson is clearly the product of some creative
thinking focused on the the aerodynamic design problem. Jameson indicated that such a scheme has been
mathematically derived for two-dimensional potential flow, two-dimensional Euler flow, and three-
dimensional, transonic flow. Computational implementation of the scheme has been accomplished for the
two-dimensional flows. Examples were shown that illustrate a significant potential for the method. A
drawback of the scheme as it currently stands is the computational time involved. Each iteration of the
scheme requires about the time of two flow solutions. A second differential equation, the adjoint
equation with its related boundary conditions, must be solved along with a standard potential equation or
Euler equation at each geometry iteration. If 5 to 10 geometry iterations are required for convergence, then the process is roughly equivalent to 10 to 20 analysis solutions. Nevertheless, this
approach represents a fresh look at the design problem and numerous researchers are likely to adopt it.

4.0 SESSION II - INVERSE METHODS / AIRFOILS AND WINGS

PAPER 2. VOLPE discussed recent work assisted with transonic airfoil design. The theme of his
presentation was based on highlighting various approaches to satisfying Lighthill's three constraints.
The three constraints are associated with freestream consistency and orthogonal trailing edge closure of
the designed airfoil. Volpe has shown that these constraints can be introduced into the design problem in an
number of ways and has used the Dirichlet boundary condition (transpiration scheme) in a 2-D potential
solution to demonstrate the approach. A number of sample applications, both subsonic and transonic, of
the design scheme were presented. Details were presented that substantiate the method as being a well
developed and matured capability.

PAPER 4. MALORE presented results for an application of a residual-correction approach coupled to a
2-D Navier-Stokes code. As discussed in the written version of the paper, this approach allows the
geometry correction scheme to drive the analysis code as a "black box." The title of the paper is "An
Efficient Airfoil Design Method Using the Navier-Stokes Equations." Clearly this work is one of the
earliest attempts at using the N-S equations in an inverse method application. Reported solutions
utilized several thousand flowfield iterations for convergence. This magnitude of resource use indicates
a different definition of efficiency when compared to that associated with potential solution schemes.

Three example applications are shown in the paper. The first two demonstrate solution convergence
while the third represents a more typical design application. Examination of the results for the third
application reveals that a target pressure distribution, defined parametrically a priori, was closely
achieved in the design process. However, the results: airfoil shape would appear to have an unusual
shape near the leading edge and a surface wiggle at the shock position on the upper surface.

It was the reviewer's hope that the author had actually attempted a design at massively separated flow
conditions, thus justifying the use of the N-S set of equations. Unfortunately, this was not the case and
only an attached flow case was presented at this time. Future efforts would be expected for separated
flow conditions in order to justify N-S application.

PAPER 5. FORNASIER described a progress report on inverse capability using a higher-order panel
method for arbitrary aircraft configurations at subsonic and supersonic speeds. The panel method is based
presented which show consistent recovery of known cascade and airfoil geometries for known prescribed
parameters are introduced into the specified pressure distributions to account explicitly for Lighthill's
distribution. The results after six geometry iterations are shown. Convergence to the correct geometry for
the corresponding target pressure distribution is demonstrated. Detailed review of the results still pointed
out some modest discrepancies, according to the author, and future efforts are directed at further
generalizing the geometry handling procedures.

PAPER 6. BRANDSMA presented a scheme for transonic wing design based on a residual-correction
approach. In this scheme an initial 3-D wing geometry is used to create an initial pressure distribution
using the transonic analysis code XFLO22. A target pressure distribution is specified and compared to the
initial pressure distribution. This comparison yields a pressure difference referred to as a defect
pressure. This incremental Cp is transformed into an equivalent subsonic incremental velocity which is
imposed on a 3-D subsonic inverse panel method based on mean plane singularity distributions. Further
constraints can be imposed on camber and thickness and a least squares solution is obtained to minimize
the pressure defect as well as deviations from the imposed geometrical constraints. A single sample
application was presented in which a known wing geometry was recovered for a known target pressure
distribution. The results after six geometry iterations were shown. Convergence to the correct geometry
is indicated. Some residual sensitivity in the root region of the wing is indicated in the results.

PAPER 8. DE PONTE presented an approach utilizing the fictitious gas concept in connection with a
field panel method for compressible 2-D flows. The author claims that the field panel approach offers a
simpler way of introducing compressibility effects. However, examples of flow solution convergence were
presented that indicated large oscillations. Further, the author indicated that these oscillations were
"FORTRAN compiler dependent." The author did present an example calculation of a 2-D airfoil modified to
be shock free with the fictitious gas scheme. While the combination of fictitious gas and field panel
flow solutions may be unique, the work seemed rather sketchy and perhaps reported prematurely.

PAPER 9. VAN DEN BROEKBUSCHME made copies of his paper available at the conference but was unable to
be at the conference for the formal presentation. A review of the paper does indicate a successful
approach for cascade blade design was developed. The approach utilizes a decoupled flow
solver and geometry modifier. The geometry modification scheme is based on a surface distribution of
vortices to drive an initial velocity distribution towards a specified target distribution. The vortex
distribution is used to define a normal flow which in turn is used in a mass flux integral or streamline
slope integral to define the new geometry shape. Examples were presented which utilize both an
incompressible potential flow solver and time-marching Euler solver. Recovery of a known shape with a
known velocity distribution is demonstrated as one of the examples.

PAPER 10. CETINKAYA reviewed the development of an Euler based design method for airfoils and
cascades. A steady, 2-D Euler code, based on a streamline coordinate system and a finite volume
technique, is used in the method. The scheme is seen to be very similar to that of Drela. Free
parameters are introduced into the specified pressure distributions to account explicitly for Lighthill's
constraints. By imposing a specified wall pressure distribution as a boundary condition in the streamline
calculation, the new surface geometry evolves as part of the solution convergence. Three examples are
presented which show consistent recovery of known cascade and airfoil geometries for known prescribed
pressure distributions. These examples included initial geometries exhibiting embedded shocks and driving
these geometries to supposedly shock free flows.

5.0 SESSION III - INVERSE METHODS / TURBOMACHINERY, INTAKES, DUCTS
PAPER 11. SCHMIDT described the use of a method based on flows calculated on stream surfaces of revolution. The flow solution uses the full potential equation transformed into the potential-stream-function plane. The discretized solution is performed using successive line overrelaxation and accelerated with a multigrid scheme. Unfortunately, details of the inverse scheme implementation are obscure. Difficulties relative to "ill-posedness" are mentioned. The author does, however, indicate use of design a priori flow conditions as a means of improving off-design operational behaviour. This is an approach to what is in reality a multi-point design problem. The author also provides at least a single pressure distribution correlation between a design computation and corresponding experimental measurement. This correlation does indicate a good measure of agreement.

PAPER 12. JACQUOTTE presented an inverse scheme for quasi-three-dimensional flows through axial cascades. The flow solution is based on the potential equation and is solved using a finite element approach. In this scheme the inverse capability is implemented using the Dirichlet boundary condition approach to impose the specified pressure distribution. The resulting solution normal flow to an initial surface is integrated to produce a surface displacement of the initial geometry. Both C-mesh and H-mesh grid systems are demonstrated. This author also demonstrates recovery of a known geometry. This recovery, including the convergence, is illustrated for several different starting points. This result tends to indicate the proper handling of Lighthill's constraints. Other examples are also presented to indicate that apparently arbitrary pressure distributions did produce quite reasonable looking airfoil sections. However, no other results to validate performance levels for the designed sections are presented.

PAPER 13. NORGES described a three-dimensional inverse method to define a radial inflow turbine. The method applies to incompressible and inviscid flows and assumes that the blades are infinitely thin. The thin blade assumption allows the blades to be modelled by surface vorticity. The blade shape is defined by aligning the mean line with the local velocity. Since this velocity depends on the vorticity distribution the solution is iterative.

This author was one of the few which utilized an inverse scheme to define an aerodynamic configuration which was experimentally validated. The author is commended on the thoroughness of the paper and the completeness of the technical project. The experimental confirmation of an improved impeller design is a confirmation of a good computational approach to a difficult three-dimensional problem.

PAPER 14. ZANNETTI presented a method for the design of three-dimensional blade rows for turbomachinery applications. The scheme utilized an Euler equation solution employing characteristics theory. The blade loading is imposed in the inverse solution and the blade camber is calculated.

6.0 SESSION IV - NUMERICAL OPTIMIZATION

PAPER 15. RIZK described an approach to aerodynamic optimization in which the iterative solution of the Flow equation and the design parameter optimization are conducted simultaneously. This rather interesting approach avoids independent, and correspondingly time-consuming iterations of the flow solution and the design parameters. The approach is demonstrated for a wind tunnel wall interference study and for a propeller design study. The rate of convergence of the optimization problem appears to be greatly enhanced by this simultaneous approach. The examples presented indicate that the optimization can be accomplished at a cost of roughly 10 to 40 times the cost of a regular analysis solution where L is the number of design variables. The promise of such an approach should be pursued with further studies of the influence of large numbers of design variables and the effect of the convergence speed of the underlying analysis method.

PAPER 16. VAN DEN DAM presented a summary of a spanload optimization approach currently implemented at NLR. The scheme represents a unified approach for the preliminary design of multiple lifting surfaces. Propeller influences on spanloads are also included. Optimization is performed using a Trefftz-plane evaluation of induced drag plus form factor methods for viscous airfoil drag. Minimization of induced drag or induced drag plus viscous drag can be accomplished subject to constraints on items such as lift, moment, and airfoil characteristics. The method is demonstrated for numerous configurations including canard and three-surface configurations, and wing tail variations. The method is clearly a valuable preliminary design tool. It is an accumulation of a number of classical procedures that many aircraft companies utilize in one manner or another. The present approach would appear to be the result of a conscious effort to cast these preliminary design procedures in a consistent optimization format with considerable flexibility.

PAPER 17. VAN EEUWEN described the development and application of parameterized airfoil pressure distributions that serve as target pressure distributions for inverse design studies. This approach has been developed to help systematically answer the question as to what is the correct pressure distribution to specify in an inverse design problem. The parametric representation of an airfoil pressure distribution is reviewed. Several means of numerical optimization are provided. The method consists of the parametric pressure distribution representation, boundary layer calculations for viscous drag, a simple formula for approximate shock drag, and an approximate means for constraining airfoil thickness based on a pressure distribution integral. Since these ingredients are relatively simple and inexpensive in terms of computational resources, many iterations can easily be accommodated in the optimization scheme.

The typical use of this method would seem to be initiated with an analysis solution on an existing airfoil. A parametric best fit of the resulting pressure distribution is computed. This best fit distribution is then numerically improved ("optimized") using the elements described above. The final pressure distribution is then used as an input target pressure distribution using an inverse design method. Example applications to laminar flow airfoils, a Liebeck high-lift airfoil, and a transonic airfoil are described. Only calculations are presented; no experimental verification is demonstrated. In fact, the differences in lift and drag shown for the optimized airfoil configurations are small and may be within the computational and experimental error band.
This scheme begins to resemble an approach in which an inverse airfoil code is iteratively driven by a parametric pressure distribution which is itself driven simultaneously by a numerical optimization scheme. Such an approach seems highly desirable to the reviewer. However, the NLR scheme presented by Van Emmond does NOT drive an inverse code during the numerical optimization. Instead it makes use of the approximate elements described above and upon completion of the optimization makes use of the inverse solution only once. While the NLR approach is clearly an economical one, the additional approximations introduced may limit its utility in cases of small refinements.

PAPER 18. GNESI provided a description of a numerical optimization scheme for airfoils at multiple operating points. The scheme utilized the well known COMMIX algorithms as the design parameter driver. Explicit algebraic shape functions are used to perturb the airfoil contours. Specific reference is made to the emphasis on the use of constraints rather than a complicated objective function. The example presented was an airfoil design problem for a military trainer with two transonic design points. The flow solver used in this effort was the two-dimensional potential solver, FLO6, of Jameson. Additionally, the author in the written paper makes mention of the use of expert system programming to effectively implement the scheme and retain man-in-loop capability.

PAPER 19. SNEAUX described an approach similar to the previous paper. The ONERA scheme is based on the application of COMMIX combined with the two-dimensional airfoil analysis method of Garabedian and Korn. The numerical optimization scheme was applied to a helicopter rotor design problem. The scheme was first used to develop improved airfoil sections using two design points. One point corresponds to an advancing blade condition, while the second point corresponds to a retreating blade condition. The second point was used to make the evaluation of the objective function consistent with the design variables. The improvements were experimentally verified by wind tunnel testing. The improvements are significant enough to be well beyond the computational and experimental error band. Consequently, the investigators had a high probability of success. The authors are to be commended for the completeness of the airfoil optimization effort.

A second numerical optimization application is also demonstrated. The second application uses the same optimizer coupled to a rotor performance method based on blade element theory. It is emphasized that such an approach is attractive due to the many flight conditions and constraints which must be observed in the rotor design process.

PAPER 20. BORK presented a summary of numerical optimization cases including a supersonic airfoil section, a supersonic body of revolution, a transonic airfoil, and a subsonic multi-element high-lift airfoil. The paper appears to be a thorough documentation of these examples and indicates attention being paid to real design problems. Clearly, the author has found that a numerical optimization approach offers value to the aerodynamic designer.

The author did, however, indicate several points which deserve some attention. First, an initial comparison is made between gradient methods and evolution methods for numerical optimizers. The conclusion is reached that the gradient method is far superior as a result of both the number of iterations required by the evolution method. While the conclusion may be correct for specific problems, this implementation of the evolution method would appear to be such that an inefficient search is accomplished. The evolution method should be a trivial scheme to implement and has been shown to converge rapidly in other investigations. Second, in the transonic airfoil case a numerical optimization scheme is presented in which the design variables include an upper surface bump function defined by a fictitious gas scheme to drive towards a shock-free airfoil contour. Such an approach is believed by the reviewer to be overly constraining. The fictitious gas scheme is an interesting academic exercise but does not provide design capability for the entire airfoil surface. Instead, it focuses on the supersonic bubble and the attainment of shock-free flow. Airfoils designed for shock-free flows are notorious for poor off-design behaviour. Consequently, a better optimization can be accomplished if the scheme addresses the issue of shocked flows at multiple design points. Third, an observation is made that convergence of the objective function is not clear for several of the cases presented.

PAPER 21. DESTARAC reviewed examples of numerical optimization for transonic wing design problems. Preliminary efforts relating two-dimensional and three-dimensional results provide an indication of the background utilized in the wing examples presented. The three-dimensional wing optimizations presented include the development of the inboard area of a three-dimensional swept wing and the development of local treatments required to integrate wing mounted nacelle/pylon configurations. Two problems are classical wing aerodynamic design problems. The results presented for numerically optimized configuration variations indicate a rapid means to develop improved geometry solutions for these problems. The convergence results presented in this paper indicate significant convergence is indeed being obtained by the numerical optimization scheme.

PAPER 22. HODGKIN presented the progress on a rather unique application of numerical optimization coupled to a CFD method. This application is targeted at the development of a simulation for engine inlet testing at an unconfined facility. The simulation is used to size an inlet design flowfield that best matches that which a fighter vehicle forebody can create. One of the unique aspects of this work is that the optimization objective function is based on off-body flow variables. A least-squares type of evaluation is used to make the evaluation of the objective function consistent with the inverse solution implemented. Three test cases are reviewed in which the off-body, least-squares approach is used to recover a known and consistently generated target solution. The scheme demonstrates rapid convergence for these cases. However, the author does indicate some pre-conditioning had to be utilized in cases presented. The application of this approach to the real design problem will be quite interesting.
7.0 GENERAL COMMENTS

This Technical Specialists' meeting on aerodynamic design and optimization methods was timely and well developed. The program included papers which dealt with most approaches to aerodynamic design and optimization. The subject presentations included what could be termed classical approaches to inverse aerodynamic methods as well as newly developed and highly promising schemes. The program contributions were also from a broad international spectrum and covered a wide variety of applications from the classical airfoil problem to complex turbomachinery problems. This variety indicates the broad base of such applications currently being exercised throughout the global aerospace community.

Clearly, the quality of the studies varied and the quality of the design results also varied. Some authors only reported preliminary results from analytical efforts. If the design or optimization results are modest changes from a base configuration, it is often hard to prove that the computational configuration refinement is more than bouncing around in the computational and experimental error band. Others reported thorough analytical results backed up by experimental confirmation of the design aerodynamics. This latter completeness is to be commended.

It is obvious that computational design and optimization efforts will continue to grow as pressures for increased automation and design capability are felt. Increased global competition will continue to add such pressures and the design aerodynamicist community will increasingly rely on such methods to improve design efficiency. It is recommended that AGARD continue its interest in such methods and formulate future events for timely dissemination of results on an international scale.
8.0 REFERENCES

Professor Ir. J.W. SLOOFF (Chairman)
National Aerospace Laboratory, MLR
Anthony Fokkerweg 2
1059 Amsterdam - NE

Mr. L.H. OHMAN
Head High Speed Aerodynamics Lab,
National Aeronautical Establishment
National Research Council
Montreal Road
Ottawa, Ontario K1A OR6 - CA

M. l'Ing. en Chef B. MASURE
STC/NBA
26 Bd Victor
75015 Paris - FR

Dr. W. SCHMIDT
Deputy Director, DORNIER 328 Program
Dornier GmbH, EY
Postfach 1420
D-7990 Friedrichshafen 1 - FRG

Professor D. PAPAILIOU
Department of Mechanical Engineering
University of Patras
Rio 26001
Patras - GR

Prof. M. ONORATO
Dipartimento di Ingegneria Aeronautica e Spaziale
Politecnico di Torino
C. so Duca degli Abruzzi 24
10129 Torino - IT

Professor H. NORGSTAD
Division of Hydro- and Gas Dynamics
Norwegian Institute of Technology
N-7034 Trondheim - NO

Dr. K.L. KUSHMAN
Chief, Facility Division
AEDC/DCTR-Mall Code RF
ARNOLD AFB, TN 37389-5000 USA
APPENDIX B
LIST OF PAPERS

SESSION I - INVITED & SURVEY PAPERS
Chairman: J.W. SLOOFF

1. Progress in Inverse Design and Optimization in Aerodynamics
 H. SOBIECZKY, DLR, GE

2. Aerofoil Design Techniques
 A.J. BOCCI, ARA, UK

3. Aerodynamic Design Techniques at DLR Institute for Design Aerodynamics
 H. KOSTER, C.H. ROHARDT AND K.H. HORSTMANN,
 DLR Braunschweig, GE

4. Airfoil Design Using Optimal Control
 A. JAMESTON, Princeton, USA

5. Inverse Design of Transonic Airfoil Contours: Constraints, Numerical Method and Applications
 G. VOLPE, Grumman, USA

6. An Efficient Airfoil Design Method Using the Navier-Stokes-Equations
 J.B. MALONE, J.C. NARRMORE, BELL Helicopter
 Textron, Inc. and L.N. SANKAR, Georgia Institute of Technology, USA

 L. FORMASIER, MBB GmbH, GE

8. INSVS: A System for Transonic Wing Design with Geometric Constraints Based on an Inverse Method
 F.J. BRANDSMA and
 J.M.J. FRAY, NLR, NE

 S. DE PORTE, H. BOFFADOSSI AND C. MANTEGAZZA,
 Politecnico di Milano, IT

SESSION II - INVERSE METHODS - AIRFOILS AND WINGS
Chairman: K.L. KUSHMAN

10. An Iterative Procedure for the Design of Pressure-Specified Three-Dimensional Configurations at Subsonic and Supersonic Speeds by Means of a Higher-Order Panel Method
 L. FORMASIER, MBG GmbH, GE

11. Influence of the Airfoil Shape on the Aerodynamic Performance of a Canard-/Airfoil Combination
 J. KAPPENBERG, ONERA, FR

12. A Computational Method for the Design of Supercritical Compressor Blade Airfoils
 T. GETINKAYA, I. SINAN AKMANDOR AND A.S. UCER,
 METU, TR

13. Application of an Inverse Method to the Design of a Radial-Inflow Turbine
 J.E. BORGES, Instituto Superior Técnico, PT

 J.E. BORGES, Instituto Superior Técnico, PT

15. Application of an Inverse Method to the Design of a Radial-Inflow Turbine
 J.E. BORGES, Instituto Superior Técnico, PT

16. Application of an Inverse Method to the Design of a Radial-Inflow Turbine
 J.E. BORGES, Instituto Superior Técnico, PT

17. Application of an Inverse Method to the Design of a Radial-Inflow Turbine
 J.E. BORGES, Instituto Superior Técnico, PT

18. Application of an Inverse Method to the Design of a Radial-Inflow Turbine
 J.E. BORGES, Instituto Superior Técnico, PT

19. Application of an Inverse Method to the Design of a Radial-Inflow Turbine
 J.E. BORGES, Instituto Superior Técnico, PT

20. Application of an Inverse Method to the Design of a Radial-Inflow Turbine
 J.E. BORGES, Instituto Superior Técnico, PT

21. Application of an Inverse Method to the Design of a Radial-Inflow Turbine
 J.E. BORGES, Instituto Superior Técnico, PT

22. Application of an Inverse Method to the Design of a Radial-Inflow Turbine
 J.E. BORGES, Instituto Superior Técnico, PT

23. Application of an Inverse Method to the Design of a Radial-Inflow Turbine
 J.E. BORGES, Instituto Superior Técnico, PT

 J.E. BORGES, Instituto Superior Técnico, PT

25. Application of an Inverse Method to the Design of a Radial-Inflow Turbine
 J.E. BORGES, Instituto Superior Técnico, PT

SESSION III - INVERSE METHODS - TURBONACHINERY, INTAKES, DUCKS
Chairman: B. MASURE

26. Subsonic and Transonic Blade Design by Means of Analysis Codes
 R.A. VAN DEN BRIEMBUSCHE, O. LEONARD and L.
 MEKNOUCHE, VKI, BE

27. A Computational Design Method for Shock Free Transonic Cascades and Airfoils
 T. GETINKAYA, I. SINAN AKMANDOR AND A.S. UCER,
 METU, TR

28. Inverse Computation of Transonic Internal Flows with Application for Multi-Point-Design of Supercritical Compressor Blades
 E. SCHMIDT, Stuttgart University, GE

29. Une Méthode Inverse pour la Determination d’Aubes de Turbomachines
 O.P. JACQUOTTE, ONERA, FR

30. Application of an Inverse Method to the Design of a Radial-Inflow Turbine
 J.E. BORGES, Instituto Superior Técnico, PD
 L. ZANNETTI, Politecnico di Torino, R. LAROCCA, Fiat Avio, and R. MARSILIO, Politecnico di Torino, IT

 SESSION IV - NUMERICAL OPTIMIZATION
 Chairman: W. SCHMIDT

15. Aerodynamic Optimization by Simultaneously Updating Flow Variables and Design Parameters
 M.H. RIZK, Sverdrup Techn, USA

16. Constrained Spanload Optimization for Minimum Drag of Multi-Lifting Surface Configurations
 R.F. van den DAM, NLR, NL

17. Numerical Optimization of Target Pressure Distributions for Subsonic and Transonic Airfoil Design
 J.A. van EGMOND, NLR, NL

18. A tool for Automatic Design of Airfoils in Different Operating Conditions
 L. GHIELMI, Aermacchi, R. MARAZZI, Aeolus, and A. BARON, Politecnico di Milano, IT

19. Definitions de Profils et de Pales d'Helicoptere par Optimisation Numerique
 J. RENEAUX, ONERA and M. ALLONGUE, Aerospatiale, FR

20. Aerodynamic Design by Optimization
 K.W. BOCK, Dornier GmbH, GE

21. Optimisation Numerique de Voilures en Regime Transsonique
 D. DESTARAC, J. RENEAUX, ONERA and D. GISQUET, Aerospatiale, FR

22. Optimization of Aerodynamic Designs Using Computational Fluid Dynamics
 D.H. HUDDLESTON, Arnold AFB, and C.W. MASTIN, Mississippi State University
The papers presented at the AGARD Fluid Dynamics Panel Specialists' Meeting on "Computational Methods for Aerodynamic Design (Inverse) and Optimization" are reviewed. Strengths and weaknesses are identified for many of the contributions, as each is reviewed. The reviewer closes with some general comments. The 23 papers presented at the Meeting have been collected in AGARD CP 463 (AGARD-AR-267), March 1990.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Advisory Group for Aerospace Research and Development, NATO</td>
<td>Computation</td>
<td>Advisory Group for Aerospace Research and Development, NATO</td>
<td>Computation</td>
</tr>
<tr>
<td>TECHNICAL EVALUATION REPORT ON THE FLUID DYNAMICS PANEL SYMPOSIUM ON COMPUTATIONAL METHODS FOR AERODYNAMIC DESIGN (INVERSE) AND OPTIMIZATION</td>
<td>Fluid dynamic</td>
<td>TECHNICAL EVALUATION REPORT ON THE FLUID DYNAMICS PANEL SYMPOSIUM ON COMPUTATIONAL METHODS FOR AERODYNAMIC DESIGN (INVERSE) AND OPTIMIZATION</td>
<td>Fluid dynamic</td>
</tr>
<tr>
<td>P.A.Henne; Edited by Prof. J.W.Slooff</td>
<td>Design</td>
<td>P.A.Henne; Edited by Prof. J.W.Slooff</td>
<td>Design</td>
</tr>
<tr>
<td>Published April 1990</td>
<td>Aerodynamic characteristics</td>
<td>Published April 1990</td>
<td>Aerodynamic characteristics</td>
</tr>
<tr>
<td>16 pages</td>
<td>Optimization</td>
<td>16 pages</td>
<td>Optimization</td>
</tr>
<tr>
<td>The papers presented at the AGARD Fluid Dynamics Panel Specialists' Meeting on "Computational Methods for Aerodynamic Design (Inverse) and Optimization" are reviewed. Strengths and weaknesses are identified for</td>
<td>Reviews</td>
<td>The papers presented at the AGARD Fluid Dynamics Panel Specialists' Meeting on "Computational Methods for Aerodynamic Design (Inverse) and Optimization" are reviewed. Strengths and weaknesses are identified for</td>
<td>Reviews</td>
</tr>
<tr>
<td>P.T.O.</td>
<td>Meetings</td>
<td>P.T.O.</td>
<td>Meetings</td>
</tr>
</tbody>
</table>
many of the contributions as each is reviewed. The reviewer closes with some general comments. The 23 papers presented at the Meeting have been collected in AGARD CP 463.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>many of the contributions as each is reviewed. The reviewer closes with some general comments. The 23 papers presented at the Meeting have been collected in AGARD CP 463.</td>
<td>many of the contributions as each is reviewed. The reviewer closes with some general comments. The 23 papers presented at the Meeting have been collected in AGARD CP 463.</td>
</tr>
</tbody>
</table>