An x-ray crystal structure investigation has revealed that the stable octahedral complex \([\text{O}_2\text{Re}(2,2'bipyridine)(pyridine)_2]_2\text{ClO}_4\) exists in a cis-dioxo ligand configuration. The new complex represents only the second confirmed example of the cis-dioxo structure in hexacoordinate d^2 transition-metal chemistry. The cis assignment provides an explanation for the marked electrochemical and spectral differences between the bipyridyl complex and the previously known trans-dioxo rhenium tetrapyridine complex.
Molecular Structure of [(O)\textsubscript{2}Re(bipyridine)(pyridine)\textsubscript{2}](ClO\textsubscript{4}): An Unusual Example of a d2 Metal Complex with a cis-Dioxo Ligand Configuration

by

Robert L. Blackbourn, Lisa M. Jones, M. S. Ram, Michal Sabat and Joseph T. Hupp

Department of Chemistry
Northwestern University
Evanston, Illinois 60208-3113

Accepted for publication in Inorganic Chemistry.
Dioxo rhenium(V) species, especially with pyridyl-type ligands, have attracted significant interest recently — both on account of their electrochemical properties\(^1\) and their photophysical and photochemical reactivity characteristics.\(^2,3\) We have been examining these species from the point of view of multi-electron transfer kinetics (i.e. Re(V) = Re(III) and Re(V) = Re(II)), especially at electrochemical interfaces.\(^4\) In the course of those studies we have had occasion to introduce relatively minor modifications to the ligand environment. One of these — the replacement of a pair of pyridine(py) ligands by 2,2'-bipyridine(bpy) in the prototypical complex, \(\text{trans}-(\text{O})_2\text{Re(py)}_4\) — had profound chemical consequences. Formal potentials shifted by up to 600 mV, photophysical activity disappeared, and a rare display of three-electron redox chemistry emerged at high pH's. Furthermore, the kinetics of the multi-electron electrochemical reduction were greatly accelerated. Finally, there were marked changes in NMR, Raman UV-vis and infrared spectra.\(^4\)

On the basis of extensive circumstantial evidence we were forced to conclude that the changes were brought about by trans to cis isomerization upon bpy substitution. (The conclusion was particularly attractive, however, because it could account for the rather remarkable kinetic effects.) It was noted, nevertheless, that a rigorous structural assignment was impossible based upon either magnetic or vibrational spectroscopy — the reason being that both \(\text{cis}\) and \(\text{trans}-(\text{O})_2\text{Re(bpy)(py)}_2\) would possess \(C_2V\) symmetry.\(^5\) Furthermore, there were theoretical reasons to doubt the \(\text{cis}\) geometry.\(^6\)

We now report, based upon x-ray crystal structure investigations,\(^7\) that the product of bipyridyl substitution at \(\text{trans}-(\text{O})_2\text{Re(py)}_4\) is indeed \(\text{cis}-(\text{O})_2\text{Re(bpy)(py)}_2\). To our knowledge this is one of only two confirmed
examples of a hexacoordinate d^2 metal complex with cis-dioxo structure. It should be noted, however, that two additional examples have been proposed by Meyer and co-workers based on polypyridyl complexation of oxidation state I of either osmium or ruthenium. The osmium complex is moderately stable and has been isolated as a perchlorate salt; the Ru species displays only a transient solution existence. Neither has been confirmed by crystallographic measurements. Nevertheless, in view of the present findings the earlier structural assignments almost certainly are correct.)

For the current work a powdered sample of cis-[(O)₂Re(bpy)(py)₂(ClO₄)] was prepared and purified as described by Ram, et al. Red crystals of x-ray quality (ca. 0.4 mm diameter) were obtained (~3 days) by dissolution of the powder in an acetone/ethyl acetate mixture, followed by cooling to -30°C. An ORTEP drawing of the complex cation is shown in figure 1. The Re atom is present within a distorted octahedral environment. The cis-(O)₂Re moiety is characterized by Re-O bond lengths of 1.733(8) Å and 1.736(7) Å and an O-Re-O bond angle of 121.4(4). The Re-O bond lengths are only slightly shorter than those found in the d^2 trans complexes [(O)₂Re(py)₄]Cl and [(O)₂Re(ethylenediamine)₂]Cl. They also compare very well to those found in a trigonal bipyramidal cis-(O)₂Re species. The O-Re-O angle, however, is much smaller in (O)₂Re(bpy)(py)₂ than in the five-coordinate structure (138.7(6)°). On the other hand, it is appreciably larger than in most d^2 cis-dioxo complexes. The bipyridine Nl-Re-Nl' "bite" angle is 70.6(3)°, a quite typical value for bpy complexes. Likewise the inter-ring "twist" of 7.2° is typical of transition-metal bpy complexes. Finally, it is worth noting that the pyridyl ligands are tilted significantly towards the cis-(O)₂Re moiety. Thus the dihedral angles between the (O)₂Re plane and the Nl
and N3 rings are 74.6° and 74.8° respectively. (The N1-Re-N3 angle itself is 169.0(3).) At present, we have no explanation for this peculiar geometry.

In view of Mingos' work, the cis configuration is perhaps not the most stable form thermodynamically for (O)₂⁴Re(bpy)(py)₂⁻. Evidence of chemical instability comes from solution studies and from the detection of pyridineHClO₄⁻ in the sample. Obviously, the appearance of the cis structure at the expense of the trans would then reflect a kinetic preference at some stage in the substitution process. Although we have not pursued the issues of substitution kinetics or mechanism, one simple sequence which might account for the isomerization would be the following:

\[
\begin{align*}
&\text{cis} \quad \text{trans} \\
&\text{cis} \quad \text{trans} \\
&\text{cis} \quad \text{trans}
\end{align*}
\]

The crucial second step presumably would be driven by the need to relieve steric crowding at the α-sites on adjacent pyridine ligands.

Acknowledgement

We thank the Office of Naval Research for support of this work.

Supplementary Material: Tables of positional parameters, thermal parameters, interatomic distances and bond angles for the Re cation and a table of interatomic distances for the disordered perchlorate and acetone are available. Ordering information is given on any current masthead.
References

5. NMR studies did, however, enable us to rule out an even lower symmetry *cis* structure:

![NMR structure](image)

7. **Crystal data:** formula = [ReO$_2$(py)$_2$(bpy)$_2$]ClO$_4$$\cdot$0.33(pyH)ClO$_4$$\cdot$0.33(CH$_3$)$_2$CO, M = 711.25, rhombohedral, space group R3 (no. 148), a = 24.627(5) Å, c = 19.748(5) Å, V = 10,372(7) Å3, Z = 18. The structure was solved by Patterson and Fourier techniques and refined to $R(F)$ and $R_w(F)$ of 0.052 and 0.070, respectively. 2260 absorption corrected reflections with $I > 3\sigma(I)$ were measured on an Enraf Nonius CAD4 diffractometer up to $2\theta_{\text{max}} = 55^\circ$ (Mo Kα radiation, λ = 0.71069 Å).
8. The sole previous example is potassium tris(acetato)dioxoosmate(VI). Here the trans acetato ligands are monodentate while the remaining acetate is bidentate. It has been argued that the cis-dioxo configuration is obtained because the molecule effectively conforms to pseudo trigonal bipyramidal (tbp) symmetry, with the bidentate acetate effectively occupying only one coordination site. (Genuinely pentacoordinate cis-dioxo species are well known.)

Pseudo tbp symmetry was also invoked to explain the rather large O-Os=O bond angle (125°) (Behling, T.; Capparelli, M. V.; Skapski, A. C.; Wilkinson, G., Polyhedron, 1982, 1, 840). Our results for the more nearly octahedral rhenium complex would seem to be at variance with these "geometrical" explanations.

12. Identical IR spectra were obtained in the metal-oxo stretching region for crystalline and powdered samples.

16. Bond angles for the latter almost always fall in the 102-112° range.

18. The studies by Meyer and co-workers10,11 of (O)\textsubscript{2}Ru(bpy)\textsubscript{2}2+ and (O)\textsubscript{2}Os(bpy)\textsubscript{2}2+ clearly support this contention. A referee has pointed out, however, that in (O)\textsubscript{2}Re(bpy)(py)\textsubscript{2}2+ the \(\pi\)-donating oxo ligands might be sufficiently stabilized by the \(\pi\)-accepting bipyridyl ligand in a trans configuration (relative to the oxo groups) to render the cis dioxo species the more stable isomer. Obviously, a definitive resolution will require the synthesis of one or both trans isomers — a goal which has thus far proven elusive.

19. A reviewer has argued (based on the work of Kashani and Murmann, \textit{Int. J. Chem. Kinet.}, 1985, \textbf{17}, 1005) that a six coordinate intermediate, Re(py)\textsubscript{3}(H\textsubscript{2}O)(O)\textsubscript{2}2+, is more likely. (It is worth noting that neither intermediate has been isolated.) While we have no strong feelings on this point, we are inclined to favor the five-coordinate pathway. One piece of evidence in support of isomerization via a pentacoordinate species is a recently discovered route to \textit{cis}-(O)\textsubscript{2}Re(bpy)(py)\textsubscript{2}2+ through a known22 five-coordinate precursor, (O)\textsubscript{2}Re(py)\textsubscript{2}I (M. S. Ram, unpublished).

Figure caption: ORTEP drawing of cis-(O)₂Re(bpy)(py)₂⁻.