Critique of Nondiffracting Beams

P. Sprangle and B. Hafizi*

Beam Physics Branch
Plasma Physics Division

*Science Applications International Corp.
McLean, VA

April 3, 1990
Critique of Nondiffracting Beams

P. Sprangle and B. Hafizi*

Naval Research Laboratory
Washington, DC

ONR
Arlington, VA

*SAIC, McLean, VA

Approved for public release; distribution is unlimited.

Nondiffracting beams
Bessel beam
Electromagnetic directed energy pulse train

UNCLASSIFIED
UNCLASSIFIED
UNCLASSIFIED
UNCLASSIFIED

NSN 7540-01-280-5500

Standard Form 298 (Rev 2-89)
CRITIQUE OF NONDIFFRACTING BEAMS

A number of researchers have discussed the possibility of generating electromagnetic beams or pulses which can propagate without the usual degree of transverse spreading. Nondiffracting directed radiation beams have been the subject of a number of special sessions at various conferences. Our intention in this note is to discuss i) the Bessel beam which has been called remarkably resistant to the diffractive spreading commonly associated with all wave propagation; and ii) the electromagnetic directed energy pulse train which is claimed to be significantly improved over conventional, diffraction-limited beams, and to defeat diffraction. In this note we show that diffraction is not eliminated or reduced in any of the proposed schemes and that conventional Gaussian beams will propagate at least as far for a given transmitting antenna dimension.

Durnin et al. have studied, analytically and experimentally, a solution of the scalar wave equation whose transverse profile is that of a Bessel function of order zero, \(J_0 \). The field \(\psi(r,z,t) = J_0(k_r r) \exp \{i(k_z z - \omega t) \} \) is a solution of the scalar wave equation where \(k_r \), the
transverse wave number, is given by $k_2^2 = \omega^2/c^2 - k_z^2$, ω is the frequency and k_z is the axial wave number. Some of the properties of the solution are: i) the transverse profile of ψ is independent of z, ii) the intensity function, $J_0^2(k_\perp r)$, falls off like $1/r$ for $r \gg 1/k_\perp$, iii) the power contained in each transverse lobe, between the adjacent zeros of $J_0^2(k_\perp r)$, is of the same order, and iv) $J_0(k_\perp r)$ is an axisymmetric superposition of plane waves propagating at an angle $-k_\perp/k_z$ to the z axis. In most of what follows, we will be interested in the qualitative comparison and scaling of various quantities and, hence, will not be concerned with factors of order unity.

Using arguments based on geometric optics, Durnin et al.4 found the propagation distance of the central lobe of the Bessel beam to be given by $\sim 2Rr_0/\lambda$, where R is the radius of the aperture (radius of clipped Bessel beam), r_0 is the typical spacing between adjacent zeros of J_0, i.e., $r_0 = \pi/k_\perp$, and λ is the wavelength. They compare the propagation distance (diffraction length) of the apertured Bessel beam with a Gaussian beam which has a spot size of approximately r_0. That is, the center lobe of the Bessel beam nearly matches the Gaussian beam as shown in Fig. 1. The diffraction distance (Rayleigh length) of the Gaussian beam is given by the well-known formula, $Z_G = \pi r_0^2/\lambda$. Since $R \gg r_0$, they observed that the Bessel beam propagated further than the Gaussian beam, by a factor $- (2/\pi)R/r_0$.

Our interpretation of the results of Durnin and co-workers differs in a number of fundamental ways. We first note that the cartesian counterpart of $J_0(k_\perp r)$ is $\cos(k_\perp x)$, which is simply a plane wave propagating at an angle to the z axis. Plane waves do not diffract since there is no spatial variation transverse to the propagation direction; however, when clipped or
apertured, plane waves diffract. Bessel beams, when apertured, will diffract in a similar way.

To be specific, let us consider a Bessel beam limited by a finite aperture of radius R. If $N >> 1$ is the number of lobes within the aperture radius, then $R = N r_0$. For the Bessel beam, the diffraction length is given by $Z_B = R/\theta_B$, where $\theta_B = k_\perp / k_z = \lambda / 2 r_0$ is the diffraction angle and $\lambda = 2\pi(k_z^2 + k_{\perp}^2)^{-1/2}$ is the wavelength. The diffraction length associated with the central lobe of the apertured Bessel beam is, therefore, $Z_B = 2 N r_0^2 / \lambda = 2 R r_0 / \lambda = (2/\pi)NZ_G$. Since the lobes carry about equal power, there is sufficient power in the off-axis lobes to replenish the central lobe. Each of the N lobes diffract away sequentially starting with the outermost one. Roughly speaking, the outermost lobe diffracts after a distance $\sim \pi r_0^2 / \lambda$, the next one diffracts after a distance $2 \pi r_0^2 / \lambda$ and so on until the central lobe diffracts away after a distance $\sim N \pi r_0^2 / \lambda$, which is approximately equal to Z_B. The central lobe persists as long as there are off-axis lobes to replenish its diffraction losses.

A far more meaningful measure for comparing the diffractive properties of beams would be to ask the following question. For a given aperture (source) size and a target size, which is some distance away, what beam configuration or shape will maximize the power transmitted to the target? If this procedure is used to compare a Bessel beam with a Gaussian beam, we would use a Gaussian beam having a spot size equal to the aperture, $R = N r_0$. The power through the aperture is the same if the peak amplitude of the Bessel beam is $\sim N^{1/2}$ larger than that of the Gaussian beam. In this case the Gaussian beam will propagate N times further than the Bessel beam. In addition, by appropriately focusing the Gaussian beam, nearly all the power can be focused on a target of dimension r_0 in a distance Z_B. For
the same total power through the aperture, a focused Gaussian beam delivers
-N times more power on the target than the Bessel beam.

Another solution to the wave equation which has been studied for its
diffractive properties is the electromagnetic directed energy pulse
train.5-7 This pulse form is a superposition of fundamental Gaussian
pulses, ψk, which are exact solutions to the homogeneous wave equation
(\nabla^2 - c^{-2}a^2/\partial t^2)ψk = 0, where ψk(r,z,t) = (4πiV)^{-1}\exp(ikη - kr^2/V),
1/V = 1/A-i/R, A = z_0+ξ^2/z_0, R = ξ+z_0^2/ξ, η = z+ct, ξ = z-ct, k = ω/c and z_0
is a constant. The solution, ψk, which has been studied by Ziolkowski and
co-workers,6 represents a pulse train traveling to the left which is
modulated by an envelope traveling to the right (z direction). The
functions ψk, for all k, form a complete set and each basis function has
infinite energy, i.e., \int_{-\infty}^{\infty} d^3ξ |ψ_k|^2 → \infty. A finite energy pulse can be formed
by a superposition of the basis functions with the weight function F(k),
i.e., f = Re\int_{-\infty}^{\infty} dk ψ_k(r,z,t)F(k). Ziolkowski and co-workers6 have examined a
particular pulse form both numerically and experimentally. This pulse form
is called a modified power spectrum (MPS) pulse which is given by
f(r,ξ,η) = Re[(z_0+iξ)^{-1}(a+r^2/β(z_0+iξ)-in/β)^{-α} \exp(\text{ib}η/β-br^2/β(z_0+iξ))],
where the function f is an exact solution to the scalar wave equation for
the pulse amplitude and a, b, α, β, and z_0 are arbitrary constants. The
initial shape of the MPS pulse is shown in Fig. 2 for particular values of
a, b, α, β and z_0. The MPS pulse has finite energy and its shape evolves
as it propagates. To determine the propagation distance of this pulse,
Ziolkowski and co-workers note that the radial profile is dominated by the
factor \exp(-bz_0r^2/(β(z_0^2+ξ^2))). They use the minimum spot size, w_o =
(βz_0/b)^{1/2}, (which occurs at the pulse’s center, ξ=0) to calculate the
diffraction length, \(Z = \pi w_0^2/\lambda = \pi b z_0/(b\lambda) \). The numerical and experimental results indicate that the MPS pulse propagates significantly further than this diffraction length \((Z = \pi w_0^2/\lambda) \) before the amplitude begins to fall off like \(1/z \).

In our interpretation of their results, the diffraction length for the MPS pulse is not \(\pi w_0^2/\lambda \), but is properly given by \(Z_{MPS} = w_0 R/\lambda \), where \(R \) is the transmitting antenna dimension (radius of aperture) and \(R > w_0 \). This can be understood by first noting that the diffraction angle associated with a pulse having a typical transverse spatial variation of \(\sim w_0 \) is \(\Theta_{MPS} \approx \lambda/(\pi w_0) \). As in the case of the Bessel beam, we note that the energy in the MPS pulse is radially spread out, typically over the full width, \(R \), of the aperture. Consequently, the diffraction distance is given by \(Z_{MPS} = R/\Theta_{MPS} \). The numerical and experimental studies of the MPS pulse span a wide range of values for \(\lambda, w_0 \) and \(R > w_0 \). In all cases we find that the observed propagation distance is fully consistent with the length \(Z_{MPS} = w_0 R/\lambda \) for wavelengths within the main part of the spectrum.

Utilizing the same transmitting antenna radius \(R \), an unfocused Gaussian beam with spot size \(R \), would propagate a distance \(\sim \pi R^2/\lambda \); this is greater than the MPS pulse propagation distance since \(R > w_0 \). An appropriately focused Gaussian beam can be focused to a dimension \(\sim w_0 \) in the distance \(\sim Z_{MPS} \). Such a Gaussian beam focuses more power on the target than a corresponding MPS pulse.

Other researchers have considered alternative approaches for propagating electromagnetic beams or pulses. One such study indicates the possibility of generating wave packets with a broad frequency spectrum. The high-frequency end of the spectrum determines the furthest distance the pulse can propagate, in complete accord with our understanding of diffraction.
In conclusion, we find that when a proper comparison is made, Bessel Beams and Electromagnetic Directed Energy Pulse Trains have no particular range advantage over conventional Gaussian beams.

Acknowledgment

This work is supported by the Office of Naval Research.
References

5. R. W. Ziolkowski, in Ref. 1, p. 312.

Figure Captions

Fig. 1 Transverse intensity profiles of a Bessel beam and a Gaussian beam. The full width at half maximum (FWHM) of the Gaussian beam is the same as that of the central lobe of the Bessel beam. The parameters are the same as those in the experiment of Ref. 4: $\lambda = 6328\text{\AA}$ and FWHM = 70 μm.

Fig. 2 Plot of modified-power spectrum pulse $f(r,\xi,\eta)$ at $t = 0$, i.e., $\xi = \eta = z$. The parameters for this pulse are the same as those in Ref. 7: $a = 1 \text{ cm}$, $\alpha = 1$, $b = 1 \times 10^{10} \text{ cm}^{-1}$, $\beta = 6 \times 10^{15}$, and $z_0 = 1.667 \times 10^{-3} \text{ cm}$.
Figure 1
DISTRIBUTION LIST

Naval Research Laboratory
4555 Overlook Avenue, S.W.
Washington, DC 20375-5000

Attn: Code 1000 - Commanding Officer, CAPT John J. Donegan, Jr.
1001 - Dr. T. Coffey
1005 - Head, Office of Management & Admin.
1005.1 - Deputy Head, Office of Management & Admin.
1005.6 - Head, Directives Staff
1200 - CAPT R. W. Michaux
1201 - Deputy Head, Command Support Division
1220 - Mr. M. Ferguson
2000 - Director of Technical Services
2604 - NRL Historian
3000 - Director of Business Operations
4000 - Dr. W. R. Ellis
0124 - ONR
4600 - Dr. D. Nagel
4603 - Dr. W. W. Zachary
4700 - Dr. S. Ossakow (26 copies)
4707 - Dr. W. M. Manheimer
4730 - Dr. R. Elton
4770 - Dr. G. Cooperstein
4780 - Dr. A. W. Ali
4790 - Dr. C. M. Tang
4790 - Dr. G. Joyce
4790 - Dr. H. Lampe
4790 - Dr. Y. Y. Lau
4790 - Dr. A. Ting
4790 - Dr. E. Esarey
4790 - Dr. J. Krall
4790A - B. Pitcher (20 copies)
4790 - Dr. P. Sprangle
4793 - Dr. W. Black
4793 - Dr. S. Gold
4793 - Dr. D. L. Hardesty
4793 - Dr. A. K. Kinkead
4794 - Dr. A. W. Fliflet
4794 - Dr. H. Rhinewine
4795 - Dr. C. A. Kapetanakos
4795 - Dr. J. Mathew
5700 - Dr. L. A. Cosby
5745 - Dr. J. Condon
6840 - Dr. S. Y. Ahn
6840 - Dr. A. Ganguly
6840 - Dr. R. K. Parker
6843 - Dr. R. H. Jackson
6843 - Dr. N. R. Vanderplaats
6843 - Dr. C. M. Armstrong
6875 - Dr. R. Wagner
2628 - Documents (22 copies)
2634 - D. Wilbanks

NOTE: Every name listed on distribution gets one copy except for those where extra copies are noted.
Dr. R. E. Aamodt
Lodestar Research Corp.
2400 Central Ave., P-5
Boulder, CO 80306-4545

Dr. J. Adamski
Boeing Aerospace Company
P.O. Box 3999
Seattle, WA 98124

Dr. T. M. Antonsen
University of Maryland
College Park, MD 20742

Assistant Secretary of the
Air Force (RD&L)
Room 48856, The Pentagon
Washington, D.C. 20330

Dr. W. A. Barletta
Lawrence Livermore National Lab.
P. O. Box 808
Livermore, CA 94550

Dr. W. Becker
Univ. of New Mexico
Institute for Mod. Opt.
Albuquerque, NM 87131

Dr. Robert Behringer
9342 Balcon Ave.
Northridge, CA 91325

Dr. G. Bekefi
Mass. Institute of Tech.
Room 36-213
Cambridge, MA 02139

Dr. Steven V. Benson
Physics Building
Duke University
Durham, NC 27706

Dr. I. B. Bernstein
Mason Laboratory
Yale University
400 Temple Street
New Haven, CT 06520

Dr. Amitava Bhattacharjee
Columbia University
S. W. Mudd 210
Dept. of Applied Phys.
New York, NY 10027

Dr. Anup Bhowmik
Rockwell International/Rocketdyne Div.
6633 Canoga Avenue, PA-40
Canoga Park, CA 91304

Dr. G. Bourianoff
1901 Rutland Drive
Austin, TX 78758

Dr. Charles Brau
Vanderbilt University
Nashville, TN 37235

Dr. R. Briggs
SSC Laboratory
Stoneridge Office Park
2550 Beckleymeade Ave.
Suite 260
Dallas, TX 75237

Prof. William Case
Dept. of Physics
Grinnell College
Grinnell, IA 50112

Dr. R. Center
Spectra Tech., Inc.
2755 Northup Way
Bellevue, WA 98004

Dr. K. C. Chan
Los Alamos National Laboratory
P. O. Box 1663
Los Alamos, NM 87545

Prof. Frank Chen
School of Eng. & Applied Sciences
Univ. of Calif. at Los Angeles
7731 K Boelter Hall
Los Angeles, CA 90024

Dr. S. Chen
MIT Plasma Fusion Center
NW16-176
Cambridge, MA 01890

Dr. D. P. Chernin
Science Applications Intl. Corp.
1720 Goodridge Drive
McLean, VA 22102

Dr. William Colson
Naval Postgraduate School
Physics Dept.
Monterey, CA 93940
Dr. Dennis Papadopoulos
Astronomy Department
University of Maryland
College Park, Md. 20742

Dr. G. Ramian
Quantum Institute
University of California
Santa Barbara, CA 93106

Dr. John A. Pasour
Mission Research Laboratory
8560 Cinderbed Road
Suite 700
Newington, VA 22122

Dr. M. Reiser
University of Maryland
Department of Physics
College Park, MD 20742

Dr. C. K. N. Patel
Bell Laboratories
Murray Hill, NJ 07974

Dr. S. Ride
Arms Control
Stanford University
Stanford, CA 94305

Dr. Claudio Pellegrini
Brookhaven National Laboratory
Associated Universities, Inc.
Upton, L.I., NY 11973

Dr. C. W. Roberson
Office of Naval Research
Code 1125
800 N. Quincy Street
Arlington, VA 22217

Dr. S. Penner
Center for Radiation Research
Natl. Inst. of Standards and Tech.
Gaithersburg, MD 20899

Dr. K. Robinson
Spectra Technology
2755 Northup Way
Bellevue, WA 98004

Dr. M. Piestrup
Adelphi Technology
13800 Skyline Blvd. No. 2
Woodside, CA 94062

Dr. Marshall N. Rosenbluth
Dept. of Physics
B-019
Univ. of Calif., San Diego
LaJolla, CA 92093

Dr. D. J. Pistoresi
Boeing Aerospace Company
P. O. Box 3999
Seattle, WA 98124-2499

Dr. N. Rostoker
Department of Physics
University of California at Irvine
Irvine, CA 92717

Major E. W. Pogue
SDIO
The Pentagon, T-DE Rm. 1E180
Washington, DC 20301-7100

Dr. A. Saxman
Los Alamos National Scientific Lab.
P. O. Box 1663, MSE523
Los Alamos, NM 87545

Major Donald Ponikvar
U.S. Army SDC
P. O. Box 15280
Arlington, VA 22245-0280

Dr. E. T. Scharlemann
L626
Lawrence Livermore National Lab
P. O. Box 808
Livermore, CA 94550

Dr. D. C. Quimby
Spectra Technology
2755 Northup Way
Bellevue, WA 98004

Prof. S. P. Schlesinger
Dept. of Electrical Engineering
Columbia University
New York, NY 10027
Dr. Howard Schlossberg
AFOSR
Bolling AFB
Washington, D.C. 20332

Dr. R. L. Sheffield
Los Alamos National Laboratory
P.O. Box 1663
Los Alamos, NM 87545

Dr. George Schmidt
Stevens Institute of Technology
Physics Department
Hoboken, NJ 07030

Dr. D. Shoffstall
Boeing Aerospace Company
P.O. Box 3999
Seattle, WA 98124

Dr. M. J. Schmitt
Los Alamos National Laboratory
P.O. Box 1663
Los Alamos, NM 87545

Dr. Jack Slater
Spectra Technology
2755 Northup Way
Bellevue, WA 98004

Dr. H. Schwettmann
Phys. Dept. & High Energy
Physics Laboratory
Stanford University
Stanford, CA 94305

Dr. Todd Smith
Hansen Labs
Stanford University
Stanford, CA 94305

Dr. Marlan O. Scully
Dept. of Physics & Astronomy
Univ. of New Mexico
800 Yale Blvd. NE
Albuquerque, NM 87131

Dr. R. Sudan
Lab. of Plasma Studies
Cornell University
Ithaca, NY 14850

Dr. S. B. Segall
KMS Fusion
3941 Research Park Dr.
P.O. Box 1567
Ann Arbor, MI 48106

Dr. David F. Sutter
ER 224, GTN
Department of Energy
Washington, D.C. 20545

Prof. P. Serafim
Northeastern University
Boston, MA 02115

Dr. T. Tajima
Institute for Fusion Studies
University of Texas at Austin
Austin, TX 78712

Dr. A. M. Sessler
Lawrence Berkeley Laboratory
University of California
1 Cyclotron Road
Berkeley, CA 94720

Dr. R. Temkin
Mass. Institute of Technology
Plasma Fusion Center
Cambridge, MA 02139

Dr. W. Sharp
L-626
Lawrence Livermore National Laboratory
P.O. Box 808
Livermore, CA 94550

Dr. L. Thode
Los Alamos National Laboratory
P.O. Box 1663
Los Alamos, NM 87545

Dr. Earl D. Shaw
Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

Dr. Norman H. Tolk
Physics Department
Vanderbilt University
Nashville, TN 37240

Dr. Kang Tsang
Science Applications Intl. Corp.
1710 Goodridge Dr.
McLean, VA 22102
Dr. H. S. Uhm
Naval Surface Warfare Center
White Oak Lab.
Silver Spring, MD 20903-5000

Naval Research Laboratory
Washington, DC 20375-5000
Code 4830
Tim Calderwood

Under Secretary of Defense (R&D)
Office of the Secretary of Defense
Room 3E1006, The Pentagon
Washington, D.C. 20301

Dr. John E. Walsh
Wilder Laboratory
Department of Physics (HB 6127)
Dartmouth College
Hanover NH 03755

Dr. Jiunn-Ming Wang
Brookhaven National Laboratories
Associated Universities, Inc.
Upton, L.I., NY 11973

Dr. Roger W. Warren
Los Alamos National Scientific Lab.
P.O. Box 1663
Los Alamos, NM 87545

Dr. J. Watson
Los Alamos National Laboratory
P.O. Box 1663
Los Alamos, NM 87545

Dr. Mark Wilson
Natl. Inst. of Standards and Tech.
Bldg. 245, Rm. B-119
Gaithersburg, MD 20899

Dr. J. Wurtele
M.I.T.
NW 16-234
Plasma Fusion Center
Cambridge, MA 02139

Dr. Ming Xie
Dept. of Physics
Stanford University
Stanford, CA 94305

Dr. Simon S. Yu
Lawrence Livermore National Laboratory
P.O. Box 808
Livermore, CA 94550

Do NOT make labels for
Records------

18