OFFICE OF NAVAL RESEARCH

Contract N00014-89-J-1103

R & T Code: 413e022

Technical Report No. 51

EXTRACTING CHEMICAL INFORMATION FROM AUGER LINE SHAPES

By

DAVID E. RAMAKER

Prepared for Publication

In

Scanning Microscopy Supplement

GEORGE WASHINGTON UNIVERSITY
Department of Chemistry
Washington, D.C. 20052

December, 1989

Reproduction in whole, or in part, is permitted for any purpose of the United State Government.

This document has been approved for public release and sale; its distribution is unlimited.

DTIC ELECTED JAN 11 1990

REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>1A. REPORT SECURITY CLASSIFICATION</th>
<th>Unclassified</th>
</tr>
</thead>
<tbody>
<tr>
<td>1B. SECURITY CLASSIFICATION AUTHORITY</td>
<td>Approved for public release; distribution unlimited</td>
</tr>
<tr>
<td>2. DISTRIBUTION/AVAILABILITY OF REPORT</td>
<td>Approved for public release; distribution unlimited</td>
</tr>
<tr>
<td>3. DOWNGRADING INSTRUCTIONS</td>
<td>None</td>
</tr>
<tr>
<td>4. INITIAL DISTRIBUTION REQUEST</td>
<td>Technical Report No. 51</td>
</tr>
<tr>
<td>5. OFFICE SYMBOL (IF APPLICABLE)</td>
<td></td>
</tr>
<tr>
<td>6. NAME OF PERFORMING ORGANIZATION</td>
<td>Dept. of Chemistry</td>
</tr>
<tr>
<td>7. NAME OF MONITORING ORGANIZATION</td>
<td>Office of Naval Research (Code 419)</td>
</tr>
<tr>
<td>8. ADDRESS (City, State, and ZIP Code)</td>
<td>Washington, DC 20052</td>
</tr>
<tr>
<td>9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER</td>
<td>Contract N00014-89-J-1103</td>
</tr>
<tr>
<td>10. SOURCE OF FUNDS NUMBER</td>
<td>Chemistry Program 800 N. Quincy, Arlington, VA 22217</td>
</tr>
<tr>
<td>11. TITLE (Include Security Classification)</td>
<td>Extracting Chemical Information From Auger Line Shapes (Unclassified)</td>
</tr>
<tr>
<td>12. PERSONAL AUTHOR(S)</td>
<td>David E. Ramaker</td>
</tr>
<tr>
<td>13a. TYPE OF REPORT</td>
<td>Interim Technical Report</td>
</tr>
<tr>
<td>13b. TIME COVERED FROM TO</td>
<td>December 1989</td>
</tr>
<tr>
<td>14. DATE OF REPORT (Day, Month, Year)</td>
<td>1989</td>
</tr>
<tr>
<td>15. PAGE COUNT</td>
<td>45</td>
</tr>
<tr>
<td>16. SUPPLEMENTARY NOTATION</td>
<td>Prepared for publication in Scanning Microscopy Supplement</td>
</tr>
</tbody>
</table>

FIELD Codes

<table>
<thead>
<tr>
<th>FIELD</th>
<th>GROUP</th>
<th>SUB-GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)</td>
<td>14. Auger Spectroscopy, Hydrocarbons, Graphite, Polyethylene, Diamond</td>
<td></td>
</tr>
</tbody>
</table>

ABSTRACT

We have developed a generally applicable semi-empirical approach for quantitatively interpreting Auger line shapes. Detailed information on hybridization, electron delocalization and correlation, screening effects, bonding, and covalency can be obtained from the line shape. Methods for extracting the Auger line shape from the experimental data are briefly described. We summarize our recent results from the C KVV Auger line shapes of five different gas phase hydrocarbons (methane, ethane, cyclohexane, benzene, and ethylene), three solids (polyethylene, diamond, and graphite), and a molecularly chemisorbed system (ethylene/H2). The normal KVV component accounts for only about half of the total experimental KVV intensity for the hydrocarbon gases: much larger fractions for the three solids. The remaining part of the experimental line shape can be attributed to satellites resulting from resonant excitation or dynamic screening processes. The normal KVV component line shapes are seen to reflect delocalized holes, however correlation effects are very evident. Although these screening and correlation effects completely the interpretation of the line shapes, they indeed cause the chemical effects seen in the experimental line shapes. The details are given below.

DISTRIBUTION/AVAILABILITY OF ABSTRACT

Unclassified

ABSTRACT SECURITY CLASSIFICATION

Unclassified

NAME OF RESPONSIBLE INDIVIDUAL

Dr. David L. Nelson

OFFICE SYMBOL

(202) 696-5410

SECURITY CLASSIFICATION OF THIS PAGE

Unclassified
Abstract

We have developed a generally applicable, semi-empirical approach for quantitatively interpreting Auger line shapes. Detailed information on hybridization, electron delocalization and correlation, screening effects, bonding, and covalency can be obtained from the line shape. Methods for extracting the Auger line shape from the experimental data are briefly described. We summarize our recent results from the C KVV Auger line shapes of five different gas phase hydrocarbons (methane, ethane, cyclohexane, benzene, and ethylene), three solids (polyethylene, diamond, and graphite), and a molecularly chemisorbed system (ethylene/ Ni). The normal kvv component accounts for only about half of the total experimental KVV intensity for the hydrocarbon gases; much larger fractions for the three solids. The remaining part of the experimental line shape can be attributed to satellites resulting from resonant excitation or dynamic screening processes. The normal kvv component line shapes are seen to reflect delocalized holes, however correlation effects are very evident. Although these screening and correlation effects complicate the interpretation of the line shapes, they indeed cause the chemical effects seen in the experimental line shapes.

Key words: Auger spectroscopy, hydrocarbons, diamond, graphite, carbon, polyethylene, electron screening, electron correlation.

*Address for correspondence:
David E. Ramaker
Department of Chemistry
George Washington University
Washington, DC 20052, USA
Phone (202) 994-6934

Availability Codes
Avail and/or Dist special
Introduction

Auger electron spectroscopy (AES) has been utilized as a technique for elemental identification and trace analysis at the surface of solids for many years now. Indeed, AES has become a widely available and almost indispensable technique for determining surface cleanliness, surface coverage, and sputter depth profiles. AES has also been recognized as a source of chemical information. Usually this is in the form of spectral "finger prints" to identify the chemical nature of various atoms. This has become so common that many surface chemists can recognize on sight the C KV νδ(N)/δ(E Auger spectra for graphite, carbides or diamond (Hass et al., 1972), or the Si Lαννν Auger spectra for Si, SiO₂, or metal silicides (Bader et al., 1981).

AES has however the potential to provide much more, namely, detailed information on hybridization, electron delocalization and correlation, screening effects, bonding, and covalency. Such information can be obtained from a thorough understanding of the factors contributing to the Auger spectral line shape, and a quantitative interpretation of the line shape. AES has not realized its full potential because these are formidable tasks, but significant progress has been made in recent years.

To obtain chemical or electronic structure information from AES requires two major efforts; first one must extract a true Auger line shape from the raw Auger spectrum, and second, one must derive a theoretical framework for semi-quantitative interpretation of that line shape. We summarize current methods for extracting the line shape and present basic concepts and our theoretical framework for interpreting the line shape. We also review recent applications involving the carbon atom in its varied allotropic and chemical forms. In particular, we examine the C KV Auger line shapes for several gas phase hydrocarbons (methane, ethane, ethylene, benzene, and cyclohexane) three solids (graphite, diamond, polyethylene), and a chemisorbed system (molecular ethylene on Ni(100)). We examine the dramatic effects of final state hole-hole correlation and core-hole screening, how they change from the gas phase molecular, condensed molecular, and solid states, and how these can be used to learn something about the chemical and electronic properties of the material under study.

Extracting the line shape

The difficulty with obtaining a quantitative Auger line shape is well known (Ramaker et al., 1979). It exists because the relatively small Auger signal sits on top of a large background, consisting of the backscattered (redistributed primaries) and secondary electrons arising from the electron beam which initiated the Auger decay. In addition, the Auger signal itself is distorted due to the inelastic losses which the Auger electrons suffer on their way out of the solid.

Removing the background

Several techniques exist for removing the large background. These can be itemized as follows.

Recording the derivative signal

The most common technique in practice is to record the derivative, δN(E)/δE = N'(E), spectrum. Since the background is normally slowly varying with energy relative to the Auger signal, N'(E) suppresses the background and emphasizes the Auger signal. Although N'(E) is very useful for spectral "finger printing" as discussed above, a quantitative removal of the background is not accomplished in this way, and we have found it more problematical to quantitatively remove the background from N'(E) than from N(E) (Ramaker et al., 1979).

Numerical removal from N(E)

The most helpful technique for removal of the background from N(E) is to utilize some analytical expression to approximate the background function, and numerically remove the background by fitting this expression to the upper and lower energy wings of the Auger signal (Ramaker et al., 1979). At energies above 200 eV, often a simple linear background is sufficient. Below 200 eV, the Sickafus (1971, 1977) function, A exp(-E/a)² has been found to be a reasonably good approximation to the secondary spectral distribution. We (Ramaker et al., 1979) have previously used a variation of the Sickafus function for the secondaries, and a Bethe function for the redistributed primaries.

X-ray or positron-annihilation-induced AES

Conventional electron-excited AES not only creates a large background of backscattered and secondary electrons, the intense primary beam can cause damage, charging problems in insulators, and desorption of adsorbed layers. X-ray induced AES (XAES) has become far more
popular in recent years, because it utilizes much lower beam fluxes reducing charging, damage, and background signals (Puggle, 1981). In an exciting new approach, low energy positrons are used to remove core electrons by matter-antimatter annihilation, which then allows the core excitation to relax via the Auger process (Weiss et al., 1989). Positron induced AES (PAS) essentially removes all problems with background removal, since the low energy (< 10 eV) positrons do not produce any secondary electrons above 10 eV.

Coincident techniques The technique of Auger photoelectron coincidence spectroscopy (APCS) utilizes the simultaneous detection of a core photoelectron and an associated Auger electron to eliminate the background. The background is eliminated because only those electrons originating from the same excitation event are counted in the spectrum. Although originally proposed over 10 years ago by Haak et al. (1978), the increasing availability of synchrotron sources makes this technique much more feasible today [R.A. Bartyasik and E. Jensen, private communication].

Removal of distortion due to energy loss

Removal of the distortion effects due to electron energy loss of the Auger electrons as they escape from the solid is accomplished (Mularie and Peria, 1970) by deconvolution with a backscattered spectrum, L(E), with primary energy at or near the principal Auger energy as shown in Fig. 1a. Mathematically this can be written

\[A'(E) = \int A(\epsilon) L(E-\epsilon) d\epsilon, \]
(1)

where A' and A are the "experimental" and "true" Auger line shapes. In practice A(E) is obtained by an iterative deconvolution procedure due to Van Clittert (Madden and Houston, 1976). The deconvolution also removes experimental resolution effects of the analyzer since the elastic peak of L(E) has been broadened by this same amount. The relative intensities of the loss and elastic contributions to L(E) must be weighted differently to account for the different geometrical relationships of the Auger and backscattered electrons; i.e. the internally created Auger electrons traverse the solid escape region once, the backscattered electrons twice. In practice this is accomplished (Madden and Houston, 1977) by weighting the loss contributions such that A(E) has zero intensity at the low energy wing of the spectrum as shown in Fig. 1b.

The extraction of the Auger line shape from the experimental data is unfortunately not a straightforward and simple procedure. Often greater differences exist between A(E) obtained by different authors, than existed between the original N(E) or N(E) data, indicating that different choices for the background or deconvolution procedure introduce the wide variations, rather than the recording of the experimental data or preparation of the sample (Ramaker et al., 1979). We cannot overemphasize the importance of recording the Auger spectrum over a sufficiently wide energy range and then forcing the low energy wing of A(E) to be zero and flat over a 20 to 50 eV energy range. Although this is not always trivial to accomplish, it can be obtained by taking several iterations on the background estimate, and it is the only way of assuring that one is obtaining a reasonable result for A(E) (Ramaker et al., 1979).

The difficulty with extracting A(E) from the experimental data should significantly diminish as new and improved experimental techniques become available. I am particularly hopeful that the new XAES, PASES, and APECs techniques will increasingly provide Auger data without backgrounds, and without damage and charging effects, so that Auger line shape interpretation will become a more common and useful technique for providing electronic structure information on solids.

Basic concepts

Before providing our theoretical framework for quantitatively interpreting the Auger line shapes, we discuss some basic concepts.

The Auger electron has a kinetic energy, \(E_{K} \), equal to the difference between the initial core hole state, \(E_{C} \), and the final two-hole state, \(E_{C} + E_{C} + U_{K} \), thus (Chattarjii, 1976),

\[E_{K} = E_{C} - E_{C} = E_{C} + U_{K}. \]
(2)

In eq. 2, the \(E_{C} \)'s are the corresponding binding energies relative to the Fermi or vacuum level [It makes no difference as long as all binding energies and the kinetic energy is defined relative to the same reference. Often \(E_{K} \) is measured relative to the vacuum level of the spectrometer and the \(E_{C} \)'s relative to the Fermi level, in which case the work function of the spectrometer, \(\phi \sim 5 \) eV, must be subtracted from the right hand side of eq. 2. Unfortunately, in the literature it is often not made clear what the reference is for \(E_{K} \) and \(U_{K} \) is the hole-hole
repulsion energy between the final-state holes.

A basic concept in AES concerns the nature of the density of states (DOS) reflected in the line shape and the localization of the final-state holes. Fig. 2 helps illustrate some of these concepts for several gas phase hydrocarbons (Rye et al., 1978, 1979, 1980). The sensitivity of AES to local hybridisation (sp\(^2\), sp\(^3\), sp) is clearly demonstrated by the CH\(_2\), CH\(_3\), and CH\(_4\) line shapes. The insensitivity to substituent effects is demonstrated by the CH\(_2\), CH\(_2\)OH, and (CH\(_3\))\(_2\)O (all sp\(^3\)) line shapes. The normal alkanes show a broadened sp\(^3\) line shape. The cyclic alkanes show an apparent progression from the sp\(^3\) to the sp\(^2\) line shape as the bond angle strain decreases. These trends indicate that AES samples a site specific DOS, i.e. the DOS specific to that atom with the initial core hole.

Fig. 2 also shows that the principal peak energy for the alkanes is unchanged in spite of the increasing size of the molecules. This suggests that the final-state holes are not completely delocalized about the molecule in these systems, otherwise U\(_{CH}\) should decrease as the molecule size increases and increase the kinetic energy (Rye et al., 1978, 1979, 1980). However, if the holes were completely localized on the methyl group having the initial core hole, we would expect the line shapes to be essentially the same for all alkanes. We will see below that hole-hole correlation or localization distorts the line shape, and for complete localization on a single methyl group, the line shapes for C\(_n\)H\(_{2n+2}\) (n > 1) should be the same as that for CH\(_4\) which clearly is not the case. We will show that although strong correlation effects exist, the holes are believed to be delocalized at least over several methyl groups, if not the whole molecule.

A self-fold of the appropriate one-electron density of states (DOS),

\[\rho(E) = \int \rho(E-c) \rho(c) \ dc, \]

is known to represent a first approximation to the line shape (Lander, 1953). The empirical procedure utilized by us for obtaining the DOS has been described previously (Hutson and Ramaker, 1978, 1982a). It involves the use of x-ray emission (XES) and photoelectron (XPS) spectra, and in some cases theoretical calculations. Fig. 3 illustrates our procedure for obtaining the DOS for the cyclohexane molecule. The dipole selection rule in the K\(_\alpha\) x-ray emission process means that the XES spectrum reflects the p DOS (Mattsson and Ehlerz, 1968). The Final State Rule (Ramaker, 1982a) also indicates that the XPS reflect those in the final state (i.e. in the absence of the core hole) and not those of the initial state (i.e., in the presence of a core hole.) The Mg K\(_\alpha\) XPS spectrum (Mills and Shirley, 1977) reflects primarily the s DOS with a small component of the p DOS (actually s + (1/14)p (Murday et al., 1981). This small p component can easily be removed from the XPS spectrum to obtain the s DOS. We normalize the XPS and XES spectra to give the well-known sp\(^3\) electron configuration for all the molecules.

Fig. 3a also shows results from a GAUSSIAN 82 calculation (J.S. Binkley, M. Frisch, K. Raghavachari, D. Defrees, H.B. Schlegel, R. Whiteside, E. Fluder, R. Seeger, and J.A. Pople, Gaussian 82, Release H computer code, Carnegie-Mellon University) which we performed. The indicated energies of the orbitals are not those obtained from the GAUSSIAN 82 calculation, but rather those from PES data (Mills and Shirley, 1977; Bischof et al., 1969); however, the intensity of each band is determined by the SCF calculated local DOS on any of the identical carbon atoms in cyclohexane. In general the agreement is reasonable.

Many of the MO's in the alkanes have primarily either carbon-carbon (C-C) or carbon-hydrogen (C-H) bonding character (Jorgensen and Salem, 1973). In the Auger spectrum, it has been shown previously that final states involving these different MO's have different hole-hole repulsions. Therefore, we must separate the p DOS into the pe and pc components. We accomplish this by identifying each MO as having either C-C and C-H character upon examining the orbital structure as reported by Jorgensen and Salem (1973). Four such structures are shown in Fig. 3a, showing for example that the 2a\(_g\) MO has primarily a character, the 2a\(_g\) has some a and pc character, and the 3a\(_g\) and 1a\(_g\) MO's have pc and pe characters, respectively. Using the appropriate identification for each MO, the relative intensities obtained from the GAUSSIAN 82 calculation, and the widths from the semi-empirical DOS, we can separate the total DOS into the s, pe, and pc components. This complete DOS is shown in Fig. 3a for cyclohexane. Using similar procedures for all of the other molecules, we obtain the required DOS and their components.
For two reasons, we utilize semi-empirically derived DOS, even for simple molecules (Rutson and Ramaker, 1987a). First, most one-electron theoretical calculations do not include electron correlation effects and therefore do not give sufficiently accurate binding energies. Second, the semi-empirical DOS includes approximate widths for each orbital feature. Assuming the XES and XPS spectra utilized to obtain the DOS were measured at sufficiently high resolution, these widths primarily reflect broadening due to the vibrational state manifold of the final state which project onto the core initial state in XES, or ground state in XPS. ψ(0) then has twice the broadening consistent with the Auger two-hole final state.

Fig. 4 compares the DOS self-folds with the experimental Auger line shapes. The Auger line shapes in Fig. 4 for the gas phase hydrocarbons are the raw data (Rye et al., 1978,79,80), while for the solids are obtained from the data (Dayan and Pepper, 1984; Pepper, 1981; Houston and Rye, 1981; Siegbahn et al., 1969) after background subtraction and deconvolution utilizing the procedures described above (i.e. via numerical background removal from NE). Fig. 4 reveals several important points. First, note that the experimental line shape for the gas phase molecules is shifted by about 6-10 eV to higher two-electron binding energy (or lower Auger kinetic energy). The binding energy scale is determined by subtracting the Auger kinetic energy from the C K binding energy [i.e. E_b = E_a - E_{Auger}]. This shift of the experimental line shape to higher binding energy is due to final state hole-hole repulsion, since the two holes cannot completely delocalize. No shift is seen for the solids, since in this case the holes can completely delocalize. However, hole-hole correlation effects are seen in all of the experimental line shapes, as indicated by the clear distortions from the one-electron self-fold. The second interesting point concerns the onset or threshold of the spectra. Although the principal peaks of the gas phase experimental spectra are shifted to higher binding energy, the onsets of both the experimental line shape and the DOS self-fold for each case are essentially the same. This suggests that each of the spectra has at least some contribution which arises from a process producing a final state with a smaller hole-hole repulsion. Furthermore, note that each experimental spectrum extends to much higher binding energy than does the DOS self-fold, indicating a process producing a final state with a higher hole-hole repulsion. We (Rutson and Ramaker, 1987a) have shown that the processes producing these satellite contributions are resonant excitation and initial-state and final-state shakeoff.

We shall refer to these satellites as the ke-us, ke-v kv-vv and kv-vv satellites, where the notation indicates the particles in the initial and final states before and after the hyphen. Here, the "k" refers to the initial lv core hole, the "e" to the resonantly excited bound electron, and v to a valence hole created either by the shakeoff process or by the Auger decay. The principal Auger process is indicated without the hyphen (kv rather than k-vv) consistent with that used historically. We use kv to indicate this principal or normal Auger contribution to differentiate it from the total KV experimental line shape.

In light of the above, the line shape consists of the sum of several contributions; namely,

\[N(E) = c_1 l_{Aug}(E) + c_2 l_{Aug-v}(E) + c_3 l_{Aug-vv}(E) + c_4 l_{Aug-vv-v}(E) + c_5 l_{Aug-vv-vv}(E). \]

The process creating each component is illustrated in Fig. 5. Here the ke-vv term refers to the resonant Auger satellite, which arises when Auger decay occurs in the presence of a localized electron, which was created by resonant excitation into an excitonic or bound state upon creation of the core hole. The ke-v contribution arises when the resonantly excited electron participates in the Auger decay. The kv-vv term is the initial-state shake Auger term arising when Auger decay occurs in the presence of a localized valence hole, which was created via the shakeoff process during the initial ionization. The kv-vv term denotes the final state shake Auger satellite, which arises when Auger decay occurs simultaneously with shakeoff of a valence hole. These latter two terms arise as a direct result of core hole screening. The ke-vv and ke-v terms arise because the Auger process is generally excited by electron excitation which allows the resonant excitation. The coefficients in eq. (2) are obtained by least squares fit to the experimental spectra.
Theoretical framework

The principal kvv line shape

Our theoretical prescription (Hutson and Ramaker, 1987a) for generating the kvv term can best be expressed by the equation,

$$I_{kvv}(E) = B \exp(P_{m} R_{n} R_{o}) A(E + \Delta U, \rho_{n}, \rho_{o})$$

The Cini-Sawatzky function (Cini, 1977, 1977; Sawatzky, 1977),

$$A(E, \Delta U, \rho_{n}, \rho_{o}) = \frac{\rho_{n}}{\rho_{o}}$$

introduces hole-hole correlation effects, and distorts the DOS self-fold. Here \(\Delta U \) is the effective hole-hole correlation parameter and \(I(E) \) is the Hilbert transform,

$$I(E) = \rho(\omega)/(\omega - c) \, d\omega.$$

The Cini function, which distorts the DOS self-fold for treatment of Auger line shapes in solids, mimics the effects of configuration interaction theory on the DOS for molecules (Hutson and Ramaker, 1987a; Ramaker, 1980). Thus it can be used (albeit with some modifications) on the DOS self-fold for molecules as well. In eq. (5) we have included additional arguments in \(A \) to make explicit the point that the total theoretical kvv line shape is a sum of components, with each \(l \) component (e.g. the ss, sp, and pp components) having an energy shift, \(\Delta U_{l} \), and a hole-hole correlation parameter, \(\Delta U_{l} \), and with each component derived from a fold of the \(\rho_{n} \) and \(\rho_{o} \) DOS (e.g. s or p) as defined in Fig. 2. The subscripts \(\lambda \) are defined below. The atomic Auger matrix elements \(P_{m} \) (normalized per electron) are obtained from experimental and theoretical results for neon (Ramaker, 1985; 1982b). The relative magnitudes utilized in this work are \(P_{ss} = 0.8, P_{sp} = 0.5, \) and \(P_{pp} = 1.0 \) as reported previously (Ramaker, 1985). In eq. (5), \(B \) is a normalization constant and the \(R_{n} \) and \(R_{o} \) are core hole screening factors defined as below.

We have shown previously (Ramaker, 1980, Dunlap et al., 1981) that in covariant systems, intermediate levels of localization can occur. As \(\Delta U \) increases relative to the effective covariant interaction, the holes localize first from the bond or molecular orbital to a "cluster" orbital, and then to a bond orbital. A simple examination of the MO's for the alkanes or diamond (Jorgensen and Salem, 1973) suggests strongly that the appropriate local orbital for these carbon based systems is the tetrahedral cluster orbital involving four \(sp^{3} \) bond orbitals surrounding a single \(C \) atom (i.e. a methyl-like group).

Similarly, for the alkenes or graphite, the appropriate local orbital is the \(sp^{2} \) cluster for the \(\sigma \) bond, and a single \(p \) orbital for the \(\pi \) bonds. In light of the above, the \(\Delta U \)'s can be interpreted in this work as the difference between the hole-hole repulsion when two holes are localized on the same local cluster orbital (\(U \)) versus when they are localized on different neighboring cluster orbitals (\(U \)). The \(\Delta \) parameters can be interpreted as the repulsion energy when the holes are completely delocalized about the system (Hutson and Ramaker, 1987a). They remain finite for molecules, and are zero for the extended covalent solids (See further discussion of this point in the Summary below).

The subscripts \(\lambda \) in eq. (5) on the \(\Delta U \) and \(\sigma \) parameters are to make explicit that these parameters vary with the nature of the orbital combination. Thus for the alkanes we allow three different \(\Delta U \)'s, namely for the CH-CH, CH-CC, and CC-CC \(\sigma \) orbital combinations, and for the alkenes three different \(\Delta U \)'s, namely for the \(\sigma_{\pi}, \sigma_{\pi}, \) and \(\pi \) orbital combinations. With this prescription, the separate \(ss, sp, \) and \(pp \) angular momentum contributions to the Auger line shape, which belong to the same \(\lambda \) contribution, are required to have the same \(\Delta U \) and \(\sigma \) parameters. There are generally six different \(l \) contributions, but we allow only three different \(\Delta U \) and \(\sigma \) parameters for each molecule, and these are determined to provide optimal agreement with experiment (Hutson and Ramaker, 1987a & b; Houston et al., 1986; Hutson and Ramaker, 1987; Hutson and Ramaker, to be published).

The factors \(R_{n} \) in eq. (5) are to make our theory consistent with the previously derived final state rule for Auger line shapes (Ramaker, 1982a). The final state rule indicates that 1) the shape of the individual \(l \) contributions should reflect the DOS in the final state, and 2) the intensity of each \(l \) contribution should reflect the electron configuration of the initial state. For the kvv line shape, the final state is without the core hole. We assume that the DOS in the final state and ground state are similar, so the spectral shape of \(\rho_{n} \) should reflect the ground DOS. However, the initial state in the kvv process has a core hole, therefore the integrated \(\rho_{n} \) should reflect the electron configuration of the
initial core hole (CBS) state. The R_n factors are defined,

$$R_n = \frac{\rho_{\text{core}}(c)dc}{\varphi(c)dc}.$$

(6)

In this work we assume all R_n are similar so that they can be ignored. Effectively this ignores the "static" effects of core hole screening and the shakeoff contributions are "dynamic" core hole screening effects which are included.

The satellites

The $kv-vv$ and $kv-vv$ satellites are also generated by eq. (5) but with different values for ΔU_p and δ_p (Hutson and Ramaker, 1987a). For the $kv-vv$ satellite the spectator electron can screen the two holes and reduce the repulsion. We assume that ΔU_p is zero (i.e. no distortion due to correlation occurs), and determine δ_p empirically for optimum fit to experiment. Of course δ_p should be smaller than for the kv case. For the $kv-vv$ satellite, the three hole final state experiences a larger effective repulsion. We have shown previously (Hutson and Ramaker, 1987a & b) that it is twice that for the kv term if the shake hole is localized on the methyl group or atom with the core hole, and equal to that for kv if it is delocalized throughout the larger subcluster of the molecule. Of course in the solid, no $kv-vv$ satellite appears if the shake hole completely delocalizes. δ_{kv-vv} is again determined empirically and should be larger than for δ_{kv}.

The kv satellite can be eliminated from eq. (5) assuming that the sum over l is limited to the orbital with the resonantly excited electron (Hutson and Ramaker, 1987a). Again ΔU is zero, since a single hole exists in the final state, and δ_p is determined empirically, e.g. by the exciton binding energy. The $kv-vv$ satellite is generated by the Bethe expression, $\log(E/E_{ba})/\log(E/E_{ba})^n$ for $E>E_{ba}$ (Ramaker et al., 1975; Hutson and Ramaker, 1987a). E_{ba} is a parameter representative of the threshold energy for intrinsic loss, and n is a parameter usually around one.

The basic processes for C-H/Ni are different from that for the others, but they can be related to the gas phase molecular case (e.g. ethylene) (Hutson, Ramaker, and Koel, to be published). The spectrum in Fig. 6b was excited by x-rays, so that no resonant satellites should appear (B. Koel, private communication).

However, charge transfer from the substrate into the n^2 orbital occurs to screen the holes, in both the core-hole initial state and the two- or three-hole Auger final state. This charge transfer has the affect of decreasing the ΔU and δ parameters; the transferred charge playing the role of the resonantly excited electron in the gas phase (Hutson, Ramaker, and Koel, to be published). Thus the kv and $kv-vv$ contributions which comprise the intramolecular component of the CVV (i.e. termed the CVV component) for the chemisorbed state are similar to the $ke-vv$ and kv in the gas. The V_{1} component is similar to the ke-v, and the V_{1}^2 component is a new contribution unlike that of any in the gas phase, in fact it is approximated in Fig 6b by the Ni LyV Auger line shape. Although the latter two components are facilitated through an intraatomic V_{1} and V_{1}^2 Auger process, respectively, they ultimately appear interatomic in character because one or both holes ultimately end up on the substrate.

Application to the C KV line shapes

Figs. 5-8 compare the optimal theoretical line shape and each of the components with the experimental line shapes for ethylene (Rye et al., 1978, 79, 80), ethylene/Ni (Koel, private communication), cyclohexane (Siegkahn et al., 1969), polyethylene (Dayan and Pepper, 1984; Kelber et al., 1982), and diamond (Dayan and Pepper, 1984; Lewis and Wilson, 1977). In general the theoretical line shapes generated by the prescription above agree nicely with the experimental line shapes. Similarly good agreement is obtained for the systems not shown, i.e. for methane, ethane, benzene, and graphite (Hutson and Ramaker, 1987a, Houston et al., 1986). Table 1 summarizes the ΔU and δ parameters for the principal kv components, and Table 2 the results for the satellites.

The kv component

Table 1 reveals that for the alkanes the $\Delta U'$s are larger for the CH MO's than for the CC MO's. This can be understood simply from the more localized character of a CH orbital about a single C atom (increased U_{11}), and decreased interaction between CH cluster orbitals (decreased U_{11}), compared with CC cluster orbitals (Jorgensen and Salem, 1973). Likewise for the alkenes, contributions involving only the n MO's have a zero ΔU. This is consistent with one's chemical intuition concerning the de-localized n orbitals and also consistent with that found previously for graphite. Generally within a single molecule the ΔU's decrease in the order...
for the alkenes, and CH-CH > CH-CC > CC-CC for the alkanes as expected.

Note that the ΔU's for the CH-CH orbital in methane and for the CC-CC orbital in ethane are zero. This is by design (Hutson and Ramaker, 1987a). Since only one of these cluster orbitals exist for each molecule, no CI distortion effects (at least of the type included by the Cini expression) are expected for these contributions. Since at least two CH orbitals exist in ethane, the CH-CH and CH-CC contributions have non-zero ΔU's.

Multiplet effects are becoming large in the smaller molecules, such as methane, ethane and ethylene. This is particularly evident in the ethylene spectrum. The two peaks between 30 and 40 eV in the theoretical kvv line shape have widely different intensity, however in the experimental spectrum they have similar intensity (see Fig. 6). We have shown previously (Hutson and Ramaker, 1987a) that this arises because of multiplet splitting which is absent in our theory.

Comparison of the ΔU's between molecules indicates something about the nature of the screening processes in these molecules. Note that the ΔU for the CC-CC contribution increases in the order cyclohexane < polyethylene < diamond. This can be understood from the definition of ΔU = U_11 - U_12. For very short screening lengths, one might expect both U_11 and U_12 to be reduced substantially, so that ΔU would be decreased (Houston et al., 1986). For long screening lengths, one might expect U_12 to be decreased more than U_11, having the effect of increasing ΔU. We believe that the latter is occurring in the current systems. The longer chain length in polyethylene and full three dimensional covalency in diamond suggests that the extent of polarization should increase in the order cyclohexane < polyethylene < diamond. This increased polarization then has the effect of increasing ΔU. For the alkenes, the ΔU's are all the same. This suggests that the screening length is much shorter so that "full" screening already occurs in ethylene. This is consistent with the more delocalized π electrons in the alkenes.

The variation of the δ parameter is not as systematic as that found for ΔU; nevertheless, some important trends are evident. We can interpret the δ's as the delocalized molecular hole-hole repulsion (Hutson and Ramaker, 1987a; Dunlap et al., 1981). As the size of the molecule increases, δ decreases, reflecting the ability of

the two final state holes to stay apart from each other in the delocalized molecular orbitals. Note also that for similar sized molecules, the δ's for the alkenes are smaller than for the alkanes. This may reflect the increased screening due to the π electrons.

The resonant satellites

Resonant satellites are present in the polyethylene line shape (Hutson and Ramaker, 1987b), but not in diamond or graphite (Ramaker and Hutson, 1987a; Houston et al., 1986). This is because polyethylene has an excitonic level as seen by x-ray absorption (XAS) (Seki et al., 1977) and electron energy loss (EELS) (Ritko, 1979) data. In diamond and graphite, no such excitonic level exist so that the resonantly excited electron does not remain as a spectator or participant in the Auger decay (Morar et al., 1985). In small molecules, the resonantly excited electron cannot escape, so that under electron excitation, resonant satellites are expected. Similar resonant satellites have in fact been observed in XES spectra (Mattson and Ehliert, 1968; Nordgren et al., 1983).

Table 2 summarizes the resonant satellites as characterized by their relative intensities and energy shifts, δ_{ke-ve} and δ_{ke-ke}. Note that the ke-ve intensities are all around 6-13% and the ke-ke less than 3%. The intensities of the resonant satellites depend on the electron excitation energy and the secondary cascade process, so that their absolute intensities are not very interesting. It should be pointed out, however, that by utilizing synchrotron radiation tuned to the exact resonant energy, one could obtain experimentally just the resonant contributions (Chen et al., 1985). This process has been called de-excitation electron spectroscopy (DES), and has been reported for both gas phase and chemisorbed CO, where the 2n⁺ level is resonantly populated.

Although their individual intensities are not of interest, the ratio of intensities, I(ke-ve)/I(ke-ve), indicates something about the character of the excitonic level. The atomic Auger matrix elements per electron are essentially the same, for the ss, sp and pp contributions in kvv spectra (Houston et al., 1986). Therefore, we can estimate what the ratio of intensities should be, based purely on the ratio of local electron densities, assuming a completely localized excitonic level. With an initial state charge distribution of σ_{2n}^π, I(ke-ve)/I(ke-ve) should be 0.5, compared with -0.14 for the alkenes found.
experimentally. This suggests that although the exci
tonic level may be localized in time, it must
be of a more diffuse nature spatially. The factor
or two or more reduction from that expected
theoretically suggests that the excited electron
spends only part of its time on the methyl group
with the core hole, the other part of the time
presumably on neighboring carbon atoms or
methyl groups.

Table 2 also summarizes the required
shifts, δ_{kvv} and δ_{kvv}, for the resonant
satellites. δ_{kvv} should be equal to the binding
energy of the excitonic electron. We compare
δ_{kvv} with the binding energies obtained from
EELS data (Hitchcock and Brion, 1977) in Table 2.
Good agreement between these two results are
obtained.

The shifts δ_{kvv} vary over a large
range, although these shifts are much larger for
the alkanes than for the alkenes. This reflects
the greater screening of the final state holes by
an electron in a π^* orbital compared with that in
a diffuse Rydberg orbital. The difference in shifts,
$$\Delta \delta = \delta_{kvv} - \delta_{kvv} = 2U_{nn} - U_{nn},$$
(9)
should directly reflect the nature of the core,
U_{nn}, and valence, U_{nn}, polarization energies
(Hutson and Ramaker, 1987a & b). These are
tabulated in Table 2. We see that $\Delta \delta$ is generally
about 5 eV for the alkanes and 8 eV for the
alkenes.

The shakeoff satellites
We note that the relative intensities of the
kv-vv satellites for the 6 molecules listed in
Table 2 are essentially all around 20% to within
experimental error. This is in contrast to
graphite (Houston et al., 1986) and diamond
(Ramaker and Hutson, 1987a), which indicated no
initial state shake satellites. The absence of
such satellites in graphite and diamond arises
because the shake hole in the initial state of
these covalently bonded solids does not stay
localized near the core hole for a time sufficient
to "witness" the Auger decay. We have shown
elsewhere (Hutson and Ramaker, 1987b) that in
the presence of a core hole, the occupied valence
band DOS of diamond indeed does not exhibit any
bound states. On the other hand, the DOS for
polyethylene in the presence of a core hole does
exhibit narrow peaks indicative of bound-like
states, consistent with the initial state
shake/Auger satellite observed.

Methane is isoelectronic with the neon atom.
The shakeoff probability for neon has been both
measured and calculated to be around 21% (Carlson et al., 1975 & 1968; Ramaker and Murday,
1979), in excellent agreement with that found for
all of the carbon systems in this work. This
agreement provides further empirical evidence for
the validity of the methyl sub-unit orbital
pictured in these carbon systems.

Column 3 of Table 2 shows that the most
appropriate ΔU for the kv-vv satellite is the
same as that for the kvv line shape in the
alkanes, but twice that for the kvv line shape in
the alkenes. This means that for the alkenes,
the shake hole is localized primarily on the
methyl group with the core hole, but in the
alkenes the shake hole is more delocalized onto
some sub-cluster of the alkane chain (Hutson and
Ramaker, 1987b). We attribute this different
behavior to the different polarization lengths in
the alkenes and the alkanes. In the alkenes, the
n electrons screen the core hole, reducing the
polarization potential which neighboring methyl
groups experience. Thus the neighboring methyl
groups remain in the band and the shake hole
stays localized on the primary methyl group
containing the core hole. In the alkanes, the
core hole potential "pulls down" not only the
primary methyl group, but the neighboring
methyl groups are partially "pulled down" as
well, enabling the shake hole to partially
delocalize over the neighboring methyl groups
(Hutson and Ramaker, 1987b).

Finally, in columns 4 and 5 of Table 2, we
consider the optimal shifts, δ_{kvv}, of the
theoretical kv-vv satellite. Column 4 indicates
how the kv-vv satellite was generated. For the
alkanes, the kv-vv line shape has exactly the
same shape as the kvv line shape and it is
simply shifted down by an amount δ_{kvv}. For
the alkenes, the δ_{kvv} shifts are
generated by doubling the δ_{kvv} shifts,
consistent with the doubling of the ΔU's. For
benzene, an additional shift of 4 eV was added to
provide optimal agreement with experiment
(Hutson and Ramaker, 1987a). Column 5 gives the
total shift relative to the one-electron picture for
the major CH-CH bonding contribution. Column 5
reveals no systematic change in δ(CH-CR), indeed
to within experimental error, it is essentially
constant. This is in contrast to the δ_{kvv}
tabulated in Table 1, where we see that as the
molecules get larger, the δ_{kvv} decreases for both
the alkanes and alkenes. We conclude that in the
three-hole final state of the kv-vv process, the
three holes are consistently localized on some
sub-cluster of the molecule (i.e., a methyl group), whereas in the kvv process, the two-holes are delocalized throughout the molecule (Rye et al., 1978, 79, 80, 88). Again we see, that the larger the repulsive forces, the more localized the final state holes, consistent with the Cini theory (Cini, 1977, 78).

Table 2 shows that the empirically determined intensity for the k-vvv satellite is quite constant around 17%. This intensity was determined by integrating the area under the Bethe expression (Rutson and Ramaker, 1978a) from 50 eV down to 6 eV. This includes most of the final state shake satellite although some intensity exist beyond this region. This could easily increase an error of 5%, so that to within experimental error, the initial and final state satellite intensities are similar, as expected.

Summary

We summarize the results as follows:

1) The normal kvv line shape accounts for only about half of the total experimental intensity for the gas phase molecules. This is in contrast to polyethylene where it accounts for 70%, and in diamond and graphite where it accounts for 100%.

2) The remaining part of the experimental intensity can be attributed to 3 different satellite contributions; namely resonant excitation, initial-state-shake, and final-state shake satellites (i.e., via ke-vve, kvv-vvv, and kvv-vve processes).

3) In contrast to that reported previously (Rye et al., 1978, 79, 80, 88; the normal kvv Auger line shapes reflect delocalized holes (at least over 3 or more methyl groups), but correlation effects are evident. In contrast, the 3-hole final state of the kvv-vve process reflects holes localized primarily on a single methyl group.

4) The ΔU's of the kvv line shape for the gas phase molecules and the solids are similar, indicating long range screening effects are not important. On the other hand, the kvv and kvv-vvv line shapes reveal that π electron screening within the alkenes is important.

5) Perhaps the most important result, the chemical effects seen in the line shapes do not arise from one-electron effects, but rather from many-body correlation effects. Thus the differences seen between graphite and diamond result because diamond has just the π orbitals with differing ΔU's for the π, ω, and σ holes. On the other hand, since hole-hole correlation and repulsion effects are much diminished for chemisorbed systems because of metallic screening from the substrate, in the chemisorbed case, and only in this case, the C KVV Auger line shape reflects the DOS self-fold without significant distortion.

We note here that some controversy exists over the third conclusion above. Previously Rye and co-workers (Rye, 1978, 79, 80) concluded that even the normal kvv line shapes for the hydrocarbons reflected localized holes (i.e., on a single methyl group). This conclusion was based on the qualitative energy alignment of the principal peak in the Auger line shapes for the alkane series CnH2n+2 (n = 1 to 8) as seen in Fig. 2. We, however, attribute this to the constant nature of the sum ΔU + δ as seen in Table 1 (this sum remains at 12 eV for methane through cyclohexane). The effects of δ is to move the entire line shape to higher binding energy; the effect of ΔU is to distort the line shape so that the peak moves to higher two-hole binding energy. Thus the peak energy remains constant, but the line shape changes upon going from methane, to ethane, to cyclohexane.

We note that some controversy also exists over the magnitude of δ for polyethylene. Within the theory utilized above, we might expect that δ should be zero for an infinitely long covalently bonded chain. However, Rye et al. (1989) after careful determination of the Fermi level, have recently reported that the lineshape for polyethylene is shifted downward by about 10 eV. More extensive work by Turner et al. (N.L. Turner, D.E. Ramaker, and F.L. Rutson, to be published), utilizing a more rigorous method to determine the Fermi level, suggests that this shift is more like 1 ± 1 eV (i.e. the uncertainties in the data make it impossible to determine if a shift actually occurs, and if it occurs it is definitely much less than 10 eV). We note that we cannot rule out a shift on a theoretical basis. A non-zero δ could mean that the delocalization process is relatively slow in a one-dimensional chain compared to escape of the Auger electron. Since the avenues for escape are more limited than in a three dimensional system, this could explain why δ could be non-zero for polyethylene but zero for diamond and graphite. This is a very interesting conjecture, but obviously more experimental and theoretical work is required.
before any definite conclusions can be reached on this point.

Finally, the nature of the hole-hole localization is important to an understanding of damage or dissociation of various hydrocarbon molecules or carbon-based solids. The well-known Knott-Peskelman (1978) mechanism suggests that desorption from a surface is often initiated by Auger decay. In these covalent systems, the desorption or molecular dissociation is believed to occur as a result of a Coulomb explosion, which is of course enhanced when the holes are localized on a sub-cluster of the molecule (Ramaker, 1981). In light of this, the third conclusion above concerning localization of 3-holes on a single methyl group would suggest that shake-off is indeed very important to the damage or molecular dissociation process.

Since it is clear from this work that chemical effects in the Auger spectra arise primarily from the complex many-body effects (i.e., hole-hole correlation and screening) and not from the simple one-electron DOS self-folds, it remains a challenge to extract the chemical bonding information. Nevertheless, we have described here a generally applicable, semi-empirical approach for quantitatively interpreting the Auger line shapes, and thus a relatively straightforward procedure for gaining significant and detailed information about electron de-localization and correlation, screening effects, bonding, and hybridization from Auger line shapes. We anticipate further application of these procedures in the future.

Acknowledgment. Supported in part by the Office of Naval Research.

References

Hitchcock AP and Brion CE. (1977). The ultraviolet photoelectron spectra of aliphatic and aromatic

Madden HH and Houston JE. (1977a). Auger electron spectroscopic investigation of the transition density of states from lithium. Solid State Commun. 31, 1081

Ramaker DE and Murday JS. (1979). Factors Contributing to the Si L23VV, Si Li23V and 0

Discussion with Reviewers

P.Schulte: I'd like to offer two comments regarding experimental techniques for studying Auger electron spectroscopy:

(i) A technique which is being pioneered by MacDonald (MacDonald JR, Feldman LC, Silverman PJ, Davies JA, Griffiths R, Jaxon TE, Norton PR, and Uemti WN. (1983), Nucl. Instr. and Meth. in Phys. Res. 218 765-782.) is to use MeV ions. While the background is still a problem with this technique, it offers the capability of some surface and interface selectivity by taking advantage of channeling effects for both the incident beam and the emitted electrons.

(ii) Positron induced AES has fundamental differences from other techniques which should be remembered. A thermal positron trapped in the surface state is highly mobile, and most evidence suggests that all such positrons annihilate either from surface defects or impurities (Shultz, PJ and Lynn KG. (1988). Rev. Mod. Phys. 60, 701-785.) This means that Auger electrons emitted following positron-core electron annihilation are specifically sampled from surface irregularities, and not representative of average
conditions (as is the case from energetic incident beams). This may be either an advantage or disadvantage, depending on the application.

Author: A disadvantage with normal ion induced Auger spectra is that both solid and gas phase Auger spectra are often observed, in addition to the other satellites you mentioned. The gas phase spectra result from Auger decay of sputtered atoms, which can be kept to a minimum by use of the large ion energies you mentioned. I also agree with you that positron-induced AES can provide some very unique and interesting data.

MJ Dresser: How important are individual system properties on the shape of the backscattering, L(E), curve you describe? Could, for example, one hope to have a reasonable approximation for other systems using the curve you give at 140 eV, or must the backscattering experiment be done for each system and/or at each energy?

Author: L(E) is of course different for each material, since the loss spectrum reflects one electron and collective electron (plasmon) losses. L(E) can be conveniently measured at the same time as the Auger spectrum, so I recommend that it be obtained for each material, and measured at the energy of the principal Auger peak. However, we have found that it is very important that L(E) be measured in the N(00) mode, even if the Auger spectra was measured in the core-hole mode, because the broad shape of L(E) is more critical to the deconvolution process, than the detailed structure in L(E). L(E) does not change strongly with energy above 100 eV, so that the primary beam energy is not that critical for the determination of L(E).

MJ Dresser: Are computer codes available to accomplish the deconvolution procedures required to arrive at A(E) from L(E) and A'(E). If so, in what language, where may they be found, and what sort of computer power is required?

Author: Yes, we have made both a fortran and basic versions of our codes available, along with a booklet of instructions for their use. These codes can be run on a PC computer, or on any main frame. I should mention, however, that background removal is not a simple, automatic procedure; control by an experienced observer is often necessary to assure proper convergence to the correct results.

RR Rye: One gets the feeling that your theoretical approach introduces a very large number of parameters for fitting the experimental spectra. To what extent are these independent, and to what extent can they be justified?

Author: As Table 1 indicates, we generally have 3 A1U and 3 6 parameters available for the principal component, plus a multiplicative constant for the total intensity, since the experimental Auger intensity is arbitrary. However, often these parameters are set to zero. Thus for methane and diamond we have only one non-zero parameter, for graphite 2 parameters, and for polyethylene 3 parameters. These parameters are largely independent from each other; i.e. the A1U parameters alter the shapes of the components and the 5 parameters the energies. The satellites have additional parameters, which determine their relative intensities and their shapes and energies. We report only one or two significant figures for each parameter because of the level of uncertainties which exists. The systematic variation of these parameters from one material to the other, however, suggests that these parameters are indeed justified and the values obtained are significant.

LW Hobbs: Recent work indicates that radiolytic damage in organic molecular crystals can originate from core electron excitations, presumably leading to Auger emission and hole-hole repulsions. Thus your suggestion of a Coulomb explosion blowing apart molecules is of considerable relevance. I cannot see, however, how this notion applies to ionic solids where the holes are localized on a single ion. Is it the response of the anomalous ion charge state to the prevailing Madelung potential that results in an unstable ion position?

Author: Indeed, this is the essence of the well-known Knotek-Feibelman theory for electron stimulated desorption (Knotek, 1978).

MJ Dresser: Presuming that an experimentalist had a "properly treated" set of AES data (i.e. A(E) by your prescription), from an unknown carbon bearing species, can your procedure be inverted to determine the chemical nature of the carbon bonds represented in that Auger spectrum?

Author: Assuming a homogeneous material, one does not need to follow my prescribed procedure. The simple "finger prints" which I mentioned are sufficient to identify the nature of the carbon species (i.e. graphite, diamond, amorphous carbon etc). I think it would also be possible to
distinguish between various hydrocarbons, directly from the "finger print". The motivation for developing my theoretical procedure is to obtain detailed bonding information, such as the extent of hybridization, electron delocalization, screening, and covalency existing in a material.

D. Newbury: The materials scientists who are fabricating diamond or diamond-like films seem to often produce mixtures of different carbon allotropes on a very fine scale. Can you predict how well your Auger deconvolution/modelling technique would be able to separate components from a mixture of allotropes which occur in the same carbon Auger peak?

Author: These diamond-like carbon materials usually contain mixtures of graphitic, diamond-like, and amorphous carbon bonding. The differences in the Auger lineshapes for these different allotropes forms are more distinct in the dN(E)/dE form, so that again, it would probably be better to determine the components by utilising the dN(E)/dE "finger prints".

E. Kliman: The optical properties of diamond-like carbon films are substantially modified by the addition of hydrogen in the magnetron sputtering process. Would it be possible to say something about the bonding of hydrogen in these films from Auger spectroscopy.

Author: Auger spectroscopy samples a localised density of states; i.e. local to the atom with the core hole. In general AES cannot distinguish between carbon-carbon and carbon-hydrogen bonds.

P. Krull: How distinct are the "finger prints" in AES compared with that in UPS?

Author: That depends on the materials compared. For the carbon materials (e.g. graphite, diamond, and the carbidic), I think the "finger prints" are more distinct in AES, because these systems have widely different AU's. Within the alkane series, valence band UPS is much more distinctive, because AU is similar for all of the higher alkanes. Generally the "finger prints" in UPS are probably more distinctive than those in AES, unless one is comparing systems with widely different AU's. On the other hand, the chemical shifts in AES are generally equal to or larger than UPS core-level shifts.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>AU (eV)</th>
<th>(\delta) (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkanes</td>
<td>C-H</td>
<td>C-C</td>
</tr>
<tr>
<td>Methane</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ethane</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Diamond</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Alkenes</td>
<td>g</td>
<td>g</td>
</tr>
<tr>
<td>Ethylene</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Benzene</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Graphite</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

*From Ramaker and Hutson (1987a).

* A positive \(\delta \) indicates a shift to higher two-hole binding energy.
Table 2 Summary of satellite characteristics.

<table>
<thead>
<tr>
<th>k-vv</th>
<th>Rel. Int.(%)</th>
<th>ΔU(eV)</th>
<th>Δ*(eV)</th>
<th>ΔSΔ*(eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethylene</td>
<td>2.0</td>
<td>0.0</td>
<td>7.0</td>
<td>6.3</td>
</tr>
<tr>
<td>Benzene</td>
<td>1.0</td>
<td>0.0</td>
<td>5.0</td>
<td>5.1</td>
</tr>
<tr>
<td>Ethylene/Ni</td>
<td>27</td>
<td>0.0</td>
<td>0.0</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>k-vv</th>
<th>Rel. Int.(%)</th>
<th>ΔU(eV)</th>
<th>Δ*(eV)</th>
<th>ΔSΔ*(eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethyne</td>
<td>12.0</td>
<td>0.0</td>
<td>7.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Ethane</td>
<td>12.0</td>
<td>0.0</td>
<td>8.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>8.0</td>
<td>0.0</td>
<td>4.0</td>
<td>-</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>11.0</td>
<td>0.0</td>
<td>-5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Ethylene</td>
<td>13.0</td>
<td>0.0</td>
<td>3.0</td>
<td>7.0</td>
</tr>
<tr>
<td>Benzene</td>
<td>6.0</td>
<td>0.0</td>
<td>-1.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Ethylene/Ni</td>
<td>45</td>
<td>0.0</td>
<td>0.0</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>k-vvv</th>
<th>Rel. Int.(%)</th>
<th>ΔU(eV)</th>
<th>Δ*(eV)</th>
<th>ΔSΔ*(eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane</td>
<td>20.0</td>
<td>0.0</td>
<td>Δkk+5</td>
<td>17</td>
</tr>
<tr>
<td>Ethane</td>
<td>21.0</td>
<td>ΔUkk</td>
<td>Δkk+5</td>
<td>17</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>17.0</td>
<td>ΔUkk</td>
<td>Δkk+11</td>
<td>20</td>
</tr>
<tr>
<td>Ethylene</td>
<td>20.0</td>
<td>ΔUkk</td>
<td>Δkk+4</td>
<td>14</td>
</tr>
<tr>
<td>Benzene</td>
<td>21.0</td>
<td>2ΔUkk</td>
<td>Δkk+5</td>
<td>14</td>
</tr>
<tr>
<td>Ethylene/Ni</td>
<td>20</td>
<td>2ΔUkk</td>
<td>Δkk+5</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>k-vvv</th>
<th>Rel. Int.(%)</th>
<th>Hkk(eV)</th>
<th>kvv Int.(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane</td>
<td>17.0</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>Ethane</td>
<td>15.0</td>
<td>50</td>
<td>49</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>19.0</td>
<td>53</td>
<td>50</td>
</tr>
<tr>
<td>Ethylene</td>
<td>15.0</td>
<td>50</td>
<td>70</td>
</tr>
<tr>
<td>Benzene</td>
<td>16.0</td>
<td>50</td>
<td>54</td>
</tr>
</tbody>
</table>

*From Ramaker and Hutson (1987a).
*The characteristics of the kvv and kvv components of the primary kvv term for ethylene/Ni are also indicated because these resemble the satellite line shapes for ethylene gas.
*A positive Δ indicates a shift to higher two-hole binding energy.
*The ΔU and Δ indicated here are those for gas phase ethylene.

Figure Captions

Fig. 1. The S L3VV Auger spectrum from LiSO4 powder pressed onto an In substrate (Ramaker et al., 1979). a) The Auger line shape A(E) is shown after background subtraction. The elastic peak and loss features, L(E), were observed from a 140 eV primary beam incident on the sample. The latter data were taken with a GMA in the normal mode and are not corrected for the analyzer transmission distortions. b) The "true" Auger signal A(E) obtained after deconvoluting out the electron-loss contributions and correcting for sample and spectrometer transmission. The solid and dashed lines in both a) and b) indicate two different estimates of the background and the resultant final A(E) spectra obtained.

Fig. 2. The C KVV Auger line shapes taken in the gas phase for various carbon molecules as indicated (Rye et al., 1978, 79, & 80).

Fig. 3. a) Total one electron DOS (solid line) for cyclohexane determined empirically as described in the text. The σ (dashed line), pσ (dotted line), and pπ (dot-dashed line) components, determined as described in the text, are also shown. The vertical lines indicate the electron density on any carbon atom for each MO as obtained from a GAUSSIAN 82 calculation. The energies of each vertical line are placed at those obtained empirically from PES data (Bishof et al., 1969). Schematic diagrams (Jorgensen and Salem, 1973) on the four of the molecular orbitals are also given. b) XPS (Mills and Shirley, 1977) and XES (Mattson and Ehlers, 1986) data for cyclohexane are utilized to obtain the DOS in a) above.

Fig. 4. Comparison of the experimental C KVV Auger line shapes (solid line) obtained from the literature for diamond (Dayan and Pepper, 1984), graphite (Houston et al., 1986), benzene (Siegbahn et al., 1969), cyclohexane (Houston and Rye, 1981), and polyethylene (Dayan and Pepper, 1984; Pepper, 1981) with the self-fold of the DOS (dotted line) obtained as described in the text.
Fig. 5. Summary of the various processes giving rise to the total Auger line shapes. Core, VB and CB indicate the core level, valence band (or filled orbitals), and conduction band (or empty orbitals) respectively. Spec. (spectator) and part. (participant) indicate the subsequent fate of the resonantly excited electron during the Auger process. I.s and f.s. indicate initial-state and final-state and refer to the state in which the shakeoff event occurs relative to the Auger decay. NNN and N (N = r in eq. 6) refer to the approximate line shape, i.e. either a DOS self-fold, or just the DOS, with the relative size of ΔU in the Cini expression (eq. 6) indicated. The resonant satellites occur only under electron excitation.

Fig. 6. a) Comparison of the C KVV experimental (Rye et al., 1975, 79, & 80) and theoretical (Hutson and Ramaker, 1987a) Auger line shapes for ethylene gas. The various contributions (kvv, kv-vvv, k-vvv, ke-v, ke-vvv) were obtained as described in the text. b) Comparison of the experimental (Koel, private communication) and theoretical (Hutson, Ramaker, and Koel, to be published) Auger line shapes for ethylene chemisorbed on Ni(100) at 100 K (n-bonded ethylene). The three components (VV, V=$^\pi$, $^\pi^*$) line shapes were obtained as described in the text. The relative intensities were obtained by least squares fit to the experimental data.

Fig. 7. a) Comparison of the experimental C KVV line shape for cyclohexane (Houston and Rye, 1981) with the total theoretical line shape (Hutson and Ramaker, 1987a) obtained as described in the text. b) The total theoretical line shape and each of the components as indicated. c) Comparison of the satellite components with the difference spectrum (experimental - theoretical kvv component).
<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>No.</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Office of Naval Research</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chemistry Division, Code 1113 800 North Quincy Street Arlington, VA 22217-5000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Commanding Officer Naval Weapons Support Center Attn: Dr. Bernard R. Deuts Crane, IN 47522-5050</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Richard W. Drisko Naval Civil Engineering Laboratory Code 152 Port Hueneme, California 93043</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dahman Technical Information Center 2 Building 3, Canem Station high quality Alexandria, Virginia 22314</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>David Taylor Research Center Dr. Eugene C. Fischer Annapolis, MD 21402-5067</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. James E. Murday Chemistry Division, Code 6100 Naval Research Laboratory Washington, D.C. 20375-5000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Ronald L. Atkins Chemistry Division (Code 385) Naval Weapons Center China Lake, CA 93555-6001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chief of Naval Research Special Assistant for Marine Corps Materiel Code 550D 800 North Quincy Street Arlington, VA 22217-5000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Bernadette Kichinger Naval Ship Systems Engineering Station Code 052 Philadelphia Naval Base Philadelphia, PA 19112</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Sachio Yamanouchi Naval Ocean Systems Center Code 52 San Diego, CA 92152-5000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>David Taylor Research Center Dr. Harold E. Springer Annapolis, MD 21402-5067 ATTN: Code 283</td>
<td></td>
</tr>
</tbody>
</table>