Wind and Wave Climatology on the New England Shelf
May 1987 – August 1988

by
Matthew M. Sharpe and Hans C. Graber

Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

February 1990

Technical Report

Funding was provided by the Office of Naval Research through contract Number N00014-86-K-0715
under the University Research Initiative Program.

Reproduction in whole or in part is permitted for any purpose of the
United States Government. This report should be cited as:

Approved for publication; distribution unlimited.

Approved for Distribution:

Albert J. Williams 3rd, Chairman
Department of Applied Ocean Physics and Engineering
Wind and Wave Climatology on the New England Shelf
May 1987 – August 1988

by

Matthew M. Sharpe and Hans C. Graber

Department of Applied Ocean Physics and Engineering

Woods Hole Oceanographic Institution
Woods Hole, Massachusetts
Contents

1 Overview 10
 1.1 Objectives ... 10
 1.2 Summary of Graphs and Tables .. 10

2 Data Sources 11
 2.1 Buoy and Platform Locations .. 11
 2.2 Data Formats ... 13
 2.2.1 NODC Sources .. 13
 2.2.2 WHOI Sources .. 13

3 Data Analysis 14
 3.1 Wave Data ... 14
 3.1.1 Definitions ... 14
 3.1.2 Data Preparation .. 15
 3.1.3 Presentation .. 15
 3.2 Wind Data ... 16
 3.2.1 Definitions ... 16
 3.2.2 Data Preparation .. 16
 3.2.3 Presentation .. 18

4 Wave Height Extreme Value Analysis 18
 4.1 Overview ... 18
 4.2 Sampling and Preparation Methods 18
 4.3 Selection of the Extreme Value Distribution 19
 4.4 Fitting the Distribution ... 19
 4.5 Extrapolating to Predict Maxima 20

A Time Series Plots and Distribution Histograms 23
B Wave Height and Period Monthly and Seasonal Summaries 175
C Wind Speed and Direction Monthly and Seasonal Summaries 179
D Maximum Expected Wave Heights for Five and Ten Year Return Periods 183
List of Figures

1 Buoy and Platform Locations Near Buzzards Bay 12
2 Buoy Locations on the New England Shelf ... 13
3 Wave height and period at Martha’s Vineyard Buoy, May 1987 24
4 Wave height and period at Martha’s Vineyard Buoy, June 1987 27
5 Wave height and period at Martha’s Vineyard Buoy, July 1987 30
6 Wave height and period at Martha’s Vineyard Buoy, August 1987 33
7 Wave height and period at Martha’s Vineyard Buoy, September 1987 36
8 Wave height and period at Martha’s Vineyard Buoy, October 1987 39
9 Wave height and period at Martha’s Vineyard Buoy, November 1987 42
10 Wave height and period at Martha’s Vineyard Buoy, December 1987 45
11 Wave height and period at Martha’s Vineyard Buoy, January 1988 48
12 Wave height and period at Martha’s Vineyard Buoy, February 1988 51
13 Wave height and period at Martha’s Vineyard Buoy, March 1988 54
14 Wave height and period at Martha’s Vineyard Buoy, April 1988 57
15 Wave height and period at Martha’s Vineyard Buoy, May 1988 60
16 Wave height and period at Martha’s Vineyard Buoy, June 1988 63
17 Wave height and period at Martha’s Vineyard Buoy, July 1988 66
18 Wave height and period at Martha’s Vineyard Buoy, August 1988 69
19 Wind speed and direction at Buzzards Bay Tower, May 1987 72
20 Wind speed and direction at Buzzards Bay Tower, June 1987 74
21 Wind speed and direction at Buzzards Bay Tower, July 1987 76
22 Wind speed and direction at Buzzards Bay Tower, August 1987 78
23 Wind speed and direction at Buzzards Bay Tower, September 1987 80
24 Wind speed and direction at Buzzards Bay Tower, October 1987 82
25 Wind speed and direction at Buzzards Bay Tower, November 1987 84
26 Wind speed and direction at Buzzards Bay Tower, December 1987 86
27 Wind speed and direction at Buzzards Bay Tower, January 1988 88
28 Wind speed and direction at Buzzards Bay Tower, February 1988 90
29 Wind speed and direction at Buzzards Bay Tower, March 1988 92
30 Wind speed and direction at Buzzards Bay Tower, April 1988 94
31 Wind speed and direction at Buzzards Bay Tower, May 1988 96
32 Wind speed and direction at Buzzards Bay Tower, June 1988 98
33 Wind speed and direction at Buzzards Bay Tower, July 1988100
34 Wind speed and direction at Buzzards Bay Tower, August 1988 102
35 Wave height and period at Buoy 44008, May 1987 104
36 Wave height and period at Buoy 44008, June 1987 107
37 Wave height and period at Buoy 44008, July 1987 110
38 Wave height and period at Buoy 44008, August 1987 113
39 Wave height and period at Buoy 44008, September 1987 116
40 Wave height and period at Buoy 44008, October 1987 119
41 Wave height and period at Buoy 44008, February 1988 122
42 Wave height and period at Buoy 44008, March 1988 125
43 Wave height and period at Buoy 44008, April 1988 128
List of Tables

1 Low and High Cut-Off Frequencies in Hz for Waverider Buoys. 14
2 Martha's Vineyard Buoy, Wave Height and Period Monthly Summaries 175
3 Martha's Vineyard Buoy, Wave Height and Period Seasonal Summaries 175
4 Buoy 44004, Wave Height and Period Monthly Summaries 176
5 Buoy 44004, Wave Height and Period Seasonal Summaries 176
6 Buoy 44008, Wave Height and Period Monthly Summaries 177
7 Buoy 44008, Wave Height and Period Seasonal Summaries 177
8 Buoy 44011, Wave Height and Period Monthly Summaries 178
9 Buoy 44011, Wave Height and Period Seasonal Summaries 178
10 Buzzards Bay Tower, Wind Speed and Direction Monthly Summaries 179
11 Buzzards Bay Tower, Wind Speed and Direction Seasonal Summaries 179
12 Buoy 44004, Wind Speed and Direction Monthly Summaries 180
13 Buoy 44004, Wind Speed and Direction Seasonal Summaries 180
14 Buoy 44008, Wind Speed and Direction Monthly Summaries 181
15 Buoy 44008, Wind Speed and Direction Seasonal Summaries 181
16 Buoy 44011, Wind Speed and Direction Monthly Summaries 182
17 Buoy 44011, Wind Speed and Direction Seasonal Summaries 182
18 Martha's Vineyard Buoy, Maximum Expected Wave Heights 183
19 Buoy 44004, Maximum Expected Wave Heights 183
20 Buoy 44008, Maximum Expected Wave Heights 184
21 Buoy 44011, Maximum Expected Wave Heights 184
Abstract

Wave power spectra from four waverider buoys on the New England Shelf and wind velocity records from three of those buoys and a fixed platform were analyzed. The data span the period from May 1987 through August 1988. Time series plots of significant wave height, mean wave period and modal (peak) period and distribution histograms of significant wave height, mean frequency and modal frequency are presented for the two buoys nearest to Martha's Vineyard. Time series plots of wind speed and vector velocity and distribution histograms of speed and direction are plotted for one buoy and the platform. For all stations, monthly and seasonal mean and extreme values of significant wave height, mean and modal wave periods, wind speed and mean weighted and unweighted values of wind direction are provided in tabular form. Five and ten year extreme wave height predictions are also calculated.
1 Overview

1.1 Objectives

This technical report provides time series, histograms and extreme value wave height analyses which detail the changing wind conditions and sea states on the New England Shelf. The products in this document are designed to facilitate both qualitative and quantitative interpretation of the data.

Time series in this report are presented on identical scales to allow side-by-side comparison of different data in the same time period. For example, the vector plot of wind velocity can easily be compared with the the significant wave height time series for the same period. In this way, event durations, maximum values, times of steady conditions or rapid change, and other characteristics of interest may be estimated by inspection or their occurrences noted for detailed investigation.

Histograms are provided to approximate the distributions of values for selected parameters.

The 18 month record of significant wave height is evaluated using extreme value analysis and the resulting five and ten year return period wave heights are tabulated.

1.2 Summary of Graphs and Tables

Graphs and tables in this report are described in detail in Section 3, Data Analysis. Data are presented graphically for Martha's Vineyard Buoy, Buzzards Bay Tower and Buoy 44008, the nearest stations to Martha's Vineyard. Tabular information is presented for all stations. The tables and graphs are listed here.

Wave Data Time Series:

- Significant Wave Height (H_s)
- Mean Wave Period (T)
- Modal (Peak) Wave Period (T_m)

Wave Data Histograms:

- Significant Wave Height
- Mean Frequency ($\bar{f} = 1/T$)
- Modal (Peak) Frequency ($f_m = 1/T_m$)

Wind Data Time Series:

- Wind Speed (U_{10})
- Vector Velocity (U_{10} at angle θ)

Wind Data Histograms:

- Wind Speed
• Wind Direction

Wave Data Tables, Monthly and Seasonal Summaries:

• Significant Wave Height
 Minimum, Mean and Maximum

• Mean Wave Period
 Minimum, Mean and Maximum

• Modal Wave Period
 Minimum, Mean and Maximum

Wind Data Tables, Monthly and Seasonal Summaries:

• Wind Speed
 Minimum, Mean and Maximum

• Mean Direction (weighted by speed)

• Mean Direction (unweighted)

Extreme Value Analysis, by Calendar Month:

• Mean Significant Wave Height

• Expected Five Year Extreme Significant Wave Height

• Expected Ten Year Extreme Significant Wave Height

2 Data Sources

2.1 Buoy and Platform Locations

Wave and wind data were recorded at the following stations:

<table>
<thead>
<tr>
<th>Station Name</th>
<th>Organization</th>
<th>Data Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martha's Vineyard Buoy</td>
<td>WHOI</td>
<td>Wave</td>
</tr>
<tr>
<td>Buzzards Bay Tower</td>
<td>NODC</td>
<td>Wind</td>
</tr>
<tr>
<td>Buoy 44004</td>
<td>NODC</td>
<td>Wave & Wind</td>
</tr>
<tr>
<td>Buoy 44008</td>
<td>NODC</td>
<td>Wave & Wind</td>
</tr>
<tr>
<td>Buoy 44011</td>
<td>NODC</td>
<td>Wave & Wind</td>
</tr>
</tbody>
</table>

Station locations are given below and are shown in the charts of Figure 1 and Figure 2.

<table>
<thead>
<tr>
<th>Station Name</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martha’s Vineyard Buoy</td>
<td>41° 16’ N</td>
<td>71° 02’ W</td>
<td>42 m</td>
</tr>
<tr>
<td>Buzzards Bay Tower</td>
<td>41° 24’ N</td>
<td>71° 00’ W</td>
<td>11 m</td>
</tr>
<tr>
<td>Buoy 44004</td>
<td>38° 30’ N</td>
<td>70° 36’ W</td>
<td>3231 m</td>
</tr>
<tr>
<td>Buoy 44008</td>
<td>40° 30’ N</td>
<td>69° 30’ W</td>
<td>60 m</td>
</tr>
<tr>
<td>Buoy 44011</td>
<td>41° 06’ N</td>
<td>66° 36’ W</td>
<td>93 m</td>
</tr>
</tbody>
</table>
Figure 1: Buoy and Platform Locations Near Buzzards Bay
Figure 2: Buoy Locations on the New England Shelf

2.2 Data Formats

2.2.1 NODC Sources

The National Oceanographic Data Center (NODC) waverider buoys sampled sea surface height at a rate of 1.5 Hz during a 20 minute sampling interval. The time series of surface elevations were processed and available as wave energy spectra. Environmental data from the NODC stations were obtained on nine-track tapes in ASCII as Meteorology and Wave Spectrum File 191 format files. See NODC (1986) for a detailed description of the File 191 format and other information about data products available from NODC. These files provided hourly summaries of environmental conditions.

2.2.2 WHOI Sources

The Martha's Vineyard Buoy Telemetry Project was operated by the University Research Initiative Program at WHOI. A general goal of the project is to develop techniques for gathering in situ data from the ocean and disseminating them to users in a timely and efficient way. A secondary objective was to test the feasibility of this telemetering technique for long-term surface wave monitoring in coastal waters. The waverider sampled sea surface
height at the rate of 2 Hz during sampling intervals of 17 minutes centered on each hour and half hour. The buoy did not have meteorological sensors but was located near the instrumented Buzzards Bay Tower (Figure 2). The Martha's Vineyard Buoy wave data were obtained as summary files and spectrum files. Details of the data acquisition, processing and dissemination are described by Briscoe et al. (1988). The data files contain an environmental summary for each half-hour period.

3 Data Analysis

3.1 Wave Data

3.1.1 Definitions

The \(n \)th moment of a continuous spectrum is

\[
m_n = \int_0^\infty f^n S(f) df
\]

where \(S(f) \) is the spectral density at frequency \(f \) and has units of \(m^2/Hz \). For the NODC buoys, using samples of the spectral density at discrete frequencies \(S(f_i) \), (1) can be expressed as

\[
m_n = \sum_{f_i=f_{\text{min}}}^{f_{\text{max}}} f_i^n S(f_i) \Delta f
\]

with \(f_{\text{min}}, f_{\text{max}} \) and \(\Delta f \) given in Table 1.

The spectrum files for WHOI's waverider buoy list the spectral energy, \(E_f \), in each frequency interval, not the energy density, \(S(f_i) \). These are related by

\[
E_{f_i} = S(f_i) \Delta f
\]

with \(\Delta f = 1/128 \text{ Hz} \) for these records. The spectral energy, \(E_{f_i} \), has units of \(m^2 \). For the WHOI buoy, using spectral energy in each frequency interval, (2) can be written as

\[
m_n = \sum_{f_i=f_{\text{min}}}^{f_{\text{max}}} f_i^n E_{f_i}
\]

Frequency information for the four buoys is listed in Table 1.

<table>
<thead>
<tr>
<th>Station</th>
<th>(f_{\text{min}})</th>
<th>(f_{\text{max}})</th>
<th>(\Delta f)</th>
<th>Intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martha's Vineyard</td>
<td>4/128</td>
<td>63/128</td>
<td>1/128</td>
<td>60</td>
</tr>
<tr>
<td>Buoy 44004</td>
<td>0.03</td>
<td>0.50</td>
<td>0.01</td>
<td>48</td>
</tr>
<tr>
<td>Buoy 44008</td>
<td>0.03</td>
<td>0.40</td>
<td>0.01</td>
<td>38</td>
</tr>
<tr>
<td>Buoy 44011</td>
<td>0.03</td>
<td>0.50</td>
<td>0.01</td>
<td>48</td>
</tr>
</tbody>
</table>

Table 1: Low and High Cut-Off Frequencies in Hz for Waverider Buoys.
3.1.2 Data Preparation

Significant wave height, H_s, is derived from the zero'th spectral moment using the following definition:

$$H_s = 4\sqrt{m_0}$$ \hspace{1cm} (5)

Significant wave height is conventionally defined to be the average height of the one-third highest waves in a time series. As used here and defined in (5), H_s is also a measure of the total energy of the wave spectrum. These two definitions agree well for narrowband spectra, i.e., for spectra in which most of the energy is concentrated in a narrow range of frequencies, which is typically located around the peaks. Ochi (1982) has explored the agreement of the two definitions for various sea conditions.

Mean wave period, T, is the reciprocal of the mean wave frequency, \bar{f}, and is given by

$$T = m_0/m_1$$ \hspace{1cm} (6)

A more correct name for mean frequency, \bar{f}, is the centroid frequency of the energy spectrum. See Nath and Yeh (1987) for a discussion of this issue. The mean wave period, T, as defined in (6), is one measure of the wave period about which energy is concentrated. For the general case of a bimodal or a multi-modal spectrum, T may actually fall between spectral peaks in a part of the spectrum with relatively little energy.

The modal (peak) period, T_m, is chosen simply as the frequency corresponding to the largest spectral energy density.

The mean, median, mode, percent above the mode and standard deviation were calculated for the above quantities for each month. In finding the mode for these continuous values, the range of each was divided into appropriately sized bins, and the value of the bin with the most occurrences assigned as the mode.

3.1.3 Presentation

Significant wave height, mean wave period, and modal wave period are plotted as time series of hourly values in bar graph format. Each plot covers one calendar month.

Significant wave height is presented again in monthly histogram format. Each value of significant wave height is assigned to a bin. The distribution of significant wave heights varies with the seasons. To aid in standardizing these histograms, the bins are not based on absolute wave heights but on standard deviation units. Bin zero is centered on the mean and bins are spaced at intervals of 0.2 standard deviation units. Each bar of the histogram represents the percentage of wave heights assigned to that bin.

Modal frequencies, the frequencies corresponding to the peak spectral energy densities, and mean frequencies are also plotted as histograms. Modal frequency is the inverse of modal period:

$$f_m = 1/T_m$$ \hspace{1cm} (7)

and mean frequency is the inverse of mean period:
Frequency is used here because the discrete frequencies for which we are given spectral energy densities are equally spaced while their corresponding periods are not. The bins are in units of frequency and the bars again represent the percentage of peak frequencies in each bin.

Summaries of significant wave height, modal wave period and mean wave period are presented in tabular form. The first section of the table for each station shows the minimum value, mean value and maximum value for each quantity during each month. The second part of the table is similar but displays the information over seasons, not months, with the seasons defined as follows:

- Spring: March – May
- Summer: June – August
- Autumn: September – November
- Winter: December – February

3.2 Wind Data

3.2.1 Definitions

Wind speed, unless otherwise specified, has been converted from anemometer height to an equivalent ten-meter height assuming neutral stability and is designated U_{10}. Details of this conversion are covered in Section 3.2.2.

Tabulated wind direction is the direction toward which the wind is blowing, expressed in degrees from true north. When plotted, the arrows representing wind direction follow this convention and point downwind.

3.2.2 Data Preparation

The four stations providing wind speed and direction have anemometers at the following heights:

<table>
<thead>
<tr>
<th>Station</th>
<th>Anemometer Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buoy 44004</td>
<td>5.0 m</td>
</tr>
<tr>
<td>Buoy 44008</td>
<td>5.0 m</td>
</tr>
<tr>
<td>Buoy 44011</td>
<td>5.0 m</td>
</tr>
<tr>
<td>Buzzards Bay Tower</td>
<td>43.3 m</td>
</tr>
</tbody>
</table>

The wind speed measured at the instrument height is designated as U_z. The algorithm for conversion to ten-meter reference height, U_{10}, assumes a neutral air column. We can then express U_z in terms of von Karman's constant, κ, the friction velocity, u_*, height in meters, z, and roughness height, z_0,

$$U_z = \frac{1}{\kappa} u_* \ln \frac{z}{z_0}$$

where the friction velocity is related to the ten-meter wind speed through
\[u_* = \sqrt{C_{d10}} \, U_{10} \]
(10)

and \(\kappa = 0.4 \). Empirical values of the drag coefficient \(C_{d10} \) are given by Janssen et al. (1987)

\[C_{d10} = \begin{cases}
(0.8 + 0.065 U_{10}) \times 10^{-3} & U_{10} \geq 7.5 \, m/s \\
1.2875 \times 10^{-3} & U_{10} < 7.5 \, m/s
\end{cases} \]
(11)

To eliminate the unknown \(z_0 \), write one equation for the measured \(U_z \) and one for the desired \(U_{10} \) in the following form,

\[U_z = 1/\kappa \, u_* \ln z - 1/\kappa \, u_* \ln z_0 \]
(12)

\[U_{10} = 1/\kappa \, u_* \ln 10 - 1/\kappa \, u_* \ln z_0 \]
(13)

and subtract to give,

\[U_z - U_{10} = 1/\kappa \, u_* \ln \frac{z}{10} \]
(14)

Substituting (10) for \(u_* \) and rearranging gives

\[U_{10} = \frac{U_z}{1/\kappa \sqrt{C_{d10}} \ln \frac{z}{10} + 1} \]
(15)

This is non-linear (\(C_{d10} \) is a function of \(U_{10} \)) and is iterated to solve for \(U_{10} \). Instead of iterating until a convergence criterion is met, a simplified two-step procedure produced errors of less than 0.1 m/s over the full range of wind speeds. The procedure used here is detailed below:

Step 1: Take a first estimate of \(U_{10} \) as \(U_{42.3} \times 0.83 \) or \(U_{e} \times 1.1 \). These coefficients are found to give an acceptable first approximation.

Step 2: Using this value of \(U_{10} \), find \(C_{d10} \) using Equation 11.

Step 3: Refine \(U_{10} \) using (15) with the new value of \(C_{d10} \).

Step 4: Refine \(C_{d10} \) using (11).

Step 5: Find final value of \(U_{10} \) using (15).

Wind speed is treated as a scalar for some presentations. In these cases, the mean, mode, median and standard deviation are calculated in the same way as the scalar wave quantities, described in Section 3.1.2.

There are two mean wind directions calculated, an unweighted mean based only upon wind direction, and a mean with directions weighted by the corresponding wind speeds.

The unweighted mean direction is given by

\[\bar{\theta}_{\text{unweighted}} = \arctan \left(\frac{\sum_{i=1}^{N} \sin \theta_i}{\sum_{i=1}^{N} \cos \theta_i} \right) \]
(16)
where θ_i is the wind direction in degrees from true north of the i'th of N measurements.

The weighted mean direction and speed are given by

$$
\bar{\theta}_{\text{weighted}} = \arctan \left(\frac{\sum_{i=1}^{N} U_i \sin \theta_i}{\sum_{i=1}^{N} U_i \cos \theta_i} \right)
$$

$$
\bar{U}_{\text{weighted}} = \frac{1}{N} \left(\sum_{i=1}^{N} U_i \sin \theta_i \right)^2 + \left(\sum_{i=1}^{N} U_i \cos \theta_i \right)^2
$$

where U_i is the wind speed of the i'th measurement.

3.2.3 Presentation

Ten-meter wind speed, U_{10} is plotted as hourly time series in a bar graph format with each plot covering one month. The wind velocity field is plotted as a feather diagram, with vectors originating at four hour intervals along the time axis and pointing in the downwind direction with length equal to U_{10}.

Two histograms are also presented. The first plots the percentage of wind speeds in each bin of width 0.1m/s. The other plot is a rose plot or a circular histogram showing the percentage of wind directions in each bin of width 10 degrees. This plot also shows station name and month.

Summaries of wind speed and direction are presented in tabular form. The first section of the table for each station shows the minimum speed, mean speed, maximum speed, mean weighted direction and mean unweighted direction for each month. The second part of the table is similar but displays the information over seasons, not months, with seasons defined as in Section 3.1.3.

4 Wave Height Extreme Value Analysis

4.1 Overview

Estimates of significant wave height five and ten year return values, H_{s5} and H_{s10}, were obtained for each of the four buoys by fitting a Fisher-Tippett Type 1 distribution to the observed distributions of H_s and extrapolating to the required probabilities.

In using extreme value analysis to predict extreme wave heights, it is customary to forecast a 50 or 100 year maximum. The short length of our record, 18 months, precluded forecasting these long return periods but supported the shorter intervals.

4.2 Sampling and Preparation Methods

Extreme value analysis is most easily applied to a series of maximum values taken from fixed time periods of equal length. We used the monthly maxima. The analysis assumes that these data are independent realizations of identically distributed random variables. This requires special preparation because wave heights from different calendar months are not identically distributed. We assume two properties of the distributions:
• Wave heights from different calendar months have different distributions. There is a seasonal trend with a period of one year.

• Wave heights from the same calendar month in different years are from the same distribution.

In order to prepare the data it was necessary to remove the deterministic trend. This was done in two steps. The 18 months of data were reduced to twelve calendar months by combining the data from the same months in different years. The data were then normalized to approximate identical distributions by dividing the maximum significant wave height from each month by the mean of all significant wave heights for that month. While the distribution of significant wave heights is too complicated to normalize by the mean alone, this is a useful first approximation. It is worthwhile to note that Rayleigh distributions may be completely normalized using this technique. A thorough review of extreme value analysis of wave heights is provided by Muir (1986).

4.3 Selection of the Extreme Value Distribution

We selected the Fisher-Tippett Type 1 as the appropriate extreme value distribution. The domain of attraction of an extreme value distribution is the collection of all distributions which have that extreme value distribution as their limiting type. The Fisher-Tippett Type 1 distribution has as its domain of attraction the distributions for which all positive moments exist. This includes the Rayleigh, Weibull, normal and lognormal distributions. Since wave heights are always positive and finite, this distribution is therefore an appropriate choice.

The Fisher-Tippett Type 1 distribution is defined by its cumulative distribution function:

\[P_N = \text{Prob}(H_s < H_{SN}) = \exp \{ -\exp \left[-(H_{SN} - A)/B \right] \} \] (19)

\[H_{SN} = A + B \{ -\ln[-\ln P_N] \} \] (20)

Here, \(A \) is a location parameter and \(B \) is a scale parameter. \(H_{SN} \) is the \(N \) year extreme value significant wave height and \(P_N \) is the probability associated with the \(N \) year return period.

The mean, \(\mu \), and variance, \(\sigma^2 \), of this distribution are given by

\[\mu = A + \gamma B \] (21)

\[\gamma = 0.5772\ldots \] (22)

\[\sigma^2 = \pi^2 B^2 / 6 \] (23)

4.4 Fitting the Distribution

The distribution was fit to the data sets using a combination of two methods, the method of moments and maximum likelihood estimation. These and other fitting methods are described in detail by Carter and Challenor (1983).
The method of moments solves for the estimators \hat{A} and \hat{B} by using the sample mean \bar{x} and sample variance from (21) and (23) above. The estimators are:

\[
\hat{B} = \frac{\sqrt{6}}{\pi} \sqrt{\frac{\sum [x_i - \bar{x}]^2}{n - 1}} \quad (24)
\]
\[
\hat{A} = \bar{x} - \gamma \hat{B} \quad (25)
\]

where $x_i (i = 1, n)$ are the sample values.

Maximum likelihood estimators are obtained by solving the following system of maximum likelihood equations:

\[
\sum_{i=1}^{n} \exp \left[-\left(\frac{x_i - \hat{A}}{\hat{B}}\right)^2\right] - n = 0 \quad (26)
\]
\[
\sum_{i=1}^{n} (x_i - \hat{A}) \left\{1 - \exp \left[-\left(\frac{x_i - \hat{A}}{\hat{B}}\right)^2\right]\right\} - n\hat{B} = 0 \quad (27)
\]

The iterative scheme we used combines the methods as follows:

Step 1: Use the method of moments to solve for starting values of the estimators.

Step 2: Solve (26) three times using \hat{A} and the perturbed values $\hat{A} + \Delta$ and $\hat{A} - \Delta$ where Δ is initially assigned the value 0.01. Find the equation with the smallest error and update the value of \hat{A} if necessary.

Step 3: Repeat step 2 using (27) and perturbed values of \hat{B}.

Step 4: Repeat steps 2 & 3 until unperturbed values of both estimators give the smallest errors. This procedure changes each parameter with a fixed step size until the errors in (26) and (27) are minimized.

Step 5: Divide Δ by 10.

Step 6: Repeat steps 2 through 5 until until $\Delta < 0.0001$.

4.5 Extrapolating to Predict Maxima

The procedure described above will give the Fisher-Tippett Type 1 distributions of the normalized significant wave heights for each station. The probabilities associated with five and ten year return periods are

\[
P_5 = 1 - \frac{1}{5 \times 12} = 0.98333 \quad (28)
\]
\[
P_{10} = 1 - \frac{1}{10 \times 12} = 0.99167 \quad (29)
\]
These probabilities are used in (20) to solve for a five and ten year extreme normalized significant wave height for each buoy. The normalized height is then multiplied by each monthly mean to give a five and ten year extreme wave height for each month for each buoy. These mean, five and ten year expected maxima are listed for each station in Tables 18, 19, 20, and 21.

Information in the extreme value tables should be interpreted as follows. Recall that we removed the seasonal trends to reduce monthly maximum significant wave heights to a common distribution. We then predicted the five and ten year expected maxima for this normalized distribution. The maxima of the normalized distribution may occur during any month and will be associated with actual wave heights which depend on the monthly mean. For example, the extreme five year wave which might happen in March, a stormy month, would be higher than had it happened in August.
References

A Time Series Plots and Distribution Histograms

Time series plots and distribution histograms are presented in this appendix in the following sequence:

- Martha's Vineyard Buoy Wave Data
- Buzzards Bay Tower Wind Data
- Buoy 44008 Wave Data
- Buoy 44008 Wind Data
Figure 3: Wave height and period at Martha's Vineyard Buoy, May 1987. (a) Significant wave height time series, and (b) distribution.
Figure 3: (continued) (c) Mean wave period time series, and (d) mean wave frequency distribution.
Figure 3: (continued) (e) Spectral peak period time series, and (f) spectral peak frequency distribution.
Figure 4: Wave height and period at Martha's Vineyard Buoy, June 1987. (a) Significant wave height time series, and (b) distribution.
Figure 4: (continued) (c) Mean wave period time series, and (d) mean wave frequency distribution.
Figure 4: (continued) (e) Spectral peak period time series, and (f) spectral peak frequency distribution.
Figure 5: Wave height and period at Martha's Vineyard Buoy, July 1987. (a) Significant wave height time series, and (b) distribution.
Figure 5: (continued) (c) Mean wave period time series, and (d) mean wave frequency distribution.
Figure 5: (continued) (e) Spectral peak period time series, and (f) spectral peak frequency distribution.
Figure 6: Wave height and period at Martha's Vineyard Buoy, August 1987. (a) Significant wave height time series, and (b) distribution.
Figure 6: (continued) (c) Mean wave period time series, and (d) mean wave frequency distribution.
Figure 6: (continued) (e) Spectral peak period time series, and (f) spectral peak frequency distribution.
Figure 7: Wave height and period at Martha’s Vineyard Buoy, September 1987. (a) Significant wave height time series, and (b) distribution.
Figure 7: (continued) (c) Mean wave period time series, and (d) mean wave frequency distribution.
PERIOD OF SPECTRAL PEAK (Tm) AT MARTHA'S VINEYARD BUOY

MEAN=6.719 STD DEV=1.872 MEDIAN=6.700
MODE=9.100 % ABOVE MODE=4.12

DATE SEPTEMBER 1987 (388) RECORDS

HISTOGRAM: SEP 87 SPECTRAL P^-AK FREQUENCIES

MARTHA'S VINEYARD BUOY
388 RECORDS

Figure 7: (continued) (e) Spectral peak period time series, and (f) spectral peak frequency distribution.
Significant wave height (Hs) at Martha's Vineyard Buoy

<table>
<thead>
<tr>
<th>Mean</th>
<th>Std Dev</th>
<th>Median</th>
<th>Mode</th>
<th>% Above Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.149</td>
<td>0.457</td>
<td>1.031</td>
<td>0.900</td>
<td>68.48</td>
</tr>
</tbody>
</table>

Figure 8: Wave height and period at Martha's Vineyard Buoy, October 1987. (a) Significant wave height time series, and (b) distribution.
MEAN WAVE PERIOD (T_v) AT MARTHA'S VINEYARD BUOY

- Mean = 5.210
- Standard Deviation = 0.963
- Median = 5.077
- Mode = 5.200
- % Above Mode = 45.00

DATE OCTOBER 1987 (660 RECORDS)

HISTOGRAM: OCT 87 MEAN WAVE FREQUENCIES

Figure 8: (continued) (c) Mean wave period time series, and (d) mean wave frequency distribution.
PERIOD OF SPECTRAL PEAK (Tm) AT MARTHA'S VINEYARD BUOY

MEAN = 6.962 STD DEV = 2.114 MEDIAN = 7.100
MODE = 9.100 % ABOVE MODL = 11.82

DATE OCTOBER 1987 (660 RECORDS)

HISTOGRAM: OCT 87 SPECTRAL PEAK FREQUENCIES

MARTHA'S VINEYARD BUOY
660 RECORDS

FREQUENCY Hz

Figure 8: (continued) (e) Spectral peak period time series, and (f) spectral peak frequency distribution.
Figure 9: Wave height and period at Martha's Vineyard Buoy, November 1987. (a) Significant wave height time series, and (b) distribution.
Figure 9: (continued) (c) Mean wave period time series, and (d) mean wave frequency distribution.
Figure 9: (continued) (e) Spectral peak period time series, and (f) spectral peak frequency distribution.
SIGNIFICANT WAVE HEIGHT (Hs) AT MARTHAS VINEYARD BUOY

MEAN=1.371 STD DEV=0.623 MEDIAN=1.251
MODE=0.800 % ABOVE MODE=84.30

Figure 10: Wave height and period at Martha's Vineyard Buoy, December 1987. (a) Significant wave height time series, and (b) distribution.
Figure 10: (continued) (c) Mean wave period time series, and (d) mean wave frequency distribution.
Figure 10: (continued) (e) Spectral peak period time series, and (f) spectral peak frequency distribution.
Figure 11: Wave height and period at Martha's Vineyard Buoy, January 1988. (a) Significant wave height time series, and (b) distribution.

44
Figure 11: (continued) (c) Mean wave period time series, and (d) mean wave frequency distribution.
PERIOD OF SPECTRAL PEAK (Tm) AT MARTHAS VINEYARD BUOY

MEAN=6.222 STD DEV=1.462 MEDIAN=6.400
MODE=6.400 % ABOVE MODE=46.94

DATE JANUARY 1988 (49) RECORDS

HISTOGRAM: JAN 88 SPECTRAL PEAK FREQUENCIES

MARTHA'S VINEYARD BUOY
49 RECORDS

PERCENT PER INTERVAL

FREQUENCY Hz

Figure 11: (continued) (e) Spectral peak period time series, and (f) spectral peak frequency distribution.
Figure 12: Wave height and period at Martha's Vineyard Buoy, February 1988. (a) Significant wave height time series, and (b) distribution.
Figure 12: (continued) (c) Mean wave period time series, and (d) mean wave frequency distribution.
PERIOD OF SPECTRAL PEAK (Tm) AT MARTHAS VINEYARD BUOY

Mean = 8.393 Std Dev = 2.269 Median = 8.500
Mode = 8.500 % Above Mode = 45.25

DATE FEBRUARY 1988 (400) RECORDS

HISTOGRAM: FEB 88 SPECTRAL PEAK FREQUENCIES

MARTHA'S VINEYARD BUOY
400 RECORDS

Figure 12: (continued) (e) Spectral peak period time series, and (f) spectral peak frequency distribution.
Figure 13: Wave height and period at Martha’s Vineyard Buoy, March 1988. (a) Significant wave height time series, and (b) distribution.
Figure 13: (continued) (c) Mean wave period time series, and (d) mean wave frequency distribution.
Figure 13: (continued) (e) Spectral peak period time series, and (f) spectral peak frequency distribution.
Figure 14: Wave height and period at Martha's Vineyard Buoy, April 1988. (a) Significant wave height time series, and (b) distribution.
Figure 14: (continued) (c) Mean wave period time series, and (d) mean wave frequency distribution.
PERIOD OF SPECTRAL PEAK (Tm) AT MAK'FHAS VINEYARD BUOY

MEAN=6.611 STD DEV=2.246 MEDIAN=6.400 MODE=9.100 % ABOVE MODE=11.68

HISTOGRAM: APR 88 SPECTRAL PEAK FREQUENCIES

MARTHA'S VINEYARD BUOY 659 RECORDS

Figure 14: (continued) (e) Spectral peak period time series, and (f) spectral peak frequency distribution.
Figure 15: Wave height and period at Martha’s Vineyard Buoy, May 1988. (a) Significant wave height time series, and (b) distribution.
Figure 15: (continued) (c) Mean wave period time series, and (d) mean wave frequency distribution.
Figure 15: (continued) (e) Spectral peak period time series, and (f) spectral peak frequency distribution.
Figure 16: Wave height and period at Martha’s Vineyard Buoy, June 1988. (a) Significant wave height time series, and (b) distribution.
Figure 16: (continued) (c) Mean wave period time series, and (d) mean wave frequency distribution.
Figure 16: (continued) (e) Spectral peak period time series, and (f) spectral peak frequency distribution.
Figure 17: Wave height and period at Martha's Vineyard Buoy, July 1988. (a) Significant wave height time series, and (b) distribution.
Figure 17: (continued) (c) Mean wave period time series, and (d) mean wave frequency distribution.
Figure 17: (continued) (e) Spectral peak period time series, and (f) spectral peak frequency distribution.
Figure 18: Wave height and period at Martha's Vineyard Buoy, August 1988. (a) Significant wave height time series, and (b) distribution.
Figure 18: (continued) (c) Mean wave period time series, and (d) mean wave frequency distribution.
Figure 18: (continued) (e) Spectral peak period time series, and (f) spectral peak frequency distribution.
Figure 19: Wind speed and direction at Buzzards Bay Tower, May 1987. (a) Wind speed time series, and (b) wind velocity vector plot.
Figure 19: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
Figure 20: Wind speed and direction at Buzzards Bay Tower, June 1987. (a) Wind speed time series, and (b) wind velocity vector plot.
Figure 20: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
Figure 21: Wind speed and direction at Buzzards Bay Tower, July 1987. (a) Wind speed time series, and (b) wind velocity vector plot.
Figure 21: (continued) (c) Wind speed distribution, and (d) wind direction distribution.

73
Figure 22: Wind speed and direction at Buzzards Bay Tower, August 1987. (a) Wind speed time series, and (b) wind velocity vector plot.
Figure 22: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
Figure 23: Wind speed and direction at Buzzards Bay Tower, September 1987. (a) Wind speed time series, and (b) wind velocity vector plot.
Figure 23: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
Figure 24: Wind speed and direction at Buzzards Bay Tower, October 1987. (a) Wind speed time series, and (b) wind velocity vector plot.
Figure 24: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
Figure 25: Wind speed and direction at Buzzards Bay Tower, November 1987. (a) Wind speed time series, and (b) wind velocity vector plot.
Figure 25: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
Figure 26: Wind speed and direction at Buzzards Bay Tower, December 1987. (a) Wind speed time series, and (b) wind velocity vector plot.
Figure 26: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
Figure 27: Wind speed and direction at Buzzards Bay Tower, January 1988. (a) Wind speed time series, and (b) wind velocity vector plot.
Figure 27: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
Figure 28: Wind speed and direction at Buzzards Bay Tower, February 1988. (a) Wind speed time series, and (b) wind velocity vector plot.
Figure 28: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
Figure 29: Wind speed and direction at Buzzards Bay Tower, March 1988. (a) Wind speed time series, and (b) wind velocity vector plot.
Figure 29: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
Figure 30: Wind speed and direction at Buzzards Bay Tower, April 1988. (a) Wind speed time series, and (b) wind velocity vector plot.
Figure 30: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
WIND SPEED (U10) AT BUZZARDS BAY TOWER

MEAN = 5.92 STD DEV = 2.78 MEDIAN = 5.92
MODE = 5.50 % ABOVE MODE = 53.61
MEAN DIRECTION = 172.2 DEGREES

DATE MAY 1988 (735 RECORDS)

WIND VELOCITY FIELD

EASTERLY VELOCITY COMPONENT (U):
MEAN = -0.25 STD DEV = 3.99
NORTHERLY VELOCITY COMPONENT (V):
MEAN = 0.45 STD DEV = 5.16

DATE MAY 1988 (735 RECORDS)

Figure 3: Wind speed and direction at Buzzards Bay Tower, May 1988. (a) Wind speed time series, and (b) wind velocity vector plot.
Figure 31: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
Figure 32: Wind speed and direction at Buzzards Bay Tower, June 1988. (a) Wind speed time series, and (b) wind velocity vector plot.
Figure 32: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
Figure 33: Wind speed and direction at Buzzards Bay Tower, July 1988. (a) Wind speed time series, and (b) wind velocity vector plot.
Figure 33: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
Figure 34: Wind speed and direction at Buzzards Bay Tower, August 1988. (a) Wind speed time series, and (b) wind velocity vector plot.
Figure 34: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
Figure 35: Wave height and period at Buoy 44008, May 1987. (a) Significant wave height time series, and (b) distribution.
Figure 35: (continued) (c) Mean wave period time series, and (d) mean wave frequency distribution.
PERIOD OF SPECTRAL PEAK (Tm) AT BUOY 44008

MEAN=7.933 STD DEV=1.861 MEDIAN=7.700
MODE=8.400 % ABOVE MODE=33.79

DATE MAY 1987 (654) RECORDS

HISTOGRAM: MAY 87 SPECTRAL PEAK FREQUENCIES

Figure 35: (continued) (e) Spectral peak period time series, and (f) spectral peak frequency distribution.
Figure 36: Wave height and period at Buoy 44008, June 1987. (a) Significant wave height time series, and (b) distribution.
Figure 36: (continued) (c) Mean wave period time series, and (d) mean wave frequency distribution.
Figure 36: (continued) (e) Spectral peak period time series, and (f) spectral peak frequency distribution.
Figure 37: Wave height and period at Buoy 44008, July 1987. (a) Significant wave height time series, and (b) distribution.
Figure 37: (continued) (c) Mean wave period time series, and (d) mean wave frequency distribution.
Figure 37: (continued) (e) Spectral peak period time series, and (f) spectral peak frequency distribution.
Figure 38: Wave height and period at Buoy 44008, August 1987. (a) Significant wave height time series, and (b) distribution.
Figure 38: (continued) (c) Mean wave period time series, and (d) mean wave frequency distribution.
PERIOD OF SPECTRAL PEAK (Tm) AT BUOY 44008

MEAN=8.137 STD DEV=2.078 MEDIAN=8.300
MODE=9.100 % ABOVE MODE=26.55

DATE AUGUST 1987 (742) RECORDS

HISTOGRAM: AUG 87 SPECTRAL PEAK FREQUENCIES

BUOY 44008
742 RECORDS

PERCENT PER INTERVAL

FREQUENCY Hz

Figure 38: (continued) (e) Spectral peak period time series, and (f) spectral peak frequency distribution.
Figure 39: Wave height and period at Buoy 44008, September 1987. (a) Significant wave height time series, and (b) distribution.
Figure 39: (continued) (c) Mean wave period time series, and (d) mean wave frequency distribution.
Figure 39: (continued) (e) Spectral peak period time series, and (f) spectral peak frequency distribution.
Figure 40: Wave height and period at Buoy 44008, October 1987. (a) Significant wave height time series, and (b) distribution.
Figure 40: (continued) (c) Mean wave period time series, and (d) mean wave frequency distribution.
PERIOD OF SPECTRAL PEAK (Tm) AT BUOY 44008

Mean = 8.085, Std Dev = 1.581, Median = 8.300
Mode = 9.100, % Above Mode = 18.97

DATE OCTOBER 1987 (601) RECORDS

HISTOGRAM: OCT 87 SPECTRAL PEAK FREQUENCIES

BUOY 44008
601 RECORDS

Figure 40: (continued) (e) Spectral peak period time series, and (f) spectral peak frequency distribution.
Figure 41: Wave height and period at Buoy 44008, February 1988. (a) Significant wave height time series, and (b) distribution.
Figure 41: (continued) (c) Mean wave period time series, and (d) mean wave frequency distribution.
Figure 41: (continued) (e) Spectral peak period time series, and (f) spectral peak frequency distribution.
Figure 42: Wave height and period at Buoy 44008, March 1988. (a) Significant wave height time series, and (b) distribution.
Figure 42: (continued) (c) Mean wave period time series, and (d) mean wave frequency distribution.
Figure 42: (continued) (e) Spectral peak period time series, and (f) spectral peak frequency distribution.
Figure 43: Wave height and period at Buoy 44008, April 1988. (a) Significant wave height time series, and (b) distribution.
Figure 43: (continued) (c) Mean wave period time series, and (d) mean wave frequency distribution.
PERIOD OF SPECTRAL PEAK (Tm) AT BUOY 44008

MEAN=3.598 STD DEV=1.417 MEDIAN=8.300
MODE=9.100 % ABOVE MODE=27.82

DATE APRIL 1988 (719) RECORDS

HISTOGRAM: APR 88 SPECTRAL PEAK FREQUENCIES

BUOY 44008
719 RECORDS

FREQUENCY Hz

Figure 43: (continued) (e) Spectral peak period time series, and (f) spectral peak frequency distribution.
Figure 44: Wave height and period at Buoy 44008, May 1988. (a) Significant wave height time series, and (b) distribution.
Figure 44: (continued) (c) Mean wave period time series, and (d) mean wave frequency distribution.
Figure 44: (continued) (e) Spectral peak period time series, and (f) spectral peak frequency distribution.
Figure 45: Wave height and period at Buoy 44008, June 1988. (a) Significant wave height time series, and (b) distribution.
Figure 45: (continued) (c) Mean wave period time series, and (d) mean wave frequency distribution.
Figure 45: (continued) (e) Spectral peak period time series, and (f) spectral peak frequency distribution.
Figure 46: Wave height and period at Buoy 44008, July 1988. (a) Significant wave height time series, and (b) distribution.
Figure 46: (continued) (c) Mean wave period time series, and (d) mean wave frequency distribution.
PERIOD OF SPECTRAL PEAK (T_m) AT BUOY 44008

Mean = 7.571, Std Dev = 1.235, Median = 7.700
Mode = 8.300, % Above Mode = 14.78

DATE JULY 1988 (724) RECORDS

HISTOGRAM: JUL 88 SPECTRAL PEAK FREQUENCIES

BUOY 44008
724 RECORDS

Figure 46: (continued) (e) Spectral peak period time series, and (f) spectral peak frequency distribution.
Figure 47: Wave height and period at Buoy 44008, August 1988. (a) Significant wave height time series, and (b) distribution.
Figure 47: (continued) (c) Mean wave period time series, and (d) mean wave frequency distribution.
PERIOD OF SPECTRAL PEAK (Tm) AT BUOY 44008

MEAN=7.442 STD DEV=1.538 MEDIAN=7.100
MODE=8.300 % ABOVE MODE=20.80

Figure 47: (continued) (e) Spectral peak period time series, and (f) spectral peak frequency distribution.
WIND SPEED (U10) AT BUOY 44008

MEAN = 5.57
STD DEV = 2.15
MEDIAN = 5.83
MODE = 5.80
% ABOVE MODE = 52.10

MEAN DIRECTION = 216.4 DEGREES

DATE MAY 1987 (668 RECORDS)

WIND VELOCITY FIELD

EASTERLY VELOCITY COMPONENT (U):
MEAN = 0.24
STD DEV = 4.60

NORTHERLY VELOCITY COMPONENT (V):
MEAN = 0.24
STD DEV = 3.79

DATE MAY 1987 (668 RECORDS)

Figure 48: Wind speed and direction at Buoy 44008, May 1987. (a) Wind speed time series, and (b) wind velocity vector plot.
Figure 48: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
WIND SPEED (U10) AT BUOY 44008

MEAN= 5.08 STD DEV= 1.97 MEDIAN= 4.86

MODE= 5.80 % ABOVE MODE= 45.26

MEAN DIRECTION= 222.2 DEGREES

WIND VELOCITY FIELD

EASTERNLY VELOCITY COMPONENT (U):

MEAN = 1.30 STD DEV = 3.81

NORTHERLY VELOCITY COMPONENT (V):

MEAN = 1.38 STD DEV = 3.41

Figure 49: Wind speed and direction at Buoy 44008, June 1987. (a) Wind speed time series, and (b) wind velocity vector plot.
Figure 49: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
Wind speed and direction at Buoy 44008, July 1987. (a) Wind speed time series, and (b) wind velocity vector plot.
HISTOGRAM: JUL 87 WIND SPEEDS

BUOY 44008
MEAN SPEED = 3.62 m/s
STD DEV = 1.98 m
696 RECORDS

Figure 50: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
Figure 51: Wind speed and direction at Buoy 44008, August 1987. (a) Wind speed time series, and (b) wind velocity vector plot.
Figure 51: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
Figure 52: Wind speed and direction at Buoy 44008, September 1987. (a) Wind speed time series, and (b) wind velocity vector plot.
HISTOGRAM: SEP 87 WIND SPEEDS

BUOY 44008
MEAN SPEED = 5.08 m
STD DEV = 2.83 m
612 RECORDS

Figure 52: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
WIND SPEED (U10) AT BUOY 44008

Mean = 7.40 Std Dev = 3.69 Median = 6.80
Mode = 6.80 % Above Mode = 47.98
Mean Direction = 226.2 Degrees

DATE OCTOBER 1987 (198 RECORDS)

WIND VELOCITY FIELD

Easterly Velocity Component (U):
Mean = 2.55 Std Dev = 6.33

Northerly Velocity Component (V):
Mean = 1.65 Std Dev = 4.37

DATE OCTOBER 1987 (198 RECORDS)

Figure 53: Wind speed and direction at Buoy 44008, October 1987. (a) Wind speed time series, and (b) wind velocity vector plot.

149
Figure 53: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
Figure 54: Wind speed and direction at Buoy 44008, November 1987. (a) Wind speed time series, and (b) wind velocity vector plot.
Figure 54: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
Figure 55: Wind speed and direction at Buoy 44008, December 1987. (a) Wind speed time series, and (b) wind velocity vector plot.
Figure 55: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
Figure 56: Wind speed and direction at Buoy 44008, January 1988. (a) Wind speed time series, and (b) wind velocity vector plot.
Figure 56: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
Figure 57: Wind speed and direction at Buoy 44008, February 1988. (a) Wind speed time series, and (b) wind velocity vector plot.
Figure 57: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
Figure 58: Wind speed and direction at Buoy 44008, March 1988. (a) Wind speed time series, and (b) wind velocity vector plot.
Figure 58: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
WIND SPEED (U10) AT BUOY 44008

MEAN = 7.78 STD DEV = 3.57 MEDIAN = 7.77
MODE = 8.60 % ABOVE MODE = 42.56
MEAN DIRECTION = 330.4 DEGREES

DATE APRIL 1988 (719 RECORDS)

WIND VELOCITY FIELD

EASTERLY VELOCITY COMPONENT (U):
MEAN = 0.86 STD DEV = 5.58

NORTHERLY VELOCITY COMPONENT (V):
MEAN = -1.64 STD DEV = 6.22

DATE APRIL 1988 (719 RECORDS)

Figure 59: Wind speed and direction at Buoy 44008, April 1988. (a) Wind speed time series, and (b) wind velocity vector plot.
Figure 59: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
Figure 60: Wind speed and direction at Buoy 44008, May 1988. (a) Wind speed time series, and (b) wind velocity vector plot.
Figure 60: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
Figure 61: Wind speed and direction at Buoy 44008, June 1988. (a) Wind speed time series, and (b) wind velocity vector plot.
Figure 61: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
Figure 62: Wind speed and direction at Buoy 44008, July 1988. (a) Wind speed time series, and (b) wind velocity vector plot.
Figure 62: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
Figure 63: Wind speed and direction at Buoy 44008, August 1988. (a) Wind speed time series, and (b) wind velocity vector plot.
Figure 63: (continued) (c) Wind speed distribution, and (d) wind direction distribution.
B Wave Height and Period Monthly and Seasonal Summaries

Heights are in meters.
Periods are in seconds.

<table>
<thead>
<tr>
<th>DATE YYMM</th>
<th>H_s MIN</th>
<th>H_s MEAN</th>
<th>H_s MAX</th>
<th>T_m MIN</th>
<th>T_m MEAN</th>
<th>T_m MAX</th>
<th>T MIN</th>
<th>T MEAN</th>
<th>T MAX</th>
<th>ORDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAY 87</td>
<td>0.52</td>
<td>0.88</td>
<td>1.64</td>
<td>2.90</td>
<td>7.68</td>
<td>10.70</td>
<td>3.76</td>
<td>5.53</td>
<td>7.58</td>
<td>231</td>
</tr>
<tr>
<td>JUN 87</td>
<td>0.39</td>
<td>1.09</td>
<td>2.66</td>
<td>2.30</td>
<td>6.90</td>
<td>10.70</td>
<td>3.58</td>
<td>4.87</td>
<td>6.54</td>
<td>435</td>
</tr>
<tr>
<td>JUL 87</td>
<td>0.29</td>
<td>0.69</td>
<td>1.92</td>
<td>2.50</td>
<td>6.80</td>
<td>16.00</td>
<td>3.44</td>
<td>5.06</td>
<td>6.59</td>
<td>533</td>
</tr>
<tr>
<td>AUG 87</td>
<td>0.31</td>
<td>0.81</td>
<td>2.60</td>
<td>2.50</td>
<td>6.88</td>
<td>12.80</td>
<td>3.34</td>
<td>4.97</td>
<td>8.32</td>
<td>525</td>
</tr>
<tr>
<td>SEP 87</td>
<td>0.33</td>
<td>0.80</td>
<td>2.46</td>
<td>2.50</td>
<td>6.72</td>
<td>10.70</td>
<td>3.41</td>
<td>5.07</td>
<td>7.98</td>
<td>388</td>
</tr>
<tr>
<td>OCT 87</td>
<td>0.43</td>
<td>1.15</td>
<td>3.28</td>
<td>2.80</td>
<td>6.96</td>
<td>11.60</td>
<td>3.56</td>
<td>5.21</td>
<td>9.00</td>
<td>660</td>
</tr>
<tr>
<td>NOV 87</td>
<td>0.24</td>
<td>1.31</td>
<td>3.32</td>
<td>2.20</td>
<td>6.47</td>
<td>16.00</td>
<td>3.19</td>
<td>4.88</td>
<td>8.39</td>
<td>598</td>
</tr>
<tr>
<td>DEC 87</td>
<td>0.39</td>
<td>1.37</td>
<td>3.50</td>
<td>2.40</td>
<td>6.79</td>
<td>14.20</td>
<td>3.25</td>
<td>4.94</td>
<td>8.52</td>
<td>363</td>
</tr>
<tr>
<td>JAN 88</td>
<td>0.74</td>
<td>1.59</td>
<td>2.34</td>
<td>2.10</td>
<td>6.22</td>
<td>9.10</td>
<td>3.54</td>
<td>4.90</td>
<td>5.64</td>
<td>49</td>
</tr>
<tr>
<td>FEB 88</td>
<td>0.35</td>
<td>1.31</td>
<td>3.75</td>
<td>2.80</td>
<td>8.39</td>
<td>12.80</td>
<td>3.75</td>
<td>5.68</td>
<td>9.25</td>
<td>400</td>
</tr>
<tr>
<td>MAR 88</td>
<td>0.28</td>
<td>1.06</td>
<td>2.25</td>
<td>2.30</td>
<td>6.73</td>
<td>14.20</td>
<td>3.24</td>
<td>4.87</td>
<td>7.61</td>
<td>373</td>
</tr>
<tr>
<td>APR 88</td>
<td>0.41</td>
<td>1.13</td>
<td>2.31</td>
<td>2.70</td>
<td>6.61</td>
<td>12.80</td>
<td>3.46</td>
<td>5.13</td>
<td>8.64</td>
<td>659</td>
</tr>
<tr>
<td>MAY 88</td>
<td>0.40</td>
<td>0.95</td>
<td>2.54</td>
<td>2.80</td>
<td>6.94</td>
<td>11.60</td>
<td>3.62</td>
<td>5.19</td>
<td>7.59</td>
<td>566</td>
</tr>
<tr>
<td>JUN 88</td>
<td>0.38</td>
<td>0.98</td>
<td>2.99</td>
<td>2.70</td>
<td>6.76</td>
<td>14.20</td>
<td>3.38</td>
<td>5.16</td>
<td>8.65</td>
<td>612</td>
</tr>
<tr>
<td>JUL 88</td>
<td>0.43</td>
<td>1.08</td>
<td>2.53</td>
<td>3.40</td>
<td>7.05</td>
<td>9.80</td>
<td>3.98</td>
<td>5.26</td>
<td>7.33</td>
<td>627</td>
</tr>
<tr>
<td>AUG 88</td>
<td>0.35</td>
<td>1.03</td>
<td>2.63</td>
<td>2.20</td>
<td>6.70</td>
<td>14.20</td>
<td>3.27</td>
<td>5.97</td>
<td>7.26</td>
<td>504</td>
</tr>
</tbody>
</table>

Table 2: Martha’s Vineyard Buoy, Wave Height and Period Monthly Summaries

<table>
<thead>
<tr>
<th>DATE YYMM</th>
<th>H_s MIN</th>
<th>H_s MEAN</th>
<th>H_s MAX</th>
<th>T_m MIN</th>
<th>T_m MEAN</th>
<th>T_m MAX</th>
<th>T MIN</th>
<th>T MEAN</th>
<th>T MAX</th>
<th>ORDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPRING 87</td>
<td>0.52</td>
<td>0.88</td>
<td>1.64</td>
<td>2.90</td>
<td>7.68</td>
<td>10.70</td>
<td>3.76</td>
<td>5.53</td>
<td>7.58</td>
<td>231</td>
</tr>
<tr>
<td>SUMMER 87</td>
<td>0.29</td>
<td>0.85</td>
<td>2.66</td>
<td>2.30</td>
<td>6.86</td>
<td>16.00</td>
<td>3.34</td>
<td>4.97</td>
<td>8.32</td>
<td>1493</td>
</tr>
<tr>
<td>AUTUMN 87</td>
<td>0.24</td>
<td>1.12</td>
<td>3.32</td>
<td>2.20</td>
<td>6.72</td>
<td>16.00</td>
<td>3.19</td>
<td>5.06</td>
<td>9.00</td>
<td>1646</td>
</tr>
<tr>
<td>WINTER 88</td>
<td>0.35</td>
<td>1.35</td>
<td>3.75</td>
<td>2.10</td>
<td>7.55</td>
<td>14.20</td>
<td>3.25</td>
<td>5.30</td>
<td>9.25</td>
<td>812</td>
</tr>
<tr>
<td>SPRING 88</td>
<td>0.28</td>
<td>1.05</td>
<td>2.54</td>
<td>2.30</td>
<td>6.76</td>
<td>14.20</td>
<td>3.24</td>
<td>5.09</td>
<td>8.64</td>
<td>1598</td>
</tr>
<tr>
<td>SUMMER 88</td>
<td>0.35</td>
<td>1.03</td>
<td>2.99</td>
<td>2.20</td>
<td>6.85</td>
<td>14.20</td>
<td>3.27</td>
<td>5.17</td>
<td>8.65</td>
<td>1743</td>
</tr>
</tbody>
</table>

Table 3: Martha’s Vineyard Buoy, Wave Height and Period Seasonal Summaries
Table 4: Buoy 44004, Wave Height and Period Monthly Summaries

<table>
<thead>
<tr>
<th>DATE YYMM</th>
<th>H_s MIN</th>
<th>H_s MEAN</th>
<th>H_s MAX</th>
<th>T_m MIN</th>
<th>T_m MEAN</th>
<th>T_m MAX</th>
<th>T MIN</th>
<th>T MEAN</th>
<th>T MAX</th>
<th>REC-ORDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAY 87</td>
<td>0.60</td>
<td>1.54</td>
<td>4.08</td>
<td>3.80</td>
<td>7.58</td>
<td>14.30</td>
<td>3.94</td>
<td>5.66</td>
<td>7.55</td>
<td>742</td>
</tr>
<tr>
<td>JUN 87</td>
<td>0.50</td>
<td>1.34</td>
<td>2.79</td>
<td>3.30</td>
<td>6.97</td>
<td>11.10</td>
<td>3.93</td>
<td>5.32</td>
<td>6.96</td>
<td>717</td>
</tr>
<tr>
<td>JUL 87</td>
<td>0.44</td>
<td>1.20</td>
<td>2.07</td>
<td>3.60</td>
<td>6.00</td>
<td>12.50</td>
<td>3.91</td>
<td>5.05</td>
<td>6.77</td>
<td>270</td>
</tr>
<tr>
<td>AUG 87</td>
<td>0.47</td>
<td>1.24</td>
<td>3.00</td>
<td>2.90</td>
<td>7.57</td>
<td>12.50</td>
<td>3.80</td>
<td>5.68</td>
<td>9.37</td>
<td>741</td>
</tr>
<tr>
<td>SEP 87</td>
<td>0.48</td>
<td>1.31</td>
<td>2.63</td>
<td>3.40</td>
<td>7.65</td>
<td>12.50</td>
<td>3.86</td>
<td>5.66</td>
<td>7.79</td>
<td>682</td>
</tr>
<tr>
<td>OCT 87</td>
<td>0.67</td>
<td>1.95</td>
<td>5.81</td>
<td>3.60</td>
<td>8.10</td>
<td>11.10</td>
<td>3.98</td>
<td>6.10</td>
<td>8.31</td>
<td>738</td>
</tr>
<tr>
<td>NOV 87</td>
<td>0.55</td>
<td>2.14</td>
<td>7.31</td>
<td>3.60</td>
<td>7.93</td>
<td>14.30</td>
<td>3.85</td>
<td>5.86</td>
<td>9.32</td>
<td>300</td>
</tr>
<tr>
<td>DEC 87</td>
<td>0.69</td>
<td>2.67</td>
<td>7.95</td>
<td>3.00</td>
<td>8.22</td>
<td>14.30</td>
<td>3.63</td>
<td>6.22</td>
<td>9.92</td>
<td>272</td>
</tr>
<tr>
<td>JAN 88</td>
<td>0.79</td>
<td>2.42</td>
<td>5.97</td>
<td>3.80</td>
<td>8.59</td>
<td>14.30</td>
<td>4.14</td>
<td>6.57</td>
<td>12.14</td>
<td>185</td>
</tr>
<tr>
<td>FEB 88</td>
<td>1.20</td>
<td>2.38</td>
<td>5.05</td>
<td>4.20</td>
<td>7.90</td>
<td>12.50</td>
<td>4.18</td>
<td>6.12</td>
<td>9.17</td>
<td>242</td>
</tr>
<tr>
<td>MAR 88</td>
<td>0.78</td>
<td>2.16</td>
<td>6.38</td>
<td>3.40</td>
<td>7.85</td>
<td>12.50</td>
<td>3.74</td>
<td>5.90</td>
<td>9.69</td>
<td>743</td>
</tr>
<tr>
<td>APR 88</td>
<td>0.60</td>
<td>2.26</td>
<td>4.82</td>
<td>3.10</td>
<td>8.37</td>
<td>14.30</td>
<td>3.77</td>
<td>6.23</td>
<td>8.80</td>
<td>718</td>
</tr>
<tr>
<td>MAY 88</td>
<td>0.65</td>
<td>1.60</td>
<td>4.54</td>
<td>3.40</td>
<td>8.17</td>
<td>12.50</td>
<td>3.92</td>
<td>5.94</td>
<td>9.56</td>
<td>741</td>
</tr>
<tr>
<td>JUN 88</td>
<td>0.58</td>
<td>1.53</td>
<td>4.71</td>
<td>3.40</td>
<td>6.93</td>
<td>12.50</td>
<td>3.68</td>
<td>5.44</td>
<td>8.23</td>
<td>720</td>
</tr>
<tr>
<td>JUL 88</td>
<td>0.51</td>
<td>1.30</td>
<td>2.79</td>
<td>3.70</td>
<td>7.30</td>
<td>12.50</td>
<td>3.85</td>
<td>5.59</td>
<td>7.64</td>
<td>742</td>
</tr>
<tr>
<td>AUG 88</td>
<td>0.65</td>
<td>1.39</td>
<td>3.80</td>
<td>2.90</td>
<td>6.67</td>
<td>10.00</td>
<td>3.72</td>
<td>5.23</td>
<td>7.21</td>
<td>741</td>
</tr>
</tbody>
</table>

Table 5: Buoy 44004, Wave Height and Period Seasonal Summaries

<table>
<thead>
<tr>
<th>DATE YYMM</th>
<th>H_s MIN</th>
<th>H_s MEAN</th>
<th>H_s MAX</th>
<th>T_m MIN</th>
<th>T_m MEAN</th>
<th>T_m MAX</th>
<th>T MIN</th>
<th>T MEAN</th>
<th>T MAX</th>
<th>REC-ORDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPRING 87</td>
<td>0.60</td>
<td>1.54</td>
<td>4.08</td>
<td>3.80</td>
<td>7.58</td>
<td>14.30</td>
<td>3.94</td>
<td>5.66</td>
<td>7.55</td>
<td>742</td>
</tr>
<tr>
<td>SUMMER 87</td>
<td>0.44</td>
<td>1.27</td>
<td>3.00</td>
<td>2.90</td>
<td>7.08</td>
<td>12.50</td>
<td>3.80</td>
<td>5.44</td>
<td>9.37</td>
<td>1728</td>
</tr>
<tr>
<td>AUTUMN 87</td>
<td>0.48</td>
<td>1.73</td>
<td>7.31</td>
<td>3.40</td>
<td>7.89</td>
<td>14.30</td>
<td>3.85</td>
<td>5.88</td>
<td>9.32</td>
<td>1720</td>
</tr>
<tr>
<td>WINTER 88</td>
<td>0.69</td>
<td>2.50</td>
<td>7.95</td>
<td>3.00</td>
<td>8.21</td>
<td>14.30</td>
<td>3.63</td>
<td>6.28</td>
<td>12.14</td>
<td>699</td>
</tr>
<tr>
<td>SPRING 88</td>
<td>0.60</td>
<td>2.01</td>
<td>6.38</td>
<td>3.10</td>
<td>8.13</td>
<td>14.30</td>
<td>3.74</td>
<td>3.02</td>
<td>9.69</td>
<td>2202</td>
</tr>
<tr>
<td>SUMMER 88</td>
<td>0.51</td>
<td>1.41</td>
<td>4.71</td>
<td>2.90</td>
<td>6.97</td>
<td>12.50</td>
<td>3.68</td>
<td>5.42</td>
<td>8.23</td>
<td>2203</td>
</tr>
<tr>
<td>DATE</td>
<td>Hs</td>
<td>Tm</td>
<td>T</td>
<td>RECOR-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIN</td>
<td>MEAN</td>
<td>MAX</td>
<td>MIN</td>
<td>MEAN</td>
<td>MAX</td>
<td>MIN</td>
<td>MEAN</td>
<td>MAX</td>
<td>ORDS</td>
</tr>
<tr>
<td>MAY 87</td>
<td>0.62</td>
<td>1.22</td>
<td>3.61</td>
<td>3.30</td>
<td>7.93</td>
<td>12.50</td>
<td>3.81</td>
<td>5.93</td>
<td>8.05</td>
<td>654</td>
</tr>
<tr>
<td>JUN 87</td>
<td>0.32</td>
<td>1.14</td>
<td>2.58</td>
<td>3.30</td>
<td>7.54</td>
<td>11.10</td>
<td>4.02</td>
<td>5.94</td>
<td>7.97</td>
<td>716</td>
</tr>
<tr>
<td>JUL 87</td>
<td>0.31</td>
<td>0.77</td>
<td>1.78</td>
<td>3.30</td>
<td>7.08</td>
<td>11.10</td>
<td>3.81</td>
<td>5.79</td>
<td>8.16</td>
<td>738</td>
</tr>
<tr>
<td>AUG 87</td>
<td>0.41</td>
<td>0.99</td>
<td>2.20</td>
<td>3.60</td>
<td>8.14</td>
<td>12.50</td>
<td>4.24</td>
<td>6.33</td>
<td>9.86</td>
<td>742</td>
</tr>
<tr>
<td>SEP 87</td>
<td>0.42</td>
<td>1.19</td>
<td>3.13</td>
<td>3.20</td>
<td>8.14</td>
<td>14.30</td>
<td>4.29</td>
<td>6.40</td>
<td>9.67</td>
<td>678</td>
</tr>
<tr>
<td>OCT 87</td>
<td>0.64</td>
<td>1.56</td>
<td>4.69</td>
<td>4.00</td>
<td>8.08</td>
<td>11.10</td>
<td>4.43</td>
<td>6.51</td>
<td>8.69</td>
<td>601</td>
</tr>
<tr>
<td>NOV 87</td>
<td>No Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEC 87</td>
<td>No Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAN 88</td>
<td></td>
</tr>
<tr>
<td>FEB 88</td>
<td>0.65</td>
<td>1.95</td>
<td>3.78</td>
<td>3.80</td>
<td>8.59</td>
<td>12.50</td>
<td>4.21</td>
<td>6.75</td>
<td>9.70</td>
<td>251</td>
</tr>
<tr>
<td>MAR 88</td>
<td>0.56</td>
<td>1.75</td>
<td>4.23</td>
<td>3.40</td>
<td>7.93</td>
<td>12.50</td>
<td>4.38</td>
<td>6.42</td>
<td>9.84</td>
<td>740</td>
</tr>
<tr>
<td>APR 88</td>
<td>0.59</td>
<td>1.96</td>
<td>4.82</td>
<td>4.50</td>
<td>8.60</td>
<td>14.30</td>
<td>4.70</td>
<td>6.91</td>
<td>9.51</td>
<td>719</td>
</tr>
<tr>
<td>MAY 88</td>
<td>0.47</td>
<td>1.27</td>
<td>3.49</td>
<td>4.30</td>
<td>8.22</td>
<td>12.50</td>
<td>4.57</td>
<td>6.53</td>
<td>8.34</td>
<td>738</td>
</tr>
<tr>
<td>JUN 88</td>
<td>0.42</td>
<td>1.21</td>
<td>3.46</td>
<td>2.90</td>
<td>7.42</td>
<td>16.70</td>
<td>3.67</td>
<td>6.21</td>
<td>9.04</td>
<td>703</td>
</tr>
<tr>
<td>JUL 88</td>
<td>0.48</td>
<td>1.13</td>
<td>2.59</td>
<td>3.40</td>
<td>7.57</td>
<td>12.50</td>
<td>4.17</td>
<td>6.25</td>
<td>7.77</td>
<td>724</td>
</tr>
<tr>
<td>AUG 88</td>
<td>0.45</td>
<td>1.16</td>
<td>4.25</td>
<td>2.90</td>
<td>7.44</td>
<td>14.30</td>
<td>3.98</td>
<td>6.13</td>
<td>8.32</td>
<td>697</td>
</tr>
</tbody>
</table>

Table 6: Buoy 44008, Wave Height and Period Monthly Summaries

<table>
<thead>
<tr>
<th>DATE</th>
<th>Hs</th>
<th>Tm</th>
<th>T</th>
<th>RECOR-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>MEAN</td>
<td>MAX</td>
<td>MIN</td>
</tr>
<tr>
<td>SPRING 87</td>
<td>0.62</td>
<td>1.22</td>
<td>3.61</td>
<td>3.30</td>
</tr>
<tr>
<td>SUMMER 87</td>
<td>0.31</td>
<td>0.97</td>
<td>2.58</td>
<td>3.30</td>
</tr>
<tr>
<td>AUTUMN 87</td>
<td>0.42</td>
<td>1.36</td>
<td>4.69</td>
<td>3.20</td>
</tr>
<tr>
<td>WINTER 88</td>
<td>0.65</td>
<td>1.95</td>
<td>3.78</td>
<td>3.80</td>
</tr>
<tr>
<td>SPRING 88</td>
<td>0.47</td>
<td>1.66</td>
<td>4.82</td>
<td>3.40</td>
</tr>
<tr>
<td>SUMMER 88</td>
<td>0.42</td>
<td>1.17</td>
<td>4.25</td>
<td>2.90</td>
</tr>
</tbody>
</table>

Table 7: Buoy 44008, Wave Height and Period Seasonal Summaries
<table>
<thead>
<tr>
<th>DATE</th>
<th>H_s</th>
<th>T_m</th>
<th>T</th>
<th>REC-ORDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>YYYM</td>
<td>MIN</td>
<td>MEAN</td>
<td>MAX</td>
<td>MIN</td>
</tr>
<tr>
<td>MAY 87</td>
<td>0.69</td>
<td>1.45</td>
<td>3.95</td>
<td>4.20</td>
</tr>
<tr>
<td>JUN 87</td>
<td>0.57</td>
<td>1.41</td>
<td>3.07</td>
<td>3.70</td>
</tr>
<tr>
<td>JUL 87</td>
<td>0.50</td>
<td>0.99</td>
<td>1.68</td>
<td>3.20</td>
</tr>
<tr>
<td>AUG 87</td>
<td>0.50</td>
<td>1.13</td>
<td>2.72</td>
<td>2.90</td>
</tr>
<tr>
<td>SEP 87</td>
<td>0.55</td>
<td>1.36</td>
<td>3.31</td>
<td>3.20</td>
</tr>
<tr>
<td>OCT 87</td>
<td>0.80</td>
<td>1.89</td>
<td>6.24</td>
<td>4.30</td>
</tr>
<tr>
<td>NOV 87</td>
<td>0.56</td>
<td>2.33</td>
<td>6.11</td>
<td>3.30</td>
</tr>
<tr>
<td>DEC 87</td>
<td>0.74</td>
<td>3.01</td>
<td>8.16</td>
<td>3.70</td>
</tr>
<tr>
<td>JAN 88</td>
<td>0.58</td>
<td>2.38</td>
<td>6.72</td>
<td>3.60</td>
</tr>
<tr>
<td>FEB 88</td>
<td>0.70</td>
<td>2.65</td>
<td>7.77</td>
<td>3.20</td>
</tr>
<tr>
<td>MAR 88</td>
<td>0.91</td>
<td>2.48</td>
<td>4.69</td>
<td>4.30</td>
</tr>
<tr>
<td>APR 88</td>
<td>No Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 88</td>
<td>0.73</td>
<td>1.21</td>
<td>2.67</td>
<td>4.00</td>
</tr>
<tr>
<td>JUN 88</td>
<td>0.57</td>
<td>1.61</td>
<td>5.75</td>
<td>3.20</td>
</tr>
<tr>
<td>JUL 88</td>
<td>0.64</td>
<td>1.33</td>
<td>2.31</td>
<td>3.20</td>
</tr>
<tr>
<td>AUG 88</td>
<td>0.54</td>
<td>1.34</td>
<td>4.30</td>
<td>2.60</td>
</tr>
</tbody>
</table>

Table 8: Buoy 44011, Wave Height and Period Monthly Summaries

<table>
<thead>
<tr>
<th>DATE</th>
<th>H_s</th>
<th>T_m</th>
<th>T</th>
<th>REC-ORDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>YYYM</td>
<td>MIN</td>
<td>MEAN</td>
<td>MAX</td>
<td>MIN</td>
</tr>
<tr>
<td>SPRING 87</td>
<td>0.69</td>
<td>1.45</td>
<td>3.95</td>
<td>4.20</td>
</tr>
<tr>
<td>SUMMER 87</td>
<td>0.50</td>
<td>1.20</td>
<td>3.07</td>
<td>2.90</td>
</tr>
<tr>
<td>AUTUMN 87</td>
<td>0.55</td>
<td>1.87</td>
<td>6.24</td>
<td>3.20</td>
</tr>
<tr>
<td>WINTER 88</td>
<td>0.58</td>
<td>2.63</td>
<td>8.16</td>
<td>3.20</td>
</tr>
<tr>
<td>SPRING 88</td>
<td>0.73</td>
<td>1.59</td>
<td>4.69</td>
<td>4.00</td>
</tr>
<tr>
<td>SUMMER 88</td>
<td>0.54</td>
<td>1.42</td>
<td>5.75</td>
<td>2.60</td>
</tr>
</tbody>
</table>

Table 9: Buoy 44011, Wave Height and Period Seasonal Summaries
C Wind Speed and Direction Monthly and Seasonal Summaries

Speeds in meters per second.
Directions in degrees from true north.

<table>
<thead>
<tr>
<th>DATE YYMM</th>
<th>WIND SPEED MEAN DIRECTION RECORDS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
</tr>
<tr>
<td>DATE YYMM</td>
<td>MIN</td>
</tr>
<tr>
<td>MAY 87</td>
<td>0.46</td>
</tr>
<tr>
<td>JUN 87</td>
<td>0.46</td>
</tr>
<tr>
<td>JUL 87</td>
<td>0.46</td>
</tr>
<tr>
<td>AUG 87</td>
<td>0.46</td>
</tr>
<tr>
<td>SEP 87</td>
<td>0.46</td>
</tr>
<tr>
<td>OCT 87</td>
<td>0.46</td>
</tr>
<tr>
<td>NOV 87</td>
<td>0.46</td>
</tr>
<tr>
<td>DEC 87</td>
<td>0.46</td>
</tr>
<tr>
<td>JAN 88</td>
<td>0.46</td>
</tr>
<tr>
<td>FEB 88</td>
<td>0.46</td>
</tr>
<tr>
<td>MAR 88</td>
<td>0.46</td>
</tr>
<tr>
<td>APR 88</td>
<td>0.46</td>
</tr>
<tr>
<td>MAY 88</td>
<td>0.46</td>
</tr>
<tr>
<td>JUN 88</td>
<td>0.46</td>
</tr>
<tr>
<td>JUL 88</td>
<td>0.19</td>
</tr>
<tr>
<td>AUG 88</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Table 10: Buzzards Bay Tower, Wind Speed and Direction Monthly Summaries

<table>
<thead>
<tr>
<th>DATE YYMM</th>
<th>WIND SPEED MEAN DIRECTION RECORDS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
</tr>
<tr>
<td>DATE YYMM</td>
<td>MIN</td>
</tr>
<tr>
<td>SPRING 87</td>
<td>0.46</td>
</tr>
<tr>
<td>SUMMER 87</td>
<td>0.46</td>
</tr>
<tr>
<td>AUTUMN 87</td>
<td>0.46</td>
</tr>
<tr>
<td>WINTER 88</td>
<td>0.46</td>
</tr>
<tr>
<td>SPRING 88</td>
<td>0.46</td>
</tr>
<tr>
<td>SUMMER 88</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Table 11: Buzzards Bay Tower, Wind Speed and Direction Seasonal Summaries
<table>
<thead>
<tr>
<th>DATE</th>
<th>WIND SPEED</th>
<th>MEAN DIRECTION</th>
<th>RECORDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>YYMM</td>
<td>MIN</td>
<td>MEAN</td>
<td>MAX</td>
</tr>
<tr>
<td>MAY 87</td>
<td>0.00</td>
<td>6.55</td>
<td>12.80</td>
</tr>
<tr>
<td>JUN 87</td>
<td>0.00</td>
<td>5.92</td>
<td>12.63</td>
</tr>
<tr>
<td>JUL 87</td>
<td>0.00</td>
<td>5.43</td>
<td>10.25</td>
</tr>
<tr>
<td>AUG 87</td>
<td>0.00</td>
<td>4.58</td>
<td>10.27</td>
</tr>
<tr>
<td>SEP 87</td>
<td>0.00</td>
<td>4.99</td>
<td>11.47</td>
</tr>
<tr>
<td>OCT 87</td>
<td>0.07</td>
<td>6.66</td>
<td>15.61</td>
</tr>
<tr>
<td>NOV 87</td>
<td>2.99</td>
<td>2.99</td>
<td>2.99</td>
</tr>
<tr>
<td>DEC 87</td>
<td>0.77</td>
<td>9.50</td>
<td>21.33</td>
</tr>
<tr>
<td>JAN 88</td>
<td>0.07</td>
<td>8.19</td>
<td>16.96</td>
</tr>
<tr>
<td>FEB 88</td>
<td>1.10</td>
<td>7.70</td>
<td>15.23</td>
</tr>
<tr>
<td>MAR 88</td>
<td>0.00</td>
<td>7.69</td>
<td>16.97</td>
</tr>
<tr>
<td>APR 88</td>
<td>0.00</td>
<td>8.02</td>
<td>14.99</td>
</tr>
<tr>
<td>MAY 88</td>
<td>0.00</td>
<td>6.54</td>
<td>16.50</td>
</tr>
<tr>
<td>JUN 88</td>
<td>0.00</td>
<td>6.41</td>
<td>15.99</td>
</tr>
<tr>
<td>JUL 88</td>
<td>2.19</td>
<td>5.04</td>
<td>9.10</td>
</tr>
<tr>
<td>AUG 88</td>
<td>0.64</td>
<td>6.31</td>
<td>15.23</td>
</tr>
</tbody>
</table>

Table 12: Buoy 44004, Wind Speed and Direction Monthly Summaries

<table>
<thead>
<tr>
<th>DATE</th>
<th>WIND SPEED</th>
<th>MEAN DIRECTION</th>
<th>RECORDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>YYMM</td>
<td>MIN</td>
<td>MEAN</td>
<td>MAX</td>
</tr>
<tr>
<td>SPRING 87</td>
<td>0.00</td>
<td>6.55</td>
<td>12.80</td>
</tr>
<tr>
<td>SUMMER 87</td>
<td>0.00</td>
<td>5.42</td>
<td>12.63</td>
</tr>
<tr>
<td>AUTUMN 87</td>
<td>0.00</td>
<td>5.84</td>
<td>15.61</td>
</tr>
<tr>
<td>WINTER 88</td>
<td>0.07</td>
<td>8.37</td>
<td>21.33</td>
</tr>
<tr>
<td>SPRING 88</td>
<td>0.00</td>
<td>7.53</td>
<td>16.97</td>
</tr>
<tr>
<td>SUMMER 88</td>
<td>0.00</td>
<td>6.23</td>
<td>15.99</td>
</tr>
</tbody>
</table>

Table 13: Buoy 44004, Wind Speed and Direction Seasonal Summaries
<table>
<thead>
<tr>
<th>DATE</th>
<th>WIND SPEED</th>
<th>MEAN DIRECTION</th>
<th>RECORDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>YYMM</td>
<td>MIN MEAN MAX</td>
<td>(WEIGHTED)</td>
<td>(UNWEIGHTED)</td>
</tr>
<tr>
<td>MAY 87</td>
<td>0.00 5.57 14.51</td>
<td>044.8</td>
<td>036.4</td>
</tr>
<tr>
<td>JUN 87</td>
<td>0.97 5.08 10.67</td>
<td>043.3</td>
<td>042.2</td>
</tr>
<tr>
<td>JUL 87</td>
<td>0.97 3.62 9.70</td>
<td>035.0</td>
<td>351.7</td>
</tr>
<tr>
<td>AUG 87</td>
<td>0.97 4.19 10.67</td>
<td>100.0</td>
<td>075.8</td>
</tr>
<tr>
<td>SEP 87</td>
<td>0.97 5.08 13.55</td>
<td>316.0</td>
<td>346.6</td>
</tr>
<tr>
<td>OCT 87</td>
<td>0.39 7.40 17.39</td>
<td>057.1</td>
<td>046.2</td>
</tr>
<tr>
<td>NOV 87</td>
<td>0.29 8.31 25.67</td>
<td>110.2</td>
<td>094.9</td>
</tr>
<tr>
<td>DEC 87</td>
<td>0.29 9.03 22.63</td>
<td>125.5</td>
<td>119.5</td>
</tr>
<tr>
<td>JAN 88</td>
<td>0.49 7.91 20.15</td>
<td>096.4</td>
<td>100.2</td>
</tr>
<tr>
<td>FEB 88</td>
<td>0.19 8.35 18.82</td>
<td>083.9</td>
<td>104.5</td>
</tr>
<tr>
<td>MAR 88</td>
<td>0.29 7.57 16.52</td>
<td>096.8</td>
<td>090.8</td>
</tr>
<tr>
<td>APR 88</td>
<td>0.29 7.78 16.72</td>
<td>152.3</td>
<td>150.4</td>
</tr>
<tr>
<td>MAY 88</td>
<td>0.39 5.78 15.09</td>
<td>291.8</td>
<td>315.2</td>
</tr>
<tr>
<td>JUN 88</td>
<td>0.19 5.62 13.65</td>
<td>057.8</td>
<td>057.9</td>
</tr>
<tr>
<td>JUL 88</td>
<td>0.10 4.99 10.48</td>
<td>024.1</td>
<td>023.6</td>
</tr>
<tr>
<td>AUG 88</td>
<td>0.10 5.16 14.32</td>
<td>034.2</td>
<td>035.1</td>
</tr>
</tbody>
</table>

Table 14: Buoy 44008, Wind Speed and Direction Monthly Summaries

<table>
<thead>
<tr>
<th>DATE</th>
<th>WIND SPEED</th>
<th>MEAN DIRECTION</th>
<th>RECORDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>YYMM</td>
<td>MIN MEAN MAX</td>
<td>(WEIGHTED)</td>
<td>(UNWEIGHTED)</td>
</tr>
<tr>
<td>SPRING 87</td>
<td>0.00 5.57 14.51</td>
<td>044.8</td>
<td>036.4</td>
</tr>
<tr>
<td>SUMMER 87</td>
<td>0.97 4.30 10.67</td>
<td>045.4</td>
<td>041.7</td>
</tr>
<tr>
<td>AUTUMN 87</td>
<td>0.29 6.84 25.67</td>
<td>088.8</td>
<td>053.4</td>
</tr>
<tr>
<td>WINTER 88</td>
<td>0.19 8.41 22.63</td>
<td>108.0</td>
<td>109.6</td>
</tr>
<tr>
<td>SPRING 88</td>
<td>0.29 7.04 16.72</td>
<td>114.5</td>
<td>087.9</td>
</tr>
<tr>
<td>SUMMER 88</td>
<td>0.10 5.25 14.32</td>
<td>034.7</td>
<td>033.9</td>
</tr>
</tbody>
</table>

Table 15: Buoy 44008, Wind Speed and Direction Seasonal Summaries
Table 16: Buoy 44011, Wind Speed and Direction Monthly Summaries

<table>
<thead>
<tr>
<th>DATE YYMM</th>
<th>WIND SPEED MIN MEAN MAX</th>
<th>MEAN DIRECTION WEIGHTED</th>
<th>MEAN DIRECTION UNWEIGHTED</th>
<th>RECORDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAY 87</td>
<td>0.00 4.78 12.21</td>
<td>318.3</td>
<td>318.7</td>
<td>744</td>
</tr>
<tr>
<td>JUN 87</td>
<td>0.00 5.01 9.80</td>
<td>036.2</td>
<td>040.9</td>
<td>684</td>
</tr>
<tr>
<td>JUL 87</td>
<td>0.00 3.45 8.99</td>
<td>212.3</td>
<td>231.3</td>
<td>692</td>
</tr>
<tr>
<td>AUG 87</td>
<td>0.00 3.96 10.89</td>
<td>096.9</td>
<td>094.6</td>
<td>744</td>
</tr>
<tr>
<td>SEP 87</td>
<td>0.00 4.76 11.09</td>
<td>065.3</td>
<td>052.9</td>
<td>681</td>
</tr>
<tr>
<td>OCT 87</td>
<td>0.00 5.58 14.89</td>
<td>131.0</td>
<td>122.6</td>
<td>714</td>
</tr>
<tr>
<td>NOV 87</td>
<td>0.00 7.20 16.61</td>
<td>098.2</td>
<td>090.8</td>
<td>718</td>
</tr>
<tr>
<td>DEC 87</td>
<td>0.00 8.72 21.27</td>
<td>121.8</td>
<td>118.6</td>
<td>439</td>
</tr>
<tr>
<td>JAN 88</td>
<td>0.00 6.82 17.16</td>
<td>092.6</td>
<td>092.8</td>
<td>743</td>
</tr>
<tr>
<td>FEB 88</td>
<td>0.00 7.86 16.58</td>
<td>088.1</td>
<td>093.4</td>
<td>578</td>
</tr>
<tr>
<td>MAR 88</td>
<td>0.10 7.69 13.27</td>
<td>113.9</td>
<td>109.5</td>
<td>134</td>
</tr>
<tr>
<td>APR 88</td>
<td></td>
<td>No Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAY 88</td>
<td>0.00 3.65 9.56</td>
<td>035.9</td>
<td>037.9</td>
<td>264</td>
</tr>
<tr>
<td>JUN 88</td>
<td>0.00 4.94 17.83</td>
<td>066.3</td>
<td>059.9</td>
<td>718</td>
</tr>
<tr>
<td>JUL 88</td>
<td>0.00 4.28 10.96</td>
<td>035.4</td>
<td>035.3</td>
<td>741</td>
</tr>
<tr>
<td>AUG 88</td>
<td>0.0 4.48 11.09</td>
<td>047.6</td>
<td>047.8</td>
<td>740</td>
</tr>
</tbody>
</table>

Table 17: Buoy 44011, Wind Speed and Direction Seasonal Summaries

<table>
<thead>
<tr>
<th>DATE YYMM</th>
<th>WIND SPEED MIN MEAN MAX (WEIGHTED)</th>
<th>MEAN DIRECTION UNWEIGHTED</th>
<th>RECORDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPRING 87</td>
<td>0.00 4.78 12.21</td>
<td>318.3</td>
<td>318.7</td>
</tr>
<tr>
<td>SUMMER 87</td>
<td>0.00 4.13 10.89</td>
<td>057.9</td>
<td>065.0</td>
</tr>
<tr>
<td>AUTUMN 87</td>
<td>0.00 5.86 16.61</td>
<td>098.4</td>
<td>080.1</td>
</tr>
<tr>
<td>WINTER 88</td>
<td>0.00 7.64 21.27</td>
<td>102.8</td>
<td>102.8</td>
</tr>
<tr>
<td>SPRING 88</td>
<td>0.00 5.01 13.27</td>
<td>076.9</td>
<td>060.0</td>
</tr>
<tr>
<td>SUMMER 88</td>
<td>0.00 4.56 17.83</td>
<td>046.6</td>
<td>045.1</td>
</tr>
</tbody>
</table>

178
D Maximum Expected Wave Heights for Five and Ten Year Return Periods

Heights are in meters.

<table>
<thead>
<tr>
<th>MONTH</th>
<th>MEAN HS</th>
<th>FIVE YEAR MAX</th>
<th>TEN YEAR MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAN</td>
<td>1.59</td>
<td>6.09</td>
<td>6.50</td>
</tr>
<tr>
<td>FEB</td>
<td>1.31</td>
<td>5.00</td>
<td>5.33</td>
</tr>
<tr>
<td>MAR</td>
<td>1.06</td>
<td>4.07</td>
<td>4.35</td>
</tr>
<tr>
<td>APR</td>
<td>1.13</td>
<td>4.31</td>
<td>4.60</td>
</tr>
<tr>
<td>MAY</td>
<td>0.93</td>
<td>3.57</td>
<td>3.81</td>
</tr>
<tr>
<td>JUN</td>
<td>1.02</td>
<td>3.91</td>
<td>4.18</td>
</tr>
<tr>
<td>JUL</td>
<td>0.90</td>
<td>3.44</td>
<td>3.67</td>
</tr>
<tr>
<td>AUG</td>
<td>0.92</td>
<td>3.51</td>
<td>3.75</td>
</tr>
<tr>
<td>SEP</td>
<td>0.80</td>
<td>3.06</td>
<td>3.27</td>
</tr>
<tr>
<td>OCT</td>
<td>1.15</td>
<td>4.40</td>
<td>4.69</td>
</tr>
<tr>
<td>NOV</td>
<td>1.31</td>
<td>5.00</td>
<td>5.34</td>
</tr>
<tr>
<td>DEC</td>
<td>1.37</td>
<td>5.25</td>
<td>5.60</td>
</tr>
</tbody>
</table>

Table 18: Martha’s Vineyard Buoy, Maximum Expected Wave Heights

<table>
<thead>
<tr>
<th>MONTH</th>
<th>MEAN HS</th>
<th>FIVE YEAR MAX</th>
<th>TEN YEAR MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAN</td>
<td>2.42</td>
<td>9.30</td>
<td>9.92</td>
</tr>
<tr>
<td>FEB</td>
<td>2.38</td>
<td>9.16</td>
<td>9.78</td>
</tr>
<tr>
<td>MAR</td>
<td>2.16</td>
<td>8.33</td>
<td>8.89</td>
</tr>
<tr>
<td>APR</td>
<td>2.26</td>
<td>8.71</td>
<td>9.29</td>
</tr>
<tr>
<td>MAY</td>
<td>1.57</td>
<td>6.05</td>
<td>6.46</td>
</tr>
<tr>
<td>JUN</td>
<td>1.43</td>
<td>5.52</td>
<td>5.89</td>
</tr>
<tr>
<td>JUL</td>
<td>1.28</td>
<td>4.91</td>
<td>5.24</td>
</tr>
<tr>
<td>AUG</td>
<td>1.32</td>
<td>5.06</td>
<td>5.41</td>
</tr>
<tr>
<td>SEP</td>
<td>1.31</td>
<td>5.06</td>
<td>5.40</td>
</tr>
<tr>
<td>OCT</td>
<td>1.95</td>
<td>7.51</td>
<td>8.02</td>
</tr>
<tr>
<td>NOV</td>
<td>2.14</td>
<td>8.23</td>
<td>8.78</td>
</tr>
<tr>
<td>DEC</td>
<td>2.67</td>
<td>10.29</td>
<td>10.98</td>
</tr>
</tbody>
</table>

Table 19: Buoy 44004, Maximum Expected Wave Heights
<table>
<thead>
<tr>
<th>MONTH</th>
<th>MEAN HS</th>
<th>FIVE YEAR MAX</th>
<th>TEN YEAR MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAN</td>
<td>2.38</td>
<td>9.77</td>
<td>10.50</td>
</tr>
<tr>
<td>FEB</td>
<td>2.65</td>
<td>10.86</td>
<td>11.67</td>
</tr>
<tr>
<td>MAR</td>
<td>2.48</td>
<td>10.17</td>
<td>10.93</td>
</tr>
<tr>
<td>APR</td>
<td>No Data</td>
<td>No Data</td>
<td>No Data</td>
</tr>
<tr>
<td>MAY</td>
<td>1.38</td>
<td>5.67</td>
<td>6.10</td>
</tr>
<tr>
<td>JUN</td>
<td>1.51</td>
<td>6.20</td>
<td>6.66</td>
</tr>
<tr>
<td>JUL</td>
<td>1.20</td>
<td>4.91</td>
<td>5.28</td>
</tr>
<tr>
<td>AUG</td>
<td>1.23</td>
<td>5.05</td>
<td>5.43</td>
</tr>
<tr>
<td>SEP</td>
<td>1.36</td>
<td>5.56</td>
<td>5.98</td>
</tr>
<tr>
<td>OCT</td>
<td>1.89</td>
<td>7.76</td>
<td>8.33</td>
</tr>
<tr>
<td>NOV</td>
<td>2.33</td>
<td>9.55</td>
<td>10.26</td>
</tr>
<tr>
<td>DEC</td>
<td>3.01</td>
<td>12.33</td>
<td>13.25</td>
</tr>
</tbody>
</table>

Table 21: Buoy 44011, Maximum Expected Wave Heights
Attn: Stella Sanchez-Wade
Documents Section
Scripps Institution of Oceanography
Library, Mail Code C-075C
La Jolla, CA 92039

Hancock Library of Biology & Oceanography
Alan Hancock Laboratory
University of Southern California
University Park
Los Angeles, CA 90089-0371

Gifts & Exchanges
Library
Bedford Institute of Oceanography
P.O. Box 1006
Dartmouth, NS, B2Y 4A2, CANADA

Office of the International Ice Patrol
c/o Coast Guard R & D Center
Avery Point
Groton, CT 06340

NOAA/EDIS Miami Library Center
4301 Rickenbacker Causeway
Miami, FL 33149

Library
Skidaway Institute of Oceanography
P.O. Box 13687
Savannah, GA 31416

Institute of Geophysics
University of Hawaii
Library Room 252
2525 Correa Road
Honolulu, HI 96822

Marine Resources Information Center
Building E38-320
MIT
Cambridge, MA 02139

Library
Lamont-Doherty Geological Observatory
Columbia University
Palisades, NY 10964

Library
Serials Department
Oregon State University
Corvallis, OR 97331

Pell Marine Science Library
University of Rhode Island
Narragansett Bay Campus
Narragansett, RI 02882

Working Collection
Texas A&M University
Dept. of Oceanography
College Station, TX 77843

Library
Virginia Institute of Marine Science
Gloucester Point, VA 23062

Fisheries-Oceanography Library
151 Oceanography Teaching Bldg.
University of Washington
Seattle, WA 98195

Library
R.S.M.A.S.
University of Miami
4600 Rickenbacker Causeway
Miami, FL 33149

Maury Oceanographic Library
Naval Oceanographic Office
Stennis Space Center
NSTL, MS 39522-5001

Marine Sciences Collection
Mayaguez Campus Library
University of Puerto Rico
Mayagues, Puerto Rico 00708

Library
Institute of Oceanographic Sciences
Deacon Laboratory
Wormley, Godalming
Surrey GU8 SUB
UNITED KINGDOM

The Librarian
CSIRO Marine Laboratories
G.P.O. Box 1538
Hobart, Tasmania
AUSTRALIA 7001

Library
Proudman Oceanographic Laboratory
Bidston Observatory
Birkenhead
Merseyside L43 7 RA
UNITED KINGDOM
Wind and Wave Climatology on the New England Shelf
May 1987 – August 1988

Matthew M. Sharpe and Hans C. Graber

The Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

Funding was provided by the Office of Naval Research through contract Number N00014-86-K-0715 under the University Research Initiative Program

Wave power spectra from four waverider buoys on the New England Shelf and wind velocity records from three of those buoys and a fixed platform were analyzed. The data span the period from May 1987 through August 1988. Time series plots of significant wave height, mean wave period and modal (peak) period and distribution histograms of significant wave height, mean frequency and modal frequency are presented for the two buoys nearest to Martha's Vineyard. Time series plots of wind speed and vector velocity and distribution histograms of speed and direction are plotted for one buoy and the platform. For all stations, monthly and seasonal mean and extreme values of significant wave height, mean and modal wave periods, wind speed and mean weighted and unweighted values of wind direction are provided in tabular form. Five and ten year extreme wave height predictions are also calculated.

Approved for publication; distribution unlimited.