A Viologen/Ruthenium Oxide-Based Microelectrochemical Diode with pH-Dependent...

Prepared for publication in the Journal of the American Chemical Society
ABSTRACT

A procedure for selectively derivatizing two adjacent (-1.4 μm apart) microelectrodes (-50 μm long x 2.5 μm wide x ~0.1 μm thick) with RuOx- and the redox polymer derived from hydrolysis of N,N'-bis[p-(trimethoxysilyl)benzyl]-4,4'-bipyridinium dichloride, (BPQ2+)\textsubscript{n}, to yield a physical RuOx-/(BPQ2+)\textsubscript{n} junction is reported. Such a junction functions as a pH-dependent diode by virtue of the redox properties of the materials employed. A diode-like current-voltage curve obtains, because charge transport across the RuOx-/(BPQ2+)\textsubscript{n} junction is effectively unidirectional: the oxidized RuOx- can oxidize the reduced viologen, but the reduced RuOx- cannot reduce the oxidized viologen. The pH dependence arises from the fact that RuOx- has pH-dependent electrochemistry, \(E^0\) varies ~71 mV/pH unit from ~0.42 V vs. SCE at pH = 2 to ~0.0 V vs. SCE at pH = 8, while (BPQ2+)\textsubscript{n} is a conventional redox polymer with a redox potential \(E^0 = -0.5\) V vs. SCE) independent of pH. These data are in accord with the pH dependence of the current-voltage curve for the RuOx-/(BPQ2+)\textsubscript{n}-based diode. The magnitude of the diode current at forward bias is determined to be limited by the charge transport properties of the (BPQ2+)\textsubscript{n}. The current passed through the RuOx-/(BPQ2+)\textsubscript{n} junction at a fixed applied potential can be modulated repetitively by changing the pH of a flowing stream between pH 4.5 and 8.5.
A Viologen/Ruthenium Oxide-Based Microelectrochemical Diode
with pH-Dependent Current-Voltage Characteristics

Martin C. Schlohr and Mark S. Wrighton

Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

* Address correspondence to this author.
A Viologen/Ruthenium Oxide-Based Microelectrochemical Diode
with pH-Dependent Current-Voltage Characteristics
by
Martin O. Schloh and Mark S. Wrighton
Prepared for Publication
in
Journal of the American Chemical Society
Massachusetts Institute of Technology
Department of Chemistry
Cambridge, MA 02139

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
ABSTRACT

A procedure for selectively derivatizing two adjacent (~1.4 μm apart) microelectrodes (~50 μm long x 2.5 μm wide x ~0.1 μm thick) with RuO\textsubscript{x} and the redox polymer derived from hydrolysis of N,N'-bis(p-(trimethoxysilyl)benzyl)-4,4'-bipyridinium dichloride, (BPQ2+)\textsubscript{n}, to yield a physical RuO\textsubscript{x}/(BPQ2+)\textsubscript{n} junction is reported. Such a junction functions as a pH-dependent diode by virtue of the redox properties of the materials employed. A diode-like current-voltage curve obtains, because charge transport across the RuO\textsubscript{x}/(BPQ2+)\textsubscript{n} junction is effectively unidirectional: the oxidized RuO\textsubscript{x} can oxidize the reduced viologen, but the reduced RuO\textsubscript{x} cannot reduce the oxidized viologen. The pH dependence arises from the fact that RuO\textsubscript{x} has pH-dependent electrochemistry, E0' varies ~71 mV/pH unit from ~+0.42 V vs. SCE at pH = 2 to ~0.0 V vs. SCE at pH = 8, while (BPQ2+)\textsubscript{n} is a conventional redox polymer with a redox potential (E0' = -0.5 V vs. SCE) independent of pH. These data are in accord with the pH dependence of the current-voltage curve for the RuO\textsubscript{x}/(BPQ2+)\textsubscript{n}-based diode. The magnitude of the diode current at forward bias is determined to be limited by the charge transport properties of the (BPQ2+)\textsubscript{n}. The current passed through the RuO\textsubscript{x}/(BPQ2+)\textsubscript{n} junction at a fixed applied potential can be modulated repetitively by changing the pH of a flowing stream between pH 4.5 and 8.5.
We wish to report preparation, characterization, and pH response of a microelectrochemical diode based on the selective functionalization of closely spaced (~1.4 μm) Au or Pt microelectrodes (each ~2.5 μm wide, 0.1 μm thick, and ~50 μm long) with RuO\textsubscript{x} and a viologen polymer as illustrated in Scheme I. In Scheme I RuO\textsubscript{x} is an electro-active, electrodeposited oxide exhibiting a pH-dependent redox potential, and (BPQ2+)\textsubscript{n} is a redox active polymer derived from hydrolysis of I having a redox potential independent of pH.

Electrochemical systems of the type shown in Scheme I have previously been shown to behave as diodes in the sense that steady-state current passes in only one direction upon application of a potential across the two electrodes, and a preliminary account of our work on the RuO\textsubscript{x}/(BPQ2+)\textsubscript{n} redox systems has recently appeared. The underlying principles of rectification and redox conduction taking place in such diodes were first demonstrated on sandwich structures of the type metal/redox polymer 1/redox polymer 2/metal by Murray and co-workers. Meyer and his co-workers first published a sandwich bilayer assembly on one electrode having one pH-dependent component, and work from this laboratory has
Scheme I. Cross-sectional view of a pH-dependent microelectrochemical diode based on selective functionalization of microelectrodes with RuO$_x$ and (BPQ$^{2+}$)$_n$.
demonstrated a \((BPQ^{2+})_n/quinone\) bilayer on one electrode where the quinone is pH-dependent.\(^8\) The system in Scheme I represents the first complete pH-dependent microelectrochemical diode.

Heterojunctions with rectifying behavior in the dry, solid-state have also been made between conducting polymers such as reduced (n-type) and oxidized (p-type) polyacetylene,\(^9\) polyacetylene and polypyrrole,\(^10\) polypyrrole and polythiophene,\(^11\) and polypyrrole and polyaniline.\(^12\) However, in contrast to redox polymer junctions in electrolytes, the electrical properties of these dry conducting polymer heterojunctions are explained in terms similar to those for a classical n-p Si diode.\(^13\)

In general, a microelectrochemical device with a diode-like current-voltage characteristic can be made when (1) the only current path between one electrode to the other is via the redox materials connecting them and (2) the formal potentials, \(E^0'\), of the two redox materials differ sufficiently such that the redox reaction at the junction of the two redox materials occurs at a fast rate in one direction (downhill) and a slow rate in the other (uphill).

Equation (1) and Scheme II summarize the

\[
(BPQ^+)_n + Ru^{IV}O_x \rightleftharpoons (BPQ^{2+})_n + Ru^{III}O_x
\]

thermodynamically favored redox process occurring in the case of our RuO\(_x\)/(BPQ\(^{2-}\))\(_n\)-based diode. Taking \(E^0'(1)\) to be
Scheme II. Schematic representation of the redox reaction occurring at the viologen/ruthenium oxide interface when charge is passed between electrode 1 and 2. This is the RuO$_x$/(BPQ$^{2+}$)$_n$ interface redox chemistry under forward bias, Scheme I.
the formal potential of RuO$_x$ and $E^0'(2)$ the formal potential of (BPQ$^{2+}$)$_n$, the difference, $E^0'(1)-E^0'(2)$, represents the turn-on or threshold potential, V_T, for the microelectrochemical diode. The essential point is that the microelectrochemical device drawn in Scheme I is assembled by bringing a pH dependent redox material, RuO$_x$, in connection with a redox material, (BPQ$^{2+/+}$)$_n$, which has a pH-independent redox potential. The RuO$_x$ shows a 70 mV/pH positive shift in E^0' as pH is lowered, independent of the electrolyte. The result is a microelectrochemical diode with a pH-dependent value of V_T such that V_T is smaller at higher pH.
Experimental

Chemicals. $K_2RuC_4\cdot2H_2O$ (Alfa) was used as received and stored in a controlled atmosphere chamber under N_2.

N,N'-bis[4-(trimethoxysilyl)benzyl]-4,4'$'$-bipyridinium dichloride, I, was synthesized by refluxing a mixture of bipyridine (Aldrich) and p-(trimethoxysilyl)benzylchloride (FCR Research Chemicals, Inc.) in CH$_3$CN following a procedure in the literature.3

Electrochemical Equipment. All electrochemical experiments were carried out using a Pine Model RDE4 bipotentiostat and recorded on a Kipp & Zonen BD91 x-y-y' recorder. Where necessary potentials were controlled relative to an aqueous saturated calomel electrode (SCE). Electrochemical measurements were performed under Ar or N_2 at 25 °C.

Microelectrodes. The Pt or Au microelectrode arrays used in these experiments have been described previously14 and consist of eight, individually addressable, parallel microelectrodes ~50 μm long, ~2.5 μm wide, and 0.1 μm high with a spacing between the microelectrodes of 1.4 μm.

Insulation of the leads to the microelectrodes and encapsulation was afforded by either a manually applied layer of clear epoxy (Hydrosol Division, Dexter Corporation) or a thin Si$_3$N$_4$ film, 1.0 μm thick, deposited by Plasma Enhanced Chemical Vapor Deposition, PECVD, and etch-back to the microelectrodes through a mask with a CF$_4$ plasma etch.

The packaged microelectrode arrays were typically cleaned by a negative potential excursion in 0.1 M K_2HPO_4 to
evolve H₂. On some arrays the gap between microelectrodes was narrowed from -1.1 μm to -0.3 μm by electrodeposition of Pt or Pd from an aqueous 0.1 M K₂HPO₄ solution containing 2 mM K₂PtCl₄ or 2 mM K₂PdCl₄, respectively. For some of the generation/collection experiments shadow deposited microelectrode arrays were used with interelectrode spacing of ~0.1 μm.¹⁵

Derivatization of Microelectrodes. RuOₓ was deposited from a freshly prepared and deoxygenated 5 mM K₂RuO₄/1 M NaOH solution.¹,² The deep orange K₂RuO₄ solution undergoes slow decomposition and/or reduction yielding the formation of a dark green or black amorphous precipitate.¹⁶ A two-compartment cell was used with the counter electrode separated from the working and reference electrode. Selective deposition of RuOₓ on one microelectrode was achieved by cycling the electrode potential between -0.2 and -0.8 V vs. SCE at 100 mV/s while holding the potential of adjacent microelectrodes at +0.2 V vs. SCE.²

Following the RuOₓ deposition, (BPQ²⁺/ⁿ)ₓ can be deposited selectively on an adjacent microelectrode by scanning the electrode potential between 0.0 and -0.75 V vs. SCE at 50 mV/s in an aqueous solution of 0.5 mM o₁ I and 0.2 M KCl/0.1 M K₂HPO₄ while holding the adjacent microelectrode at 0.0 V vs. SCE.³,⁴ Deposition was allowed to continue until the desired coverage, ~2 x 10⁸ mol/cm², was achieved. Coverage was determined from the integration of the cyclic voltmetry wave for the (BPQ²⁺/ⁿ)ₓ
interconversion at a sweep rate slow enough (<50 mV/s) to fully access all redox active molecules.

pH Variation Experiment. A flowing stream set-up, constructed by joining two chromatography columns filled with buffer solutions of the desired pH, was used to reproducibly give pH variations in the electrolyte stream across the microelectrochemical assembly. The buffer solutions used were 1.0 M LiCl or NaCl/0.05 M HSO$_4^-$, acetate, Tris and phosphate for the appropriate pH and were deoxygenated prior to use.
Results and Discussion

a. Cyclic Voltammetry and pH Dependence of $E^{0'}$. The electrochemical deposition of RuO$_x$ is based on the literature procedure1 and can be accomplished on either Au or Pt microelectrodes.2 The pH dependent cyclic voltammetry of RuO$_x$ is depicted in Figure 1. In buffered solutions the wave is broad and has been attributed to the RuIV/RuIII couple.1 At more positive potentials, the oxidation process overlaps H_2O and Cl^{-} oxidation giving O_2 and Cl_2 evolution, respectively. Prolonged cycling to the potential of O_2 evolution results in gradual film dissolution. At potentials significantly negative of the RuIV/III wave, the RuO$_x$ film shows no faradaic activity, but H_2 evolution occurs. H_2 evolution does not affect the RuIV/III cyclic voltammogram.2

The redox potential, $E^{0'}$, for the RuIV/III redox couple at a specific pH is taken to be the average position of cathodic and anodic current peaks of a cyclic voltammogram. The data obtained for a series of cyclic voltammograms taken in buffered solutions of pH 2.2 to 9.5 are plotted in Figure 2. For comparison the redox potentials for the (BPQ$^{2+/+}$)$_n$ redox polymer couple at different pH's using the same buffers has been included. We find that the redox potential of RuO$_x$ shifts more positive by \sim70 mV/pH as the pH is decreased. This type of non-Nernstian pH dependence has also been reported in the voltammetry of other hydrous metal oxides.17,18 Our earlier work has established that the pH
dependence of the RuO$_x$ is insensitive to a wide range of electrolytes. The redox potential of the (BPQ$^{2+/+}$)$_n$ redox polymer on the other hand, remains constant (also independent of electrolyte) at about -0.5 V vs. SCE as the pH of the solution is changed between 2.2 and 8.5. The (BPQ$^{2+}$)$_n$ system also shows reduction to (BPQ0)$_n$, but the evolution of H$_2$ obscures the cyclic voltammetry wave, especially at low pH. Moreover, the (BPQ0)$_n$ state is much less durable than either the (BPQ$^{2+}$)$_n$ or (BPQ$^{+}$)$_n$ states.

b. Generation/Collection Experiments and Relative Charge Transport Properties of RuO$_x$ and (BPQ$^{2+}$)$_n$. Figure 3 illustrates typical data relating to steady-state charge transport properties of RuO$_x$ in aqueous electrolyte media. The data shown relate to an array of eight Pt microelectrodes all coated with RuO$_x$ such that the RuO$_x$ connects the individually addressable microelectrodes. The microelectrodes used are ~0.1 μm apart, to give larger steady-state currents. The actual experiment is analogous to a rotating ring disk electrode experiment with a collection efficiency of unity, since the charge carriers are immobilized. There is a steady-state current between so-called generator and collector microelectrodes when the generator electrodes are moved to a potential where RuO$_x$ is oxidized, 0.4 V vs. SCE, while the collector electrodes are held at a potential where RuO$_x$ is reduced, -0.4 V vs. SCE. Under such conditions, the largest possible concentration gradient of reduced and oxidized RuO$_x$ exists,
giving the maximum current which can pass through the material. For the data in Figure 3 every other electrode of an eight-electrode array uniformly coated with RuO$_x$ is used as a generator and the other microelectrodes are collectors. The use of this interdigitated arrangement increases the magnitude of the generator/collector current.

The fact that the generation/collection response for RuO$_x$-based microelectrodes is the same for all scan rates shown, indicates that oxidation and reduction of the RuO$_x$ is rapid on the timescale of the cyclic voltammetry. The rapid oxidation and reduction, of course, is related to the charge transport/ion diffusion in the RuO$_x$. The steady-state diffusion coefficient for charge transport, D$_{ct}$, in RuO$_x$ is proportional to the steady state generation/collection currents in Figure 3. From cyclic voltammetry it can be determined that about 200 nC of charge are involved in the interconversion represented by equation (2). However,

$$\text{Ru}^{III}O_x - n\text{e}^- \rightarrow \text{Ru}^{IV}O_x$$ \hspace{1cm} (2)

unlike conventional redox polymers it is impossible to give a value for D$_{ct}$ for RuO$_x$, because the concentration of redox centers is not known. The important point is that the magnitude of the maximum generation/collection current is large in comparison to that for the (BPQ$^{2+/+}$)$_n$ system measured in the same way (vide infra).

Data for generation/collection experiments for a
(BPQ\(^{2+}\))\(_n\)-coated microelectrode array are presented in Figure 4. The maximum steady-state current passes between generator and collector microelectrodes when the generator electrode potential is more negative than approximately -0.75 V vs. SCE, where (BPQ\(^{+}\))\(_n\) is reduced, while the collector electrode potential is held at 0.0 V vs. SCE, where (BPQ\(^{2-}\))\(_n\) is fully oxidized. These data correspond to an array coated with (BPQ\(^{2+}\))\(_n\) to the extent that ~200 nC of charge are involved in the interconversion represented by equation (3). In comparison to the data for RuO\(_x\)-coated microelectrodes, Figure 3, the rate of charge transport through (BPQ\(^{2+}\))\(_n\) is slower as shown by the smaller steady state currents. Slower charge/discharge of the viologen is also found since there is a scan rate dependent generation/collection response. Even at slow scan rates, ~4 mV/s, some of the generated reduced species, (BPQ\(^{+}\))\(_n\), are also collected by the generator on its return sweep. Thus, the expectation is that the overall current which can pass through a RuO\(_x\)/ (BPQ\(^{2+}\))\(_n\) junction will be limited by the rate of charge transport through the (BPQ\(^{2+}\))\(_n\) polymer, assuming the interfacial charge transport rate, equation (1) and Scheme II, is not limiting.

In characterizing the (BPQ\(^{2+}\))\(_n\)-coated microelectrodes moving the generator more negative than ~-0.8 V vs SCE, the
(BPQ\(^0\))\(_n\) state, becomes important, and larger
generator/collection currents are observed. The larger
currents are expected based on the superior charge transport
properties of the (BPQ\(^+/0\))\(_n\) couple compared to the
(BPQ\(^2+/+\))\(_n\) couple.\(^3\) Figure 5 shows data giving the relative
conductivity of the (BPQ\(^2+/+\))\(_n\) and (BPQ\(^+/0\))\(_n\) states. In the
experiment summarized in Figure 5 the relative conductivity
is given by the magnitude of the current, I\(_D\), passing
between two polymer-connected microelectrodes having a small
potential between them, V\(_D\), as a function of the
electrochemical potential of the polymer, V\(_G\). Scheme III
illustrates the electrochemical system used. Such a system
has been referred to as a microelectrochemical transistor
and has been used to characterize other redox polymers.\(^20\)
The I\(_D\)-V\(_G\) plot in Figure 5 is in accord with the earlier
measurements of the relative conductivity of (BPQ\(^2+/+\))\(_n\) and
(BPQ\(^+/0\))\(_n\) coated onto macroscopic electrodes.\(^3b\)
c. Characteristics of RuO\(_x\)/(BPQ\(^2+\))\(_n\)-based Diodes. Cyclic
voltammetry characterization of the modified electrodes of a
completed two-terminal microelectrochemical device is shown
in Figure 6. Importantly, electrode 1 shows response only
to the (BPQ\(^2+/+\))\(_n\) but no electrochemical response to RuO\(_x\). Elec
trode 2 at the same time shows response to RuO\(_x\) but no
response to (BPQ\(^2+/+\))\(_n\) on electrode 1. The data in Figure 6
thus establish the desired structure, but the data shown do
not establish that there is a connection between electrode 1
and 2 by a RuO\(_x\)/(BPQ\(^2+/+\))\(_n\) contact.
Scheme III. Microelectrochemical system to measure the relative conductivity of \((\text{BPQ}^{2+})_n\) redox polymer as a function of electrochemical potential, \(V_G\).
Data that prove electrode 1 and 2 to be connected by a \(\text{RuO}_x/(\text{BPQ}^{2+/+})_n \) contact are summarized in Figure 7. In essence, these data relate to generation/collection experiments like those for \(\text{RuO}_x \) or \((\text{BPQ}^{2+})_n \), Figures 3 and 4, respectively, but in Figure 7 the materials on the generator and collector are different. On the left-hand side of this Figure currents at electrode 1 and 2 are shown, as electrode 2 is held at a potential at which the ratio of \(\text{Ru}^{II}/\text{Ru}^{III} \) and \(\text{Ru}^{IV}/\text{Ru}^{III} \) is about one \((E_2 = +0.2 \text{ V vs. SCE in pH 6 buffer}) \) and electrode 1 is scanned from 0.0 V to -0.8 V vs. SCE. Thus, when the \((\text{BPQ}^{2+})_n \) on electrode 1 is reduced to \((\text{BPQ}^+)_n \) a current path between electrode 1 and 2 is possible according to equation (1). On the right-hand side of the figure the experiment is carried out such that electrode 1 is fixed at -0.6 V vs. SCE where the reduced state, \((\text{BPQ}^+)_n \), is significant and electrode 2 is scanned from -0.4 to +0.5 V vs. SCE. Again the currents observed at electrode 1 and 2 are consistent with the redox reaction, equation (1), occurring at the \(\text{RuO}_x/(\text{BPQ}^{2+/+})_n \) interface. The key point is that current between electrode 1 and 2 passes only when the viologen-based polymer is reduced and \(\text{RuO}_x \) is oxidized. These data prove the connection and show that rectification is expected in a two-terminal device. The relatively low signal to noise in Figure 7 compared to Figures 3 and 4 is due to the facts that only two microelectrodes are used and the spacing between them is ~1.5 μm, not the ~0.1 μm used for experiments summarized by Figures 3 and 4.
The steady-state two terminal current-voltage characteristic of a RuO\textsubscript{X}/(BPQ2+/+)\textsubscript{n}-based microelectrochemical device as a function of pH is recorded in Figure 8. These data illustrate that the device can actually pass more steady-state current upon application of potential in one direction than in the other. Current will pass only if the negative lead is connected to electrode 1, reducing the viologen-based polymer to its \((BPQ^+)\textsubscript{n}\) state, and the positive lead is connected to electrode 2, oxidizing RuO\textsubscript{X}. The electrical cycle is completed through oxidation of \((BPQ^+)\textsubscript{n}\) by RuIVO\textsubscript{X}, Scheme II. The value of \(V_T\) depends on the redox potential difference between the \((BPQ^{2+/+})\textsubscript{n}\) and RuO\textsubscript{X}. Since the redox potential of RuO\textsubscript{X} increases as the pH decreases, as depicted in Figure 1 and Figure 2, \(V_T\) of the microelectrochemical diode increases as pH decreases. The inset in Figure 8 is a magnification of the current-voltage characteristic in the region of \(V_T\). The shifts in \(V_T\) upon variation of pH correspond roughly to the shifts of \(E^0'\) for RuO\textsubscript{X} in Figure 2. For example, for pH 5.5 the difference between the redox potentials of RuO\textsubscript{X} and \((BPQ^{2+/+})\textsubscript{n}\) is about 650 mV which is reasonably close to the diode turn-on potential of about 600 mV.

The pH dependent junction between RuO\textsubscript{X} and \((BPQ^{2+/+})\textsubscript{n}\) can, in principle, be used as a pH sensor, because the current at a fixed applied potential depends on pH in the region of \(V_T\). In Figure 9, current, \(i\), passed through the diode junction held at a constant forward bias of 0.8 V is
shown as a function of time and pH. As the pH of the surrounding electrolyte solution is varied between pH 8.5 and pH 4.5 the current passed through the diode junction rises and falls. The magnitude and direction of current change is consistent with the data presented in Figure 8, which predicts that a diode at 0.8 V forward bias passes more current at a larger pH than at a smaller pH. The qualitative characteristics, \(V_T \) and the pH dependence of \(V_T \), of the RuO\(_x\)/(BPQ\(^2^+\))\(_n\)-based diode are in essential accord with expectation.

The magnitude of the current that passes upon forward bias should be discussed. Assuming the redox chemistry \(-\) the RuO\(_x\)/BPQ\(^2^+\))\(_n\) and redox material/electrode interfaces to be fast, the maximum current is governed by the charge transport properties of the redox materials. Since the (BPQ\(^2^+*/^0\))\(_n\) is the poorer conductor, the current should be limited by this material, not the RuO\(_x\). However, the current found should show a plateau at sufficiently forward bias, and obviously such is not observed, Figure 8. The lack of a plateau signals a role for the (BPQ\(^+*/^0\))\(_n\) state as the forward bias is increased and this diode characteristic is consistent with the higher conductivity of the (BPQ\(^+*/^0\))\(_n\) state compared to the (BPQ\(^2^+*/^+\))\(_n\) state, Figure 5. There is an inflection in the current-voltage curve, Figure 8, at a potential consistent with the lower conductivity of the (BPQ\(^2^+*/^+\))\(_n\) state. Even so, the diode current upon forward bias should plateau at sufficiently large bias. However,
the aqueous electrolyte limits the bias to no greater than ~1.2 V, owing to the decomposition potential of H$_2$O of 1.23 V. Indeed, even reverse bias approaching 1.2 V shows steady current corresponding to onset of the electrolysis of H$_2$O.

We have made the assumption that charge transport across the RuO$_x$/(BPQ$^+$)$_n$ interface is not rate determining, in rationalizing the diode current in Figure 8. This assumption has been verified by preparing the diode shown in Scheme IV. The key result involves comparison of the diode current with and without the hardwire connection between the inner two microelectrodes. With the hardwire connection charge transport across the RuIVO$_x$/(BPQ$^+$)$_n$ interface is not the only mechanism for charge transport. The direct contact of each material with the electrode insures an effective path for current flow in the diode. This scheme of contacts is the same as that used by Murray and co-workers to characterize redox bilayers. We find the same current-voltage properties for the diode with and without the hardwire connection. These results show that the charge transport rate across the RuIVO$_x$/(BPQ$^+$)$_n$ interface does not limit the diode current.
Scheme IV. RuO$_x$/(BPQ$^{2+/+}$)$_n$ microelectrochemical diode. Top: without hardwire connection; Bottom: with hardwire connection between the redox materials.
Conclusion

A procedure has been developed to selectively derivatize two adjacent microelectrodes with two different redox materials such that current between the two microelectrodes can only pass when the redox reaction at the RuO$_x$/(BPQ$^{2+/+}$)$_n$ interface is thermodynamically downhill. Since the redox potential of RuO$_x$ is a function of pH, the current-voltage characteristic of the (BPQ$^{2+/+}$)$_n$/RuO$_x$ interface is also a function of pH. In principle, the chemically sensitive diode may be useful as a two-terminal electrochemical sensor, because the value of V_T depends on pH in a manner consistent with the pH dependence of the redox potential of the RuO$_x$. Our results show the viability of rational design and preparation of chemically sensitive microelectrochemical systems based on charge transport properties, thermodynamics, and electrode modification procedures.

Acknowledgements

We thank the Office of Naval Research and the Defense Advanced Research Projects Agency for partial support of this research. MOS would like to thank the Electrochemical Society for a Energy Summer Fellowship Award during a portion of his graduate studies.
REFERENCES

2. Lyons, D. F.; Schloch, M. O.; Hickman, J. J.; Wrighton, M. S. Chemistry of Materials, submitted (preceding article in this issue).

Let. 1978, 33, 16.

FIGURE CAPTIONS

Figure 1. Cyclic voltammetry, 100 mV/s, of a RuO₆⁻-derivatized microelectrode in pH 3.5, 5.5, 7.5, and 8.5 aqueous solution; the buffers used were 1.0 M LiCl/0.05 M acetate (pH 3.5 and 5.5) and 1.0 M LiCl/0.05 M Tris buffer (pH 7.5 and 8.5).

Figure 2. Redox potentials, E⁰', for the RuO₆⁻ and the (BPQ²⁺/⁺)ₙ redox couple as a function of pH. The redox potentials were determined from cyclic voltammetry in 1.0 M NaCl or LiCl electrolyte (0.05 M buffer) in H₂O solvent.

Figure 3. Generation/collection cyclic voltammetry of an interdigitated array of close-gap (~0.1 μm) microelectrodes modified with RuO₆⁻ in pH 7.5 phosphate buffer as a function of scan rate. The potential of the collector electrodes is held at -0.4 V vs. SCE.

Figure 4. Generation/collection cyclic voltammetry of an interdigitated array of close-gap (~0.1 μm) microelectrodes modified with (BPQ²⁺)ₙ in 3.0 M NaCl electrolyte as a function of scan rate. The potential of the collector electrodes is held at 0.0 V vs. SCE.

Figure 5. I_D vs. V_G for an array of eight (BPQ²⁺)ₙ-coated microelectrodes.
Figure 6. Cyclic voltammetry of electrode 1 and 2 derivatized with (BPQ$^{2+/+}$)$_n$ and RuO$_x$ as drawn in Scheme I. Note that electrode 1 shows the wave at -0.5 V vs. SCE characteristic of the (BPQ$^{2+/+}$)$_n$ redox couple but no RuO$_x$ electrochemistry, while electrode 2 exhibits only a wave characteristic of RuO$_x$.

Figure 7. Data establishing that charge can pass through the (BPQ$^{2+/+}$)$_n$/RuO$_x$ interface. On the left hand side currents observed at electrode 1 and 2 are presented as electrode 2 is held at +0.2 V vs. SCE while electrode 1 is cycled from 0.0 to -0.8 V vs. SCE. The fact that there is current at electrode 2 is consistent with charge transfer through the (BPQ$^{2+/+}$)$_n$/RuO$_x$ interface. On the right hand side of the figure, current is monitored as electrode 1 is held at -0.6 V vs. SCE and the potential of electrode 2 is cycled from -0.4 to +0.5 V vs. SCE. Again, the observed current is consistent with charge transfer between electrode 1 and 2.

Figure 8. Two-terminal, steady-state current-voltage characteristic of the system drawn in Scheme I. The current-voltage curve shifts to more positive turn-on potentials as pH is decreased. The region of turn-on is expanded in the inset. The shift in turn-on potential with respect to pH change correlates well with the expected
70 mV/pH shift for the RuO$_x$ redox couple.

Figure 9. Current response of a RuO$_x$/(BPQ$^{2+/+}$)$_n$ diode junction over time as the electrolyte pH is changed between pH 8.5 and pH 4.5. The diode is held at 0.8 V forward bias.
Cyclic Voltammetry of RuO$_x$ in 1.0M LiCl and 0.05M Buffer Solutions

Potential, V vs. SCE

CURRENT

Anodic

Cathodic

100 mV/s

4 nA

pH 5.5

pH 3.5

pH 7.5

pH 8.5

Potential, V vs. SCE
E^0' vs. pH

$[\text{BPQ}^{2+/+}]_n$

RuO_x
Current vs. Generator Voltage for [BPQ$^{2+/-}$]$_n$ Modified Collector and Generator Electrodes as a Function of Scan Rate in 3.0 M NaCl

Potential, V vs. SCE
I_D vs. V_G at fixed V_D for a
$[BPQ^{2+/+/0}]_n$ - Based Transistor
3.0 M NaCl (1/9) CH$_3$CN/H$_2$O
$V_D = 100$ mV
scan rate = 1 mV/s
Cyclic Voltammetry of Adjacent Microelectrodes

1.0 M LiCl / 0.05 M pH 6 Buffer, 100 mV/s

1) P^+/[BPQ(2+)]_surf.

2) Pt/RuOx

Potential, V vs. SCE

Current

Cathodic

Anodic
Redox Processes Mediated at (BPQ$^{2+}$)$_n$/RuO$_x$ Interface

1.0 M LiCl / 0.05 M pH 6 Phosphate Buffer

10 mV/s

i_2 vs. E_1
$E_2 = +0.2 \text{ V vs. SCE}$

i_2 vs. E_2
$E_1 = -0.6 \text{ V vs. SCE}$

i_1 vs. E_1
$E_2 = +0.2 \text{ V vs. SCE}$

i_1 vs. E_2
$E_1 = -0.6 \text{ V vs. SCE}$
Steady-State Two Terminal i-V Characteristic of (BPQ$^{2+}$)$_n$/RuO$_x$
Interface as a Function of pH
pH-Dependent i vs. Time for a \((BPQ^{2+})_n/RuO_x\) Diode at Forward Bias, \(V = +800\text{mV}\)
TECHNICAL REPORT DISTRIBUTION LIST - GENERAL

Office of Naval Research (2) Dr. Robert Green, Director (1) Chemistry Division, Code 385
800 North Quincy Street Naval Weapons Center
Arlington, Virginia 22217-5000 China Lake, CA 93555-6001

Commanding Officer (1) Chief of Naval Research (1)
Naval Weapons Support Center Special Assistant for Marine
Dr. Bernard E. Douada Corps Matters
Crane, Indiana 47522-5050 Code 00MC
800 North Quincy Street
Arlington, VA 22217-5000

Dr. Richard W. Drisko Dr. Bernadette Eichinger (1)
Naval Civil Engineering Naval Ship Systems Engineering
Laboratory Station
Code L52 Code 053
Port Hueneme, CA 93043 Philadelphia Naval Base

David Taylor Research Center (1) Philadelphia, PA 19112
Dr. Eugene C. Fischer Dr. Sachio Yamamoto (1)
Annapolis, MD 21402-5067 Naval Ocean Systems Center
Code 52
San Diego, CA 92152-5000

Dr. James S. Murday Dr. Harold H. Singerman (1)
Chemistry Division, Code 6100 David Taylor Research Center
Naval Research Laboratory Code 283
Washington, D.C. 20375-5000 Annapolis, MD 21402-5067