THE PREPARATION AND PROPERTIES OF IRON DOPED II VI CHALCOGENIDES

BY

J. DiCarlo, M. Albert, K. Dwight and A. Wold

Prepared for Publication in
JOURNAL OF SOLID STATE CHEMISTRY

January 15, 1990

Brown University
Department of Chemistry
Providence, Rhode Island 02912

Reproduction in whole or in part is permitted for any purpose
of the United States Government

This document has been approved for public release and sale;
it distribution in unlimited.

90 02 06 059
Title (Include Security Classification)

THE PREPARATION AND PROPERTIES OF IRON DOPED II-VI CHALCOGENIDES

Personal Author(s)

J. DiCarlo, M. Albert, K. Dwight and A. Wold

Type of Report

Technical

Time Covered

FROM ______ TO ______

Date of Report

Jul 15, 1990

Page Count

15

Abstract

Semi-magnetic semiconductors are a class of doped II-VI compounds which are of interest in the study of magnetic interactions. Samples of iron-doped ZnS, ZnSe, and CdS were prepared by the direct combination of the elements. Magnetic measurements indicate that the antiferromagnetic interactions of the iron in the zinc systems were greater than those observed in the cadmium chalcogenides. Single crystals of iron-doped zinc chalcogenides were grown by chemical vapor transport. Their IR transmission was measured and the iron concentration for maximum hardness was determined. (SN)

Distribution/Availability of Abstract

- [] UNCLASSIFIED/UNLIMITED
- [] SAME AS RPT
- [] DTIC USERS

Name of Responsible Individual

AARON WOLD

Telephone (Include Area Code)

[] 800 N. QUINCY ST. ARLINGTON, VA 22217

Address (City, State, and ZIP Code)

DEPARTMENT OF CHEMISTRY
BROWN UNIVERSITY
PROVIDENCE, RI 02912

Name of Funding/Sponsoring Organization

BROWN UNIVERSITY

Office Symbol (If applicable)

AARON WOLD

Address (City, State, and ZIP Code)

OFFICE OF NAVAL RESEARCH

COSATI Codes

<table>
<thead>
<tr>
<th>FIELD</th>
<th>GROUP</th>
<th>SUB-GROUP</th>
</tr>
</thead>
</table>

Subject Terms

Abstract Security Classification

UNCLASSIFIED/UNLIMITED
THE PREPARATION AND PROPERTIES OF IRON DOPED II-VI CHALCOGENIDES

J. DiCarlo, M. Albert, K. Dwight and A. Hold
Department of Chemistry, Brown University
Providence, Rhode Island 02912
Abstract

Semi-magnetic semiconductors are a class of doped II-VI compounds which are of interest in the study of magnetic interactions. Samples of iron-doped ZnS, ZnSe, and CdS were prepared by the direct combination of the elements. Magnetic measurements indicate that the antiferromagnetic interactions of the iron in the zinc systems were greater than those observed in the cadmium chalcogenides. Single crystals of iron-doped zinc chalcogenides were grown by chemical vapor transport. Their IR transmission was measured and the iron concentration for maximum hardness was determined.
Introduction

The substitution of magnetic ions into II-VI semiconductors results in a class of materials known as semi-magnetic semiconductors which are of interest to the physics community. The II-VI chalcogenides containing manganese have been extensively studied and their magnetic properties appear to be well understood (1-3). Studies have also been performed where iron is substituted for zinc in the II-VI semiconductors (4-12). The two systems which have received much attention are Zn$_{1-x}$Fe$_x$Se and Cd$_{1-x}$Fe$_x$Se (8-12). There has, however, been little reported work on the dilute magnetic semiconductors Zn$_{1-x}$Fe$_x$S and Cd$_{1-x}$Fe$_x$S. Barton and Toulnin (13) have reported that the solubility limit of iron in the system Zn$_{1-x}$Fe$_x$S was 58 mole percent iron. Papalardo and Dietz (14) studied the spectra of iron-doped CdS; however, no magnetic measurements were performed in their study.

ZnS and ZnSe have been used as IR windows because of their wide transmission range in the infrared. However, both ZnS and ZnSe are soft, which limits their suitability for some applications. It was noted (15,16) that in the systems Zn$_{1-x}$Ni$_x$S and (GaP)$_x$(ZnSe)$_{1-x}$ the infrared spectra were not changed appreciably from those of pure ZnS and ZnSe, but the hardness was enhanced significantly. Ni(II)(3d8) prefers octahedral coordination and it has been shown that it is difficult to introduce a significant quantity of Ni(II) into the structure (15). Since it has been reported that up to 58 mole percent iron can be substituted for zinc at 890°C, it should be possible to modify the properties of II-VI compounds using iron as a component. This paper concerns itself with the preparation and characterization of the systems Zn$_{1-x}$Fe$_x$S(S$_2$) for both powder and single crystal samples and Cd$_{1-x}$Fe$_x$S for powder samples. The study includes problems associated with attempts to
prepare single phase materials, as well as the "tetrahedral site" of ZnS in a tetrahedral site. IR transmission, hardness and stoichiometry in oxygen.

Experimental

Preparation

Polycrystalline samples were prepared by using stoichiometric amounts of zinc metal (Gallard and Schlesinger 99.9995%), cadmium metal (Cominco EI 3001, 99.999%), selenium (UMC 2333 99.999%), iron (Leico 46987) pre-reduced in Ar/H₂ (85/15), sulfur (Gallard and Schlesinger 99.999%) sublimed prior to use and iodine (sublimed, Deepwater Chemical Co., Std. ACS reagent 99.9%). The appropriate weights of the reactants to give a total weight of 3 grams of product were sealed in evacuated 12 mm silica tubes, and heated in the following manner: 500°C for 48 hrs, 600°C for 48 hrs. The tubes were then transferred to a two-zone furnace and the charge end was maintained at 800°C and the other end at 450°C for 48 hrs in order to complete the reaction between the metal and sulfur or selenium without exploding the sample tubes. The samples were then heated at 700°C for 48 hrs, 800°C for 48 hrs, and 900°C for 96 hrs. The samples were intimately mixed after each heat treatment.

Crystal Growth

Stoichiometric amounts of zinc, iron and sulfur or selenium were placed in a silica tube (14 mm O.D. x 12 mm I.D.) which had been previously heated to near the melting point to minimize any nucleation sites. The tube was evacuated to 10⁻³ torr and freshly sublimed iodine was introduced as the transport agent at a concentration of 5 mg/cc. The tube was sealed off and enclosed in a tightly wound Kanthal coil (to even out temperature gradients) and the whole assembly was placed in a three-zone furnace (17). The crystal growth temperature procedure consisted of setting the furnace to back
transport mode for one day, iquilibrating the furnace to a constant temperature for three hours, and finally, cooling the growth zone at 100°C to the growth temperature. Optimum crystal growth for $\text{Zn}_{1-x}\text{Fe}_x\text{S}$ and $\text{Zn}_{1-x}\text{Fe}_x\text{Se}$ occurred when the charge zone was maintained at 265°C and the growth zone at 870°C. The transport process was carried out for 5 days and the typical crystal size was $3 \times 3 \times 1$ mm. The actual composition of the single crystal was determined from the magnetic measurements.

Characterization of Products

X-ray powder diffraction patterns of the samples were obtained using a Philips diffractometer and monochromated high intensity CuKα radiation ($\lambda = 1.5405\text{Å}$). For qualitative phase identification, diffraction patterns were taken over the range $12^\circ < 2\theta < 72^\circ$ with a scan rate of $1^\circ 2\theta$/min, while cell parameters were determined from scans taken with a scan rate of $0.25^\circ 2\theta$/min. Precise lattice parameters were obtained from the diffraction peaks using a least-squares refinement program which corrects for the systematic errors of the diffractometer.

Optical measurements on polished single crystals were performed at room temperature on a Perkin-Elmer 590 single beam scanning infrared spectrophotometer. The measurements were performed in the transmission mode over the range $2.5 \text{ μm} - 25 \text{ μm}$. Transmission through the sample was normalized to the signal obtained in the absence of the sample.

The microhardness measurements (Knoop indenter) were made on crystals using a Kentron microhardness tester. The results were obtained using a diamond indenter with 25 gram loads for $\text{Zn}_{1-x}\text{Fe}_x\text{S}$ and 10 grams for $\text{Zn}_{1-x}\text{Fe}_x\text{Se}$.
The stability of these compounds toward oxidation is determined by heating them in a flowing oxygen stream (80 sc. cm) and determining the change in weight during the heating period. The decomposition temperature was determined as the temperature where the weight of the sample began to change.

Magnetic susceptibilities were measured from liquid nitrogen temperature (77 K) to 500 K using a Faraday balance at a field strength of 10.4 kOe. Honda-Owens (field dependency) plots were also made and all magnetic susceptibility data were corrected for diamagnetism.

Results and Discussion

Polycrystalline samples of Zn\(_{1-x}\)Fe\(_x\)S, Zn\(_{1-x}\)Se\(_x\) and Cd\(_{1-x}\)Fe\(_x\)S were prepared directly from the elements. Samples of Cd\(_{1-x}\)Fe\(_x\)Se have been prepared and studied by Smith (12). X-ray diffraction patterns indicated that the zinc iron sulfide and zinc iron selenide products were single phase and crystallized with the cubic zinc-bisnate structure. The cadmium iron sulfide and cadmium iron selenide also were single phase and crystallized with the hexagonal wurtzite structure.

For the system Zn\(_{1-x}\)Fe\(_x\)S, compositions were chosen where \(x = 0.03, 0.10, 0.15, 0.25, \) and 0.30. It was found for this system that the limit of solubility of iron in ZnS was 30 atomic % for the above method of preparation. It was also found that the 30% sample appeared to be single phase by x-ray diffraction; however, the magnetic susceptibility showed field dependent behavior (Fig. 1), indicating the presence of an impurity with a spontaneous moment; this magnetic impurity decreased with continued heating. Although the sample where \(x = 0.30\) appeared single phase by x-ray diffraction after only 4 days of reaction time at 900°C, it was found that 16 additional days of
heating at 900°C were necessary to obtain single phase material (Fig. 1). This result demonstrated the importance of accurate susceptibility measurements in determining the maximum iron content in the system Zn$_1-x$Fe$_x$S. The maximum solubility limit of iron in zinc sulfide has previously been determined by Barton and Toulmin (11) to be 6.8 mole percent iron at 890°C. The samples in their studies took an average of 8 months to show single phase material as indicated by x-ray diffraction analysis. Furthermore, it was found that control of the sulfur pressure was necessary for the preparation of samples containing high iron content.

For the system Zn$_1-x$Fe$_x$Se, compositions were chosen where $x = 0.03$, 0.10, 0.15, 0.20, and 0.25. All samples appeared to be single phase as indicated by x-ray diffraction analysis; however, the $x = 0.25$ sample showed field-dependent behavior. Unlike the Zn$_{70}$Fe$_{30}$ sample, continued heating of the selenide did not improve its field independent behavior. Therefore, the solubility limit of iron in zinc selenide is between 20 and 25 atomic percent iron. This limit of solubility of iron in zinc selenide is in agreement with the work of Twardowska, who reported that a maximum of 22 mole percent iron could be substituted for zinc in Zn$_2$Se system grown from the melt (8).

For the system Cd$_{1-x}$Fe$_x$S, compositions were chosen where $x = 0.03$, 0.10, 0.15, 0.20 and 0.25. All samples appeared to be single phase as indicated by x-ray diffraction analysis. The $x = 0.25$ sample showed field-dependent behavior, but became field independent after 12 additional days of heating at 850°C. Thus, 25 atomic % appears to be the solubility limit of Fe in CdS.

For all the samples listed in Table 1, the magnetic moment per Fe(II) obtained from magnetic susceptibility data remains 5.4(1) μ_B regardless of
iron content. The Weiss constants are negative, indicating antiferromagnetic Fe-Fe interactions, and become more negative with increasing iron substitution for zinc or cadmium. The Weiss constants of the Zn$_{1-x}$Fe$_x$S and Zn$_{1-x}$Fe$_x$Se systems are essentially the same. The Weiss constants of the Cd$_{1-x}$Fe$_x$S and Cd$_{1-x}$Fe$_x$Se systems are also equivalent, but are markedly smaller than those obtained for the zinc systems, which indicates that weaker antiferromagnetic interactions occur in the cadmium systems. This difference in the strength in antiferromagnetic interactions has been also observed when cobalt is substituted for zinc and cadmium in these systems. Niu et al. (13) indicated that the observed differences in the strength of the antiferromagnetic interactions were related to the increase in the Co-Co effective distances in the cadmium systems.

Single crystals of Zn$_{1-x}$Fe$_x$S and Zn$_{1-x}$Fe$_x$Se were grown by chemical vapor transport using iodine as the transport agent. All of the products crystallized with the cubic zinc-blende structure and showed field independent behavior. The iron concentration of crystals was obtained by comparing their room temperature susceptibilities with the susceptibilities obtained from polycrystalline samples of known iron content. Several crystals of each system were grown and their IR properties as well as their hardness and thermal stability were determined (Table 1). It can be seen that the addition of iron below 16 mole percent did not affect transmission at the long wavelength end, but a cut off at the high energy end was observed.

Hardness measurements were made on these samples and showed that initially the addition of iron caused an increase in hardness. Larger substitutions of iron did not further affect the hardness. Thermal stability measurements showed that there was very little affect in the thermal stability as the amount of iron substituted for zinc was increased in these systems.
Acknowledgments

This research received partial support from the National Science Foundation Contract No. 390-1270, from the Office of Naval Research, and from the Exxon Education Foundation and the Eastman Kodak Company.

References

Table I

Summary of Properties of Iron-Substituted Cd II-I Chalcogenides

<table>
<thead>
<tr>
<th>Compound</th>
<th>Cell Constant (A)</th>
<th>Moment (Bohr Magneton)</th>
<th>Weiss Constant (X)</th>
<th>Cell Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a (Å)</td>
<td>c (Å)</td>
<td>~a</td>
<td>~c</td>
</tr>
<tr>
<td>ZnS</td>
<td>5.409(2)</td>
<td>-----</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Zn.97Fe.03S</td>
<td>5.410(2)</td>
<td>-----</td>
<td>5.3</td>
<td>-55(5)</td>
</tr>
<tr>
<td>Zn.90Fe.10S</td>
<td>5.415(2)</td>
<td>-----</td>
<td>5.5</td>
<td>-134(5)</td>
</tr>
<tr>
<td>Zn.85Fe.15S</td>
<td>5.417(2)</td>
<td>-----</td>
<td>5.4</td>
<td>-124(5)</td>
</tr>
<tr>
<td>Zn.75Fe.25S</td>
<td>5.418(2)</td>
<td>-----</td>
<td>5.4</td>
<td>-155(5)</td>
</tr>
<tr>
<td>Zn.70Fe.30S</td>
<td>5.420(2)</td>
<td>-----</td>
<td>5.5</td>
<td>-154(5)</td>
</tr>
<tr>
<td>ZnSe</td>
<td>5.667(2)</td>
<td>-----</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Zn.97Fe.03Se</td>
<td>5.668(2)</td>
<td>-----</td>
<td>5.2</td>
<td>-40(5)</td>
</tr>
<tr>
<td>Zn.90Fe.10Se</td>
<td>5.675(2)</td>
<td>-----</td>
<td>5.5</td>
<td>-166(5)</td>
</tr>
<tr>
<td>Zn.85Fe.15Se</td>
<td>5.676(2)</td>
<td>-----</td>
<td>5.3</td>
<td>-160(5)</td>
</tr>
<tr>
<td>Zn.80Fe.20Se</td>
<td>5.677(2)</td>
<td>-----</td>
<td>5.4</td>
<td>-164(5)</td>
</tr>
<tr>
<td>CdS</td>
<td>4.136(2)</td>
<td>6.715(2)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Cd.97Fe.03S</td>
<td>4.126(2)</td>
<td>6.700(2)</td>
<td>5.3</td>
<td>-23(5)</td>
</tr>
<tr>
<td>Cd.90Fe.10S</td>
<td>4.105(2)</td>
<td>6.667(2)</td>
<td>5.3</td>
<td>-55(5)</td>
</tr>
<tr>
<td>Cd.85Fe.15S</td>
<td>4.094(2)</td>
<td>6.651(2)</td>
<td>5.4</td>
<td>-14(5)</td>
</tr>
<tr>
<td>Cd.80Fe.20S</td>
<td>4.079(2)</td>
<td>6.634(2)</td>
<td>5.3</td>
<td>-12(5)</td>
</tr>
<tr>
<td>Cd.75Fe.25S</td>
<td>4.073(2)</td>
<td>6.621(2)</td>
<td>5.4</td>
<td>-1(5)</td>
</tr>
<tr>
<td>*CdSe</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>*Cd.98Fe.02Se</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>*Cd.95Fe.05Se</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

* Obtained from Smith et al. (12): cell volume is expressed instead of cell constants.
<table>
<thead>
<tr>
<th>%Fe</th>
<th>Hardness (kg/mm²)</th>
<th>IR Transmission (microns)</th>
<th>Thermal Stability (Centigrade)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>158</td>
<td>2.5 - 14</td>
<td>520</td>
</tr>
<tr>
<td>0.03</td>
<td>176</td>
<td>6.0 - 14</td>
<td>530</td>
</tr>
<tr>
<td>0.10</td>
<td>184</td>
<td>6.0 - 14</td>
<td>540</td>
</tr>
<tr>
<td>0.16</td>
<td>180</td>
<td>6.0 - 12</td>
<td>540</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>%Fe</th>
<th>Hardness (kg/mm²)</th>
<th>IR Transmission (microns)</th>
<th>Thermal Stability (Centigrade)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>104</td>
<td>2.5 - 20</td>
<td>420</td>
</tr>
<tr>
<td>0.03</td>
<td>149</td>
<td>5.0 - 20</td>
<td>280</td>
</tr>
<tr>
<td>0.10</td>
<td>136</td>
<td>5.5 - 20</td>
<td>260</td>
</tr>
<tr>
<td>0.16</td>
<td>136</td>
<td>6.5 - 13</td>
<td>260</td>
</tr>
</tbody>
</table>
Figure Captions

Fig. 1. Variation of effective magnetic susceptibility with inverse magnetic field as a function of time-at-temperature.

Fig. 2. Variation of magnetic susceptibility with composition of standard polycrystalline samples of ZnS, ZnSe, and CdS.
Polycrystalline Standards

$X_{293 K} \times 10^{-3}$ (emu/mol)

- ▲ Fe: ZnS
- ♦ Fe: ZnSe
- ○ Fe: CdS

Percent Iron

0 10 20 30 40