Using the high x-ray flux afforded by a synchrotron radiation source, the formation of the polyurethane morphology during fast polymerization by reaction injection molding (RIM) was observed as a function of mold temperature through small angle x-ray scattering measurements. To our knowledge, this represents the first time that the development and growth of microphase separation during the polyurethane RIM process has been reported.
Dynamics of Microphase Separation During RIM Copolymerization; Some Synchrotron SAXS Experiments

by


University of Connecticut
Institute of Materials Science
and Department of Chemical Engineering
Storrs, CT 06269-3136

March 27, 1990

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited
DYNAMICS OF MICROPHASE SEPARATION DURING RIM COPOLYMERIZATION: SOME SYNCHROTRON SAXS EXPERIMENTS

A.J. Ryan, W.K. Willkom, T.B. Bergstrom and C.W. Macosko, University of Minnesota, Minneapolis, MN 55455, USA.
J.T. Koberstein, University of Connecticut, USA and T.P. Russell, IBM, San Jose, USA

Introduction
Reaction injection molding (RIM) is a well established process for the production of polymeric articles by simultaneous shaping and polymerization. The major polymers produced by this process (but not all) are segmented block copolymers. In contrast to other polymer processes the build up of mechanical properties occurs by phase separation and this compares with the copolymerization.

The ultimate properties of RIM materials are drastically affected by their molecular weight and morphology. Depending on the route the polymerizing mixture takes through phase space, two macrophase separation mechanisms may be observed, namely, nucleation and growth (N & G) or spinodal decomposition (SD). In both the cases phase separation proceeds until one phase vitrifies and/or crystallizes; the SD mechanism can lead to the formation of non-equilibrium morphologies which comprise two interpenetrating networks whereas the N & G mechanism tends to form continuous-phase/discontinuous-phase morphologies. Very early phase separation can limit molecular weight buildup by separating reactive groups. If a segmented block copolymer is formed prior to macrophase separation of a polymerizing mixture, microphase separation may occur.

The kinetics of phase separation may be followed by SAXS if the copolymerizing materials possess sufficient contrast (the square of the electron density difference). Spinodal decomposition has a definite scattering signature: Cahn’s linearization theory predicts that the composition gradients, and thus scattered intensity, have a maximum for a given wavelength and that in the early stages of the decomposition process there is an exponential increase in the scattered intensity with time. The nucleation and growth process is not very well defined in terms of a kinetic scattering theory, however, the scattered intensity has been observed to depend on time squared for well characterized N & G systems.

The high flux of synchrotron radiation is required in order to perform real time study of the kinetics of phase separation. The spatial resolution and signal to noise ratio of Beam Line 1-4 at the Stanford Synchrotron Research Laboratory (SSRL) permits analysis of the full SAXS profile ~10 times every second and thus meaningful kinetic data may be obtained. For example, one of the most interesting phase separation copolymerizations is complete in ~2 seconds and proceeds from a liquid with a viscosity of ~1 Pa s to a solid with a modulus of ~1 GPa in this time frame; other systems can take up to fifteen minutes to become completely phase separated. In comparison, conventional Kratos Camera technology requires that data over a period of ~10 hours be averaged to obtain a scattering profile with good signal to noise ratio for RIM materials, thus the kinetics of phase separation may not be investigated by this technique.

Experimental
A MicroRIM machine was used to meter and mix small (~10 g) stoichiometric quantities of reactive monomers and deliver them to the analytical instrument. This equipment has been designed and developed at the University of Minnesota over a period of years and has proved to be reliable and robust. A specially designed flow of Kapton polyimide windows was constructed. It has a very small volume, to permit fast filling, and can be placed, reproducibly in a heating block attached to a optical bench. The white light emanating from the synchrotron storage ring is focussed by means of a fused silica glass mirror and a home, asymmetrical cut, Si (111) crystal. The Si monochromator was adjusted to deliver 1.429 Å X-rays. The incident-beam profile is defined with a number of anticounter slits to give a cross section of approximately 1mm² at the sample position.

Results and discussion
The chemical system selected for these initial experiments was the well characterized polyurethane based on methylene-bis-4,4'-phenyl isocyanate (MDI), butan-1,4-diol (BDO) and a 2000 polyol. Complete analysis of the data is still ongoing though a qualitative description of the process may be obtained from inspection of the raw pixel number versus relative intensity curves. Experiments were conducted at four different cell temperatures for a 48% hard segment formulation containing 0.2% dibutyl tin dilaurate. The results are shown schematically in Figure 1.

Figure 1. A schematic representation of the SAXS results for MDI/BDO/diol system.

The overall trend was that higher temperatures caused phase separation to be faster whereas at lower temperatures the degree of phase separation achieved was greater. Materials formed with a cell temperature >100 °C appeared to crystallize from a homogenous melt whereas the materials formed at cell temperatures of <100 °C appeared to phase separate before crystallization. Qualitatively the data are in good agreement with the main trends of Yang’s work on RIM dynamics, however, SAXS studies of the 4.4 MDI/BDO/diol systems are impeded by the onset of hard segment crystallization swamp phase separation and unambiguous identification of the phase separation process was not possible.

We are investigating three approaches to the problem: (i) reproducing some of Yang’s experiments on the synchrotron, (ii) generating new rheological and FTIR data for 4.4 MDI/BDO/diol materials which will be amenable to unambiguous SAXS experiments and (iii) developing new model polyurea chemistries which are amenable to real-time SAXS analysis and parallel quenching experiments on preformed block copolymers. This work will also be reported.

References
Figure 2. Schematic of sample cell

upper plate

insert

tubing

bottom plate