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Abstract

There has been a great deal of work in human problem solving since the landmark

publication of Newell and Simon's Human Problem Solving in 1972. After reviewing the 1972

theory and the subsequent additions to it that model practice effects and expert-level problem

solving, this tutorial presents 19 basic findings that seem to canture much of the recent

experimental work in the field.
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A brief history of the study of problem solving
Although virtually any human activity can be viewed as the solving of a problem. throughout

the history of the field, most research has concerned tasks that take minutes or hours to perform

Typically, sublects make many observable actions during this period, and these actions are

interpreted as the externally visible part of the solution process. Even if subjects are required to

solve problems in their heads (e.g., to mentally multiply 135x76), they are usually asked to talk

aloud as they work, ano the resulting verbal protocol is interpreted as a sequence of actions (see

chapter 1, this book). Thus, the tasks studied are not only long tasks, but also multi-step tasks.

The earliest experimental work on human problem solving was done by Gestalt

psychologists, notably Kohler, Selz, Duncker, Luchins, Maier, and Katona. They concentrated on

multi-step tasks where only a few of the steps to be taken were crucial and difficult. Such problems

are called insight problems because the solution follows rapidly once the crucial steps have been

made. 1 An example of such a task is construction of a wall-mounted candle-holder from an odd

assortment of materials, including a candle and a box of tacks. The materials are chosen in such a

way that the only solution involves using the box as a support for the candle by tacking it to the

wall. To find this solution, subjects must change their belief that the box is only a container for the

tacks and instead view the box as a construction material. This belief change is the crucial,

insightful step. Once it is made, the solution is soon reached.

In contrast, most problem solving research in the last three decades has concerned multi-

step tasks where no single step is the key. Rather, finding of a solution depends on making a

number of correct steps. An example of such a task is solving an algebra equation. The solution is

a sequence of proper algebraic transformations, correctly applied. The difficulty in the problem lies

in deciding which transformations to apply, remembering them accura*ely, and applying them

correctly. Thus, the responsiblity for the solution is spread over the whole solution process rather

than falling on the discovery of one or two key steps. This choice of tasks caused research to

focus on how people organize the solution process, how they decide what steps to make in what

circumstances, and how their knowledge of the task domain determines their view of the problem

and their discovery of its solution. These topics are the ones emphasized in this chapter.

In the 1950s and 1960s, most research concerned tasks that require no special training or
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background knowledge. Everything that the subject needs to know to perform the tasks is

presented in the instructions. A classic example of such a task is the Tower of Hanoi. The subject

is shown a row of three pegs. On the leftmost peg are three disks: a large one on the bottom, then

a medium sized one. and a small disk on top. The subject is told that the goal of the puzzle is to

move all three disks to the rightmost peg, but only one disk may be moved at a time and a larger

disk may never be placed on top of a smaller one. There are many variations of this basic puzzle.

For instance, there can be more disks than three, and the starting and finishing states can be

arbitary configurations of disks. All these vanants of the puzzle are called a task domain and each

specific version is called a task, that is, one element of the task domain. "Task" and "problem" are

virtually synonomous. The Tower of Hanoi, and other simple, puzzle-like task domains are called

knowledge-lean, because it takes very little knowledge (i.e., just what one reads in the instructions)

in order to solve problems in the task domain. Of course, some subjects may have a great deal of

knowledge about the task domain -- puzzle fanantics, for instance. However, possesion of such

knowledge is not essential for obtaining a solution. Someone with very little knowledge can

blunder through to a solution.

The study of knowledge-lean tasks led to the formulation of Newell and Simon's landmark

theory. Their 1972 book, Human Problem Solving, is still required reading for anyone seriously

interested in the field. This theory became the foundation for many detailed models of problem

solving in specific task domains. The models are able to explain not only the steps taken by the

subjects, but also their verbal comments (e.g., Newell and Simon, 1972, chapters 6, 9 and 12), the

latencies between steps (e.g., Karat, 1982), and even their eye movements (e.g., Newell and

Simon, 1972, chapter 7). The early seventies marked a high point for theoretical work in the field of

knowledge lean problem solving.

In the late 1970's, attention shifted to studying knowledge-rich task domains, which are task

domains where many pages of instructions are required for presenting even the minimal knowledge

necessary for solving the problem. Knowledge-rich task domains that have been studied include

algebra, physics, thermodynamics, chess, bridge, geometry, medical diagnosis, public policy

formation and computer programming.

Much early empirical research into knowledge-rich tasks concerned the differences between

experts and novices. Varying the level of expertise while holding the task domain constant helped
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investigators separate the effects of expertise from the influence of the task domain The typical

study gave the same set of problems to experts and novices and used protocol analysis (see

chaoter 1, this book) to examine differences in the performance of the two groups Cf ccurse. the

novices found the problems quite hard and the experts found them quite easy If one assumes that

the experts had encounter the same or similar problems many #res !n the past, one would expect

them to simply recognize the problem as an instance of a familiar problem type, retrieve the

solution template from memory, and generate the problem's solution directly. Novices, on the other

hand, might have no such knowledge, so they would have to blunder about, searching for a

solution, just as the subjects in the knowledge-lean task domains do. To put it briefly, the

hypothesis is that expertise allows one to substitute recognition for search.

Although the mid-70s saw development of computer programs that could model the steps,

latencies and even eye movements of subjects solving puzzles, no such models have been

developed for experts solving problems in knowledge rich task domains. Partly, this is because it

has proved difficult to buid computer programs that contain a great deal of knowledge, and only

recently has the technology for building such expert systems begun to bear fruit. There is a small

but increasing number of programs that can competently solve problems in knowledge-rich task

domains, although they often resort to methods that human experts do not seem to use (e.g.,

extensive combinatorial searches).

However, there are also scientific reasons for n.t just building an expert system as a model

of expert problem solving. Expert behavior, whether generated by people or programs, is a product

of their knowledge, so any explanation of that behavior must rest on postulating a certain base of

knowlege. But what explains that knowledge? Although it could be measured or formally

constrained in various ways, the ultimate explanation for the form and content of the human

experts' knowledge is the learning processes that they went through in obtaining it. Thus, the best

theory of expert problem solving is a theory of learning. Indeed, learning theories may be the only

scientifically adequate theories of expert problem solving.

Thus, the focus of attention in the 1980's has been on the acquisition of expertise. There has

been a revival of interest in traditional topics in skill acquisition, such as practice effects and

transfer, and many of the regularities demonstrated with perceptual-motor skills have been found to

govern cognitive skills as well. There are also novel experimental paradigms. For instance, much
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has been learned from taking protocols of students as they learn A number of learning

mechanisms have been developed, and will be discussed later, but we still have incomplete

knowledge about their respective roles in the total picture of cognitive skill acquisition

The organization of this chapter

Because this is a time of transition, a coherent theory of problem solving and skill acquisition

cannot be presented here, so the ingredients for developing such a theory are presented instead.

First, the 15-year old theory of Newell and Simon is presented using as illustrations the knowledge-

lean task domains that are its forte. Second. the idea of a schema is introduced because it has

played an important role in explaining the ong-term memory structures of experts. Third, a list of

major empirical findings is presented.

Knowledge-lean problem solving
This section discusses a theory of problem solving that was introduced by Newell and Simon

in Human Problem Solving and has come to dominate the field. It forms a framework or set of

terms that have proved useful for constructing specific analyses and models of human cognition.

The theory begins by making idealizations that distinguish between types of cognition.

These distinctions are often difficult to define in objectively measurable terms. For instance, the

first idealization is to distinguish between problem solving that involves learning, and problem

solving that does not. "Learning", in this context, means resilient changes in the sul-ject's

knowledge about the task domain that are potentially useful in solving further problems (see Simon,

1983, for a discussion of this definition of learning). Early work (e.g., Newell and Simon, 1972)

assumed that there is little or no learning during problem solving. This idealization allowed

formulation of an theory that still useful today. Moreover, it provided the foundation for accounts of

problem solving with learning. As usual in science, oversimplification is not necessarily a bad thing.

The first several subsections of this section will present a discussion of problem solving

under the idealization that learning is not taking place. In the last subsection, the oversimplification

will be ammended and learning mechanisms will be discussed.

Problem solving - understanding + searching
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A second important idea!ization is that the overal! problem sclving process can be analyzed

as two cooperating subprocesses, called understaning and search. The understanding process is

responsible for assimilating the stimulus that poses the problem and for producing mental

information structures that constitute the perscn's understanding of the problem. The search

process is driven by these producls of the understanding process, rather than the problem stimulus

itself. The search process is responsible for finding or calculating the solution to the problem. To

put it differently, the understanding process generates the person's internal representation of the

problem, while the search process generates the person's solution.

It is tempting to think that the understanding process runs first, produces its product, and

then the search process begins. However, the two processes often alternate or even blend

together (Hayes & Simon, 1974: Chi, Glaser & Rees, 1982). If the problem is presented as text,

then one may see the solver read the problem (the understand process), make a few moves

toward the solution (the search process), then reread the problem (understanding again). Although

some understanding is logically necessa.1y bofore search can begin, and indoed most

understanding does seem to occur towards the begining of the problem solving session, it is not

safe to assume that understanding always runs to completicn before search begins.

The first subsectior will discuss the understanding process, and the second will discuss the

search process. A third, brief subsection discusses a common type of problem solving that has

some of the characteristics of both understanding and search.

The understanding process in knowledge-lean task domains

The understanding process converts the problem stimuli into the initial information needed by

the search process. The early stages of the understanding process depend strongly on the media

in which the problem is presented: text or speech, diagrams or pictures, physical situations or

imaginary ones. Presumably, a variety of perceptual processes can be involved in the early stages

of understanding. Because perceptual processes are studied in other fields of cognitive science,

problem solving research has concentrated on describing the later stages of understanding, and in

particular, on specifying what the output of the understanding process is.

In knowledge-lean task domains, there is wide-spread agreement on what the pr,.tuct of

understanding is. It follows, almostly logically, from constraints on the type of material being
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understood By definiton, the instuctions for a problem in a knowledge-lean task domain contain

all the information needed for solving the problem, although it may have to be supplemented and

interpreted by common sense knowledge. When this definition is combined with the fact that

problem solving tasks are, almost by definition, multi-step tasks, then t follows that the minimal

information that the sublect needs to obtain from the problem instructions consists of three

components: (1) the initial problem state, (2) some operators that can change a problem state into

a new state, and (3) some efficient test for whether a problem state constitutes a solution, These

three components, along with some others that can be derived from them, are collectively called a

problem space. Thus, a major assumption about the understanding process for knowledge-lean

task domains is that it yields a problem space.

The name "problem space" comes from the fact that the conjunction of an initial state and a

set of operators logically implies a whole space of states (i.e., a state space). Each state can be

reached from the initial state by some sequence of operator applications. An incontestable

principle of cognition is that people are not necessarily aware of all the deductive consequence of

their beliefs, and this principle applies to problem spaces as well. Although the state space is a

deductive consequence of the initial state and the operators, people will not be aware of all of it.

For instance, a puzzle solver may not be able to accurately estimate the number of states in the

state space even after solving the puzzle several times. On the other hand, the size and topology

of the state space has played an important role in theoretical analyses where, for instance, the

difficulty of a problem is correlated with the topology of the state space (Newell & Simon, 1972).

As an illustration of the concept of a problem space, the problem spaces of two subjects will

be compared. Both subjects heard the following instructions:
Three men want to cross a river. They find a boat, but it is a very small boat. It will only hold 200

pounds. The men are named Large, Medium and Small. Large weights 200 pounds, Medium
weights 120 pounds, and Small weights 80 pounds. How can they all get across? They might have
to make several tnps in the boat.

One subject was a nine-year old girl, who asked me to refer to her as "Cathy" in describing her

performance. Upon hearing the instructions, Cathy immediately asked "The boat can hold only 200

pounds?", and the experimenter answered affirmatively. Thereafter, almost all of Cathy's

discussion of the puzzle used only "sail" as a main verb and "Large", "Medium", "Small", "the boat"

and pronouns as noun phrases. (Cathy's complete protocol will appear later in table 3.) It is

apparent from the protocol that Cathy solves this problem by imagining the physical situation and
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the actions taken in t, as opposed, say, to converting the puzzle to a directed graph then finding a

traversal of the graph. Thus, we can formally represent her belief about the current State of the

imagined physical world as a set of propositions of the form (:N X -'; where x is in the set

m, s, -9 and y is in the set - ur:e, :estination . For instance, the set of propositions,

(cn L -z:.rce( (cn M Scur:e) ion S Source) (OJn B Scur:e)

represents the initial situation, where Large, Medium, Small and the boat are all on the source bank

of the river. Notice that Cathy could have a much richer description of the situation in mind, that

includes, for instance, propositions describing how much weight is in the boat and on each of the

banks. However, such descriptions never appear in her protocol, so it car. be assumed (justified by

simplicity and parsimony, and subject to refutation by further experiments) that Cathy maintains

only descriptions of the (on x Y) type while she solves the puzzle.

Similarly, we can ask what types of operators Cathy believes are permitted in solving this

puzzle. Apparently, she infers it is not permitted that the three men can swim across the river or

take some other transportation than the boat. Moreover, she must have inferred that the 200

pound limit implies that only certain combinations of passengers are possible, because she only

mentions legal boat rides. Thus, Cathy seems to have just one legal operator, which can be

formally represented as (Sail x Y z), which stands for sailing passenger set x from bank Y to

bank z. The argument x is either iL,.}, {M,S}, IM} or 1s1, and Y and z are either Source or

Destination.

Cathy immediately recognizes when she has reached the desired final state, and moreover,

she shows signs throughout the protocol of being aware of it. So we can safely assume that

Cathy's understanding of the LMS puzzle contains at least an initial state, the Sa i operator, and

the desired final state.

It is clear that Cathy's problem state is a very coarse representation of the actually physical

situation of some men and a boat. Apparently she does not believe that the river's current, the

weight of a boatload, and other factors are relevant to solving this puzzle. In order to highlight the

subject's beliefs about what aspects of the puzzle's situations are relevant, most definitions of

"problem space" (e.g., Newell and Simon. 1972) specify a fourth component, a state representation

language. Every state in the problem space, including the initial and final states, should be

representable as some expression in this formal language. The state representation language in
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Cathy's case is simply all possible conjunctions of (;r,, x Y propositions.

it is important to note that not all subjects derive the same problem space from the

instructions. For instance, another subject, a 60-year old adult male, first understood the

instructions given to Cathy as an arithmetic problem. After hearing the instructions, the subject

immediately answered that it would take two trips, because only 200 hundred pounds could be

moved per trip, and there were 400 pounds of men to move. He generated a different problem

space from Cathy's, even though he received the same instructions. He was asked to described

exactly what those two trips were. He indicated that first Large could row across, then Medium and

Small. The experimenter asked him how the boat was gotten back across. The subject replied

that there must be a system of ropes or something. The experimenter asked him to assume

instead that someone would have to row the boat back. This added instruction caused the subject

to change his problem space. His new problem space was similar to Cathy's. This second

subject's behavior shows that the understanding of simple knowledge-lean puzzles can interact

with common-sense knowledge in interesting and non-obvious ways, and can proceed differently

with different subjects.

The above example also shows that subjects can change their problem space to

accomodate added information from the experimenter. Sometimes, information garnered by the

subjects themselves in the course of problem solving will also cause them to change their problem

space. Some investigators (Duncker, 1945; Ohlsson, 1984) hypothesize that the "insights" of

subjects solving insight problems are often changes of problem spaces.

There are problems that do not fit neatly into the problem space mold, mostly because the

solution states are not well defined. For instance, one can ask a subject to draw a pretty picture.

Although minimal competence in this task requires no special knowledge, and therefore the task

domain qualifies as a knowledge-lean one, it is difficult to characterize the subject's test for the final

state. Indeed, it is likely that some subjects themselves may not know what the final state will be

until the picture is half-drawn. In these cases, finding a set of constraints that qualify a problem

state as a solution is just as imporant as generating a solution state. For knowledge-lean task

domains, a well-defined problem is defined to be one where the subject's understanding of the

problem produces a problem space, that is, an initial state, a set of operators, and a solution state

description. Problems whose understanding is not readily represented as a problem space are
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called ill-defined problems. Sketching pretty pictures is an ill-defined problem A definition of 'Well-

defined" for knowledge-rich task domains would be equivalent in spirit, but is not so easily stated

because the understanding process for knowledge-rich task domains is considerably more

complicated. There have been only a few studies of ill-defined problem solving. Reitman (1965)

studied a composer writing a fugue for piano Akin (1980) studied architectural design. Voss and

his colleagues have studied agricultural policy formulation (Voss, Greene, Post & Penner, 1983;

Voss, Tyler & Yengo, 1983). Simon (1973) provides a general discussion of ill-defined problem

solving. This chapter concentrates exclusively on well-defined problems, since that is where most

of the research has been focused.

Although the output of the understanding process in knowledge-lean task domains is well-

understood (albeit, by fiat), less is known about the process itself. In part, this is because the

understanding process for typical puzzles takes very little time. Cathy's protocol was two minutes

long, but the understanding process seems to have run to completion during the first 20 seconds.

The only behavior to observe during that brief time was Cathy's posing a question to the

experimenter. In order to magnify the understanding process, Hayes and Simon (1974) studied a

puzzle, called the tea ceremony, whose instructions are quite difficult to understand:
In the inns of certain Himalayan villages is practiced a most civilized and refined tea ceremony.

The ceremony involves a host and exactly two guests, neither more nor less. When his guests have
arrived and have seated themselves at his table, the host performs five services for them. These
services are listed in the order of the nobility which the Himalayans attibute to them: (1) Stoking the
Fire, (2) Fanning the Flames, (3) Passing the Rice Cakes, (4) Pouring the Tea, and (5) Reciting
Poetry. During the ceremony, any of those present may ask another, "Honored Sir, may I perform
this onerous task for you?" However, a person may request of another only the least noble of the
tasks which the other is performing. Further, if a person is performing any tasks, then he may not
request a task which is nobler than the least noble task he is already performing. Custom requires
that by the time the tea ceremony is over, all the tasks will have been transfered from the host to the
most senior of the guests. How may this be accomplished?

Hayes and Simon took a protocol of a subject interpreting these instructions and solving the puzzle.

The subject read the text many times before he began to solve the puzzle. From the protocol, it

appears that the subject first built up an understanding of the objects in the initial state, then of the

relationships between the objects, and finally of the legal operators. The subject proceeded

statement by statement, trying to reconcile each statement with his current understanding.

The subject's major problem lay in interpreting the sentence, "During the ceremony, any of

those present may ask of another, 'Honored Sir, may I perform this onerous task for you?'" The

correct interpretation of this sentence, which the subject eventually discovered, is that the



responsibility and ownership of the onerous task is transfered from one person to another.

However, the subject's initial interpretation of the sentence was that one person is asking to do the

task for the benefit of the other without actually relieving the other of the responsibility and

ownership of the task. This benefactive reading is arguably the default interpretation for the

English "perform for' construction, so it is no surpnse that the subject's initial interpretation was

benefactive. He only changed his interpetation when he noticed that the desired solution state

requires that ownership of the onerous tasks have been transfered, and yet he has no operator that

will effect such transfers. In order to make the problem solvable, he re-examines his interpretation

of the "perform for" sentence, and discovers its other reading.

This study and others (Hayes & Simon, 1976; Kotovsky, Hayes & Simon, 1985) convinced

Hayes and Simon that understanding of well-defined problems in knowledge-lean task domains is a

rather direct translation process whose character is determined mostly by the type of stimulus used

and the need for an internally consistent initial problem space. As will be seen later, this is not an

apt characterization of the understanding process in knowledge-rich domains, nor does it explain

why different subjects sometimes generate different problem spaces from the same instructions.

The search process

Suppose that problem spaces had not yet been invented, and we set out to formally describe

the process of searching for problem solutions. We would soon discover that it is often quite easy

to represent the subjects' current assumptions, postulations or beliefs about the problem as a small

set of assertions. For example, in the midst of trying to extrapolate the sequence "ABMCDM," the

subject might have the beliefs that the sequence has a period of three and the third element of the

period is always "M." Thus, the subject's current beliefs could be notated formally as including the

assertions Period - 3 and For all p, Third(p)- "M", where p indexes periods. The

search process consists of small, incremental changes in the subject's beliefs that can be modelled

as small changes to the set of assertions. For instance, the next step in the search for the pattern

of ABMCDM might produce just one new assertion about the problem, say, that the first and

second elements in a period are consecutive letters in the alphabet. (Put formally, the new

assertion is For all p, Second (p) - Next (First (p) ).) This formal description of the

problem solving process, as a sequence of incremental changes to a set of assertions, is exactly

the same as the problem space notation. A state in a problem space corresponds to a set of

assertions. The applicatation of an operator to a state correspond3 to the incremental changes in
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the subject's set of assertions. The operators themselves correspond to the heunstic rules that the

subject uses to modify assertions (e g., "if the same letter occupies both positions - and --: then

assert that Per-iod - x*). This demonstrates the naturalness of problem spaces as a formal

notation for the behavior that subjects exhibit while problem solving.2

The assertions that populate a problem state can represent beliefs that anse directly from

perception. For instance, if the subject sees that the leftmost peg of the Tower of Hanoi puzzle has

no disks on it at this time, then one could include the assertion Cisks (lef tmost-peg) = " 1 in the

set that represents the subjects beliefs. Similarly, moving a disk can be represented as an

incremental change in the set of assertions Thus, the problem space framework serves both to

represent changes of the subject's internal state was well as changes in the physical state of the

world.
3

For most problem spaces, there are usually several operators that can be applied to any

given state. For instance, instead of infering that Second (p) = Next (First (p) ), which relates

A with B and C with D in ABMCDM, it could be infered that First (p+.) -Next (Second(p)),

which relates 8 with C. In this case, it does not matter which operator is chosen. However, some

operator applications lead to dead ends. For instance, if it is decided that the period of the

sequence "defgefghfghi" is 3, then a correct solution cannot be found by adding more assertions to

the resulting state, because the correct period is actually 4. These facts -- that multiple operators

apply at most states, and that some sequences .of operator applications lead to dead ends -- follow

logically from the definition of the problem space. Any intelligence, human or artificial, must cope

with these facts in order to find a solution path.

Suppose it is assumed that only one operator can be applied at a time and that an operator

can only be applied to an available state, where a state is available only if (1) it is mentioned in

statement of the problem or (2) it has been generated by application of an operator to an available

state.' These assumptions logically imply that any solution process must be a special case of the

algorithm template shown in table 1. The "slots" in this template are the functions for choosing a

state, choosing an operator and pruning states from the set of active states. A variety of specific

algorithms can be formed by instantiating these slots with specific computations. The class of

algorithms formed this way are called state space search algorithms. Much work has been done

on the properties of these algorithms.5
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Let active-states be a set of states, which initially contains only the
states mentioned in the problem statement.

1. Choose a state from active-states. If there are no states
left in active-states, then stop and report failure.

2. Choose an operator that can be applied to the state.
If no operator applies, then go to step 5.

3. Apply the operator to the state, producing a set of new states.
If the set is empty, go to step 5.

4. Test whether any of the new states is a desired final state. If one
is, then stop and report success. If none are, then place them in
active-states and go to step 5.

5. Choose a subset of the states in active-states, and remove them from
active-states. Go to step 1.

Table I: A general search procedure

Although the search algorithm template of table 1 is simple, t does not have quite the right

structure for describing human problem solving. People seem to distinguish between new states

and old states, where a new state is one produced by the most recent operator application. In

selecting a state (step 1 of the algorithm), choosing a new state is viewed as proceeding along the

current path in the search, while choosing an old state is viewed as failing and backing up. For

people, different principles of operation seem to apply to these two kinds of selections. In order to

capture this distinction, the work of search can be allocated among two collaborating processes:
1. A process, called the backup strategy, that maintains the set of old states, and

chooses one when necessary.

2. A process, called the proceed strategy, that (1) chooses an operator to apply to the
current state, (2) applies it, and (3) evaluates the resulting states. If one of them is a
desired, final state, the search stops and reports success. On the other hand, if none
of them seem worth pursuing, then the backup strategy is given control. Otherwise,
this process repeats.

Although this algorithm template is logically equivalent to the one of table 1, it has different slots,

namely, one for the backup strategy and one for the proceed strategy (the latter is not a standard

term in the field, but it should be).

Both the backup strategy and the proceed strategy are viewed as potentially

nondeterministic procedures, in that there are a number of choice points (e.g., choosing a operator)

where the procedure does not specify how the choice is .to be made. However, some subjects
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seem to apply simple, efficient criteria, called heuristics, to narrow the set of choices. Sometimes

the heuristiCs are so selective that they narrow the options to just a single, unambiguous Choice. In

short, this general template for search algorithms has three slots: (1) the backup strategy, 12) the

proceed strategy and (3) heunstics for the backup and proceed strategies

It is generally held that there are a handful of distinct weak methods that novice subjects use

for knowledge-lean task domains (Newell & Simon, 1972: Newell, 1980: Laird, Newell, &

Rosenbloom, 1987). Most of these methods are proceed strategies. The simplest weak method is

a proceed strategy called forward chaining. Search starts with the initial state. Heuristics are used

to select an operator from among those that are applicable to the current state. The selected

operator is applied, and the strategy repeats. Another strategy, called backwards chaining, can be

used only when a solution state is specific and the operators are invertible; it starts at the solution

state, heuristically chooses an operator to apply, and applies it inversely. Thus, if builds a solution

path from the final state towards the initial state. A third strategy is operator subgoaling. It

heuristically chooses an operator without paying attention to whether that operator can be applied

to the current state. If the operator turns out to be inapplicable because some condition that the

operator requires (such conditions are called preconditions) is not met, then a subgoal is formed,

which is to find a way to change the current state so that the preconditions are true. The strategy

recurses, using the new subgoal as if it were the solution state specified by the problem space.6

As indicated above, all these strategies may usefully incorporate heuristics (rules of thumb)

in order to narrow the guesswork. Often, heuristics are specific to the particular task domain.

However, a particularly general heuristic is based on having the ability to simply calculate the

difference between a state and the description of a desired state. If states are notated as sets of

assertions, then set difference can be used to calculate inter-state differences. The difference

reduction heuristic is simply to choose operators such that the differences between the current

state and the desired state are maximally reduced. 7

There is a very general method, called means-ends analysis, that is so widely used that is

worth examining in some detail. Table 2 shows the basic strategy. It subsumes two common

strategies: forward chaining and operator subgoaling. For instance, if there are never any

unsatisfied preconditions in step 3 of table 2, the method will do forward chaining. Thus, means-

ends analysis is.a generalization several other weak methods. (Such incestuous relationships
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Let State hold the current state, and Desired hold a description of the

desired state. Let Goal and Op be temporary variables.

1. Calculate the differences between State and Desired.
If there are no differences, then succeed.
Otherwise, set the differences into Goal.

2. See which operators will reduce the differences in Goal.
If there are none, then fail.
Otherwise, use heuristics to select one, and set it into Op.

3. Calculate the differences between State and the preconditions of Op.
If there are any, set Goal to the differences, and go to step 2.
Otherwise, apply Op to State, and update State accordingly.

4. Use heuristics to evaluate State.
If it seems likely to lead to Desired, then go to step 1.
Otherwise, fail.

Table 2: The method of means-ends analysis

among weak methods makes it difficult to give crisp definitions, so the terminology is rather fluid.

Indeed, some authors would take issue with the definitions given in this chapter.)

Table 3 shows means-ends analysis as a model for a Cathy solving the LMS puzzle, which

was discussed earlier. Note that the heuristics used in this task mention specific information in the

task, such as men and river banks. This is typical. The heuristics are task-specific while the

methods are general. Note also that means-ends analysis does not specify what happens when a

failure occurs. It is only a proceed strategy and not a backup strategy. However, means-ends

analysis alone suffices to model Cathy's behavior, because she never backs up during the solution

of this puzzle.

Backup strategies are determined mostly by the types of memory available for storing old

states. If external memory is used, such as a piece of scratch paper, then more old states may be

available than when only internal memory is used. Also, some tasks place physical constraints on

backup strategies. For instance, there are puzzles, such as the eight-puzzle, Rubik's cube, or the

Chinese Ring puzzle, where the goal is to rearrange the puzzle's parts into a certain configuration.

However, the parts are constructed so only some kinds of moves are physically possible. Thus,

one cannot backup to arbitrary states, even if one writes them down.
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Problem space:
(1) A state is a pair oonsisting of two sets, representing the contents of the source and destnation

banks. respectively. Both sets are subsets of {L.M.S,B}, whicn stand for Large, Medium, Smail and
the Boat. The union of the two sets is {L,M.S,B}. (2) There is only one operator, Sal. It takes a set
of men and a oanK as arguments. It only applies I the men are only the banK, and if thietr weight
sums to 2CC or 'ess. It "as a orecondition mat the boat oe on the bank. (3)The initial state is LMS
on the source oan!. (4) The final state is that LMS be on the destination oank.

Heuristics:
(1) choose an opertor that will maximize the number of men on the destination bank. (2) Choose

an operator that will maximize the weigth of the men on the destination bank.

line number Protocol simulation

0 Goal = LMS on destination bank
1 S: The boat can only hold 200 pounds? Op .
2 E: The boat can only hold 200 pounds.
3 S: Okay...first...
4 Small and medium go back, Op = Sail MS to destination bank
5 E: Uh-huh.
6 S: ...go across the river on it. Apply Op
7 and then, um, ... Oh Goal = L on destination bank
8 Large... /3 second pause/ Op - Sail L to destination bank
9 E: Yeah, go on... talk out loud.
10 S: ... and... um ...
11 Large... urn.../3 sec. pause/
12 E: Talk out loud.
13 Tell me everything you're thinking.
14 S: But, I can't do it Goal = Boat on source bank
15 because someone has to sail the boat back.
15 E: Ok... That's right.
16 Somebody has to sail the boat back.
18 S: Oh! Ok... so... /4 sec. pause/ Op = Sail S to source bank
19 Small sails the boat back Apply Op
20 Goal = LS on destination bank
21 and gets off, Op = Sail L to destination bank
22 and lets Large sail the boat back. Apply Op
23 E: Um-hmm. And then what happens. Goal = S on destination bank
24 S: Uh... /3 sec. pause/ Op - Sail S to destination bank
25 E: Talk out loud...
26 S: And then small...
27 small... Goal = boat on source bank
28 can' think of anything...
29 E: Keep talking. Op = Sail M to destination bank
30 S: So... Medium... sails back. Apply Op
31 and... Goal - MS on destination bank
32 Op - Sail MS to destination bank
33 Medium and small sail back. Apply Op
34 E: Keep talking.
35 S: And they're all across!
36 E: Very good!

Table 3: Protocol and simulation of Cathy solving the LMS puzzle


