Diffraction Effects in Directed Radiation Beams

B. Hafizi* and P. Sprangle

Beam Physics Branch
Plasma Physics Division

*Science Applications Intl. Corp., McLean, VA 22102

April 3, 1990

Approved for public release, distribution unlimited
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. AGENCY USE ONLY (Leave blank)</td>
<td></td>
</tr>
<tr>
<td>2. REPORT DATE</td>
<td>1990 April 3</td>
</tr>
<tr>
<td>3. REPORT TYPE AND DATES COVERED</td>
<td>Interim</td>
</tr>
<tr>
<td>4. TITLE AND SUBTITLE</td>
<td>Diffraction Effects in Directed Radiation Beams</td>
</tr>
<tr>
<td>5. FUNDING NUMBERS</td>
<td>47-20C5-0-0 (JO4)</td>
</tr>
<tr>
<td></td>
<td>DOE Contract # AI05-83ER40117</td>
</tr>
<tr>
<td>6. AUTHOR(S)</td>
<td>B. Hafizi* and P. Sprangle</td>
</tr>
<tr>
<td>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</td>
<td>Naval Research Laboratory Code 4790 Washington, DC 20375-5000</td>
</tr>
<tr>
<td>8. PERFORMING ORGANIZATION REPORT NUMBER</td>
<td>NRL Memorandum Report 6609</td>
</tr>
<tr>
<td>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</td>
<td>DOE Washington, DC 20545</td>
</tr>
<tr>
<td>10. SPONSORING/MONITORING AGENCY REPORT NUMBER</td>
<td></td>
</tr>
<tr>
<td>11. SUPPLEMENTARY NOTES</td>
<td>*Science Applications Intl. Corp., McLean, VA 22102</td>
</tr>
<tr>
<td>12a. DISTRIBUTION / AVAILABILITY STATEMENT</td>
<td>Approved for public release; unlimited.</td>
</tr>
<tr>
<td>12b. DISTRIBUTION CODE</td>
<td></td>
</tr>
<tr>
<td>13. ABSTRACT (Maximum 200 words)</td>
<td>A number of proposed applications of electromagnetic waves require that the radiation beam maintain a high intensity over an appreciable propagation distance. These applications include, among others, power beaming, advanced radar, laser acceleration of particles and directed-energy sources. The quest to achieve these objectives has led to a resurgence of research on diffraction theory. This report presents a survey and critique of the analyses and experimental tests of solutions of the wave equation in connection with so-called diffractionless and other directed-radiation beams. The examples discussed in this paper include electromagnetic missiles, Bessel beams, electromagnetic directed energy pulse trains, and electromagnetic bullets.</td>
</tr>
<tr>
<td>14. SUBJECT TERMS</td>
<td>Directed radiation beams Electromagnetic directed energy pulse trains</td>
</tr>
<tr>
<td></td>
<td>Electromagnetic missiles Electromagnetic bullets</td>
</tr>
<tr>
<td></td>
<td>Bessel beams Diffraction effects</td>
</tr>
<tr>
<td>15. NUMBER OF PAGES</td>
<td></td>
</tr>
<tr>
<td>16. PRICE CODE</td>
<td></td>
</tr>
<tr>
<td>17. SECURITY CLASSIFICATION OF REPORT</td>
<td>UNCLASSIFIED</td>
</tr>
<tr>
<td>18. SECURITY CLASSIFICATION OF THIS PAGE</td>
<td>UNCLASSIFIED</td>
</tr>
<tr>
<td>19. SECURITY CLASSIFICATION OF ABSTRACT</td>
<td>UNCLASSIFIED</td>
</tr>
<tr>
<td>20. LIMITATION OF ABSTRACT</td>
<td></td>
</tr>
</tbody>
</table>

...
Contents

I. Introduction and Summary ... 1
II. Electromagnetic Wave Diffraction 4
III. Diffraction Zones (Huygens' Principle) 6
 i) Fraunhofer Diffraction (Far-Field or Wave-Zone Region) 6
 ii) Fresnel Diffraction (Near-Field Region) 6
IV. Electromagnetic Missiles ... 8
 i) Theory .. 8
 ii) Experiment (Electromagnetic Missiles) 10
V. Bessel Beams ... 12
 i) Theory .. 12
 ii) Experiment (Bessel Beams) 13
VI. Electromagnetic Directed Energy Pulse Trains 16
 i) Theory .. 16
 ii) Modified Power-Spectrum Pulse -- Numerical Study 19
 iii) Modified Power-Spectrum Pulse -- Experiment 21
VII. Electromagnetic Bullets ... 23
 i) Non-uniqueness of the Inverse Source Problem 23
 ii) Solution of the Three-Dimensional Wave Equation in the
 Wave-Zone .. 27
 iii) Exact Solution of the Wave Equation from the Solution in
 the Wave-Zone (Radon Transforms) 28
 iv) Example of a Bullet 29
VIII. Summary and Concluding Remarks 33
 i) Electromagnetic Missiles 33
 ii) Bessel Beams .. 33
 iii) Electromagnetic Directed Energy Pulse Trains 34
 iv) Electromagnetic Bullets 34
Acknowledgment .. 34
Appendix .. 35
References .. 39
Distribution List ... 49
I. **Introduction and Summary**

Diffraction is a fundamental characteristic of all wave fields, be it photons, electrons, etc. The effect of diffraction is typically manifested when an obstacle is placed in the path of a beam. On an observation screen some distance away from the obstacle one observes a rather complicated modulation of the time-average intensity in the vicinity of the boundary separating the illuminated region from the geometrical shadow cast by the obstacle.

In many applications it would be highly desirable to propagate a beam over a long distance without an appreciable drop in the intensity. As an example we cite the possibility of accelerating particles to ultra-high energies by utilizing high-power laser beams. Although the accelerating gradient in many of these schemes is extremely large, the actual distance over which the particle and laser beams maintain an appreciable overlap is very limited. The overlap is reduced due to the diffraction of the laser beam and as a result the net gain in the particle energy is limited.

With the advent of high-power lasers and microwave sources, diffraction of radiation beams with finite transverse dimensions has turned into a problem of special importance. As an example, consider laser radiation of frequency ω emanating from a cavity oscillating in the fundamental transverse Gaussian mode. How far will this beam propagate in a turbulence-free atmosphere? More to the point, how fast is the fall-off in the intensity of this laser beam?

The answer to this question is well-known.\(^1\) The scale length for the fall-off in intensity is given by the Rayleigh range, defined by

\[Z_R = \frac{\pi w_0^2}{\lambda}, \tag{1} \]
where w_0 is the minimum spot size, or radius, of the beam, and $\lambda = 2\pi c/\omega$ is the wavelength. The minimum spot size w_0 is also known as the waist of the radiation beam. The fall-off of the beam intensity as it propagates in space is a consequence of the fact that initially the beam was constrained to a finite waist, w_0. Diffraction then causes the beam to spread in the lateral direction and, from energy conservation, the intensity must drop off correspondingly. In the limit of an infinitely wide beam, $w_0 \to \infty$, the Rayleigh range is infinite, there is no diffraction and the intensity is constant.

A natural way to propagate a beam over long distances is to increase the Rayleigh range by employing a wider beam or shorter wavelength radiation. Clearly the width of the beam is limited by the energy source available for pumping the lasing medium, and short wavelength lasers (x-rays and beyond) are not presently available. As a result, over the past several years there has been an upsurge in research on such fundamental topics as propagation and diffraction properties of radiation beams. (See Ref. 2 for an earlier discussion.) Briefly, the question being asked is: "Can diffraction be overcome?" The following is a summary of our review of diffractionless and other directed radiation beams.

i) Electromagnetic Missiles (Section IV)

Experiments indicate the possibility of generating wave packets with a broad frequency spectrum. The high-frequency end of the spectrum determines the furthest distance the missile can propagate, in complete accord with our understanding of diffraction.

ii) Bessel Beams (Section V)

A Bessel beam is a particular, monochromatic solution of the wave equation. Bessel beams propagate no further than Gaussian beams or plane
waves with the same transverse dimensions and, contrary to previous assertions, Bessel beams are not "resistant to the diffractive spreading commonly associated with all wave propagation".

iii) Electromagnetic Directed Energy Pulse Trains (Section VI)

These are particular, broad-band solutions of the wave equation. We show that the experiment and the numerical studies of these pulses are consistent with conventional diffraction theory and, contrary to previous assertions, these pulses do not "defeat diffraction".

iv) Electromagnetic Bullets (Section VII)

Electromagnetic bullets are solutions of the wave equation which are confined to a finite region of space in the wave-zone. The ultimate goal of the research has been to determine the source function which leads to a prescribed form for the bullet in the wave-zone. Although the mathematical framework for this has been established, no concrete example has appeared in the literature.

Sections II and III begin with a review of basic diffraction theory and our findings and conclusions are summarized in Section VIII.
II. Electromagnetic Wave Diffraction

Consider the radiation beam from a cavity of radius d. The wave vector is given by $k_{\parallel} e_{z}$, corresponding to propagation predominantly in the z direction, and the magnitude of the spread in the wave vector in the transverse direction is denoted by Δk_{\perp}, with $k_{\parallel} \gg \Delta k_{\perp}$. The angular spread of the radiation relative to the z axis is

$$\theta = \Delta k_{\perp}/k_{\parallel}. \quad (2)$$

On an observation screen at a distance z, the radius of the illuminated region is given by

$$w = d + \theta z. \quad (3)$$

The first term on the right-hand side of this expression indicates the width of the region illuminated according to geometrical optics. Beyond this lies the region of the geometrical shadow, and the second term in Eq. (3) indicates the extent to which this region is illuminated due to diffraction of light. The distance Z over which the angular spread leads to a fall-off in the intensity is given by $d + \theta z = 2d$, or

$$Z = d/\theta. \quad (4a)$$

The distance Z may be regarded as the scale-length for diffractive spreading of the beam.

As a first example, suppose the transverse distribution of intensity in the beam is uniform. This is the case when plane waves are apertured. If the radius of the aperture is d, from a fundamental result of Fourier analysis, $\Delta k_{\perp} d = 1$. The angular spread is therefore given by

$$\theta = \lambda/2\pi d, \text{ where } \lambda = 2\pi/k_{\parallel} \text{ is the wavelength. For this intensity distribution one thus finds}$$
\[Z_p = 2\pi d^2 / \lambda. \]

(4b)

For the case when the transverse intensity distribution is a Gaussian, \(\exp(-r^2/w_o^2) \), of width \(w_o \), we have \(\Delta k_\perp = 1/w_o \), and the angular spread of the beam is on the order of \(\theta = \lambda / 2\pi w_o \). In this case \(d = w_o \) and hence

\[Z_C = 2\pi w_o^2 / \lambda, \]

(4c)

which is twice the Rayleigh range \(Z_R \) defined in Eq. (1).

Clearly, diffraction is simply the physical manifestation of the well-known result of Fourier analysis relating the spreads in wave vector space with the corresponding widths in real space, \(\Delta k_i \Delta x_i = 1 \) for \(i = 1, 2, 3 \). As a result, Eq. (4a) expresses a fundamental relation which we shall make use of repeatedly in order to interpret the results of theory and experiment on so-called diffractionless radiation beams.
III. Diffraction Zones (Huygens' Principle)

According to Huygens' principle each point on a given wavefront acts as a source of secondary wavelets. The field at a point P is given by the sum over the wavelets. If \(u(r)e^{-i\omega t} \) is the amplitude on an aperture, an approximate solution of the scalar wave equation at P is given by\(^3\)\(^4\)

\[
\psi_p(r,z) = (i\lambda)^{-1} e^{-i\omega t} \int \text{d}S' u(r') R^{-1} e^{i\omega R/c},
\]

where \(R = \left[(x-x')^2 + (y-y')^2 + z^2 \right]^{1/2} \) is the distance between the area element \(\text{d}S' \) on the aperture and the point P, as shown in Fig. 1.

In the Fresnel approximation the binomial expansion of \(R \) may be used to simplify Eq. (5) to

\[
\psi_p \propto (i\lambda)^{-1} e^{i\omega(z-ct)/c} \int \text{d}S' u(x',y') e^{i\omega \left(\frac{x'^2 + y'^2}{2z} - \frac{xx' + yy'}{z} \right)},
\]

For plane waves incident on an aperture with linear dimension \(d \), there are two physically interesting limits for approximating Eq. (6).

i) Fraunhofer Diffraction (Far-Field or Wave-Zone Region)

If

\[
z \gg d^2/\lambda,
\]

one may neglect the quadratic terms in the exponent of Eq. (6) and the wavelets from the entire wavefront at the aperture contribute to the field at P. In the Fraunhofer region \(\psi_p \) is simply the Fourier transform of the amplitude at the diffracting aperture.

ii) Fresnel Diffraction (Near Field Region)

In the other limit,

\[
z < d^2/\lambda,
\]
it is necessary to retain the quadratic terms in the exponent of Eq. (6) and the wavelets from a limited portion of the wavefront at the aperture make the dominant contribution to the field at P. In this case, the integration in Eq. (6) may be taken to be over the entire $z = 0$ plane.

For plane waves incident on a circular aperture of radius d, Fig. 2, making use of Eq. (5), the exact field on the axis of symmetry is given by

$$\psi_p = \exp(-i\omega t)\{\exp(i\omega z/c) - \exp[i\omega(d^2 + z^2)^{1/2}/c]\},$$

and the intensity $I \propto \psi_p \psi_p^*$ is

$$I = 1 - \cos \left[\omega[(d^2 + z^2)^{1/2} - z]/c\right].$$

(9)

Figure 3 is a schematic plot of the intensity function, Eq. (9), indicating in particular the transition between the Fresnel and the Fraunhofer regions. Note that the intensity drops off precipitously beyond $z \approx 2nd^2/\lambda$, consistent with the scale-length defined by Eq. (4b).

We proceed now to examine the research on new solutions of the wave equation, with particular emphasis on their diffraction properties.5-20
IV. Electromagnetic Missiles

1) Theory

Consider first the case of a field, termed a "missile", which falls off more slowly than the usual $1/R$ law. The inventive step is the use of a broad frequency spectrum. Depending on the spectrum, the fall-off with R may be as slow as desired.7,8

To appreciate the nature of this field, note that for an arbitrary source distribution within a region A as shown in Fig. 4, the energy delivered to a screen S, integrated over all time, is

$$
\varepsilon(S,R) = \int_0^\infty dt \int_{\text{screen}} ds \hat{A} \cdot (E \times B) / 4\pi,
$$

where \hat{A} is a unit vector normal to the screen, and E and B are the electric and the magnetic field, respectively. For a source with a bounded frequency spectrum, a screen of fixed area S, and for sufficiently large R, $\varepsilon(S,R) \sim 1/R^2$, according to well-known results.21

The current density for the electromagnetic missile described in Ref. 7, $J(r, t) = \delta(z) f(t) \hat{A}_x$, $r < d$, is confined to a disk of radius d, where $r = (x^2 + y^2)^{1/2}$ is the radial coordinate and $f(t)$ is a given function of time. If $\overline{A}(\omega)$ and $\overline{J}(\omega)$ denote the Fourier transforms of the vector potential and the current density respectively, then

$$
\overline{A}(\omega) = \int_0^\infty dt \int_0^\infty d^3 r \overline{J}(\omega) \exp(i\omega R/c) / c R \text{ is a solution of the wave equation.21}
$$

In the present case, $\overline{J}(\omega) = \delta(z) \overline{f}(\omega) \hat{A}_x$, and the vector potential on the axis of symmetry is given by

$$
\overline{A}(\omega) = \frac{2\pi}{c} \overline{f}(\omega) \int_0^d dr \int_0^{(1/2) (r^2, z^2)^{1/2}} dt \hat{A}_x \overline{f}(\omega) (r^2, z^2)^{1/2}.
$$
Making use of this expression for $\tilde{A}(\omega)$, the Poynting flux along the z axis integrated over all time, $U(z) = \int dt \, \hat{E}_z \cdot (\hat{E} \times \hat{B}) / 4\pi$, is given by

$$U = c^{-2} \int_0^\infty d\omega |\tilde{f}(\omega)|^2 \left(1 - \cos \left(\frac{\omega}{c} \left(z^2 + d^2 \right)^{1/2} - z \right) \right).$$

(10)

Note the resemblance between Eq. (9) and the integrand of Eq. (10). Equation (9) is for a monochromatic field and is based on Huygens-Fresnel principle while Eq. (10) is obtained from a rigorous solution of the full wave equation.

In the limit $z \to \infty$ in Eq. (10), for a fixed frequency ω, $\cos((\omega/c)(z^2 + d^2)^{1/2} - z)) \to \cos(\omega d^2 / 2cz) \to 1$, and the integrand tends to zero. Referring to Fig. 3, this means that the contribution of this frequency lies in the far-field region and is thus negligible. At a given large z we can, therefore, write

$$U = \frac{2}{c^2} \int_{2cz/d^2}^\infty d\omega |\tilde{f}(\omega)|^2 [1 - \cos(\omega d^2 / 2cz)] = \frac{2}{c^2} \int_{2cz/d^2}^\infty d\omega |\tilde{f}(\omega)|^2.$$

We see that the most important contribution is from the high frequency end of the spectrum, for which the given point z lies in the near-field, Fresnel, zone. The contributions from all the lower frequency components will have decayed to negligible values before reaching the given z. While the eventual fall off of any frequency component is as $1/z$, the fall off of the time integrated Poynting flux for the wave packet depends on how rapidly $|\tilde{f}(\omega)|$ decays for $\omega > 2cz/d^2$. As an example, consider a source with a frequency response

$$\tilde{f}(\omega) = [1 + (\omega \omega_0)^2]^{-3/4}.$$
where $\varepsilon > 0$. For this spectrum the time-integrated Poynting flux falls off as $U \propto 1/z^{2\varepsilon}$. The fall-off can thus be as slow as desired by taking the limit $\varepsilon \to 0$. The limit, however, corresponds to a frequency spectrum from a source with infinite energy. The function $f(t)$ is symmetric with respect to $t \to -t$. Evaluating the inverse Fourier transform of $\tilde{f}(\omega)$, one finds that $f(t) \sim t^{(2\varepsilon-3)/4} \exp(-\omega_o t)$ for $t \gg 1/\omega_o$. For $\varepsilon > 1/2$ and $t \ll 1/\omega_o$, $f(t) \to$ constant. However, for the more interesting case of $\varepsilon < 1/2$, $f(t) \to t^{\varepsilon-1/2}$ when $t \ll 1/\omega_o$, indicating a mild singularity.

ii) Experiment (Electromagnetic Missiles)

The difficulties involved in an experimental study of electromagnetic missiles stem from the need to generate pulses with extremely short rise-times and suitably-shaped wavefronts. An antenna was used to generate a "pure" spherical wave which formed the primary pulse and the field reflected from a parabolic dish of radius 2 ft formed the secondary pulse. The pulses were detected by a specially-designed sensor. The primary pulse was found to fall off as $1/z^2$, the energy decaying by 1/16 when the sensor was moved from 4 ft to 16 ft from the source. This was because the antenna, being a point source, generated spherical wavefronts. The pulse reflected from the parabolic dish was found to resemble that of a circular disk, similar to that studied earlier in this section. Over the same distance, the energy in this electromagnetic missile was found to decay by just under 1/2. Without a precise knowledge of the frequency spectrum it is not possible to make a quantitative analysis of this experiment. Rough estimates indicate that the scale length for the fall-off of the intensity of the missile is indeed compatible with the diffraction scale length $Z = 2nd^2/\lambda$, where $d = 2$ ft is the radius of the reflecting dish and λ is the wavelength for the highest frequency (10 GHz) in the pulse.
These preliminary experimental results indicate that a suitably tailored pulse-shape can be designed to have an energy-decay rate essentially limited by the highest frequencies present in the pulse generator, in complete accordance with the elementary notions of diffraction of light. Propagation of a composite pulse in free space is a dispersive process. As the beam propagates, the lowest frequency components diffract away first.
V. Bessel Beams

i) Theory

An example of a so-called diffractionless electromagnetic beam is a Bessel beam. We note that a particular solution of the scalar wave equation

$$\left(\nabla^2 - \frac{c^2}{\sigma^2} \frac{\partial^2}{\partial t^2} \right) \psi(x, t) = 0,$$

is

$$\psi = e^{i(k_\parallel^2 - \omega t)} \int_{\theta_0}^{2\pi + \theta_0} \int d\theta A(\theta)e^{ik_\perp(x \cos \theta + y \sin \theta)} \left(\frac{2\pi + \theta_0}{\theta_0} \right),$$

(11)

for arbitrary θ_0 and $A(\theta)$, provided $\omega^2 = c^2(k_\parallel^2 + k_\perp^2)$. Here, k_\parallel and k_\perp denote the magnitudes of the components of the wave vector parallel and orthogonal to the z axis, respectively, and $\lambda = 2\pi/(k_\parallel^2 + k_\perp^2)^{1/2}$ is the wavelength. Since the z-dependence in Eq. (11) is separated from the x- and y-dependence, the solution is clearly diffractionless in the sense that the time-average intensity is independent of z. In fact, the intensity is constant for all z and all t.

Durnin considers the case where $A(\theta) = 1$ (Ref. 10). In this case, making use of the expansion $\exp(i\xi \sin \theta) = \Sigma J_n(\xi) \exp(i \xi \cos \theta)$, where J_n is the ordinary Bessel function of the first kind of order n (Ref. 22), Eq. (11) simplifies to

$$\psi = 2\pi \int_0^{\infty} \int_{k_\perp} J_0(k_\parallel r) \exp[i(k_\parallel^2 - \omega t)] d\xi,$$

where $r = (x^2 + y^2)^{1/2}$ is the radial variable.

Making use of the properties of the Bessel function (Ref. 22), one can show that the "energy" content, $\int 2\pi J_0^2(k_\parallel r)$, integrated over any transverse period, or lobe, is approximately the same as that in the
central lobe. This point will be important in our interpretation of the diffractive properties of Bessel beams.

ii) Experiment (Bessel Beams)

A Bessel beam has an infinite number of lobes and, therefore, has infinite energy. In the laboratory an approximation to this ideal beam is realized by clipping the beam beyond a certain radius. The question is, given the finite transverse size, how well is the diffractionless property preserved.

To answer this question Durnin et al. compared the propagation of a clipped Bessel beam with a Gaussian beam. The full width at half-maximum (FWHM) of the Gaussian was taken to be equal to the FWHM of the central lobe of the Bessel beam. In the experiment the on-axis intensity of each beam was measured along the axis of symmetry. The Bessel beam was claimed to be "resistant to the diffractive spreading commonly associated with all wave propagation" since its intensity was observed to remain approximately constant for a much longer distance than the Gaussian beam. The idea of a diffraction-free beam was further reinforced by using a geometrical optics argument to obtain a formula for the propagation distance of central lobe of the Bessel beam.

We shall now reconsider this comparison. The wavelength of the radiation was $\lambda = 6328 \text{ Å}$. For the Gaussian beam, $\exp(-r^2/w_0^n)$, w_0 was equal to 0.042 mm, corresponding to a FWHM of 0.07 mm. For the Bessel beam, $J_0(k_1r)$, k_1 was equal to 41 mm$^{-1}$, corresponding to a FWHM for the central lobe of 0.07 mm. The beams were apertured to a radius $d = 3.5$ mm. The following order-of-magnitude discussion is based on Eqs. (2)-(4); a more rigorous analysis is presented in the Appendix. The angular spread due to the natural width of the Gaussian beam is $\Theta = \lambda/2w_0$ and Eq. (3) takes the
form \(w = w_0 + (\lambda/2\pi w_0)z \), where the first term in this expression is \(w_0 \), rather than \(d \), since the energy of the Gaussian is concentrated in the central peak. The scale length for diffraction is the same as that given by Eq. (4c), namely \(Z_G = 2\pi y_0^2/\lambda = 1.75 \text{ cm} \). The natural angular spread of the Bessel beam is \(\theta = k_{j\lambda}/2\pi \), and Eq. (3) takes the form \(w = d + (k_{j\lambda}/2\pi)z \), where the first term represents the radius of the aperture since the energy in each lobe is approximately the same and they all affect the propagation of the Bessel beam. The scale length for diffraction is, therefore, given by \(d + (k_{j\lambda}/2\pi)Z_B = 2d \), or \(Z_B = 2\pi d/k_{j\lambda} = 85 \text{ cm} \), which is consistent with the experimental observation.

In the transverse plane the lobes of the Bessel beam diffract away sequentially starting with the outermost one. The outermost lobe diffracts in a distance on the order of \(2\pi^2/\lambda k_{j\lambda}^2 \), which is approximately equal to \(Z_G \). The next lobe diffracts away after a distance on the order of \(2Z_G \). This process continues until the central lobe, which diffracts away after a distance \(\sim N Z_G \), where \(N \) denotes the number of lobes within the aperture. In the experiment \(N \approx 50 \), implying a propagation distance on the order of \(50Z_G \) for the central lobe of the Bessel beam, which is consistent with the measured value. Measurements of the on-axis intensity obviously fail to reveal the gradual deterioration of the transverse beam profile, but the numerical plots in Fig. 2 of Ref. 10 are consistent with this scenario. Therefore, the Bessel beam is not "resistant to the diffractive spreading commonly associated with all wave propagation". Our interpretation points out the significance of each successive lobe having about the same energy. The central lobe persists as long as there are off-axis lobes compensating for its energy loss and hence the comparison with the narrower Gaussian beam in Ref. 11 is of little significance.
We note that utilizing the full width of the aperture a Gaussian beam propagates a distance on the order of NZ_B; i.e., N times further than the Bessel beam. Additionally, by appropriately curving the wavefront, nearly all the power of the Gaussian beam can be focussed on a target of dimension w_C in a distance Z_B. Hence, for this purpose a Gaussian beam would be significantly better than the Bessel beam employed by Durnin et al. (See also Ref. 12)
VI. Electromagnetic Directed Energy Pulse Trains

i) Theory

Electromagnetic directed energy pulse trains are particular solutions of Maxwell's equations.\(^{13}\) To discuss these, we make the change of variables \(\xi = z - ct\) and \(\tau = t\), and transform the wave equation

\[
\left(\nabla_\perp^2 - c^{-2} \frac{\partial^2}{\partial \xi \partial \tau} \right) \psi = 0,
\]

into the form

\[
\left(\nabla_\perp^2 + \frac{2}{c} \frac{\partial^2}{\partial \xi \partial \tau} - c^{-2} \frac{\partial^2}{\partial \tau^2} \right) \psi = 0.
\]

Making the assumption

\[
\psi = \psi(\xi, r, \tau)e^{i\omega\xi/c}, \tag{12}
\]

leads to the an equation for the complex envelope \(\psi\),

\[
\left(\nabla_\perp^2 + 2i\omega c^{-2} \frac{\partial}{\partial \tau} + \frac{2}{c} \frac{\partial^2}{\partial \tau \partial \xi} - c^{-2} \frac{\partial^2}{\partial \tau^2} \right) \psi = 0.
\]

Here, \(r\) denotes the radial variable and \(\nabla_\perp\) is the differential operator in the plane \(z = \text{constant}\). If \(\psi(\xi, r, \tau)\) varies slowly compared to the characteristic scales \(1/\omega\) and \(c/\omega\), the second derivative of the envelope function may be neglected and the wave equation reduces to

\[
\left(\nabla_\perp^2 + 2i\omega c^{-2} \frac{\partial}{\partial \tau} \right) \psi = 0. \tag{13}
\]

Equation (13) is an extremely useful approximation to the full wave equation in a vacuum. Note that the full wave operator is of the hyperbolic type, whereas the reduced wave operator is of the parabolic type. For this reason, Eq. (13) is sometimes referred to as the parabolic approximation to the wave equation.
A particular solution of Eq. (13) is given by

\[\psi = C \frac{\omega_0}{\omega} \left(-\tan^{-1}\left(\frac{\tau}{\tau_R} \right) - (1 - i\tau/\tau_R) \frac{r^2}{\omega^2} \right), \]

(14a)

where \(C \) is a constant,

\[\omega = \omega_0 \left[1 + (\tau/\tau_R)^2 \right]^{1/2}, \]

(14b)

is the spot size, \(\omega_0 \) is the waist and

\[\tau_R = \omega_0^2 / 2c^2, \]

(14c)

is related to the Rayleigh range \(Z_R = \omega_0^2 / 2c \) by \(\tau_R = Z_R / c \).

Ziolkowski\(^{13-15}\) makes use of the variables transformation

\[\xi = z - ct, \quad \eta = z + ct, \]

in the wave equation to reduce it to the form

\[\left(\frac{\partial^2}{\partial \eta^2} + 4 \frac{\partial^2}{\partial \xi \partial \eta} \right) \psi = 0. \]

Representing \(\psi \) in the form

\[\psi = \psi(\eta, r)e^{i\omega \xi/c}, \]

(15)

leads, without any approximation, to an equation for \(\psi \),

\[\left(\frac{\partial^2}{\partial \eta^2} + 4i \frac{\omega}{c} \frac{\partial}{\partial \eta} \right) \psi = 0. \]

(16)

A particular solution of Eq. (16) is given by

\[\psi = C \frac{\omega_0}{\omega} \left(-\tan^{-1}\left(\frac{\eta}{\eta_R} \right) - (1 - i\eta/\eta_R) \frac{r^2}{\omega^2} \right). \]

(17a)

where \(C \) is a constant.
\[
\omega = \omega_0 \left[1 + \left(\frac{\eta}{\eta_R} \right)^2 \right]^{1/2},
\]

(17b)

and

\[
\eta_R = \frac{\omega^2 \omega_0}{c},
\]

(17c)
is related to the Rayleigh range \(Z_R = \frac{\omega^2}{2c} \) by \(\eta_R = 2Z_R \).

Some remarks on the solutions in Eqs. (14) and (17) are in order. First, Eq. (14) is a solution of the parabolic approximation to the full wave equation. On the other hand, Eq. (17) is an exact solution of the full equation. Second, there is a factor-of-two difference between the scale length \(c \eta_R \) in Eq. (14c) and the scale length \(\eta_R \) in Eq. (17c). Third, the solution in Eq. (17) has infinite energy. Finally, the exact solution in Eq. (15) consists of a pulse traveling to the left which is modulated by a plane wave moving to the right.

To examine the last two points, Eqs. (15) and (17) may be combined to form a fundamental Gaussian pulse \(\Psi_k \) with parameter \(k = \omega/c \)

\[
\Psi_k(r, z, t) = e^{i k \eta} e^{-\frac{k r^2}{4\nu}},
\]

(18)

where

\[
\frac{1}{\nu} = \frac{1}{\Lambda} - \frac{i}{R},
\]

\[
\Lambda = z_0 + \xi^2/z_0, \quad R = \xi + z_0^2/\xi,
\]

and \(z_0 \) is a constant. To conform to Ziolkowski's example, Eq. (18) represents a pulse traveling to the right which is modulated by a plane wave moving to the left. With an appropriate weight function, it can be
shown that the \(\psi_k \) for all \(k \) form a complete set of basis functions, each with total energy proportional to \(\int d^3 x |\psi_k|^2 \to \infty \). Just as in the case of Fourier synthesis with plane waves, a general, finite-energy pulse may be obtained by superposing the various \(\psi_k \) according to a weight function \(F(k) \), that is,

\[
f(r,z,t) = \int_0^\infty dk \psi_k(r,z,t) F(k) = \frac{1}{4\pi i(z_0 + i\xi)} \int_0^\infty dk F(k) e^{-ks}, \tag{19a}
\]

where

\[
s = -i\eta + \frac{r^2}{z_0 + i\xi}. \tag{19b}
\]

Equation (19a) indicates that \(f(r,z,t) \) is proportional to the Laplace transform of \(F(k) \).

ii) Modified Power-Spectrum Pulse -- Numerical Study

Ziolkowski has examined in detail the pulse corresponding to a modified power-spectrum (MPS):

\[
F(k) = \begin{cases}
0, & 0 < k < b/\beta \\
\frac{4\pi i\beta (\beta k - b)^{a - 1} e^{-a(\beta k - b)}}{\Gamma(a)}, & k > b/\beta
\end{cases}, \tag{20a}
\]

where \(\Gamma(a) \) is the Gamma function (Ref. 22) and \(a, \alpha, \) and \(\beta \) are arbitrary constants. Upon substituting Eq. (20a) into Eq. (19) one obtains

\[
f(r,z,t) = \left[\frac{1}{z_0 + i\xi} \frac{e^{-b\frac{r^2}{\beta(z_0 + i\xi)}}}{|a + i\frac{2}{\beta(z_0 + i\xi)} - ib/\beta|^{a}} \right]. \tag{20b}
\]
The real part of this function defines the MPS pulse. The radial profile of the MPS pulse at the pulse center, \(\xi = 0 \), has the form

\[
f(r,z) = \frac{1}{z_0} \frac{e^{ibn/\beta}}{(a + r^2/\beta z_0 - i\eta/\beta)^{\alpha}} e^{-br^2/\beta z_0}.
\] (20c)

In the numerical studies the pulse was replicated by superposing the fields from a planar array of discrete points, each of which was driven by a function specified by the MPS form on some \(z = \text{constant plane} \). The parameters were: \(a = 1.0 \text{ cm} \), \(b = 1.0 \times 10^{10} \text{ cm}^{-1} \), \(\beta = 6.0 \times 10^{15} \), \(z_0 = 1.667 \times 10^{-3} \), and \(\alpha = 1 \). The spectrum was approximately flat up to 200 GHz, becoming negligible beyond 15 THz. The pulse generated in this manner was propagated forward and compared with the exact form in Eq. (20b) at several locations along the \(z \) axis. The minimum radius of the array required to replicate the exact pulse form at 1, 10, 100, and 1,000 km was determined. From Ziolkowski's results we estimate the corresponding radii of the antenna to be approximately 0.5, 5, 50, and 500 m, respectively.

We shall examine these results by asking: What is the scale-length for diffraction of the MPS pulse? The pulse has a Gaussian radial profile, as indicated in Eq. (20c), with a width \(\omega_0 = (\beta z_0/b)^{1/2} = 31.6 \text{ cm} \) and, therefore, Ziolkowski calculates a Rayleigh range \(\mu_0^2/\lambda = 0.21 \text{ km} \) for the 200 GHz component. This, however, is not the appropriate scale-length for diffraction of the MPS pulse. The correct scale-length is given by \(2\mu_0 d/\lambda \), where the antenna dimension, \(d \), always exceeds \(\omega_0 \). The point here is that the Rayleigh range based on the waist \(\omega_0 \), as calculated by Ziolkowski, is only valid at the pulse center, \(\xi = 0 \). Away from the plane \(\xi = 0 \) the effective waist increases, as indicated by Eq. (20b), and the actual diffraction length is, therefore, longer than \(\mu_0^2/\lambda \). This.
explains why the pulse propagates further than the Rayleigh range defined in terms of \(w_0 \). To calculate the actual diffraction length, we note that the perpendicular wave number \(k_\perp \) spectrum given in Ref. 15 indicates that the smallest \(k_\perp \) is on the order of \(1/w_0 \). Hence, an estimate for the diffraction angle is \(\lambda/2\pi w_0 \). The width of the radiation beam given by Eq. (3) can be written as \(w = d + (\lambda/2\pi w_0)z \), where \(d \) is the radius of the array or "antenna." The scale-length for diffraction is then simply

\[
Z_{MPS} = \frac{2\pi w_0 d}{\lambda}. \tag{21}
\]

Note the similarity between the diffraction length in Eq. (21) and the scale-length for diffraction of the Bessel beam, \(Z_B = 2\pi d/k_\perp \lambda \), derived in Section V, subsection ii). The resemblance is a reflection of the fact that in both cases the pulse energy is spread over the entire radius, \(d \), of the aperture, which is much larger than the nominal waist of the beam, \(w_0 \).

According to Eq. (21) the larger the radius of the array is, the longer the distance of propagation of the pulse, consistent with the numerical results. From the numerical results, the ratio \(Z_{MPS}/d \) is equal to 2,000 which is the same as that given by Eq. (21) provided the frequency is 300 GHz. Since this frequency is well within the cutoff of the pulse spectrum, this constitutes a persuasive indication that the MPS pulse does not "defeat diffraction" as claimed by Ziolkowski.14

iii) Modified Power-Spectrum Pulse -- Experiment

Ziolkowski et al. have performed a water-tank experiment to demonstrate the properties of a MPS acoustic pulse.16 The pulse was generated by a 6x6 cm\(^2\) square array. The MPS pulse parameters were \(a = 1.9 \text{ m}, b = 600.0 \text{ m}^{-1}, \beta = 300.0, z_0 = 4.5 \times 10^{-4} \text{ m}, \text{ and } \alpha = 1. \) From these parameters one finds that the pulse width \(w_0 \) is equal to 1.5 cm.
The experiment indicated that a Gaussian pulse with an initial width equal to 1.5 cm suffered a greater transverse spreading than the MPS pulse.

This experiment may be examined in the light of the discussion leading to Eq. (21). The expression in Eq. (21) gives the scale-length for the fall-off in the intensity of a pulse which is generated by an array (i.e., antenna) of radius d. Since the square array is 6x6 cm2, we take the parameter d to be equal to 3 cm. Noting that the speed of sound in water is 1.5×10^3 m/s, the wavelength of the dominant frequency in the pulse, 0.6 MHz, is $\lambda = 2.5$ mm. From this, the actual diffraction scale-length Z_{MPS} is 1.1 m. This is in good agreement with the experimental observation that the MPS pulse propagated a distance of 1 m without significant spreading.

Comparing the MPS pulse generated by a 6x6 cm2 array with a Gaussian pulse having a waist of 1.5 cm is inappropriate. A Gaussian beam with spot size equal to the array radius used in the experiment would propagate a distance $nd^2/\lambda \approx Z_{\text{MPS}}$, i.e. as far as the MPS pulse.

We note from Eq. (21) that, in general, a Gaussian beam with an appropriately curved wavefront and an initial spot size equal to the antenna dimension transfers nearly all the power onto a target of dimension w_0 in a distance on the order of Z_{MPS}. Such a Gaussian beam, therefore, transfers more power on the target than the corresponding MPS pulse.
VII. Electromagnetic Bullets

In this section we shall discuss solutions of the wave equation which are confined to a finite region of space in the wave zone and are termed "electromagnetic bullets". We consider solutions of the wave equation

$$\left(\triangledown^2 - c^{-2}\frac{d^2}{dt^2}\right)f(\mathbf{r},t) = -\rho(\mathbf{r},t), \quad (22)$$

where the source term $\rho(\mathbf{r},t)$ is assumed to be non-zero for a finite time interval $-T < t < T$. In this problem there are two cases of interest:

Case (a) is the direct source problem (initial value problem). In this case the solution for $t < T$ is given and the solution for $t > T$ is sought.

Case (b) is the inverse source problem. Here, the solution of the homogeneous wave equation for $|t| > T$ is known and one seeks the source term appropriate to this solution. This case is of particular interest since it would enable one to find the time-dependent source for a prescribed radiation field.

The following four subsections summarize the extensive research of Moses and Prosser on this subject. For a brief description of the properties of a bullet, the reader is referred to subsection iv).

i) Non-uniqueness of the Inverse Source Problem

In this subsection we indicate the reason for the non-uniqueness of the inverse source problem. \(^{17}\) By making use of the eigenfunctions of the curl operator, the electromagnetic vector field wave equation may be solved along essentially the same lines as the one-dimensional problem. The discussion in this subsection is, therefore, confined to the one-dimensional wave equation to avoid the complications of multi-dimensional effects.
Let \(f_+(x, t) = f(x, t) \) denote the solution of Eq. (22) for \(t > T \), and \(f_-(x, t) = f(x, t) \) denote the solution for \(t < -T \). It is well-known that the solution of the source-free initial value problem for \(t > T \) in terms of the values of the function \(f_+(x, t) \) at \(t = T \) and the "velocity" \((\partial/\partial t)f_+(x, t) \) at \(t = T \) is expressible in terms of a propagator \(G(x; t) \):

\[
f_+(x, t) = \int dx' \left[G(x-x'; t-T) \frac{\partial}{\partial t} f_+(x', t=T) + f_+(x', t=T) \frac{\partial}{\partial t} G(x-x'; t-T) \right].
\]

Similarly, the solution of the source-free final value problem for \(t < -T \) in terms of \(f_-(x, t) \) at \(t = -T \) and \((\partial/\partial t)f_-(x, t) \) at \(t = -T \) is given by

\[
f_-(x, t) = \int dx' \left[G(x-x'; t+T) \frac{\partial}{\partial t} f_-(x', t=-T) + f_-(x', t=-T) \frac{\partial}{\partial t} G(x-x'; t+T) \right].
\]

The propagator \(G \) can be written in terms of the Heaviside function \(\eta \) as follows

\[
G(x; t) = \frac{1}{2} \text{sgn}(t) \eta(c^2 t^2 - x^2) = \frac{1}{2} \left[\eta(x+ct) - \eta(x-ct) \right].
\]

That is, \(G \) may be expressed as the difference between the advanced and the retarded Green functions. As a result, \(f_+(x, t) \) is influenced only by points \(x \) at \(t = T \) which lie in the backward light cone of the observation instant; similarly, \(f_-(x, t) \) is influenced only by points \(x \) at \(t = -T \) which lie in the forward light cone of the observation instant, as indicated in Fig. 5.

Let us now consider the effect of the source on the solution of the wave equation. We define two auxiliary functions,

\[
\tilde{\rho}(k, t) = (2\pi)^{-1/2} \int_\infty^\infty dx \, \rho(x, t) e^{-ikx},
\]

\[24\]
\begin{align*}
\tilde{f}(k, \sigma, t) &= \tilde{f}(k, \sigma, -T) e^{-i \sigma |k| (t + T)} \\
&+ \frac{i \sigma}{2 |k|} e^{-i \sigma |k| t} \int_{-T}^{t} dt' \tilde{\rho}(k, t') e^{i \sigma |k| t'},
\end{align*}

where \(\sigma = \pm 1 \) or \(-1\) distinguishes the two directions of propagation along the \(x\) axis. Note that \(\tilde{\rho}(k, t) \) is simply the spatial Fourier transform of \(\rho(x, t) \). In terms of the two auxiliary functions, it is simple to show that

\begin{align*}
f(x, t) &= (2\pi)^{-1/2} \sum_{\sigma} \int_{-\infty}^{\infty} dk \frac{f(k, \sigma, t)}{e^{i k x}} e^{i \sigma |k| (x - t)} \\
is a solution of the inhomogeneous wave equation in Eq. (22). The solutions for \(t < -T \) and for \(t > T \) are then given by

\begin{align*}
f_{\pm}(x, t) &= (2\pi)^{-1/2} \sum_{\sigma} \int_{-\infty}^{\infty} dk e^{i k x} e^{-i \sigma |k| (\pm T - t)} \tilde{f}(k, \sigma, \pm T).
\end{align*}

Equation (27) expresses the solution of the wave equation in terms \(\tilde{f} \) evaluated at \(\pm T \). This function is related to the source \(\rho \) by Eqs. (25) and (26). Equation (23), on the other hand, expresses the same solutions in terms of \(f \) and \((\partial/\partial t)f \) evaluated at \(\pm T \). Hence, we would expect to be able to relate \(\tilde{f}(k, \sigma, \pm T) \) with \(f \) and \((\partial/\partial t)f \) evaluated at \(\pm T \). Indeed, the formula connecting \(\tilde{f}(k, \sigma, T) \) and \(\tilde{f}_+ \) is

\begin{align*}
\tilde{f}(k, \sigma, T) &= (8\pi)^{-1/2} \int_{-\infty}^{\infty} dx \left[f_+(x, t = T) + \frac{\sigma}{|k|} \frac{\partial}{\partial t} f_+(x, t = T) \right] e^{-i k x},
\end{align*}

and \(\tilde{f}(k, \sigma, -T) \) is obtained in terms of \(f_- \) by Fourier inversion of Eq. (27) evaluated at \(t = -T \). Thus, in the direct source problem, \(f_+(x, t) \) is obtained by specifying either \(f_-(x, t) \) and \((\partial/\partial t)f_-(x, t) \) evaluated at \(t = T \), or \(\tilde{f}(x, -T) \) and \(\rho(x, t) \).
We now turn to the inverse source problem. Inverse problems, in
general, have been the subject of extensive research in many branches of
physics. In our case we wish to determine the source from a knowledge of
the field generated by that source. Supposing that \(f(x,t) \) and \(T \) are
known, we can determine \(\tilde{F}(k,\sigma,\pm T) \) from Eqs. (27) and (28). Letting the
upper limit of integration in Eq. (26) equal \(T \), it appears that one can
then obtain the temporal Fourier transform, \(s(k,\omega) \), of \(\tilde{\rho}(k,t) \), where

\[
s(k,\omega) = (2\pi)^{-1/2} \int_{-T}^{T} dt' \tilde{\rho}(k,t') e^{i\omega t'}.
\]

The source function is then given by

\[
\rho(x,t) = (2\pi)^{-1} \int_{-\infty}^{\infty} dk \int_{-\infty}^{\infty} d\omega \ s(k,\omega) e^{i k x - i \omega t}.
\]

Thus, if \(s(k,\omega) \) were known for all \(k \) and all \(\omega \), we could determine \(\rho(x,t) \).
However, referring to Eq. (26), we notice that \(s(k,\omega) \) is only known for
\(\omega = \pm \sigma |k| \), which is not sufficient to reconstruct \(\rho(x,t) \). This
complication is intimately connected with the non-uniqueness of the inverse
problem.

Moses has shown that specification of the time-dependence of the
source is sufficient to guarantee a unique solution.\(^{17}\) As a concrete
example, if \(\rho(r,t) = \rho_e(r)h_e(t) + \rho_o(r)h_o(t) \), where \(h_e \) is an even function
of \(t \) and \(h_o \) is an odd function of \(t \), and both essentially arbitrary, then a
complete solution of the inverse problem for \(\rho_e(r) \) and \(\rho_o(r) \) is possible.
It must be stressed, however, that this assumed form for the source
function is a sufficient but not necessary condition for the solvability of
the inverse problem.
Without going into details we cite the example given in Ref. 17. For simplicity taking the time dependence to be of the form $h_e(t) = \delta(t)$, $h_0(t) = \delta'(t)$, where $'$ denotes d/dt, and assuming the field to be of the form

$$f_{s}(x,t) = \sin[k(x - ct)], \quad -a < x - ct < a, \quad ka = \pi n,$$

the source function is found to be given by

$$p(x,t) = -k \delta(t) \cos(kx) - c^{-1} \delta'(t) \sin(kx), \quad -a < x < a.$$

Note that in this case the source is confined to a finite region of space, which is an important attribute for any physically realizable source function. (We should point out that the source function given by Moses is erroneous due to a sign error in evaluating the Fourier transform of $h_0(t)$ [his Eq. (2.36')]).

ii) Solution of the Three-Dimensional Wave Equation in the Wave Zone

The general solution of the source-free three-dimensional wave equation is

$$f(r,t) = (2\pi)^{-3/2} \sum_\sigma \int d^3 k \ e^{-i k \cdot r} f(k,\sigma), \quad (29)$$

where $\sigma = \pm$, and $k = |k|$. Making use of the method of stationary phase, it can be shown that

$$\lim_{r \to \infty} e^{ik \cdot r} = \frac{2\pi i}{k \sin \theta} \left[e^{ikr} \delta(\theta - \theta') \delta(\phi - \phi') + e^{-ikr} \delta(\theta - \theta') \delta(\phi - \phi') \right], \quad (30)$$

where (θ_x, ϕ_x) are the angles in the cone along $+z$ axis, and θ_x', ϕ_x' are the angles in the cone along $-z$ axis. We shall define cones more
precisely in the following. Upon substituting Eq. (30) into Eq. (29), the field in the wave zone is found to be given by

\[f(r,t) = (8\pi)^{-1/2} r^{-1} \text{Im} \int_0^\infty dk \left[e^{ik(r-ct)} f(k,\theta_\perp,\phi_\perp) - e^{-ik(r+ct)} f(k,\theta'_\perp,\phi'_\perp) \right]. \]

(31)

Remarkably, Eq. (31) shows that the general solution of the three-dimensional wave equation in the wave zone is, apart from the factor 1/r, a superposition of one-dimensional wave motion, expressed as functions of \(r - ct \) and \(r + ct \). Moreover, if initially \(f(r,t) \) is confined to a given solid angle, \(\tilde{F}(k,\theta,\phi) \) will be significant for \(k \) lying within that angle and, from Eq. (31), the solution in the wave zone will also be confined to the same angle. For the purposes of interpretation it is convenient to consider propagation in cones, as indicated in Fig. 6. In particular, an electromagnetic field in a cone is defined as one that is completely confined to a cone in the wave zone.

iii) Exact Solution of the Wave Equation from the Solution in the Wave Zone (Radon Transforms)

The purpose of this subsection is to point out that, given the solution of the wave equation in the wave-zone region, it is possible to determine the solution everywhere. In particular, one seeks the initial conditions \(f(r,t) \) and \((\partial/\partial t)f(r,t) \) at \(t = T \). This is referred to as the inverse initial value problem.

The solution of the inverse initial value problem is discussed in Ref. 18 for a particularly simple case. A systematic treatment of the general problem is possible by using Radon transforms.

The Radon transform \(\mathcal{F}(\xi, h) \) of a function \(f(r) \) is obtained by integrating \(f \) over all planes \(r, n^\perp = \text{const} \).
\[F(k, \hat{n}) = \int d^3 \mathbf{r} \ f(\mathbf{r}) \ \delta(\mathbf{r} \cdot \hat{n} - k), \]

where \(\hat{n} \) is a unit vector. The usual Radon transform is defined as an integral over planes whose normals vary over a unit sphere. In general, the function \(f(\mathbf{r}) \) defines some internal distribution (such as density) of an object and \(F(k, \hat{n}) \) is the projected distribution, or the profile, of the object on the plane \(\mathbf{r} \cdot \hat{n} = \text{constant} \). The Radon transform is a very useful tool in image reconstruction from projections, with applications in computer-assisted tomography (CAT)-scan, radio astronomy, remote sensing, etc.

A refinement of the usual definition of the Radon transform shows that only the transform over a hemisphere, which may consist of disjointed parts, is sufficient to reconstruct the original function. It can then be shown that the task of obtaining an exact solution of the three-dimensional wave equation from the solution in the wave zone reduces to taking the inverse of the refined Radon transform of the solution in the wave zone.

From Eq. (31) it is known that in the wave zone the solution of the wave equation is, apart from a factor \(1/r \), a function of only \(r-ct \) or \(r+ct \), representing propagation along rays confined to a cone. The field in the wave zone, therefore, defines the range of the unit vector \(\hat{n} \) and the amplitude. This information is essentially equivalent to knowing the projections in different directions. The exact field may then be reconstructed from the set of projections.

iv) Example of a Bullet

We close Section VII by discussing an explicit example of a bullet which is a solution of the scalar wave equation. An example of an electromagnetic bullet is given in Ref. 20.
A bullet which is confined to a finite volume in the wave-zone is given by

\[f(r,t) = \eta(\sigma - \Theta) \left[\eta(r-a-ct) - \eta(r-b-ct) \right]/r, \quad r \to \infty, \quad (32) \]

where \(\eta \) is the Heaviside function, \(a \) and \(b \), with \(b > a \), denote the boundaries of the bullet along the radius, and \(2\sigma \) is the vertex angle of the cone containing the bullet. Note that this solution is causal and of finite energy, and has a form which is consistent with the remarks following Eq. (31). It represents a packet of energy "shot" through a cone whose axis coincides with the \(z \) axis.

This solution can be easily verified by letting \(f = g(r,\Theta,t)/r \) and noting that

\[\left(v^2 - c^2 \frac{\partial^2}{\partial t^2} \right) f = \left(\frac{\partial^2}{\partial r^2} - c^2 \frac{\partial^2}{\partial t^2} \right) g + \frac{1}{r^2 \sin \Theta} \frac{\partial}{\partial \Theta} \left(\sin \Theta \frac{\partial}{\partial \Theta} \right) g. \]

Assuming \(g(r,\Theta,t) = h(r-ct-r_0)Y(\Theta) \), one finds

\[\left(v^2 - c^2 \frac{\partial^2}{\partial t^2} \right) f = \frac{h}{r^2 \sin \Theta} \frac{d}{d\Theta} \left(\sin \Theta \frac{d}{d\Theta} Y \right), \quad (33) \]

which tends to zero for all continuous \(Y(\Theta) \) as \(r \to \infty \). For the case when \(Y(\Theta) = \eta(\sigma - \Theta) \), we let \(-dY/d\Theta = \exp[-(\sigma-\Theta)^2/(2\Delta^2)]/(2\pi)^{1/2} \Delta \), with \(\Delta \to 0 \). Note that as \(\Delta \to 0 \), \(dY/d\Theta \to -\delta(\sigma-\Theta) = d\eta(\sigma-\Theta)/d\Theta \). Upon substituting this form into Eq. (33), we notice that as \(\Delta \) is made to approach zero, \(r \) must increase indefinitely in order for the right-hand side of Eq. (33) to approach zero. This shows very clearly that Eq. (32) is indeed a solution in the wave zone.

The spot size may be defined by:

\[r_s^2 = \frac{\int d\Theta d\Phi \int r^2 \sin \Theta \left(2r \sin \Theta \right)^2 / \int d\Theta d\Phi \int r^2 \sin \Theta, \quad (34) \]
where $2r \sin \theta$ is the width of a cone of half-angle θ. Substituting Eq. (32) into Eq. (34), one obtains

$$r_s \to [(8 - 9 \cos \sigma + \cos 3\sigma)/3(1 - \cos \sigma)]^{1/2} c t, \quad t \to \infty$$

indicating a linear increase with time for the spot size, as in the case of the Gaussian pulse in Eq. (14b), although the constants of proportionality are different. We mention in passing that the solutions given by Moses and Prosser are distinguished from the other solutions reviewed here by not having an explicit dependence on the frequency or the wave number.

As mentioned in the previous subsection, to obtain the exact solution everywhere one has merely to evaluate the inverse Radon transform of the solution in the wave zone, Eq. (32). Since the derivation is lengthy we shall simply quote the result. The exact solution is given by

$$f(r,t) = f_a(r,t) - f_b(r,t),$$

(36a)

where

$$f_a(r,t) = \eta(\sigma - \theta) \left[\eta[a + ct - r \cos(\theta - \sigma)] - \eta(a + ct - r) \right]/r$$

$$+ \nu_a [\eta[a + ct - r \cos(\theta + \sigma)] - \eta(a + ct - r \cos(\theta - \sigma))]/\pi r,$$

(36b)

with

$$\nu_a = \cos^{-1} [(\cos \sigma - \cos \beta_a \cos \theta)/\sin \beta_a \sin \theta], \quad 0 < \nu_a < \pi,$$

and

$$\beta_a = \cos^{-1} [(a + ct)/r], \quad 0 < \beta_a < \pi/2,$$

and where $f_b(r,t)$ is identical to $f_a(r,t)$ except that a is replaced by b.

31
The field in Eq. (36) is identically zero for all \(r \) downstream of the bullet, i.e., for all \(r < a + ct \). The wave-zone limit is obtained by taking \(r, t \to \infty \). Then, since Eq. (36) corresponds to propagation in the positive cone (Fig. 6), taking \(r - ct = \) constant Eq. (32) is recovered. The requirement \(r - ct = \) constant is equivalent to observing the bullet in a co-moving frame. Close to the origin the exact solution in Eq. (36) spreads out of the cone significantly. However, in the wave zone the solution is confined to the cone and is independent of the angle \(\theta \) therein. Finally, it has been shown in Ref. 20 that the difference between the exact solution in Eq. (36) and the wave-zone solution in Eq. (32) becomes small quite rapidly as \(r, ct \) increase, with \(r - ct \) held fixed.

In principle, one can now use the inverse source method to determine the sources that lead to the bullet described by Eq. (32). To our knowledge, however, this computation has yet to be performed.
VIII. Summary and Concluding Remarks

The motivation for much of the research reviewed herein stems from the need to propagate a beam of radiation over long distances without an appreciable decrease in the intensity. Possible applications would include: power beaming, advanced radar, laser acceleration of particles and directed energy sources. This need has led to a great deal of interest in such fundamental subjects as diffraction and new solutions of the wave equation.

It has been reiterated that the physical basis for diffraction of waves is the well-known relation $\Delta k_i \Delta x_i = 1$, for $i = 1, 2, 3$. By virtue of this, it is simple to determine the scale length for the diffractive spreading of a beam with an arbitrary transverse profile. Thus, a knowledge of the spectrum is sufficient to determine the maximum propagation distance of the beam. Since diffraction is unavoidable, by concentrating the energy in the high frequencies one can only delay the spreading of the beam.

Four examples of the research effort on the subject of beam propagation have been reviewed herein. The conclusions are as follows.

i) **Electromagnetic Missiles**

Experiment indicates that a suitably tailored pulse-shape can be designed to have an energy decay rate limited by the highest frequencies present in the pulse. This is fully consistent with our understanding of diffraction.

ii) **Bessel Beams**

It is shown that as far as propagation is concerned Bessel beams are not "resistant to the diffractive spreading commonly associated with all wave propagation". These beams propagate no further than Gaussian beams or plane waves with the same transverse dimensions.
iii) Electromagnetic Directed Energy Pulse Trains

The diffractive properties of the pulse form studied most intensively under this general heading are described by diffraction theory. These pulse trains do not "defeat diffraction".

iv) Electromagnetic Bullets

Given a radiation wave packet in the wave-zone which is confined to a suitable solid angle and extends over a finite radial extent, one can determine the source required to generate the wave packet. As of this writing, however, this problem has not been solved for a practical case.

Acknowledgment

This work was supported by the Office of Naval Research and the Department of Energy.
Appendix

The purpose of this appendix is to examine the transition from the Fresnel to the Fraunhofer region for a clipped Bessel beam and a clipped Gaussian beam within the context of the Huygens-Fresnel approximation. The clipping is assumed to be caused by a finite-size aperture.

In the case of the Bessel beam the field distribution at the aperture has the form \(u(r,z=0) = J_0(k_\perp r) \) within a circular aperture of radius \(d \). Making use of Eq. (6) the amplitude at a point on the axis of symmetry is given by

\[
\psi \propto z^{-1} \int_0^d dr' \, r' \, J_0(k_\perp r') \, e^{ikr'/2z}. \tag{A1}
\]

The limit \(k_\perp = 0 \) corresponds to the case of plane waves incident on a circular aperture, as in Section III. The intensity, given by Eq. (9), falls off monotonically for \(z > Z_p \), where

\[Z_p = \frac{2nd^2}{\lambda}. \tag{A2} \]

For \(k_\perp > 0 \), the oscillatory behavior of the Bessel function in Eq. (A1) tends to phase mix the integrand, effectively reducing the upper limit of the integration. Consequently, the boundary of the Fresnel region, beyond which the radiation appears to be emitted essentially from a point source, is reached prior to \(Z_p = 2nd^2/\lambda \).

Since there is no simple analytical approximation to the integral in Eq. (A1), consider the case of a cosine beam \(u(x,y,z=0) = \cos(k_x x) \cos(k_y y) \), which is the cartesian equivalent of a Bessel beam. The aperture is a rectangular opening in the \(xy \) plane defined by \(\{ (x,y), |x| < X, |y| < Y \} \). In terms of
the amplitude on the z axis has the form $\psi = I_x I_y$, where

$$I_x = e^{-\frac{ik^2}{2k}z/2k} [C(\xi_+) + iS(\xi_+) + C(\xi_-) + iS(\xi_-)],$$

(A4)

and

$$S(t) = (2/\pi)^{1/2} \int_0^t dt \sin^2 t, \quad C(t) = (2/\pi)^{1/2} \int_0^t dt \cos^2 t,$$

are the Fresnel integrals. The expression for I_y is obtained from that for I_x by making the replacements $k_x \rightarrow k_y$, $X \rightarrow Y$.

We are interested in the intensity well within a nominal Fresnel region defined by the width of the aperture

$$z \ll k(X^2 + Y^2)/2,$$

(A5)

but sufficiently far from the aperture so that the radiation diffracted from one edge can reach the z axis:

$$z = k(X/k_x, Y/k_y).$$

(A6)

Taking the appropriate limits of the Fresnel integrals, the intensity is $I = I_0/16$, where I_0 is the intensity at the diffracting aperture. This analysis indicates that Eq. (A6) defines the boundary of the true Fresnel region. The terms proportional to $+ k_x z/k$ in Eq. (A3) represent propagation at an angle $\sin \frac{1}{2}(k_x/k) \rightarrow \zeta$ to the z axis. As a consequence the drop in intensity characterizing the transition to the Fraunhofer region takes place at the location indicated by Eq. (A6) rather than by the right hand side of Eq. (A5).
Returning to the Bessel beam with \(d \gg 1/k_\perp \), in the region of significant phase mixing in the integrand of Eq. (A1) the Bessel function has the asymptotic form \(J_0(z) \approx (2/\pi z)^{1/2} \cos(z - \eta/4) \). Substituting this into Eq. (A1) and comparing the phases, it follows that the Fraunhofer region for the Bessel beam commences at \(Z_B = 2\pi d/k_\perp \). From the definition of \(Z_B \) in Eq. (A2) we note that \(Z_B/Z_P = 1/k_\perp d \ll 1 \) for the experimental parameters in Ref. 11. Thus, we see that a Bessel beam is not optimum as far as the diffractive fall-off of the intensity is concerned.

For the Gaussian beam, substituting \(u(r) \exp(-r^2/\omega_0^2) \) into Eq. (6) and performing the integral, the intensity on the axis of symmetry is found to be given by

\[
I \approx 1 + e^{-2(d/\omega_0)^2} - 2e^{-2(d/\omega_0)^2} \cos(kd^2/2z),
\]

where \(Z_R \) is the Rayleigh range defined in Eq. (1). For the parameters in Ref. 11, \(d/\omega_0 \gg 1 \), and the scale-length for the intensity to drop to a quarter of its initial value is on the order of \(2Z_R \), as in Eq. (4c). This same scale-length is roughly applicable to the case of a wider Gaussian beam with \(\omega_0 = d \). For an infinitely wide beam, \(\omega_0 \to \infty \), and Eq. (A7) goes over to the case of plane waves, Eq. (9).

For the off-axis intensity of the cosine beam we limit the discussion to the case where the observation point is an integral number of half periods off of the \(z \) axis. In analogy with Eq. (A3) we define

\[
l_\parallel = (k/\pi)^{1/2}[X + (k_x/k \cdot n_x/\lambda k)],
\]

\[
l_\perp = (k/\pi)^{1/2}[X + (k_x/k \cdot n_x/\lambda k)].
\]
where \(n_x \pi / k_x \), with \(n_x \) an integer, is the \(x \)-coordinate of the observation point. We assume \(n_x \pi / k_x < X \). In terms of these variables, the amplitude has the form \(\psi = I_x I_y \), where

\[
I_x = [C(\xi_+) + iS(\xi_+) + C(\xi_-) + iS(\xi_-) \\
+ C(\eta_+) + iS(\eta_+) + C(\eta_-) + iS(\eta_-)],
\]

(A8)

where \(C \) and \(S \) are the Fresnel integrals defined earlier and the expression for \(I_y \) is obtained from that for \(I_x \) by making the substitution \(k_x \rightarrow k_y \), \(X \rightarrow Y \), and \(n_x + n_y \).

For plane waves \((k_{x,y} \rightarrow 0)\) and on the symmetry axis \((n_{x,y} \rightarrow 0)\) the transition from the oscillatory to the monotonically falling behavior of the Fresnel integrals in Eq. (A8) takes place at \(z = k(X^2, Y^2) / 2 \). This marks the boundary between the Fresnel and Fraunhofer regions. For the cosine beam and on the symmetry axis \((n_{x,y} \rightarrow 0)\) Eq. (A8) reduces to Eq. (A4) and hence Eq. (A6) defines the boundary between the two regions. Away from the symmetry axis \((n_{x,y} > 0)\) the behavior is somewhat more complicated. On the aperture, \(z = 0 \), and \(\xi_+, \eta_+ \rightarrow \infty \), whence \(I_x = 2(1 + i) \).

For \(z \) sufficiently large so that \(0 < \eta_- < 1 \), but \(\xi_+, \xi_- \gg 1 \), the last two terms in Eq. (A8) are small and \(I_x \rightarrow 3(1 + i) / z \). From the definition of \(\eta_- \) we note that as the observation point approaches the edge of the aperture \((n_x \pi / k_x + X)\) this reduction in the value of \(I_x \) is obtained at smaller values of \(z \), according to the formula \(z = k(X - n_x \pi / k_x) k_x \). Figure 7, which plots \(|I_x|^2 \) as a function of \(z \), confirms this behavior for parameters similar to that in Ref. 11.
References

Elementary area \(dS' \)

Aperture

Figure 1
Circular aperture of radius d in opaque screen

Figure 2
Far-Field, Near-Field,

Wave Zone

Intensity, \(I \) \(\sim \frac{d^2}{\lambda} \)

Figure 3
Region \mathcal{A}

$\rho, J \neq 0$

Screen S

Figure 4
CAUSAL PROPAGATION

Figure 5
Directed propagation

Simple cone

Figure 6
<table>
<thead>
<tr>
<th>Code</th>
<th>Name and Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>Dr. T. Coffey</td>
</tr>
<tr>
<td>1005</td>
<td>Head, Office of Management & Admin.</td>
</tr>
<tr>
<td>1005.1</td>
<td>Deputy Head, Office of Management & Admin.</td>
</tr>
<tr>
<td>1005.6</td>
<td>Head, Directives Staff</td>
</tr>
<tr>
<td>1200</td>
<td>CAPT R. W. Michaux</td>
</tr>
<tr>
<td>1201</td>
<td>Deputy Head, Command Support Division</td>
</tr>
<tr>
<td>1220</td>
<td>Mr. H. Ferguson</td>
</tr>
<tr>
<td>2000</td>
<td>Director of Technical Services</td>
</tr>
<tr>
<td>2604</td>
<td>NRL Historian</td>
</tr>
<tr>
<td>3000</td>
<td>Director of Business Operations</td>
</tr>
<tr>
<td>4000</td>
<td>Dr. W. R. Ellis</td>
</tr>
<tr>
<td>0124</td>
<td>ONR</td>
</tr>
<tr>
<td>4600</td>
<td>Dr. D. Nagel</td>
</tr>
<tr>
<td>4603</td>
<td>Dr. W. W. Zachary</td>
</tr>
<tr>
<td>4700</td>
<td>Dr. S. Ossakow (26 copies)</td>
</tr>
<tr>
<td>4707</td>
<td>Dr. W. M. Manheimer</td>
</tr>
<tr>
<td>4730</td>
<td>Dr. R. Elton</td>
</tr>
<tr>
<td>4770</td>
<td>Dr. G. Cooperstein</td>
</tr>
<tr>
<td>4780</td>
<td>Dr. A. W. Ali</td>
</tr>
<tr>
<td>4790</td>
<td>Dr. C. M. Tang</td>
</tr>
<tr>
<td>4790</td>
<td>Dr. G. Joyce</td>
</tr>
<tr>
<td>4790</td>
<td>Dr. M. Lampe</td>
</tr>
<tr>
<td>4790</td>
<td>Dr. Y. Y. Lau</td>
</tr>
<tr>
<td>4790</td>
<td>Dr. A. Ting</td>
</tr>
<tr>
<td>4790</td>
<td>Dr. E. Esarey</td>
</tr>
<tr>
<td>4790</td>
<td>Dr. J. Krall</td>
</tr>
<tr>
<td>4790A</td>
<td>B. Pitcher (20 copies)</td>
</tr>
<tr>
<td>4790</td>
<td>Dr. P. Sprangle</td>
</tr>
<tr>
<td>4793</td>
<td>Dr. W. Black</td>
</tr>
<tr>
<td>4793</td>
<td>Dr. S. Gold</td>
</tr>
<tr>
<td>4793</td>
<td>Dr. D. L. Hardesty</td>
</tr>
<tr>
<td>4793</td>
<td>Dr. A. K. Kinkead</td>
</tr>
<tr>
<td>4794</td>
<td>Dr. A. W. Fliflet</td>
</tr>
<tr>
<td>4794</td>
<td>Dr. M. Rhinewine</td>
</tr>
<tr>
<td>4795</td>
<td>Dr. C. A. Kapetanakos</td>
</tr>
<tr>
<td>4795</td>
<td>Dr. J. Matheev</td>
</tr>
<tr>
<td>5700</td>
<td>Dr. L. A. Cosby</td>
</tr>
<tr>
<td>5745</td>
<td>Dr. J. Condon</td>
</tr>
<tr>
<td>6840</td>
<td>Dr. S. Y. Ahn</td>
</tr>
<tr>
<td>6840</td>
<td>Dr. A. Ganguly</td>
</tr>
<tr>
<td>6840</td>
<td>Dr. R. K. Parker</td>
</tr>
<tr>
<td>6843</td>
<td>Dr. R. H. Jackson</td>
</tr>
<tr>
<td>6843</td>
<td>Dr. N. R. Vanderplaats</td>
</tr>
<tr>
<td>6843</td>
<td>Dr. C. M. Armstrong</td>
</tr>
<tr>
<td>6875</td>
<td>Dr. R. Wagner</td>
</tr>
<tr>
<td>2628</td>
<td>Documents (22 copies)</td>
</tr>
<tr>
<td>2634</td>
<td>D. Wilbanks</td>
</tr>
</tbody>
</table>

NOTE: Every name listed on distribution gets one copy except for those where extra copies are noted.
<table>
<thead>
<tr>
<th>Name</th>
<th>Title/Institution</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. R. E. Aamodt</td>
<td>Lodestar Research Corp.</td>
<td>2400 Central Ave., P-5, Boulder, CO 80306-4545</td>
</tr>
<tr>
<td>Dr. J. Adamski</td>
<td>Boeing Aerospace Company</td>
<td>P.O. Box 3959, Seattle, WA 98124</td>
</tr>
<tr>
<td>Dr. T. M. Antonsen</td>
<td>University of Maryland</td>
<td>College Park, MD 20742</td>
</tr>
<tr>
<td>Assistant Secretary of the</td>
<td>Air Force (RD&L)</td>
<td>Room 46856, The Pentagon, Washington, D.C. 20330</td>
</tr>
<tr>
<td>Dr. W. A. Barletta</td>
<td>Lawrence Livermore National Lab.</td>
<td>P.O. Box 808, Livermore, CA 94550</td>
</tr>
<tr>
<td>Dr. W. Becker</td>
<td>Univ. of New Mexico</td>
<td>Institute for Mod. Opt. Albuquerque, NM 87131</td>
</tr>
<tr>
<td>Dr. Robert Behringer</td>
<td>9342 Balcon Ave., Northridge, CA 91325</td>
<td></td>
</tr>
<tr>
<td>Dr. G. Bekefi</td>
<td>Mass. Institute of Tech.</td>
<td>Room 36-213, Cambridge, MA 02139</td>
</tr>
<tr>
<td>Dr. Steven V. Benson</td>
<td>Physics Building</td>
<td>Duke University, Durham, NC 27706</td>
</tr>
<tr>
<td>Dr. J. B. Bernstein</td>
<td>Mason Laboratory</td>
<td>Yale University, 409 Temple Street, New Haven, CT 06520</td>
</tr>
<tr>
<td>Dr. Amitava Bhatnacharjee</td>
<td>Columbia University</td>
<td>S. W. Mudd 210, Dept. of Applied Phys., New York, NY 10027</td>
</tr>
<tr>
<td>Dr. Anup Bhownik</td>
<td>Rockwell International/Rocketdyne Div.</td>
<td>6633 Canoga Avenue, FA-40, Canoga Park, CA 91304</td>
</tr>
<tr>
<td>Dr. G. Bourianoff</td>
<td>1901 Rutland Drive, Austin, TX 78758</td>
<td></td>
</tr>
<tr>
<td>Dr. Charles Brau</td>
<td>Vanderbilt University</td>
<td>Nashville, TN 37235</td>
</tr>
<tr>
<td>Dr. R. Briggs</td>
<td>SSC Laboratory</td>
<td>Stoneridge Office Park, 2550 Beckleymane Ave., Suite 260, Dallas, TX 75237</td>
</tr>
<tr>
<td>Prof. William Case</td>
<td>Dept. of Physics</td>
<td>Grinnell College, Grinnell, IA 50112</td>
</tr>
<tr>
<td>Dr. R. Center</td>
<td>Spectra Tech., Inc.</td>
<td>2755 Northup Way, Bellevue, WA 98004</td>
</tr>
<tr>
<td>Dr. K. C. Chan</td>
<td>Los Alamos National Laboratory</td>
<td>P.O. Box 1663, Los Alamos, NM 87545</td>
</tr>
<tr>
<td>Prof. Frank Chen</td>
<td>School of Eng. & Applied Sciences</td>
<td>Univ. of Calif. at Los Angeles, 7731 K Boelter Hall, Los Angeles, CA 90024</td>
</tr>
<tr>
<td>Dr. S. Chen</td>
<td>MIT Plasma Fusion Center</td>
<td>NW16-176, Cambridge, MA 01890</td>
</tr>
<tr>
<td>Dr. D. F. Chernin</td>
<td>Science Applications Intl. Corp.</td>
<td>1720 Goodridge Drive, McLean, VA 22102</td>
</tr>
<tr>
<td>Dr. William Colson</td>
<td>Naval Postgraduate School</td>
<td>Physics Dept., Monterey, CA 93940</td>
</tr>
</tbody>
</table>
Prof. J. M. J. Madey
117 Physics Bldg.
Duke University
Durham, NC 27706

Dr. R. Mak
205 South Whiting Street
Alexandria, VA 22304

Dr. Joseph Mangano
Science Research Laboratory
1600 Wilson Blvd.
Suite 1200
Arlington, VA 22209

Dr. Siva A. Mani
Science Applications Intl. Corp.
1040 Waltham Street
Lexington, MA 02173-8027

Dr. T. C. Marshall
Applied Physics Department
Columbia University
New York, NY 10027

Dr. Xavier K. Matuyama
Dept. of Physics
Naval Postgraduate School
Monterey, CA 93943

Dr. B. McVey
Los Alamos National Laboratory
P. O. Box 1663
Los Alamos, NM 87545

Dr. David Merritt
Space & Naval Warfare Command
Attn: PMW 145A
Washington, DC 20363-5100

Dr. A. Mondelli
Science Applications Intl. Corp.
1710 Goodridge Drive
P. O. Box 1303
McLean, VA 22101

Dr. Mel Month
Brookhaven National Laboratories
Associated Universities, Inc.
Upton, L.I., NY 11733

Dr. Gerald T. Moore
University of New Mexico
Albuquerque, NM 87131

Dr. Philip Morton
Stanford Linear Accelerator Center
P. O. Box 4549
Stanford, CA 94305

Prof. J. Nation
226 Phillips Hall
School of Elec. Eng.
Cornell University
Ithaca, NY 14850

Dr. George Neil
TRW
One Space Park
Redondo Beach, CA 90278

Dr. Kelvin Neil
Lawrence Livermore National Lab.
Code L-321, P. O. Box 808
Livermore, CA 94550

Dr. Brian Newnam
MSJ 564
Los Alamos National Scientific Lab.
P. O. Box 1663
Los Alamos, NM 87545

Dr. T. Orzechowski
L-426
Lawrence Livermore National Lab.
P. O. Box 808
Livermore, CA 94550

Prof. E. Ott
Department of Physics
University of Maryland
College Park, MD 20742

OUSDRE (R&AT)
Room 3D1067, The Pentagon
Washington, D.C. 20301

Dr. Robert B. Palmer
Brookhaven National Laboratories
Associated Universities, Inc.
Upton, L.I., NY 11733

Dr. J. Palmer
Hughes Research Laboratory
Malibu, CA 90265

Dr. Richard H. Pantell
Stanford University
Stanford, CA 94305
Dr. Howard Schlossberg
AFOSR
Tolling AFB
Washington, D.C. 20332

Dr. George Schmidt
Stevens Institute of Technology
Physics Department
Hoboken, NJ 07030

Dr. M. J. Schmidt
Los Alamos National Laboratory
P. O. Box 1663
Los Alamos, NM 87545

Dr. H. Schwettmann
Phys. Dept. & High Energy
Physics Laboratory
Stanford University
Stanford, CA 94305

Dr. Marlan O. Scully
Dept. of Physics & Astronomy
Univ. of New Mexico
800 Yale Blvd. NE
Albuquerque, NM 87131

Dr. S. B. Segall
KMS Fusion
3941 Research Park Dr.
P. O. Box 1567
Ann Arbor, MI 48106

Prof. P. Serafim
Northeastern University
Boston, MA 02115

Dr. A. M. Sessler
Lawrence Berkeley Laboratory
University of California
1 Cyclotron Road
Berkeley, CA 94720

Dr. W. Sharp
L-626
Lawrence Livermore National Laboratory
P. O. Box 808
Livermore, CA 94550

Dr. Earl D. Shaw
Bell Laboratories
500 Mountain Avenue
Murray Hill, NJ 07974

Dr. R. L. Sheffield
Los Alamos National Laboratory
P. O. Box 1663
Los Alamos, NM 87545

Dr. D. Shoffstall
Boeing Aerospace Company
P. O. Box 3999
Seattle, WA 98124

Dr. Jack Slater
Spectra Technology
2755 Northup Way
Pellavue, WA 98034

Dr. Todd Smith
Hansen Labs
Stanford University
Stanford, CA 94305

Dr. K. Sudan
Lab. of Plasma Studies
Cornell University
Ithaca, NY 14850

Dr. David F. Sutter
ER 22c, GTN
Department of Energy
Washington, D.C. 20545

Dr. A. Tajima
Institute for Fusion Studies
University of Texas at Austin
Austin, TX 78712

Dr. R. Temkin
Mass. Institute of Technology
Plasma Fusion Center
Cambridge, MA 02139

Dr. L. Thode
Los Alamos National Laboratory
P. O. Box 1663
Los Alamos, NM 87545

Dr. Norman H. Tolk
Physics Department
Vanderbilt University
Nashville, TN 37240

Dr. Fang Tsang
Science Applications Intl. Corp.
1170 Cambridge Dr.
Alexandria, VA 22310
Dr. H. S. Uhm
Naval Surface Warfare Center
White Oak Lab
Silver Spring, MD 20963-5000

Under Secretary of Defense (R&D)
Office of the Secretary of Defense
Room 3E1006, The Pentagon
Washington, D.C. 20301

Dr. John E. Walsh
Wilder Laboratory
Department of Physics (HB 612)
Dartmouth College
Hanover NH 03755

Dr. Jiunn-Ming Wang
Brookhaven National Laboratories
Associated Universities, Inc.
Upton, L.I., NY 11973

Dr. Roger W. Warren
Los Alamos National Scientific Lab.
P.O. Box 1663
Los Alamos, NM 87545

Dr. J. Watson
Los Alamos National Laboratory
P.O. Box 1663
Los Alamos, NM 87545

Dr. Mack Wilson
Natl. Inst. of Standards and Tech.
Bldg. 245, Rm. B-119
Gaithersburg, MD 20899

Dr. J. Wurtele
M.I.T.
NW 16-234
Plasma Fusion Center
Cambridge, MA 02139

Dr. Ming Xie
Dept. of Physics
Stanford University
Stanford, CA 94305

Dr. Simon S. Yu
Lawrence Livermore National Laboratory
P.O. Box 808
Livermore, CA 94550