Title: Biology of Symbioses Between Marine Invertebrates and Intracellular Bacteria

Abstract:

The gene for ribulose-bisphosphate carboxylase was characterized for several chemoautotrophic bacterial symbionts. The gene of the symbiont of the deep-sea snail Alvinochonca hessleri has been largely sequenced and compared to the sequences of other photo- and chemoautotrophic bacteria and preliminary phylogenetic tree has been constructed.

Oligonucleotide probes against the symbionts in Lyrodus pedicellatus have been used to verify the identity of this bacterium.

Method development to obtain sequences from badly preserved symbiont/host samples has been continued.

Subject Terms:
Symbiotic bacteria, oligonucleotide probes, 16S rRNA sequences.
Our research focused mainly on three subjects during this report period:

a) The characterization and sequencing of the gene for ribulose bisphosphate carboxylase from symbiotic bacteria of various origins,

b) The application of labeled oligonucleotide probes to localize specific symbiotic bacteria in host tissues, and

c) To continue methods development for 16S rRNA sequencing from symbionts in frozen and badly preserved specimens.

Ribulose-1,5-bisphosphate carboxylase

We designed from published sequence information oligonucleotide primers which are complementary to conserved regions on RubisCO large and small subunit genes. These primers were used successfully to amplify using polymerase chain reaction (PCR) specific regions of RubisCO including both subunit genes from genomic DNA samples containing a mixture of host and symbiont DNA from:

- the Mariana Gastropod Alvinochonca hessleri
- the gutless clam Solemya reidi
- the hydrothermal vent clam Calyptogena magnifica
- the sulfur oxidizing bacterium Thiomicrospira crunegena isolated from hydrothermal vents and the species most closely related (based on 16S rRNA sequences) to the symbionts

The hybridization of heterologous gene probes for the large subunit of ribulose bisphosphate carboxylase/oxygenase (RubisCO) to symbiont DNA shows that the symbionts from both deep-sea and shallow-water invertebrates possess RubisCO genes with a high degree of homology with either a cyanobacterial (Anabaena) or a photosynthetic bacterial (Rhodospillum rubrum) RubisCO probe. Two deep-sea hydrothermal vent invertebrates, the vestimentiferan tubeworm Riftia pachyptila and the gastropod mollusc Alvinochonca hessleri, contain symbionts with RubisCO genes homologous to both the cyanobacterial and the photosynthetic bacterial probes.
suggesting that these invertebrates possess either two symbionts each with a different RubisCO gene or a single symbiont containing two RubisCO genes. The cyanobacterial-type symbiont RubisCO genes were further distinguished via PCR amplification of the large and small subunit genes. Amplified large subunit gene regions display a strong conservation in size amongst the symbionts and Anabaena. By contrast, variation in size of the large plus small subunit gene region amplified from the symbionts and Anabaena suggests that the symbionts possess a smaller intergenic region than the cyanobacterium.

The cyanobacterial-type RubisCO gene of the Alvinochonca hessleri symbiont was selected for more detailed study by DNA sequence analysis. Because this organism occurs at a depth of 4,000 meters we suspect that its RubisCO enzyme may possess adaptations to pressure which would be reflected in the enzyme's gene sequence. Total DNA extracted from the symbiont-containing gill tissue was used to construct a genomic library in lambda zap. This library was screened for RubisCO recombinant clones with a large subunit probe from Anabaena 7120. Three positive plaques were selected for in-vivo excision into pBluescript phagemid. One of these, designated pAH53, contained an 8.5 kb EcoRI fragment which hybridized strongly to the Anabaena probe. Restriction mapping of this fragment showed that the RubisCO large subunit gene resided on a 4.5 kb EcoRI/BamHI fragment. This fragment was subcloned into pBluescript II KS+ and the resultant recombinant clone was designated pAH4.5. Synthetic oligonucleotide primers directed against the highly conserved regions in RubisCO, representing the active and subunit binding sites, were used for sequencing primers in addition to the T3 and T7 primers which were used to initiate sequence from pBluescript regions flanking the insert. Double stranded sequencing reactions using Sequenase were performed and the resultant sequences were compared with those stored in Genbank.

Analysis of this sequence shows that both large and small subunits of RubisCO are present in pAH4.5. A phylogenetic comparison of large subunit sequence obtained to date suggests that the A. hessleri symbiont RubisCO is more closely affiliated with that of photoautotroph than that of another chemoautotroph Alcaligenes eutrophus.

Oligonucleotide probes

We have completed a project to identify and localize symbiotic bacteria in host tissue using fluorescently labeled oligonucleotide probes. This project had been started by Dr. Distel two years ago and uses probes against the bacterial symbionts of shipboreworms. These symbionts are an excellent model for the chemoautotrophic symbionts because they also live intracellularly. Contrary to the chemoautotrophs, however, they have been cultured successfully and have been characterized systematically. Using these probes he could show that the cultured bacteria are indeed the genuine symbionts of the shipboreworm Lyrodus pedicellatus.

Sequencing

We had developed a way to extract and purify the gene for the 16S rRNA from badly preserved tissues. Since 16S rRNA itself was usually badly preserved in these samples we expected this a promising way to gather sequence information from the bacterial symbionts. The approach used was to amplify the respective genes by PCR.
and then sequence the amplification products. However, controls showed that sometimes contaminating DNA was more strongly amplified than the symbiont nucleic acids. Because of the numerous controls necessary to establish the identity of the amplified DNA several PCR clones had to be simultaneously sequenced to verify the identity of the sequences. This approach turned out to be very time consuming and did not result in a fast method to obtain 16S rRNA sequences. We, therefore, started a different method based on directed cDNA cloning in which ss rRNA specific primers are used to create a directed cDNA library of the ss rRNA present in the sample followed by cloning and sequencing of these cDNAs. The advantage of this technique is that the cDNA libraries reflect the copy number of the ss rRNAs in the sample thus voiding the problem of changing the quantitative ratios of rRNA in the mixed samples.

WORK PLAN (YEAR 3):

We will have the complete RubisCO sequence for the *A. hessleri* symbiont within the next few weeks. From this sequence additional PCR primers will be constructed in order to amplify and sequence portions of RubisCO genes from a variety of symbionts with the aim of determining the phylogenetic relationship of symbionts from different hosts and locations. The gene for the nitrogen fixing enzyme nitrogenase will also be characterized and at least partially sequenced from our library of purified large molecular weight DNA of a wide variety of symbionts pending the outcome of the PCR amplification trials using newly constructed primers.

Methods development will proceed to sequence symbiont 16S rRNAs from various symbiotic systems and more sequences will be obtained.

PUBLICATIONS AND REPORTS (YEAR 2)

Felbeck, H.: Symbiosis of bacteria with invertebrates in the deep sea. Endocytobiology IV, Symposium volume, 8 pages, invited talk and in press

Stein, J., Haygood, M., and H. Felbeck: Diversity of ribulose 1,5 bisphosphate carboxylase in thiotrophic symbioses. Endocytobiology IV, Symposium volume, 4 pages, in press

TRAINING ACTIVITIES:

Research assistantship for Ute Hentschel (50%, part of the year) and salary for postdoctoral researcher Dr. Daniel L. Distel.
AWARDS
Graduate student Jeffrey Stein has been awarded a NASA graduate student fellowship. He is still working on the research described in the ONR contract.
Distribution List for Annual and Final Reports

1. Put a cover page (Form DD 1473) on your report and attach a copy of the distribution list. Mail one copy of the report to each person on the contractor subset list attached on which your name appears. The other subset list is for your information only. Please don't forget to attach this distribution list to your report - otherwise the folks below think they have mistakenly received the copy meant for the Molecular Biology Program and forward it to us.

2. Mail two copies to (include a DTIC Form 50 with these two copies too)
 Administrator
 Defense Technical Information Center
 Building 5, Cameron Station
 Alexandria, VA 22314

3. Mail one copy to each of the following:
 (a) Dr. Michael Marron
 ONR Code 1141
 Molecular Biology Program
 800 N. Quincy Street
 Arlington, VA 22217-5000
 (b) Administrative Contracting Officer
 ONR Resident Representative
 (address varies - see copy of your grant)
 (c) Director,
 Applied Research Directorate
 ONR Code 12
 800 N. Quincy Street
 Arlington, VA 22217-5000
 (d) Director
 Office of Naval Technology
 Code 22
 800 N. Quincy Street
 Arlington, VA 22217-5000
 (e) Director
 Chemical and Biological Sci Div
 Army Research Office
 P. O. Box 12211
 Research Triangle Park, NC 27709
 (f) Life Sciences Directorate
 Air Force Office of Scientific Research
 Bolling Air Force Base
 Washington, DC 20332
 (g) Director
 Naval Research Laboratory
 Technical Information Div, Code 2627
 Washington, DC 20375
BELAS, M. Robert
Center of Marine Biotechnology
University of Maryland
600 East Lombard Street
Baltimore, MD 21202

BLAKE, III, Robert C.
Department of Biochemistry
Meharry Medical College
Nashville, TN 37208

BLAKEMORE, R. P.
Department of Microbiology
University of New Hampshire
Durham, New Hampshire 03824

BUNCHARD, Robert P.
Department of Biological Sciences
Univ of Maryland-Baltimore County
Catonsville, MD 21228

CHAPMAN, David J.
Department of Biology
UCLA
405 Hilgard Avenue
Los Angeles, CA 90024

CLARK, Douglas S.
Dept of Chemical Engineering
University of California
Berkeley, CA 94720

COLWELL, Rita
Maryland Biotechnology Institute
University of Maryland
Microbiology Building
College Park, MD 20742

COOKSEY, Keith E.
Department of Microbiology
Montana State University
Bozeman, MT 59717

DANIELS, Charles J.
Department of Microbiology
Ohio State University
484 West 12th Avenue
Columbus, OH 43210

DANIELS, Lacy
Department of Microbiology
University of Iowa
College of Medicine
Iowa City, IA 52242

DENNIS, Patrick P.
Department of Biochemistry
University of British Columbia
2146 Health Sciences Mall
Vancouver, B.C. V6T 1W5

DOOLITTLE, W. Ford
Department of Biochemistry
Dalhousie University
Halifax, Nova Scotia
CANADA B3H 4H7

EISENBERG, Henryk
The Weizmann Institute of Science
Dept of Polymer Research
P.O. Box 26
Rehovot 76100, Israel

EPH, Dvid
Hopkins Marine Station
Stanford University
Pacific Grove, CA 93950

FELBECK, Horst
Marine Biology Research Division
Scripps Institution of Oceanography
University of California - San Diego
La Jolla, CA 92039

FISHER, Charles R.
Marine Science Institute
University of California-Santa Barbara
Santa Barbara, CA 93106

GIBOR, Aharon
Marine Science Institute
University of California
Santa Barbara, CA 93106

GONZALEZ, Elma
Department of Biology
UCLA
Los Angeles, CA 90024

GREENBERG, Everett P.
Department of Microbiology
University of Iowa
Iowa City, Iowa 52242

GUNSALUS, Robert P.
Department of Microbiology
UCLA
405 Hilgard Avenue
Los Angeles, CA 90024

GUPTA, Ramesh
Southern Illinois University
Dept of Chem and Biochemistry
Carbondale, IL 62901

HASTINGS, J. Woodland
Biological Laboratories
Harvard University
16 Divinity Avenue
Cambridge, MA 02138

HAYGOOD, Margo
Marine Biology Research Division
Scripps Institution of Oceanography
University of California, San Diego
La Jolla, CA 92039

JENSEN, Roy A.
Department of Microbiology
University of Florida
Gainesville, FL 32611

KELLY, Robert M.
Dept of Chemical Engineering
The Johns Hopkins University
Baltimore, MD 21218

KIRCHMAN, David L.
College of Marine Studies
University of Delaware
Robinson Hall
Newark, DE 19716

KONISKY, Jordan
Department of Microbiology
University of Illinois
809 Sout Wright Street
Champaign, IL 61820

LEADBETTER, Edward R.
Dept of Molecular and Cell Biology
University of Connecticut
Box U-131
Storrs, CT 06268

LIAO, Hans H.
Biotechnology Center
University of Wisconsin
1710 University Avenue
Madison, WI 53705

LIDSTROM, Mary E.
Keck Laboratories 138-78
California Institute of Technology
Pasadena, CA 91125

MITCHELL, Ralph
Division of Applied Sciences
Harvard University
125 Pierce Hall
Cambridge, MA 02138

MORSE, Daniel E.
Marine Science Institute
University of California
Santa Barbara, CA 93106

NADATHUR, Govind S.
Marine Science Institute
Univ Cal-Santa Barbara
Santa Barbara, CA 93106
NEALSON, Kenneth H.
Center for Great Lakes Studies
University of Wisconsin-Milwaukee
600 E. Greenfield Avenue
Milwaukee, WI 53204

SWIFT, Hewson
Dept of Molec Genetics
and Cell Biology
University of Chicago
1103 East 57th Street
Chicago, IL 60637

OLSEN, Gary J.
Indiana University
Department of Biology
Jordan Hall 138
Bloomington, IN 47405

TAYLOR, Gordon T.
Hawaii Institute of Geophysics
University of Hawaii
2525 Correa Road
Honolulu, HI 96822

PACE, Norman R.
Department of Biology
Indiana University
Bloomington, IN 47405

TOSTESON, Thomas R.
Department of Marine Sciences
University of Puerto Rico
Mayaguez, PR 00709

PREZELIN, Barbara B.
Marine Science Institute
University of California
Santa Barbara, CA 93106

TRENCH, Robert K.
Marine Science Institute
University of California-Santa Barbara
Santa Barbara, CA 93106

REEVE, John N.
Department of Microbiology
Ohio State University
484 West 12th Avenue
Columbus, OH 43210-1292

WALEH, Nahid
Molecular Biology Department
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

ROSEMAN, Saul
Department of Biology
Johns Hopkins University
Baltimore, MD 21218

WHITE, David
Institute of Applied Microbiology
University of Tennessee
P. O. Box X, Building 1503/6
Oak Ridge, TN 37831

SEARCY, Dennis G.
Zoology Department
University of Massachusetts
Amherst, MA 01003

WOESE, Carl R.
Genetics Department
University of Illinois
515 Morrill Hall
Urbana, IL 61801

SILVERMAN, Michael
Agouron Institute
505 Coast Blvd. South
La Jolla, CA 92037

YAYANOS, A. Aristides
Physiological Research Laboratory
Scripps Institution of Oceanography
University of California-San Diego
La Jolla, CA 92093

SMIT, John
Department of Microbiology
University of British Columbia
#300 - 6174 University Blvd
Vancouver, British Columbia
V6T 1W5 CANADA

ZINDER, Stephen H.
Department of Microbiology
Cornell University
Stocking Hall
Ithaca, NY 14853

SPUDICH, John L.
Dept of Anat and Structural Biology
Albert Einstein College of Medicine
1300 Morris Park Avenue
Bronx, NY 10461

STAHL, David A.
College of Veterinary Medicine
University of Illinois
Urbana, IL 61801