Stability Regimes in a Helical Quadrupole Focusing Accelerator—Theory and Simulation

J. Krall, C. M. Tang, G. Joyce and P. Sprangle

Beam Physics Branch
Plasma Physics Division

May 4, 1990
ABSTRACT

The inclusion of helical quadrupole (stellarator) and axial guide fields in high current spiral line or recirculating accelerator configurations provides a high tolerance to energy mismatch and confines the beam against space charge forces. In such a configuration the electron beam can interact with the external fields and with electromagnetic waveguide modes such that the beam centroid can be i) orbit unstable independent of the waveguide modes, ii) three-wave unstable or iii) fully stable. The various stability conditions are presented in the limit of zero beam current. These stability conditions are found to be good predictors of particle simulation results, with minor departures being observed at high current. Linearly unstable modes, obtained via numerical solutions of the dispersion relation, were observed in each simulation. Nonlinear behavior, such as mode saturation in some regimes, was also observed.

SUBJECT TERMS

- High current
- Strong focusing
- Accelerator

FUNDING NUMBERS

- 47-0900-0-0 (JOF)
- ARPA Order #4395, A86

PERFORMING ORGANIZATION

- Naval Research Laboratory
 - Code 4790
 - Washington, DC 20375-5000

SPONSORING/MONITORING AGENCY

- DARPA
 - Arlington, VA 22209
- NSWC
 - Silver Spring, MD 20903-5000

DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.
CONTENTS

DISPERSION RELATION .. 1

STABILITY REGIMES .. 2
 i) Orbit Unstable Regime .. 2
 ii) Three-Wave Unstable Regimes .. 3
 iii) Three-Wave Stable Regime for \(K_0 < K_{\text{crit}, 2} \) .. 3
 iv) Three-Wave Stable Regime for \(K_0 > K_{\text{crit}, 3} \) ... 3

NUMERICAL RESULTS ... 4

DISCUSSION ... 6

CONCLUSIONS .. 7

ACKNOWLEDGMENTS ... 8

REFERENCES .. 9

DISTRIBUTION LIST ... 21
A number of recent high current spiral line or recirculating accelerator configurations utilize strong focusing fields. These fields, consisting of a helical quadrupole field (or stellarator field) and an axial guide field, increase considerably the energy mismatch tolerance of the device and provide confining forces against the beam space charge forces.1,2 Two such devices are the modified betatron accelerator3 and the spiral line induction accelerator (SLIA).4

The use of strong focusing fields has a potential difficulty in that they can lead to various types of beam instabilities.5-7 It has been shown that the electron beam centroid can be i) orbit unstable independent of electromagnetic waveguide modes, ii) three-wave unstable or iii) fully stable.7 Here we present the dispersion relation for the instability and analytic conditions for each of the stability regimes as derived in Ref. 7. Note that the stability conditions are valid only in the limit of zero beam current. Particle simulations in each regime will be presented and compared to both the analytic stability conditions and to numerical solutions of the dispersion relation.

DISPERSION RELATION

We consider an electron beam propagating in an external magnetic field configuration consisting of an axial guide field B_ω, and a helical quadrupole field (B_{qx}, B_{qy}),

\[
B_{qx} = -B_qk_q(x \sin k_qz - y \cos k_qz), \quad B_{qy} = B_qk_q(x \cos k_qz + y \sin k_qz),
\]

where B_qk_q is the quadrupole gradient and k_q is the wavenumber of the quadrupole field.

Here we quote the results of Ref. 7, where the wave equation is solved simultaneously with the beam dynamics equation to obtain a dispersion relation. In the analysis it was assumed that: 1) the electron beam propagates within a perfectly conducting cylindrical waveguide of radius r_g (induced image charges and currents were included), 2) the beam radius and beam centroid displacement are small in comparison to the waveguide radius and 3) the electron beam is monoenergetic with velocity v_ω and relativistic factor $\gamma_\omega = (1 - \beta_\omega^2)^{-1/2}$, where $\beta_\omega = v_\omega/c$.

The electromagnetic fields in this case were solved for in terms of right-hand circularly polarized (RHCP) and left-hand circularly polarized (LHCP) waveguide modes. It was

Manuscript approved March 7, 1990.
further assumed that the TE_{11} mode would have the largest growth rate, because it has an electric field that is peaked on axis. The resulting dispersion relation is

$$W_r W_t W_u W_s = k_b^2 \left[(k + k_q - \omega/v_o)^2 D_+ W_r + (k - \omega/v_o)^2 D_- W_t \right], \quad (2)$$

where $k_b^2 = 2(I_b/17)^2/\mu_{11}^2/(\gamma_0(\mu_{11}^2 r_g^2 - 1)J_1^2(\mu_{11} r_g))$, I_b is the beam current in kA, $\mu_{11} r_g$ is the smallest positive zero of Bessel function J_1, $k = k_+ = k_- - k_q$, k_\pm are the wavenumbers associated with the RHCP and LHCP waves, ω is the radian frequency, $W_r = \omega^2/c^2 - k^2 - \mu_{11}^2$ and $W_t = \omega^2/c^2 - (k + k_q)^2 - \mu_{11}^2$ are contributions from the RHCP and LHCP TE_{11} waveguide modes respectively, $W_s = K^2 - (d_1^2 + d_2^2)$ accounts for the two stable beam modes, $W_u = K^2 - (d_1^2 - d_2^2)$ admits the two potentially unstable beam modes, $d_1^2 = K_2^2 + K_1^2/2$, $d_2^2 = ((K_2^2 + K_1^2/2)^2 - (K_2^2 - K_1^2)^1/2$, $K_1 = k_o - k_q$, $K_2 = (K_o - k_q/2)k_q/2 - k_2^3$, $K_3 = K_q k_q$, $K_o = |e| B_0/\beta_0 \gamma o m_o c^2$ is the relativistic cyclotron wavenumber associated with the axial field, $K_q = |e| B_q/\beta_0 \gamma o m_o c^2$ is the relativistic cyclotron wavenumber associated with the helical quadrupole field, $k_s = (2(I_b/17)/(\beta_0^2 \gamma o r_g^2))^{1/2}$ and $D_\pm = K^2 \mp K_1 K - K_2^2$.

Equation (2) is mathematically identical to the dispersion relation in Ref. 6 with the vertical field set to zero.

STABILITY REGIMES

The dispersion relation, Eq. (2), contains i) a region of orbital instability, ii) two regions of three-wave instability and iii) two regions of stability. The stability conditions were obtained from the dispersion relation in the limit of zero beam current. They delineate stable and unstable regions of (k_q, K_o) space for given values of γ, r_g and $B_q k_q$.

i) **Orbit Unstable Regime**

The electron beam is both orbit and three-wave unstable when $(d_1^2 - d_2^2) \leq 0$, which gives the unstable values of K_o:

$$K_{crit,2} \equiv k_q/2 - 2K_q \leq K_o \leq K_{crit,3} \equiv k_q/2 + 2K_q. \quad (3)$$
ii) Three-Wave Unstable Regimes

Numerical solutions of the dispersion relation (2) indicate that the three-wave instability occurs when the RHCP waveguide mode [or the LHCP waveguide mode] intersects, in the \((\omega, k)\) plane, the appropriate beam mode given by \(W_u = 0\) and \((d_1^2 - d_2^2) > 0\). For \(K_o < K_{\text{crit},2}\), the three-wave interaction is unstable (Region I) when the RHCP waveguide mode intersects the beam line \(\omega/v_o = (k + k_q/2) + \sqrt{d_1^2 - d_2^2} \simeq k + k_q\) (for \(K_o \geq 0\)) or \(\simeq k + k_q - K_o\) (for \(0 < K_o < K_{\text{crit},2}\)). For \(K_o > K_{\text{crit},3}\), the three-wave interaction is unstable (Region II) when the RHCP waveguide mode intersects the beam line \(\omega/v_o = (k + k_q/2) - \sqrt{d_1^2 - d_2^2} \simeq k + K_o\). The two three-wave unstable regimes are those portions of \((k_q, K_o)\) parameter space that do not satisfy the stability conditions below. Note that while the three-wave instability is present in the orbit-unstable regime, the orbit instability dominates in that regime.

iii) Three-Wave Stable Regime for \(K_o < K_{\text{crit},2}\)

Stability is achieved when the waveguide cut-off frequency \(\mu_{11}c\) is sufficiently large that intersection with either of the beam lines, defined by \(W_u = 0\) cannot be achieved. For \(K_o < K_{\text{crit},2}\), the beam is stable if

\[
q\mu_{11} \geq k_q + 2\left(d_1^2 - d_2^2\right)^{1/2},
\]

where \(q = (4/(\gamma_0^2 - 2))^{1/2}\). For \(k_q < q\mu_{11}\), and defining \(\zeta = k_q^2(1 + 8K_q^2/f) - 2f\) and \(f = q\mu_{11}(k_q - q\mu_{11}/2)\), the electron beam is stable for the following situations:

a) for \(f > 0\) and \(\zeta > 0\), the stable range of \(K_o\) is given by

\[
K_{\text{crit},1} \equiv k_q/2 - \zeta^{1/2}/2 < K_o < K_{\text{crit},2},
\]

b) for \(f < 0\) and \(\zeta > 0\), the stable values of \(K_o\) are

\[
K_o < \text{smaller of } (K_{\text{crit},1}, K_{\text{crit},2}),
\]

c) for \(f < 0\) and \(\zeta < 0\), all values of \(K_o < K_{\text{crit},2}\) are stable.

iv) Three-Wave Stable Regime for \(K_o > K_{\text{crit},3}\)

The three-wave interaction is also stable when the RHCP waveguide mode does not intersect the beam line \(\omega/v_o = (k + k_q/2) - \sqrt{d_1^2 - d_2^2}\) for \(K_o > K_{\text{crit},3}\). This occurs when \(q\mu_{11} \geq k_q - 2\left(d_1^2 - d_2^2\right)^{1/2}\), for which there are two stable cases:
a) for \(k_q < q\mu_{11} \), the stable range of \(K_o \) is

\[
K_o > K_{\text{crit,3}},
\]

(6a)

b) for \(k_q > q\mu_{11} \), the stable range of \(K_o \) is

\[
K_o > K_{\text{crit,4}} = k_q/2 + \zeta^{1/2}/2.
\]

(6b)

In the limit of small quadrupole gradient, large \(\gamma_o \) and \(K_o > K_{\text{crit,3}} \), the stability condition\(^8\) is approximately \(K_o > k_q - \mu_{11}/\gamma_o \).

The various operating regimes are illustrated as functions of \(k_q \) and \(B_o \) in Fig. 1, for \(\gamma_o = 7 \), \(r_g = 3 \) cm and quadrupole gradient \(B_q k_q = 200 \) G/cm. Since the stability boundaries are obtained in the limit of zero beam current, the area of the two stable regions will shrink slightly as the current is increased.

It is clear from the analysis that the value of \(B_o > 0 \) required for stability increases with beam energy. To operate in the stable regime with a fixed value of \(B_o > 0 \), both the maximum allowable quadrupole gradient and the quadrupole wavenumber must decrease for increasing beam energy. Figure 2 is a plot of maximum quadrupole gradient versus \(\gamma_o \) for a fixed guide field \(B_o = 5 \) kG, \(r_g = 3 \) cm and two different values of quadrupole wavenumber: \(k_q = 0.1 \) cm\(^{-1} \) (—) and \(k_q = 0.05 \) cm\(^{-1} \)(- - -).

NUMERICAL RESULTS

For the present numerical study we use the ELBA\(^9\) code, a three-dimensional particle code which simulates a beam propagating within a cylindrical metallic pipe. The full set of Maxwell’s equations along with the full relativistic motion of the beam particles are included. The initial beam parameters, calculated by the STELMAT\(^{10}\) code, are matched to the field configuration to minimize initial oscillations. The ELBA code contains numerous beam diagnostics. These include an emittance diagnostic\(^{11}\) that was developed for beams with x-y coupling.

Growth rates were measured by analyzing the \(TE_{11} \) mode, for which the \(B_z \) and \(E_r \) components may be “projected out” from the electromagnetic spectrum in a straightforward manner. The growth rate is then obtained as a function of \(\omega \) and \(k \) for those cases in
which an unstable mode grew above the background "noise". Because our simulation takes place in a coordinate system that moves with the beam \((r, \theta, \zeta = ct - z)\), these growth rates are \(\Gamma/c = \Im(\omega/c - k)\). This corresponds to the theoretical result only in the case that \(\Im(k) = 0\) as was assumed in numerically solving the dispersion relation (2).

Simulations have been performed for parameters typical of a high current beam, \(I_b = 10 \text{ kA}, \gamma_o = 7\) and normalized RMS emittance, \(\epsilon_{n,\text{rms}} = .158 \text{ cm} - \text{rad}\). We fixed the waveguide radius at \(r_g = 3 \text{ cm}\) and the quadrupole gradient at \(B_qk_q = 200 \text{ G/cm}\). In a typical run, a 1 meter beam was transported over 10 meters in the presence of the external focusing fields. For these runs, we set \(k_q = 0.5 \text{ cm}^{-1}\) and varied \(B_o\) so as to sample each of the unstable regions and the larger of the two stable regions of the stability diagram (Fig. 1). The smaller stable region with \(B_o < 0\) was considered by setting \(k_q = 0.09 \text{ cm}^{-1}\). The \((k_q, B_o)\) location of each simulation is indicated in Fig. 1. We found stable behavior in the analytically stable regions and physically distinct behavior in each of the unstable regions. Numerical results \((\Gamma/c, \omega/c, k)\) are summarized in Table 1 for the \(k_q = 0.5 \text{ cm}^{-1}\) runs. Theoretical values, from numerical solutions of the dispersion relation, are also given.

Simulations in unstable region I were performed with \(B_o = 0, 1\) and 2 kG. The beam centroid (x-component) and beam envelope (major and minor radii of the beam cross section) are plotted versus time for a fixed position within the beam in Fig. 3 for the \(B_o = 1 \text{ kG}\) case. Here, the beam develops a macroscopic transverse motion, qualitatively similar to that assumed in the analytical model (pencil beam, rigid displacements). In fact, the wavenumber of the beam centroid motion for each of these runs matched the linear theory within 5%. When the transverse displacement reaches its peak (saturated) value, the cross-sectional area and emittance of the beam increase and current loss sets in. This was also observed in the \(B_o = 2 \text{ kG}\) case, where saturation occurs at a displacement of \(\approx 0.1 \text{ cm}\) after 8 meters of propagation and is followed by a steady loss of current and rise in emittance. Complete saturation was not observed in the \(B_o = 0\) case within the length of the simulation. The Fourier spectrum of the \(B_z\) component of the \(TE_{11}\) mode for the \(B_o = 1 \text{ kG}\) run is plotted versus \(k\) in Fig. 4 and compares favorably to the growth rate versus \(k\) plotted in Fig. 5.

In unstable region II, we found saturation of the instability with displacements in the
1 to 2 mm range without loss of current or growth in emittance. Such runs were performed at $B_0 = 4.5, 4.75$ and 5.0 kG. Plots of beam centroid (x-component) and beam envelope are shown in Fig. 6 for the $B_0 = 5 \text{ kG}$ case. The Fourier spectrum of the B_z component of the TE_{11} mode at $ct = 600 \text{ cm}$ is plotted in Fig 7 and compares favorably to the plot of Γ/c versus k from the dispersion relation (Fig. 8). Figure 9 shows the growth and decay of the linear component of the mode at $k = 1.5 \text{ cm}^{-1}$. Higher wavenumber modes are also in evidence but are within the range of unstable wavenumbers predicted by the linear theory. In the $B_0 = 4.5$ and 4.75 kG cases, higher wavenumber modes appeared that were outside the linear range of instability, suggesting that higher order linear or nonlinear modes had been excited. Note that in the 5 kG case the dispersion relation gives nonzero growth rates for $0.6 < k < 3.0 \text{ cm}^{-1}$ and for $5.7 < k < 9 \text{ cm}^{-1}$. Our numerical parameters were such that wavenumbers in the higher range were not properly resolved.

Simulations of orbit-unstable configurations were performed at $B_0 = 4.0$ and 4.3 kG. These points in parameter space reside in an orbit-stable region of the stability diagram, but are revealed to be orbit unstable when the dispersion relation is solved numerically. This is indicated in Fig. 10, where Γ versus k is plotted for $B_0 = 4.3 \text{ kG}$. In each of the two simulations, the major radius of the beam expanded to make contact with the wall within less than 1 meter of propagation, resulting in a severe loss of beam current.

Runs were also performed in each of the two stable regimes, at $k_q = 0.5, B_0 = 6.0 \text{ kG}$ and at $k_q = 0.09, B_0 = -4 \text{ kG}$. No indication of instability was observed in either case.

DISCUSSION

Two items among the results above deserve comment. These are 1) the observed saturation without current loss in three-wave unstable regime II and 2) the extension of the orbit instability into three-wave unstable region II at high current.

The saturation of the instability in three-wave unstable regime II without emittance growth or current loss is not well-understood. Unstable region II differs from unstable region I in that the instability occurs at higher wavenumbers and with a larger bandwidth, which may allow the possibility of mode competition as the instability develops. Also, at short wavelengths, a moderate spread in the parallel energy of the beam may disrupt the instability. This saturation mechanism was suggested in Ref. 8. Because the group
velocity of the TE_{11} mode is close to c in this regime, it is possible that an electron trapping mechanism could cause saturation, but the multiple wavenumbers observed both in the radiation field and in the beam centroid motion make this unlikely. It was not clear from either the analysis or the simulations which, if any, of these phenomena are responsible for the observed saturation.

The analysis of the dispersion relation suggests that the orbit instability is centered on a region of parameter space where the cyclotron wavenumber, K_o, is approximately equal to $k_q/2$ [see Eq. (3)]. For such values, a particle gyrating around the axis experiences a constant radial force from the quadrupole fields, i.e., $\Gamma(k = 0) \neq 0$. At high current, however, the bandwidth of the instability in three-wave unstable region II widens to encompass $k = 0$ for parameters which lie outside the orbit-unstable regime in the stability diagram of Fig. 1 (recall that the stability diagram is correct only as $I_b \rightarrow 0$). This effect can occur in three-wave unstable region I, but is less significant because of the narrow unstable bandwidth in that region. In fact, the unstable region expands from $2.2 < B_o < 3.8 \text{ kG}$, as suggested by the stability diagram, to $2.2 < B_o < 4.3 \text{ kG}$ (see Fig. 10). This extension of the orbit unstable regime into three-wave unstable region II is the only significant departure from the stability diagram at high current.

CONCLUSIONS

In this study, we have used electromagnetic particle simulation to examine the physics of the three-wave instability. We first presented the dispersion relation of Ref. 7 for transverse oscillations of an electron beam propagating within a drift tube in the presence of external solenoidal and helical quadrupole focusing fields. We also presented analytic stability conditions from this dispersion relation in the limit of zero beam current and have found that these stability conditions are good predictors of particle simulation results, even at currents as high as 10 kA. In accordance with the theory, we find that as we vary the external field parameters, the simulations show two stable regimes of beam propagation, two three-wave unstable regimes and an orbit-unstable regime. The only significant departure from the stability conditions at these high currents had the effect of extending the orbit instability into three-wave unstable regime II. Numerical solutions of the dispersion relation were found to be in qualitative agreement with particle simulation results in all
cases, although the simulations gave lower growth rates in many cases. Additionally, we have observed saturation of the instability in both three-wave unstable regimes. This was associated with emittance growth and the onset of beam loss in three-wave unstable region I, but was without these effects in unstable region II. The saturation mechanism in the latter case is not clear, but may be related to the short wavelengths, wide bandwidths and possible mode competition which occur in three-wave unstable region II, but are absent in region I.

Acknowledgments

This work was supported by Defense Advanced Research Projects Agency, ARPA Order No. 4395, Amendment 80, monitored by Naval Surface Warfare Center. We would also like to thank D. Chernin an A. Mondelli for their insight and T. Swyden for his assistance.
REFERENCES

8. D. Chernin and T. Hughes (private communication).
10. D. Chernin (private communication).
<table>
<thead>
<tr>
<th>$B_o(kG)$</th>
<th>Γ/c</th>
<th>ω/c</th>
<th>k</th>
<th>Γ/c</th>
<th>ω/c</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.031</td>
<td>0.71</td>
<td>0.24</td>
<td>0.005</td>
<td>0.64</td>
<td>0.17</td>
</tr>
<tr>
<td>1.0</td>
<td>0.033</td>
<td>0.78</td>
<td>0.38</td>
<td>0.015</td>
<td>0.76</td>
<td>0.37</td>
</tr>
<tr>
<td>2.0</td>
<td>0.043</td>
<td>1.03</td>
<td>0.72</td>
<td>0.033</td>
<td>0.81</td>
<td>0.49</td>
</tr>
<tr>
<td>4.0</td>
<td>orbit-unstable</td>
<td>orbit-unstable</td>
<td>orbit-unstable</td>
<td>orbit-unstable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>orbit-unstable</td>
<td>orbit-unstable</td>
<td>orbit-unstable</td>
<td>orbit-unstable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>0.023</td>
<td>0.98</td>
<td>0.82</td>
<td>0.025</td>
<td>1.06</td>
<td>0.81</td>
</tr>
<tr>
<td>4.75</td>
<td>0.016</td>
<td>1.29</td>
<td>1.16</td>
<td>0.013</td>
<td>1.06</td>
<td>1.09</td>
</tr>
<tr>
<td>5.0</td>
<td>0.012</td>
<td>1.74</td>
<td>1.65</td>
<td>0.011</td>
<td>1.87</td>
<td>1.50</td>
</tr>
<tr>
<td>6.0</td>
<td>stable</td>
<td></td>
<td></td>
<td>stable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Theoretical values of ($\omega/c, k$) for modes with peak linear growth rates, Γ/c, and corresponding numerical values for these unstable modes. Growth rates, frequencies and wavenumbers are in units of cm^{-1}. Note that for cases where multiple unstable modes were observed ($B_o = 4.5, 4.75$ and $5 \: kG$), only the mode corresponding to the linear growth rate was reported.
Fig. 1. Plot of the various operating regimes for $\gamma_0 = 7$, $r_g = 3$ cm and quadrupole gradient $B_q k_q = 200$ G/cm.
Fig. 2. Plot of maximum quadrupole gradient versus γ_0 for guide field $B_0 = 5 \, kG$ and $r_g = 3 \, cm$.
Fig. 3. The major radius of the beam cross section (solid line), the minor radius (dashed line) and the beam centroid x-component (dotted line) are plotted versus time for the $B_o = 1 \, kG$ case.
Fig. 4. The Fourier spectrum of the B_z component of the TE_{11} mode is plotted versus k for the $B_o = 1 \ kG$ case.
Fig. 5. The temporal growth rate, as calculated from the dispersion relation, is plotted versus k for the $B_0 = 1 \text{kG}$ case.
Fig. 6. The major radius of the beam cross section (solid line), the minor radius (dashed line) and the beam centroid x-component (dotted line) are plotted versus time for the $B_0 = 5 \, kG$ case.
Fig. 7. The Fourier spectrum of the B_z component of the TE_{11} mode is plotted versus k for the $B_o = 5 \text{ kG}$ case.
Fig. 8. The temporal growth rate, as calculated from the dispersion relation, is plotted versus k for the $B_o = 5 \text{kG}$ case.
Fig. 9. Fourier component of $B_z(k = 1.5 \text{ cm}^{-1})$ of the TE_{11} mode versus time.
Fig. 10. Growth rate versus k for the $k_\varphi = 0.5$, $B_o = 4.3 \, kG$ case. A nonzero growth rate at $k = 0$ indicates orbit instability.
Distribution List

Naval Research Laboratory
4555 Overlook Avenue, S.W.
Attn: CAPT J. J. Donegan, Jr. - Code 1000
Dr. M. Lampe - Code 4792
Dr. T. Coffey - Code 1001
Head, Office of Management & Admin - Code 1005
Deputy Head, Office of Management & Admin - Code 1005.1
Directives Staff, Office of Management & Admin - Code 1005.6
Director of Technical Services - Code 2000
ONR - Code 0124
NRL Historian - Code 2604
Dr. W. Ellis - Code 4000
Dr. J. Boris - Code 4040
Dr. M. Picone - Code 4040
Dr. M. Rosen - Code 4650
Dr. M. Haftel - Code 4665
Dr. S. Ossakow - Code 4700 (26 copies)
Dr. A. Robson - Code 4708
Dr. M. Friedman - Code 4750
Dr. R. Meger - Code 4750
Dr. J. Antoniades - Code 4751
Dr. T. Peyser - Code 4751
Dr. D. Murphy - Code 4751
Dr. R. Pechacek - Code 4750.1
Dr. G. Cooperstein - Code 4770
Dr. A. Ali - Code 4780
Dr. D. Colombant - Code 4790
Dr. R. Fernsler - Code 4790
Dr. I. Haber - Code 4790
Dr. R. F. Hubbard - Code 4790
Dr. G. Joyce - Code 4790 (20 copies)
Dr. Y. Lau - Code 4790
Dr. S. P. Slinker - Code 4790
Dr. P. Sprangle - Code 4790 (20 copies)
Dr. C. M. Tang - Code 4790 (20 copies)
Dr. E. Esarey - Code 4790
Dr. T. Godlove - Code 4790
Dr. J. Marsh - Code 4790
Dr. Y. B. Seo - Code 4790
Dr. R. Taylor - Code 4790
Dr. J. Krall - Code 4790 (20 copies)
B. Pitcher - Code 4790A
Mr. P. Boris - SAIC (Code 4790)
Dr. S. Gold - Code 4793
Dr. C. Kapetanakos - Code 4795
Library - Code 2628 (22 copies)
D. Wilbanks - Code 2634
Code 1220
Air Force Office of Scientific Research
Physical and Geophysical Sciences
Bolling Air Force Base
Washington, DC 20332
Attn: Major Bruce Smith

Air Force Weapons Laboratory
Kirtland Air Force Base
Albuquerque, NM 87117-6008
Attn: William L. Baker (AFWL/NTYP)
Breddan B. Godfrey

U. S. Army Ballistics Research Laboratory
Aberdeen Proving Ground, Maryland 21005
Attn: Dr. Donald Eccleshall (DRXBR-BM)
Dr. Anand Prakash
Dr. Clinton Hollandsworth

Ballistic Missile Def. Ad. Tech. Ctr.
P.O. Box 1500
Huntsville, Alabama 35807
Attn: Dr. M. Havie (BMDSATC-1)

Chief of Naval Material
Office of Naval Technology
MAT-0712, Room 503
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. Eli Zimet

Commander
Space and Naval Warfare Systems Command
National Center 1, Room 8E08
Washington, DC 20363-5100
Attn: RADM Robert L. Topping

Cornell University
369 Upson Hall
Ithaca, NY 14853
Attn: Prof. David Hammer

Defense Advanced Research Projects Agency
1400 Wilson Blvd.
Arlington, VA 22209
Attn: Dr. H. L. Buchanan
Dr. B. Hui

Defense Nuclear Agency
Washington, DC 20305
Attn: Dr. Muhammad Owais (RAAE)

Department of Energy
Washington, DC 20545
Attn: Dr. Wilmot Hess (ER20:GTN, High Energy and Nuclear Physics)
Mr. Gerald J. Peters (G-256)

Directed Technologies, Inc.
1500 Wilson Blvd. Suite 515
Arlington, VA 22209
Attn: Mr. Ira F. Kuhn
Dr. Nancy Chesser

HQ Foreign Technology Division
Wright-Patterson AFB, OH 45433
Attn: TUTD/Dr. C. Joseph Butler

Institute for Defense Analyses
1801 N. Beauregard Street
Alexandria, VA 22311
Attn: Dr. Deborah Levin
Ms. M. Smith

JAYCOR
11011 Torreyana Road
P. O. Box 85154
San Diego, CA 92138-9259
Attn: Dr. Franklin S. Felber
Dr. Seung Kai Wong

JAYCOR
39650 Libery Street, Suite 320
Freemont, CA 94538
Attn: Dr. Kendal Casey

Joint Institute for Laboratory Astrophysics
National Bureau of Standards and
University of Colorado
Boulder, CO 80309
Attn: Dr. Arthur V. Phelps

Kaman Sciences
P. O. Drawer QQ
Santa Barbara, CA 93102
Attn: Dr. W. Hobbs

La Jolla Institute
P. O. Box 1434
La Jolla, CA 92038
Attn: Dr. K. Brueckner
Strategic Defense Initiative Org.
SDIO/T/DEO
The Pentagon
Washington, DC 20009-7100
Attn: Lt Col R. L. Gullickson
Dr. D. Duston

Titan/Spectron, Inc.
P. O. Box 4399
Albuquerque, NM 87196
Attn: Dr. R. Bruce Miller
Dr. John Smith

University of California
Physics Department
Irvine, CA 92664
Attn: Dr. Gregory Benford
Dr. Norman Rostoker

University of California
San Diego, CA 92110
Attn: Dr. Marshall N. Rosenbluth

UCLA
Physics Department
Los Angeles, CA 90024
Attn: Dr. F. Chen
Dr. C. Joshi
Dr. J. Dawson
Dr. N. Luhmann

University of Maryland
Physics Department
College Park, MD 20742
Attn: Dr. Y. C. Lee
Dr. C. Grebogi
Dr. W. Destler
Dr. C. Striffler
Dr. M. Reiser

University of Michigan
Dept. of Nuclear Engineering
Ann Arbor, MI 48109
Attn: Prof. Terry Kammash
Prof. R. Gilgenbach

Director of Research
U.S. Naval Academy
Annapolis, MD 21402 (2 copies)

Naval Research Laboratory
Washington, DC 20375-5000
Code 4830
Tim Calderwood