High T_c superconducting controlling elements for frequency tunable surface acoustic wave SAW filters and dispersion lines in the 0.5 to 4 GHz range have been proposed and designed. Ultrasonic attenuation and velocity measurements in sinter forged YBa$_2$Cu$_3$O$_y$ indicate that the sound waves are interacting with excitations which are confined to the CuO planes. Proximity SAW coupling to a two-dimensional electron gas 2 DEG has placed limits on the localization lengths of the 2 DEG. A new phase transition has been ultrasonically discovered in the mixed state of the heavy Fermion superconductor UPt$_3$. An anomalous increase in attenuation in the superconducting state of the reentrant superconductor system Er$_{1-x}$Ho$_x$Rh$_4$B$_4$ implies a novel interaction mechanism in this system. SAW measurements on granular superconducting films demonstrate that SAW measure the sheet resistivity of these films on a length scale comparable to the SAW wavelength.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
RESEARCH OBJECTIVES AND APPROACHES

The objective of this investigation was to characterize high T_c superconducting films and other unconventional superconductors with surface acoustic waves (SAW) and bulk waves. By measuring the acoustoelectric coupling of the SAW to the sheet resistivity of high T_c films with mosaic or granular structures both in the normal and superconducting states it is possible to determine the distribution of the intergranular resistances. Bulk wave measurements on high T_c superconductors and other unconventional superconductors may uncover some of the mechanisms that produce superconductivity in these systems; and may even discover if there are some common features in the response to ultrasonic waves which may be associated with the unconventional nature of the superconductivity in these systems.

ACCOMPLISHMENTS

I. High T_c Superconductors
 (A) Surface Acoustic Wave Measurements

 The attenuation of 1 GHz electromagnetic waves emitted from a pair of interdigital electrodes, travelling parallel to a film of $\text{YBa}_2\text{Cu}_3\text{O}_7$ a few μm thick deposited on a MgO substrate and then received by another pair of interdigital electrodes has been measured. We find an increase in attenuation immediately below T_c followed by an exponential decrease. We have developed a theoretical model which qualitatively appears to explain our data on this film if we assume that the electromagnetic absorption is determined by the real part of the conductivity in the superconducting state which has the BCS coherence factor which is appropriate for nuclear spin relaxation and electromagnetic absorption. We find that it is possible to fit our data with a complex superconducting energy gap, produced by thermal phonon broadening of the quasiparticle states. We obtain the best fit for a zero temperature value of the energy gap equal to $\Delta = kT_c$. (Publication #1)
We have proposed that frequency tunable SAW filters and dispersion lines may be made with high T_c films with large sheet resistivities. We have demonstrated that the attenuation of 700 MHz surface acoustic waves can be changed by as much as 30 dB/cm when a superconducting film is placed between the transmitting and receiving interdigital electrodes of a piezoelectric SAW delay line and the film is heated above its superconducting transition temperature. The SAW couple to the sheet resistivity R_{\square} of the metallic film through the acousto-electric effect. The normal $R_{\square}(N)$ of the NbN film used in this experiment was about 29 kΩ/sq. If it is possible to produce such large $R_{\square}(N)$ high T_c superconducting films, with small critical currents and sharp transitions, then these films could be used as switches in SAW delay lines. They could also be used to produce variable bandwidth SAW filters and dispersion lines made of reflective array compressors or slanted SAW transducer devices. The superconducting films would be placed between the reflecting chevrons or slanted transducers and their sheet resistance could be restored by heating with a laser beam or by passing a current through a properly designed film array. (Publication #2)

(B) Bulk Wave Measurements

Both ultrasonic attenuation and velocity measurements have been done on sinter forged samples of superconducting YBa$_2$Cu$_3$O$_7$. In these samples 80% of the crystallites have their c-axis aligned within 20° of the forging axis. The attenuation data for longitudinal waves display three broad maxima at 250K, 160K and 70K when the sound waves propagate perpendicular to the forging axis or parallel to the CuO planes. Only one broad maximum is observed for both longitudinal and shear waves at 160K for waves propagating parallel to the forging axis or parallel to the c-axis. For higher frequencies the position of this peak moves to higher temperatures. The anisotropies in the attenuation maxima may indicate that the sound waves are interacting with excitations which may be confined to the CuO planes. The
velocity showed evident anomalies, hysteresis and anisotropies. (Publication #3)

Attenuation measurements on a superconducting sample of sintered YBa$_2$Cu$_3$O$_7$ exhibited a broad maximum around T_c which shifted to higher temperatures as the frequency was increased from 10 MHz to 32 MHz. This behavior is indicative of a relaxation mechanism with a relaxation time having an estimated activation energy of about 400 K, which is close to the Debye temperature of YBa$_2$Cu$_3$O$_7$ as determined from specific heat measurements. (Publication #4)

When the initial activity on high T_c started we also measured the resistivity, a.c. susceptibility and ultrasonic attenuation on high T_c superconducting samples grown at UWM and pressed pellet samples obtained from various other labs (Houston, Ames, NRL). These measurements resulted in publications 5, 6, 7, and 8.

In a single phase YBa$_2$Cu$_3$O$_7$ sintered sample obtained from NRL, two maxima in longitudinal wave attenuation were observed, one at 250 K and the other slightly below the superconducting transition temperature, publication No. 9. It is possible that both of these maximum may be produced by relaxation processes involving soft plasmons.

II. Quantum Hall Effect

In publications No. 10 and 11, we report the first results on proximity coupling of surface acoustic waves to a two dimensional electron gas in a GaAs–Al$_x$Ga$_{1-x}$As heterojunction. Oscillations in the attenuation of the surface acoustic waves corresponding to the Shubnikov–de Haas oscillations in the conductivity, σ_{xx}, were observed as a function of applied magnetic field. In publication No. 12 we report the results of a study of the frequency and power dependence of the SAW attenuation produced by the two dimensional electron gas on the interface of a GaAs–Al$_x$Ga$_{1-x}$As
heterojunction. The minimum in attenuation, seen at integer numbers of filled Landau Levels increased with increasing power of the surface wave, particularly for the higher number of filled Landau levels. Lower powers were required to produce this increase at higher frequencies. These effects are interpreted as due to heating, resulting from absorption of energy from the surface wave by the electronic states with localization lengths of the order of the acoustic wavelength.

The above measurements prove that proximity coupling of the acoustoelectric effect can be achieved at low temperatures, and that the coupling is dependent on the ratio of a localization length to the acoustic wavelength. These concepts would be important in the design of superconducting frequency tunable filters and dispersion lines.

III. Heavy Fermion Superconductors (\(\text{UPt}_3\) and \(\text{URu}_2\text{Si}_2\))

Samples of these materials were obtained from Argonne National Laboratory (D. Hinks). Ultrasonic attenuation measurements confirm that these are unconventional superconductors (i.e. non-singlet pairing; the pairing is in a higher angular momentum state). A thorough study in a magnetic field was done on the \(\text{UPt}_3\) sample. A new feature (a peak in the attenuation) was discovered (independently and almost simultaneously with Muller, et al in Germany). This new feature may be a phase transition, between two different vortex structures. These data have been reported in publications 13, 14, 15, 16, 17, 18 and 7.

The measurements on the second heavy-fermion system \(\text{URu}_2\text{Si}_2\), reported in Publication No. 7, were performed in a \(^3\text{He}\) cryostat. A maximum in attenuation was found below the superconducting transition temperature \(T_c\) of \(\text{URu}_2\text{Si}_2\). A magnetic field decreased this maximum.
IV. Ferromagnetic Superconductors

Bulk ultrasonic measurements in the series of ferromagnetic superconductors $\text{Er}_{1-x}\text{Ho}_x\text{Rh}_4\text{B}_4$ with $x = 1, 0.912, 0.813,$ and 0.6 (received from Dr. Brian Maple, UCSD) appear to indicate that spin phonon interaction is suppressed by crystalline electric fields but superconductivity screens these fields permitting the interaction to appear. This may be the reason for the increase in attenuation that we have observed in the superconducting state of these ternary compounds. These results are reported in publication No. 19, 20, and 21.

Measurements on a sample with $x = 0.295$, in addition to the ones above, exhibit a maximum in attenuation centered around 10 K which moves down in temperature as x is decreased. This maximum may be associated with a relaxation process involving a ground state of the Ho ions. The $x = 0.295$ sample also exhibits another broad maximum around 4 K which is similar to the one reported around 5 K on a polycrystalline sample with $x = 0$.

V. SAW Measurements on Superconducting Films

Both the dc electrical resistivity and the surface acoustic wave (SAW) attenuation coefficient were measured in the superconducting state of a granular lead film as a function of an applied magnetic field normal to the film plane at several constant temperatures. Measurements were performed when the film had a sheet resistivity of 2000 Ω/sq and 3000 Ω/sq. These different sheet resistivities were obtained by oxidizing the film in place. The initial sheet resistivity of the film was 1000 Ω/sq. Both sets of measurements appear to indicate upper critical fields for this film of 60 K Gauss at 4.2 K. Measurements on lead films are covered in publications No. 22, 23, and 24. Similar measurements on In/InOx films are shown in Publication No. 25.
We have evolved a theoretical model that takes into account
renormalization to explain the experimental discrepancy in the
superconducting state between the SAW attenuation in a NbN film and its
sheet resistivity. The film has a BCS transition temperature of about 10 K,
and a Kosterlitz-Thouless transition temperature of 5 K, and a normal state
sheet resistivity of 30 KΩ/sq. An exact solution has been found for the
renormalized dielectric function of a two dimensional conductor which has
Kosterlitz-Thouless flux line dipoles. These results are presented in
publications 26 and 27.

Measurements of the attenuation produced by a granular Al film in close
proximity above the path traversed by a surface acoustic wave have been made
at several frequencies between 19 MHz and 281 MHz. The sheet resistivity of
the film is about 1000 Ω/sq. The coupling between the SAW and the film is
through the acoustoelectric effect, namely the piezoelectric fields
accompanying the SAW induce currents in the film which absorb energy thereby
attenuating the SAW. These results are presented in publication No 28.

In publications 29 and 30, a theoretical model is developed for
determining the contribution of electron phonon interaction to the
attenuation of SAW in the limit that the electron mean free path is larger
than the wavelength of the SAW. Previous models only addressed the limit
where the mean free path was smaller than the wavelength.

In publication No. 31 a review of SAW measurements on superconducting
films is presented.

VI. Dilution Refrigerator

The Oxford dilution refrigerator was installed and tested. The base
temperature reached was 5 mk under no load. However, no experiments are
possible in this mode. After testing, 8 Co axial and 54 electrical leads
specially designed for low temperature applications were added.
The system was then modified to do ultrasonic acoustic measurements in the top-loading mode. This permits a rapid change of samples, without having to open up the system. This resulted in publication No. 32. All design, machining and installation were done at UWM. This is the first top-loading dilution refrigerator system allowing measurements, acoustics or nmr, with a high frequency co-axial contact.

PUBLICATIONS

Thirty two papers have been published.

17. "Shift in Maximum of Sound Attenuation with Magnetic Field in UPt$_3$,"
H.-P. Baum, M.-F. Xu, Y. J. Qian, A. Schenstrom, J. B. Ketterson, D. H.
and Magnetic Materials, Chicago, Nov. 9-12, (1987), J. of Appl. Physics

18. "Longitudinal Sound Measurements on UPt$_3$ in a Magnetic Field,"
Y. J. Qian, M.-F. Xu, A. Schenstrom, H.-P. Baum, J. B. Ketterson, D.

19. "Ultrasonic Attenuation Measurements of Er$_{1-x}$Ho$_x$Rh$_4$B$_4"," K. J. Sun,
M. Levy, M. B. Maple and M. S. Torikachvili, Proceedings on Materials
and Mechanisms of Superconductivity, (eds. K. A. Gschneider, Jr. and
(1985).

20. "Ultrasonic Attenuation Measurement of the Re-entrant Superconductor
Er$_{0.187}$Ho$_{0.813}$Rh$_4$B$_4," Keun J. Sun, Moises Levy, M. B. Maple and M. S.
Torikachvilli, IEEE 1985 Ultrasonics Symposium Proceedings 1105. (85 CH

21. "Relaxation Attenuation in Er$_{0.187}$Ho$_{0.813}$Rh$_4$B$_4$ and HoRh$_4$B$_4," K. J. Sun,
Ultrasonics Symposium Proceedings, 1123 (86 CH 2375-4, Ed. B. R.

22. "Percolation Model for the Surface Acoustic Wave Attenuation in a
Ultrasonic Symposium Proceedings 1089, (85 CH 2209-S, Ed. B. R. McAvoy,

23. "Ultrasonic Attenuation and the Resistive Transition in a Superconduct-
ing Granular Lead Film," M. Levy, J. Schmidt, M. Revzen, A. Ron, and

CONFERENCES

Seven invited talks and 26 contributed papers were presented at conferences.

I. Invited Papers

II. Contributed Papers

4. "Ultrasonic Attenuation Measurement of \(\text{Er}_{1-x}\text{Ho}_x\text{Rh}_4\text{B}_4 \)," K. J. Sun, M. Levy, M. B. Maple and M. S. Torikachvilli, Contributed Poster, ibid.

6. "Ultrasonic Attenuation Measurements in the Re-entrant Superconductors \(\text{Er}_{0.187}\text{Ho}_{0.813}\text{Rh}_4\text{B}_4 \) and \(\text{Er}_{0.705}\text{Ho}_{0.295}\text{Rh}_4\text{B}_4 \)," K. J. Sun, M. Levy, M. B. Maple and M. S. Torikachvilli, contributed paper, ibid.

8. "Proximity Coupling of Surface Acoustic Waves to a Superconducting Al\textsubscript{x}O\textsubscript{1-x} Film," A. Schenstrom and M. Levy, contributed poster, ibid.

9. "Relaxation Attenuation in Er\textsubscript{0.187}Ho\textsubscript{0.813}Rh\textsubscript{4}B\textsubscript{4} and HoRh\textsubscript{4}B\textsubscript{4}," K. J. Sun, R. Sorbello, M. Levy, M. B. Maple and M. S. Torikachvilli, IEEE 1986 Ultrasonics Symposium, contributed paper, Williamsburg, Virginia, Nov. 17-19, 1986.

TECHNICAL PERSONNEL

In addition to the principal investigator the following faculty, post docs and graduate students have worked on this grant. Three graduate student received a Ph.D. during this period.

Faculty

Associate Professor Bimal Sarma SAW measurements on superconducting films and two dimensional electron gas.

 Bulk wave measurements on sinter forged and sintered samples of YBa$_2$Cu$_3$O$_7$, and heavy Fermion superconductors

Post Docs

Dr. Anders Schenstrom SAW measurements on superconducting films, Quantum Hall Effect and heavy Fermion superconductors.
Y. J. Qian
Installation, testing and modification of dilution refrigerator. Measurements on heavy Fermion superconductors and Quantum Hall Effect.

Graduate Research Assistants

Full Time:

Mr. Hughes Pierre Baum
SAW measurements on superconducting films.

Mr. Anders Schenstrom
SAW measurements of two dimensional electron gas.

Mr. Jeff Schmidt
SAW investigation of superconducting granular Pb films and amorphous In/InO_x films.

Mr. Keun-Jenn Sun
Ultrasonic investigation of ternary ferromagnetic superconductors and pure vanadium single crystals.

Mr. Min Feng Xu
Bulk wave measurements of sinter forged and sintered YBa_2Cu_3O_7, and an heavy Fermion superconductors.

Part Time

Mr. David Bein
Preparation of high T_c superconducting sintered samples

Ms. Jin Zheng
SAW measurements of high T_c superconductors.
Ph.D.'s

Mr. Keun-Jenn Sun submitted his Ph.D. thesis entitled "Ultrasonic Investigation of Re-entrant Superconductor and Ferromagnetic Compounds of the Er_{1-x}Ho_xRh_4B_4 System" under the supervision of M. Levy. He received his Ph.D. in August 1986.

Mr. Jeffrey Schmidt submitted his Ph.D. thesis entitled "Surface Acoustic Wave Investigation of Amorphous and Granular Superconducting Films," under the supervision of M. Levy. He received his Ph.D. in August 1987.

Mr. Anders Schenstrom submitted his Ph.D. thesis entitled "Proximity Coupling of Surface Acoustic Waves to Quasi 2-Dimensional Systems" under the supervision of M. Levy. He received his Ph.D. in December, 1987.

ML-296