An Analysis of Decommissioning Costs for the AFRRI TRIGA Reactor Facility

M. Forsbacka
M. Moore

DEFENSE NUCLEAR AGENCY
ARMED FORCES RADIOBIOLOGY RESEARCH INSTITUTE
BETHESDA, MARYLAND 20814-5145

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
REVIEWED AND APPROVED

GEORGE W. IRVING, III
Col, USAF, BSC
Director
This report provides a cost analysis for decommissioning the AFRRI TRIGA reactor facility. AFRRI is not suggesting that the AFRRI TRIGA reactor facility be decommissioned. This report was prepared in compliance with paragraph 50.33 of Title 10, Code of Federal Regulations, which requires that funding for the decommissioning of reactor facilities be available when licensed activities cease.

The planned method of decommissioning is complete decontamination (DECOM) of the AFRRI TRIGA reactor site to allow for restoration of the site to full public access. The cost of DECOM in 1990 dollars is estimated to be $1,200,000. The anticipated ancillary costs of facility site demobilization and spent fuel shipment will be an additional $600,000.

Thus, the total cost of terminating reactor operations at AFRRI will be about $1,800,000. The primary basis for developing this cost estimate was a study of the decommissioning costs of a similar reactor facility performed by Battelle Pacific Northwest.
Laboratory, as provided in U.S. Nuclear Regulatory Commission publication NUREG/CR-1756. The data in this study were adapted to reflect the decommissioning requirements of the AFRRI TRIGA reactor facility.
Contents

Introduction .. 1
Major Differences in Facility Layout and Utilization ... 2
Waste Disposal Costs .. 5
Labor Costs ... 6
Energy Costs .. 6
Inflation Factors Since 1981 ... 7
DECON and Decontamination Costs .. 7
Conclusion .. 8
References ... 9
Introduction

The U.S. Nuclear Regulatory Commission (USNRC) requires all USNRC-licensed reactor facilities to ensure that funds for the decommissioning of these facilities will be available when licensed activities cease. This requirement is specified by paragraph 50.33 of Title 10, Code of Federal Regulations (CFR), dated November 30, 1983. Because the Armed Forces Radiobiology Research Institute (AFRRI) TRIGA reactor facility is owned and operated by the Federal government, future decommissioning funds are guaranteed through a governmental statement of intent to budget the cost. The budget request should be made sufficiently in advance of decommissioning to prevent the delay of required activities.

The USNRC defines decommissioning of a nuclear reactor facility as the safe removal from service and the reduction of residual radioactivity to a level that permits the release of the property for unrestricted use. A variety of decommissioning methods are available, ranging from permanent entombment of the reactor site to its immediate decontamination. Considering AFRRI’s urban location in Bethesda, MD, the best method of decommissioning is immediate decontamination of the reactor facility site to allow for unrestricted public access. This method of decommissioning is referred to as DECON. DECON costs involve only the removal of equipment, structures, and portions of the facility that contain radioactive contaminants. The removal of spent nuclear fuels and demolition of the uncontaminated portions of the facility are considered ancillary costs.

The cost estimates presented in this report are based primarily on a study of the decommissioning costs of a TRIGA reactor facility prepared by the Pacific Northwest Laboratory (PNL) entitled Technology, Safety, and Costs of Decommissioning Reference Nuclear Research and Test Reactors, NUREG/CR-1756. Additional data were obtained from personnel who were involved with decommissioning the Diamond Ordnance Radiation Facility (DORF) in 1979 and local AFRRI experience with the disposal of low-level radioactive waste at Barnwell, SC.

The PNL study gives an extensive breakdown of the decommissioning cost for the Oregon State University TRIGA Reactor (OSTR) Facility. Although the AFRRI TRIGA reactor core is similar to the OSTR, there are fundamental differences in facility layout and use. To adjust for differences between the AFRRI TRIGA and the PNL study’s reactor facility, the following areas are examined in this report:

- Estimated conditions at the time of facility shutdown, the radionuclide inventories, and the surface dose rates, compared with those of the OSTR.
- Inflation factors since 1981, when the PNL study was made.
- Major differences in facility layout and design that will impact decommissioning costs.
- Cost of labor differences between the two facilities.
- Cost of energy differences between the two facilities.
- Waste disposal costs and the cost of shipping spent fuel and contaminated rubble to a distant waste depository.
Major Differences in Facility Layout and Utilization

The AFRRI TRIGA and OSTR are similar in reactor core design and basic operation, but they are substantially different in facility layout and utilization. Figure 1 shows the OSTR; the core is fixed in position, and irradiation experiments are performed in the pool irradiation facility, through various beam ports and shielding, and within the reactor pool itself. Figure 2 shows the AFRRI TRIGA, which is capable of moving on a fixed track, and irradiation experiments are performed primarily in two large exposure rooms and, secondarily, in an experiment tube within the reactor core itself.

The AFRRI exposure rooms are subjected to high doses of neutron radiation when the reactor core is in position to irradiate an experiment in a given exposure room. As a result, the quantity of activated concrete and other activated materials within the exposure room will be significantly greater than that for the OSTR. The PNL study reports the 1979 decommissioning experience of a facility similar in design to the AFRRI TRIGA, the Diamond Ordinance Radiation Facility (DORF) (figure 3). Based on the analysis of the decommissioning of DORF, we can approximate the amount of contaminated material that must be removed from the AFRRI TRIGA site.

Figure 1. Vertical section view of the Oregon State TRIGA reactor (OSTR), courtesy Brian Dodd, OSTR staff.
The gross amount of radioactive material to be removed from the AFRRI TRIGA will, as stated earlier, be greater than that of the OSTR, but the radioactivity concentrations at the time of shutdown will probably be similar. Based on the DORF decommissioning experience, the specific activity of the contaminated materials to be removed as part of DECON should be approximately 4.2 µCi/Mg. Complete projected radionuclide inventories can be found in NUREG/CR-1756.
Figure 3. Vertical section view of the Diamond Ordinance Radiation Facility TRIGA reactor.
Waste Disposal Costs

The cost estimate for waste disposal includes the following factors:

- The amount of contaminated material to be removed and packaged using the methodology of the DORF decommissioning project and the data from NUREG/CRI-1756.
- The cost of transporting the waste to a radioactive waste disposal site using the data from NUREG/CRI-1756.
- The cost of disposal of low-level radioactive waste based on AFRRI Safety and Health Department's experience with the disposal of low-level radioactive waste at the Barnwell, SC, waste disposal site.

Most of the waste material to be removed from the AFRRI site consists of the activated concrete and wood from the exposure rooms, the contaminated aluminum of the reactor tank, and the rector core support structure itself. For the purposes of this cost estimate, the volume of concrete to be treated as low-level radioactive waste is the volume of concrete that results from a uniform 1-foot-deep excavation of both exposure rooms. Based on the DORF decommissioning experience, however, the actual volume of contaminated concrete will probably be less than the amount reported in table 1. An overestimate of the amount of contaminated concrete is acceptable because it errs on the side of a more conservative decommissioning budget calculation.

The packaging and transportation costs were developed using data from NUREG/CRI-1756. It is assumed that all materials removed during DECON activities could be treated as low-level radioactive waste, so 3.5 m³ plywood shipping crates costing $400 (1981 dollars) each would be used. The cost per unit volume of disposing the waste at a radioactive waste depository is taken to be $2825/m³ (based on Barnwell charges in 1989 dollars). For the purposes of this report, a worst case scenario of a shipment to a destination in Washington state has been selected. The estimated waste disposal costs, adjusted to 1990 dollars, are reported in table 1.

<table>
<thead>
<tr>
<th>Waste material</th>
<th>Volume (m³)</th>
<th>Weight (Mg/m³)</th>
<th>Mass (Mg)</th>
<th>Crates</th>
<th>Shipping costs ($1000)</th>
<th>Cost1 ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contaminated concrete</td>
<td>102.40</td>
<td>2.3</td>
<td>235.5</td>
<td>30</td>
<td>$44,320.42</td>
<td>$545,049.43</td>
</tr>
<tr>
<td>Contaminated wood</td>
<td>76.82</td>
<td>0.7</td>
<td>53.8</td>
<td>25</td>
<td>$10,119.25</td>
<td>$235,922.40</td>
</tr>
<tr>
<td>Contaminated aluminum</td>
<td>1.86</td>
<td>7.7</td>
<td>3.0</td>
<td>1</td>
<td>$450.05</td>
<td>$6,589.54</td>
</tr>
<tr>
<td>Reactor vessel</td>
<td>N/A</td>
<td>N/A</td>
<td>0.2</td>
<td>1</td>
<td>$169.03</td>
<td>$169.03</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$560,179.03</td>
</tr>
</tbody>
</table>

1/NA, not applicable.
2/Mg, megagrams.
3/Cost = (cost/crate)(# of crates) + shipping costs + disposal costs.
Labor Costs

The labor cost estimate is also based on information in NUREG/CR-1756. The labor costs shown in table 2 account for overhead costs, such as specialty tools and equipment, specialty contractors, liability insurance, and fees. Because the AFBRRI TRIGA facility is larger than the OSTR and the DORF facilities, the labor cost data have been scaled up to reflect increased labor costs (1981 dollars).

Table 2. Estimated Labor Costs for DECON of the AFBRRI TRIGA Reactor

<table>
<thead>
<tr>
<th>Staff position</th>
<th>Workyears (no.)</th>
<th>Rate ($1000/hr)</th>
<th>Cost ($1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management and support staff</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decom mission superintendent</td>
<td>2.0</td>
<td>$89.1</td>
<td>$178.20</td>
</tr>
<tr>
<td>Decom engineer</td>
<td>2.0</td>
<td>76.0</td>
<td>152.00</td>
</tr>
<tr>
<td>Secretary</td>
<td>2.0</td>
<td>24.2</td>
<td>48.40</td>
</tr>
<tr>
<td>Clerk</td>
<td>0.5</td>
<td>24.2</td>
<td>12.10</td>
</tr>
<tr>
<td>Health physicist</td>
<td>2.0</td>
<td>46.9</td>
<td>93.80</td>
</tr>
<tr>
<td>Radioactive shipment specialist</td>
<td>0.5</td>
<td>39.3</td>
<td>19.65</td>
</tr>
<tr>
<td>Procurement specialist</td>
<td>0.5</td>
<td>39.3</td>
<td>19.65</td>
</tr>
<tr>
<td>Contract and accounting specialist</td>
<td>0.8</td>
<td>47.1</td>
<td>37.68</td>
</tr>
<tr>
<td>Security supervisor</td>
<td>0.025</td>
<td>55.9</td>
<td>34.14</td>
</tr>
<tr>
<td>Security patrol officer</td>
<td>3.6</td>
<td>25.4</td>
<td>91.44</td>
</tr>
<tr>
<td>QA engineer</td>
<td>0.7</td>
<td>46.9</td>
<td>32.53</td>
</tr>
<tr>
<td>Control room operator</td>
<td>1.0</td>
<td>34.5</td>
<td>34.50</td>
</tr>
<tr>
<td>Consultant</td>
<td>1.0</td>
<td>100.0</td>
<td>100.00</td>
</tr>
<tr>
<td>Decom workers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shift engineer</td>
<td>1.0</td>
<td>52.2</td>
<td>52.20</td>
</tr>
<tr>
<td>Craftsman</td>
<td>2.0</td>
<td>32.1</td>
<td>64.20</td>
</tr>
<tr>
<td>Crew leader</td>
<td>0.5</td>
<td>44.4</td>
<td>22.20</td>
</tr>
<tr>
<td>Utility operator</td>
<td>0.342</td>
<td>32.1</td>
<td>10.98</td>
</tr>
<tr>
<td>Laborer</td>
<td>8.0</td>
<td>30.0</td>
<td>185.40</td>
</tr>
<tr>
<td>Health physics technician</td>
<td>3.0</td>
<td>30.0</td>
<td>90.00</td>
</tr>
<tr>
<td>Total</td>
<td>30.087</td>
<td>N/A</td>
<td>$1,230.17</td>
</tr>
</tbody>
</table>

N/A, not applicable.

1Reported as 1981 dollars.

Energy Costs

The energy costs result from the estimated use of electricity required to carry out DECON activities. The source of the data presented in table 3 is NUREG/CR-1756; values have been scaled up to represent the estimated energy requirements for the AFBRRI TRIGA facility. The 1981 cost of energy is taken to be $0.008 per kilowatthour (kWh).
Table 3. Estimated Energy Costs for DECON of AFRRI TRIGA Reactor

<table>
<thead>
<tr>
<th>System or equipment</th>
<th>Energy use (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General system (crane, etc.)</td>
<td>9,000</td>
</tr>
<tr>
<td>HVAC</td>
<td>20,000</td>
</tr>
<tr>
<td>Lighting</td>
<td>5,200</td>
</tr>
<tr>
<td>Control room</td>
<td>560</td>
</tr>
<tr>
<td>Fire protection</td>
<td>600</td>
</tr>
<tr>
<td>Security</td>
<td>5,600</td>
</tr>
<tr>
<td>Communications</td>
<td>500</td>
</tr>
<tr>
<td>Domestic water</td>
<td>78,300</td>
</tr>
<tr>
<td>Reactor water</td>
<td>23,400</td>
</tr>
<tr>
<td>Compressed air</td>
<td>15,000</td>
</tr>
<tr>
<td>Building heating</td>
<td>502,500</td>
</tr>
<tr>
<td>Decommissioning equipment</td>
<td>20,000</td>
</tr>
<tr>
<td>Total</td>
<td>461,500</td>
</tr>
<tr>
<td>Total energy cost (x $0.008/kWh)</td>
<td>$3,692.80</td>
</tr>
</tbody>
</table>

1Reported as 1981 dollars.

Inflation Factors Since 1981

The effects of inflation must be factored into the overall cost estimate for DECON and decommissioning to arrive at an accurate cost estimate in 1990 dollars. Based on annual Consumer Price Index information provided by the Defense Nuclear Agency/AFRRI Comptroller Department,3 the inflation adjustment factors shown in table 4 were used.

Table 4. Inflation Adjustment Factors Used in Analysis of DECON Costs

<table>
<thead>
<tr>
<th>Years</th>
<th>Inflation adjustment factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981-84</td>
<td>1.221</td>
</tr>
<tr>
<td>1986-87</td>
<td>1.027</td>
</tr>
<tr>
<td>1987-88</td>
<td>1.031</td>
</tr>
<tr>
<td>1988-89</td>
<td>1.040</td>
</tr>
<tr>
<td>1989-90</td>
<td>1.036</td>
</tr>
<tr>
<td>1991-90</td>
<td>1.507</td>
</tr>
</tbody>
</table>
DECON and Decommissioning Costs

The total cost of DECON is the inflation-adjusted sum of the expenses outlined in the previous sections plus a contingency fund, consisting of 25% of the inflation-adjusted sum of expenses. The complete decommissioning of the AFRRI TRIGA facility requires removing the spent fuel elements and demolishing and restoring the AFRRI TRIGA site (table 5).

Table 5. Estimated DECON and Decommissioning Costs for the AFRRI TRIGA Reactor

<table>
<thead>
<tr>
<th>Cost Category</th>
<th>1981</th>
<th>1990</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECON:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste disposal</td>
<td>$390.9</td>
<td>$589.2</td>
</tr>
<tr>
<td>Labor</td>
<td>1,280.2</td>
<td>1,929.3</td>
</tr>
<tr>
<td>Energy</td>
<td>3.7</td>
<td>5.6</td>
</tr>
<tr>
<td>Contingency fund</td>
<td>418.7</td>
<td>651.0</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$2,093.5</td>
<td>$3,155.1</td>
</tr>
<tr>
<td>Ancillary:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spent fuel removal and shipment</td>
<td>150.0</td>
<td>226.1</td>
</tr>
<tr>
<td>Site demolition and restoration</td>
<td>250.0</td>
<td>376.8</td>
</tr>
<tr>
<td>Total</td>
<td>$2,493.5</td>
<td>$3,758.0</td>
</tr>
</tbody>
</table>

Conclusion

This cost estimate is the first step in developing a comprehensive decommissioning plan for the AFRRI TRIGA reactor facility. Five years before the projected end of operations, a preliminary decommissioning plan will be developed as required by Paragraph 50.75(f) of Title 10, CFR. This plan will include the following information:

- A declaration that DECON will be the method of decommissioning.
- Major technical actions that will be required to carry out decommissioning safely.
- Plans for surveying the actual levels of radioactivity in the materials to be removed during decommissioning.
- Plans for disposal of high-level and low-level radioactive waste.
- Plans for site demolition and restoration of the site to full public access.
- A refined cost estimate for DECON and decommissioning.
References

DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

ARMED FORCES INSTITUTE OF PATHOLOGY
ATTN: RADIOLOGIC PATHOLOGY DEPARTMENT

ARMED FORCES RADIObIOLOGY RESEARCH INSTITUTE

ARMY/AIR FORCE JOINT MEDICAL LIBRARY
ATTN: DASG-AAFJML

ASSISTANT TO SECRETARY OF DEFENSE
ATTN: AE
ATTN: HA(IA)

DEFENSE NUCLEAR AGENCY
ATTN: TITL
ATTN: DDIR

DEFENSE TECHNICAL INFORMATION CENTER
ATTN: DTIC-DDAC
ATTN: DTIC-FDAC

FIELD COMMAND DEFENSE NUCLEAR AGENCY
ATTN: FCD5

INTERSERVICE WEAPONS SCHOOL
ATTN: RH

LAWRENCE LIVERMORE NATIONAL LABORATORY
ATTN: LIBRARY

UNDER SECRETARY OF DEFENSE (ACQUISITION)
ATTN: OUSD(A)/R&AT

DEPARTMENT OF THE ARMY

LETTERMAN ARMY INSTITUTE OF RESEARCH
ATTN: SGRD-UL-B1-R

SURGEON GENERAL OF THE ARMY
ATTN: MEDDH-N

U.S. ARMY ACADEMY OF HEALTH SCIENCES
ATTN: HSHA-CDF

U.S. ARMY NUCLEAR AND CHEMICAL AGENCY
ATTN: MONA-NU

WALTER REED ARMY INSTITUTE OF RESEARCH
ATTN: DIVISION OF EXPERIMENTAL THERAPEUTICS

DEPARTMENT OF THE NAVY

BUREAU OF MEDICINE AND SURGERY
ATTN: CHIEF

NAVAL AFROSPACE MEDICAL RESEARCH LABORATORY

NAVAL MEDICAL COMMAND
ATTN: MEDCOM-21

NAVAL MEDICAL RESEARCH AND DEVELOPMENT COMMAND
ATTN: CODE 40C

OFFICE OF NAVAL RESEARCH
ATTN: BIOLOGICAL SCIENCES DIVISION

DEPARTMENT OF THE AIR FORCE

BROOKS AIR FORCE BASE
ATTN: USAFOEH/RZ
ATTN: USAFSAM/RZ
ATTN: USAFSAM/RZB

NUCLEAR CRITERIA GROUP, SECRETARIAT
ATTN: WL/NTN

SURGEON GENERAL OF THE AIR FORCE
ATTN: HQ USAF/SGPT
ATTN: HQ USAF/SGES

U.S. AIR FORCE ACADEMY
ATTN: HQ USAFA/DFBL

OTHER FEDERAL GOVERNMENT

ARGONNE NATIONAL LABORATORY
ATTN: BIOLOGY LIBRARY

BROOKHAVEN NATIONAL LABORATORY
ATTN: RESEARCH LIBRARY, REPORTS SECTION

CENTER FOR DEVICES AND RADIOLOGICAL HEALTH
ATTN: HFD-110

DEPARTMENT OF ENERGY
ATTN: ER-72 GTN

GOVERNMENT PRINTING OFFICE
ATTN: DEPOSITORY RECEIVING SECTION
ATTN: CONSIGNED BRANCH

LIBRARY OF CONGRESS
ATTN: UNIT X

LOS ALAMOS NATIONAL LABORATORY
ATTN: REPORT LIBRARY/P164

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
ATTN: RADLAB

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION,
GODDARD SPACE FLIGHT CENTER
ATTN: LIBRARY

NATIONAL CANCER INSTITUTE
ATTN: RADIATION RESEARCH PROGRAM

NATIONAL LIBRARY OF MEDICINE
ATTN: OPI

U.S. ATOMIC ENERGY COMMISSION
ATTN: BETHESDA TECHNICAL LIBRARY

U.S. FOOD AND DRUG ADMINISTRATION
ATTN: WINCHESTER ENGINEERING AND ANALYTICAL CENTER

U.S. NUCLEAR REGULATORY COMMISSION
ATTN: LIBRARY

RESEARCH AND OTHER ORGANIZATIONS

BRITISH LIBRARY (SERIAL ACQUISITIONS)
ATTN: DOCUMENT SUPPLY CENTRE