Progress has been made in six areas. First, a task battery to assess high-level visual abilities has been fully implemented. This battery is administered and scored on the Macintosh computer. Second, the task battery has been used to examine one patient in detail, and has diagnosed a subtle visual deficit that is consistent with both the lesion location and regions of hypometabolism (as measured by PET scanning). Third, additional brain-damaged patients have been tested in order to discover whether the visual angle subtended by imaged objects is systematically related to the amount of damage to the occipital lobe. Data from these three patients suggest such a relation. Fourth, the computer simulation of high-level vision is fully functional, and predictions have been generated about previously unnoticed syndromes. For example, the model predicts that some patients will be able to recognize faces but not common objects. Some of these predictions currently are being tested. Fifth, three
Subjects have been given imagery tasks while being PET scanned. The results are consistent with the predictions of the theory. In particular, the medial occipital and frontal activation is consistent with the claim that images are patterns of activation in topographically mapped areas and that they are built up sequentially. Finally, response time studies using divided visual field techniques have provided evidence for two ways of representing spatial relations, as categories (e.g., left/right; above/below) or precise metric amounts: the left hemisphere is generally more effective at computing categorical spatial relations, and the right hemisphere is generally more effective at computing metric spatial relations. Additional experiments have provided evidence that both types of spatial relations can be used to arrange parts into a visual mental image.
Research Objectives

General objectives

The research has two general objectives:

1. To characterize further the nature of the processing subsystems used in imagery.

2. To discover the realization of specific processing subsystems in the two hemispheres of the brain.

Specific objectives

To accomplish these goals, there are four specific objectives:

1. Develop a comprehensive task battery
 Numerous tasks are required to garner evidence for distinct subsystems. The theory developed in our laboratory has guided us to develop a set of tasks which, when the results are taken together, should allow us to determine whether brain damage has selectively affected individual subsystems.

2. Test brain-damaged subjects
 Brain damage can selectively affect specific aspects of processing. Thus, we plan to test a range of patients who have selective deficits. We have just begun this aspect of the research, which waited on our implementing the task battery.

3. Computer simulation models
 The effects of brain damage on behavior are complex. In order to generate predictions precisely, we needed to implement a computer simulation model. The model is running, and has produced a number of specific predictions.
4. Divided visual field studies with normal subjects

Both of the general objectives are served by divided visual field studies of normal subjects. To the extent that there is a dissociation between field and task, one has evidence for distinct processing subsystems. And the nature of the dissociation informs us as to how processing is implemented in the hemispheres.

Status of the Research

Progress in achieving these objectives has been made in six ways.

1. Task battery
 A task battery to assess high-level visual abilities has been fully implemented.

Theoretical underpinnings. Neurophysiological and neuroanatomical studies of nonhuman primates have documented that there are two major cortical pathways used in identifying objects visually. One is concerned with processing what an object (or part) is, whereas the other is concerned with processing where it is. The pathway concerned with recognizing shape runs from the occipital lobe down to the inferior temporal lobe, whereas the pathway concerned with location runs from the occipital lobe up to the parietal lobe.

These two visual pathways must converge at an associative memory, where the two kinds of information are integrated. Associative memory plays several critical roles in allowing one to exercise visual-spatial abilities, including helping to guide attention to critical details of a viewed object. Although the memories themselves appear to be stored in various places throughout the brain, structures in the frontal lobe have been shown to be critically involved in actively seeking out information stored in memory.

Finally, one can manipulate stored visual information in various ways in the course of reasoning visually. This kind of activity requires one to activate stored visual information and then to transform it, observing the consequences of such mental manipulations. The frontal and parietal lobes play critical roles in such processes.
Structure of the battery. The battery is designed around a decision tree. Subjects are first tested on four tasks. If there is a deficit on the first task, one or more component processes used in the temporal lobe shape-identification system is awry; if there is a deficit on the second task, one or more component processes used in the parietal lobe location system is awry; if there is a deficit on the third task, one or more component processes used in accessing stored information to direct attention or to form images is awry; and if there is a deficit in the fourth task, one or more component process used to manipulate stored visual information and observe the consequences is awry. Once scores from these four "screening" tasks are examined, the relevant branches of the tree are descended, as briefly described below.

Processes that recognize shape. A deficit in recognizing shape could reflect a number of distinct underlying deficits. The battery allows one to determine whether the deficit is due to a problem in adjusting attention to the size of the shape, in scanning the shape, in extracting key features of the shape, in storing an initial shape, or in matching a perceived shape to a stored shape.

Processes that specify location. A deficit in specifying location also could be due to a number of dysfunctions. The battery allows one to determine whether the problem is in registering two objects at once, in specifying location relative to objects rather than the retina, in encoding metric information, or in encoding "categorical" information (e.g., left/right; above/below).

Processes that look up stored information. A deficit in directing one's attention to the appropriate locations or in forming mental images could be due to processes that look up information stored in memory or to processes that use this information. The battery allows one to assess both types of potential deficits.

Processes that manipulate stored information. A deficit in mentally manipulating visual information could reflect a deficit in being able to retain visual information in mental images, imagine a pattern being transformed, or interpret the consequences of a mental transformation. The battery allows one to assess these types of potential deficits.

Use of modern chronometric techniques. A score on most tests reflects the efficacy of all of the component processes that must be used to perform the test. Thus, such scores are inherently ambiguous; they could reflect a set of rather general factors, such as speed of processing or of
responding, as well as the specific factors they are designed to index. This problem with most currently available tests is widely acknowledged, but little has been done previously to address it. The present battery is based on a different approach, derived from the work on "additive factors" in cognitive psychology. This work hinges on the observation that specific variables can be identified with specific stages of processing; thus, by varying the value of the variable, one can selectively tax a specific stage. The present battery is based on this idea; we include at least three levels of a key variable within each test, and the score is a measure of increased difficulty over these levels. This technique allows us to assess the efficacy of specific component visual-spatial processes.

Administering and scoring the battery. The battery is implemented on a standard Macintosh Plus or Macintosh SE computer. The computer presents all instructions and stimuli, and it records responses, errors, and response times. At the end of each test the computer prints out two scores, one based on response times and one based on error rates. (A third score, combining the two, is easily computed and will be available in the final version.) The scores are then compared against normative scores, and a deficit is defined as a test score that falls outside the .05 confidence interval of the normal scores. The entire battery, should it be necessary to administer, requires about 3 hours for an otherwise healthy brain-damaged subject. The four screening tasks require about 20 minutes to administer, and it is almost never necessary to administer the complete battery after the scores on the screening tasks are seen.

2. **Using the battery to test brain-damaged patients**

The task battery has been used to examine one patient in detail, and has diagnosed a subtle visual deficit that is consistent with both the lesion location and regions of hypometabolism (as assessed by PET scanning). The patient displayed only a mild deficit in naming pictures (he was incorrect on 13% of the trials). This patient is unusual insofar as he has Broca's aphasia with no sign of a cortical lesion on CT scan; however, there is evidence of damage to white matter (the head of the left caudate) and of hypometabolism in both the left frontal lobe and occipito-temporal area. Thus, it was of interest to discover that he has selective deficits for image rotation and generation (both of which are posited by our theory to recruit processes implemented in the frontal lobe), but not for image scanning (which putatively does not require those structures). We also have preliminary evidence that he has difficult extracting "nonaccidental features" during perception. We are now in the process of analyzing his results in detail and comparing them to those from age- and education-matched control subjects. We have established a good mechanism for
recruiting additional patients at the Massachusetts General Hospital, and have other patients scheduled to be tested.

3. **Additional patient testing**

We have tested three additional brain-damaged patients on a task designed to assess the contribution of the occipital lobe to visual imagery. These subjects have varying amounts of damage to the occipital lobe (as well as to other structures, unfortunately). The task required subjects to decide from memory whether a named object is higher than it is wide; the objects were selected so that this discrimination is relatively subtle, and imagery typically is reported to be used. Subjects are seated in front of a blank white screen, and are asked to "project" their images of the objects on the screen in front of them when performing the task. Immediately after each item, the subject is asked to point to where the leftmost side of the object would be and where the rightmost side of the object would be if a picture of the object had been projected on the screen as it appeared in the image. A compass is mounted under the subject's chin, and all pointing is done with a pointer mounted on the compass. Thus, we could read off both the angle subtended by the imaged object and whether the object was located directly in front of the subject. It is of interest that all three subjects with occipital lobe damage show visual angles at least half those of normal control subjects (when we correct for bias in pointing). In contrast, subjects with parietal lobe damage or subcortical (thalamic) damage that affects vision do not exhibit smaller angles. Furthermore, we discovered that one of these control subjects (who had damage to his left LGN) observed imaged objects drifting into his blind field; this result allows us to speak against the role of "tacit knowledge" of perception in producing the results, given that the subject never actually sees anything in his blind field. Thus, the evidence collected thus far is consistent with the claim that images are spatial representations the are supported by structures in the occipital lobe.

4. **Computer simulation**

The computer simulation model was described in last year's annual report. We have used the program to generate a series of predictions, which are being published in the next issue of *Cognition*. We are actively seeking patients who show deficits that are consistent or inconsistent with predictions. For example, the model predicts that some patients will be able to recognize faces but not common objects. It also predicts that some subjects who have difficulty recognizing faces will also have difficulty recognizing objects seen from unusual points of view.

5. **PET scanning**
This work was not anticipated in the original proposal. However, we were invited to collaborate with the PET group at MGH, and have begun to make exciting discoveries using this technique. So far, three subjects have been given imagery tasks while being PET scanned at the MGH (this work is in collaboration with Dr. Nat Alpert, who obtained the necessary approval of the human subjects committee at the MGH). The results are consistent with the predictions of the theory. In particular, the medial occipital and frontal activation is consistent with the claim that images are patterns of activation in topographically mapped areas and that they are built up sequentially. In addition, we have begun a collaboration with the Washington University PET scanning group, and plan a study to examine the precise correspondences in activated brain areas in imagery and perception. The study is designed to allow us to examine directly the effects of spatial properties of imaged patterns on the patterns of activation in the brain (particularly in areas in extrastriate cortex that are known to be topographically mapped in nonhuman primates).

6. **Response-time experiments with normal subjects**

Finally, response time studies using divided visual field techniques have provided evidence for two ways of representing spatial relations, as categories (e.g., left/right; above/below) or precise metric amounts; the left hemisphere is generally more effective at computing categorical spatial relations, and the right hemisphere is generally more effective at computing metric spatial relations. Additional experiments have provided evidence that both types of spatial relations can be used to arrange parts into a visual mental image.

In addition to these studies, we have continued to develop the theory by conducting experiments with normal subjects. Perhaps the most intriguing result (obtained in collaboration with C. Cave) focused on the time to identify line drawings of familiar objects. The drawings were presented completely intact, with the parts separated slightly but their spatial relations maintained, with the parts separated and presented in incorrect locations, with the object segmented arbitrarily but these segments being in the proper spatial relations, or with the object segmented arbitrarily and presented in incorrect locations. (Part boundaries were determined by having a separate group of subjects indicate segments, as was done by Biederman; we, as did he, found high agreement among these subjects.) The interesting prediction hinges on a distinction between Lowe's theory of object encoding and Biederman's theory. Lowe claims that "nonaccidental properties" (parallel lines, points of intersection, etc.) are extracted, and then the set is used to index a stored model; this indexing process operates with the constraint that the nonaccidental properties must be consistent with seeing a single object.
from a single point of view (the so-called viewpoint consistency constraint). On this theory, the critical variable should be disruptions of the viewpoint consistency constraint, and hence scrambling the spatial relations should disrupt naming time. In contrast, there is no reason to think that it is important whether the object is broken along part boundaries or is broken up arbitrarily. On the other hand, Biederman's theory stresses the recovery of "geons" during encoding (geometric shape primitives), which should be disrupted when the parts are segmented arbitrarily. Thus, it is of real interest that naming times were significantly impaired when parts were scrambled, but there was no effect of how the object was broken up. This finding has been replicated, and another variant is currently being conducted.

Publications During Grant Period

Kosslyn, S. M., Koenig, O., Barrett, A., Cave, C. B., Tang, J., and Gabrieli, J. D. E. (in press). Evidence for two types of spatial representations: hemispheric specialization for categorical and coordinate relations. *Journal of Experimental Psychology: Human Perception and Performance*

Participating Professionals

Jay R. Rueckl, Ph.D. Assistant Professor, Department of Psychology, Harvard University (collaborator on neural network models)

Olivier Koenig, Ph.D. Visiting Scholar (now returned to the University of Geneva)

Arlette Swift, Ed.D. Post doctoral fellow (neuropsychology)

Ph.D. Degrees Awarded

C. B. Cave. The neuropsychology of navigation. Currently a post-doctoral fellow in Larry Squire's laboratory at UCSD.
M. Van Kleeck. Perceptual parsing in the cerebral hemispheres. Currently a post-doctoral fellow at M.I.T.

In addition, five graduate students work in the laboratory.

Coupling Activities

Presentations

Presentations were delivered at the following institutions. Unless noted otherwise, these were colloquia summarizing the material described in this Annual Report and were generally entitled "Components of High-Level Vision: A Cognitive Neuroscience Analysis"

Boston University
Princeton University
Massachusetts General Hospital (Behavioral Neurology rounds)
Longwood Medical Area (Harvard Medical School) Neurology grand rounds
Shattuck Hospital
Ohio State University
Brown University
University of Minnesota
University of Montreal
Massachusetts Neuropsychology Society
Washington University Medical School
Thinking Machines Corporation
Dartmouth University
University of Rochester
Cognitive Science Society Symposium on Cognitive Neuroscience of Attention
James S. McDonnell Summer Institute in Cognitive Neuroscience (Dartmouth University)
The Salk Institute
AFOSR Contractors' meeting in Alexandria, VA

Honors

Federation of Social, Behavioral and Cognitive Sciences
Massachusetts Neuropsychology Society
Consultant, Naval Research Laboratories (19 January 1989)
Pew Memorial Trust Northeastern Neurosciences Program, grant preparation committee
National Research Council committee on Cognitive Psychophysiology
Symposium Co-organizer, 1989 meetings of Cognitive Science Society
Co-organizer, 1990 Cognitive Science Society meetings (to be held in
Boston)
Editorial board: *Journal of Cognitive Neuroscience* (co-founder);
*Behavioral Neuroscience; Psychological Review; Journal of Visual
Languages and Computing*
External reviewer, programs in experimental psychology at Syracuse
University.

Patents and Copyrights

Harvard University is in the process of obtaining a copyright for the test
battery.

Additional Progress

The laboratory has also developed a general purpose neural network
simulator, which appears to be more powerful than simulators that are
commercially available. Two versions have been implemented, one for the
Macintosh II and one for a UNIX VAX environment. In addition, a program
called "quick stat" has been developed to compute statistics directly on the
output from our tachistoscope simulator program for the Macintosh.
Dr Jonathan Baron
80 Glenn Avenue
Berwyn PA
19312

Dr Jacob Beck
Department of Psychology
University of Oregon
Eugene OR
97403

Dr Irving Biederman
Dept of Psychology, Park Hall
SUNY at Buffalo
Amherst NY
14260

Dr Elizabeth Bjork
Department of Psychology
University of California
Los Angeles CA
90024

Dr Robert Bjork
Department of Psychology
University of California
Los Angeles CA
90024

Dr Kathryn Bock
Department of Psychology, Uris Hall
Cornell University
Ithaca NY
14853

Dr L. E. Bourne, Jr
Department of Psychology
University of Colorado - Box 345
Boulder CO
80309

Dr Gordon Bower
750 Mayfield Avenue
Stanford CA
94305

Dr Lila Braine
Department of Psychology
Barnard College
606 W 120th Street
New York NY
10027

Dr Myron L Braunstein
School of Social Science
University of California
Irvine CA
92717

Dr Albert S. Bregman
Department of Psychology
1205 Dr Penfield Avenue
Montreal Quebec
CANADA

Dr Doris Aaronson
No. 29C, 110 Bleeker Street
New York NY
10012

Dr Jack A. Adams
Department of Psychology
University of Illinois
Champaign IL
61820

Dr James A. Anderson
Department of Psychology
Brown University
Providence RI
02912

Dr John R Anderson
Department of Psychology
Carnegie-Mellon University
Pittsburgh PA
15213

Dr Nancy S. Anderson
Department of Psychology
University of Maryland
College Park MD
20742

Dr Norman H. Anderson
Psychology C-009
University of California
La Jolla CA
92093

Dr Fred Attneave
Department of Psychology
University of Oregon
Eugene OR
97403

Dr Lloyd L. Avant
Department of Psychology
Iowa State University
Ames IA
50011

Dr Harry P. Bahrick
5 Westgate Dr
Delaware OH
43015

Dr Donald Barbamer
Research Service
VA Medical Center
St Cloud MN
56301

Dr R. K. Banks
Department of Psychology
University of Waterloo
Waterloo - Ontario
CANADA
Dr. Wayne Shebilske
Com on Vision
National Academy of Science
2101 Constitution A
Washington DC 20418

Dr. Roger N. Shepard
Psychology Department
Building 420
Stanford University
Stanford CA 94305

Dr. Richard M. Shiffrin
Department of Psychology
Indiana University
Bloomington IN 47405

Dr. Edward J. Shoben
Psychology Department
University of Illinois
603 East Daniel Street
Champaign IL 61820

Dr. Harvey Shulman
Human Performance Center
404-B West 17th Ave.
Columbus OH 43210

Dr. Robert Steigler
Department of Psychology
Carnegie-Mellon University
Pittsburgh PA 15260

Dr. H. A. Simon
Department of Psychology
Carnegie-Mellon University
Pittsburgh PA 15260

Dr. Norman J. Slamecka
Department of Psychology
University of Toronto
Toronto Ont. M5S1A1 Canada

Dr. Edward E. Smith
Bolt Beranek & Newman Inc
50 Moulton Street
Cambridge MA 02139

Dr. Linda B. Smith
Department of Psychology
Indiana University
Bloomington IN 47405

Dr. Robert Solso
Psychology Department
University of Nevada, Reno
Reno NV 89557

Dr. Robert Sorkin
Department of Psychology
Purdue University
West Lafayette IN 47907

Dr. George Sperling
Psychology Department
New York University
6 Washington Place RM 980
New York NY 10003

Dr. Kathryn T. Spoehr
Psychology Department
Brown University
Providence RI 02912

Dr. Larry Squire
Vet. Adm. Medical Center
3350 La Jolla Village Drive
San Diego CA 92161

Dr. Keith Stanovich
Department of Psychology
Oakland University
Rochester MI 48063

Dr. Robert Sternberg
Department of Psychology
Box 111A Yale Station
New Haven CT 06520

Dr. Saul Sternberg
Department of Psychology
University of Pennsylvania
Philadelphia PA 19104

Dr. John Swets
C/O Bolt Beranek & Newman
50 Moulton Street
Cambridge MA 02139

Dr. David A. Swinney
Psychology Department
Tufts University
Medford MA 02155

Dr. Michael Tanehaus
Psychology Department
University of Rochester
Rochester NY 14726
Dr Keith Rayner
Department of Psychology
Tobin Hall
University of Massachusetts
Amherst MA 01003

Dr Arthur S. Reber
Department of Psychology
Brooklyn College
Brooklyn NY 11210

Dr Lynne Reder
Department of Psychology
Carnegie-Mellon University
Pittsburgh PA 15260

Dr Stephen Reed
Psychology Department
Florida Atlantic University
Boca Raton FL 33431

Dr Robert Rescorla
Department of Psychology
University of Pennsylvania
3815 Walnut Street
Philadelphia PA 19104

Dr Lance Rips
Behavioral Sciences
5848 S. University Avenue
Chicago IL 60637

Dr Irvin Rock
Psychology Department-Livingston
Rutger University
New Brunswick NJ 08903

Dr Henry L. Roediger, III
Department of Psychology
Purdue University
West Lafayette IN 47907

Dr Eleanor Rosch
Department of Psychology
University of California
Berkeley CA 94720

Dr David A. Rosenbaum
School of Cognitive Sci Comm.
Hampshire College
Amherst MA 01002

Dr David C. Rubin
Department of Psychology
Duke University
Durham NC 27706

Dr Dewey Rundus
Department of Psychology
University of South Florida
Tampa FL 33620

Dr Timothy A. Salthouse
Department of Psychology
University of Missouri
Columbia MO 65211

Dr James Sawaush
Department of Psychology
State University of New York
4230 Ridge Lea Road
Buffalo NY 14226

Dr Arthur Schulman
Department of Psychology
University of Virginia
Charlottesville VA 22901

Dr Roger Schvaneveldt
Department of Psychology
New Mexico State University
Las Cruces NM 88003

Dr Barry Schwartz
Psychology Department
Swarthmore College
Swarthmore PA 19081

Dr Richard Schweickert
Psychological Sciences
Purdue University
West Lafayette IN 47907

Dr J. G. Seamon
Department of Psychology
Wesleyan University
Middletown CT 06457

Dr Robert Sekuler
2003 Orrington Avenue
Evanston IL 60201

Dr James Shanteau
Department of Psychology
Kansas State University
Manhatten KS 66506

Dr Marilyn Shatz
Human Performance Center
330 Packard Road
Ann Arbor MI 48104
Dr Raja Parasuraman
Human Performance Lab
Catholic University of America
Washington DC 20064

Dr James Pellegrino
Grad School of Education
University of California
Santa Barbara CA 93106

Dr Michael I. Posner
Department of Psychology
University of Oregon
Eugene OR 97403

Dr Charles A. Perfetti
LRDC
University of Pittsburgh
Pittsburgh PA 15260

Dr L. J. Postman
Department of Psychology
University of California
Berkeley CA 94720

Dr Kathy Pezdek
Department of Psychology
Claremont Graduate School
Claremont CA 91711

Dr Mary Potter
Department of Psychology
E10-032
Massachusetts Institute of Technology
Cambridge MA 02139

Dr George R. Potts
Department of Psychology
University of Denver
Denver CO 80208

Dr Herbert L. Pick, Jr
Inst of Child Development
University of Minnesota
Minneapolis MN 55455

Dr Robert Proctor
Department of Psychology
Auburn University
Auburn AL 36849

Dr Steven Pinker
Department of Psychology
E-10-018
Massachusetts Institute of Technology
Cambridge MA 02139

Dr George R. Potts
Department of Psychology
University of Denver
Denver CO 80208

Dr David b. Pisoni
Department of Psychology
Indiana University
Bloomington IN 47405

Dr R. H. Proffitt
Psychology Department
Gilmer Hall
University of Virginia
Charlottesville VA 22901

Dr R. H. Pollack
Department of Psychology
University of Georgia
Athens GA 30602

Dr David H. Raab
Department of Psychology
Brooklyn College
Brooklyn NY 11210

Dr Irwin Pollack
Mental Health Resch Institute
University of Michigan Stop 053
Ann Arbor MI 48104

Dr Jan Rabbie
Department of Psychology
Barnard College
606 W. 120th Street
New York NY 10027

Dr Alexander Pollatsek
Department of Psychology
University of Massachusetts
Amherst MA 01003

Dr David H. Raab
Department of Psychology
Brooklyn College
Brooklyn NY 11210

Dr James R. Pomerantz
Department of Psychology
4230 Ridge Lea Road
Buffalo NY 14226

Dr Roger Ratcliff
Psychology Department
Northwestern University
Evanston IL 60201
Dr Sylvan Kornblum
Mental Health Research Institute
University of Michigan
Ann Arbor MI 48109

Dr Stephen M. Kosslyn
Psychology & Social Relations
Harvard University
Cambridge MA 02138

Dr Judith Kroll
Department of Psychology & Education
Mount Holyoke College
South Hadley MA 01075

Dr Lester E. Krueger
Human Performance Center
4048 W. 17th Avenue
Columbus OH 43210

Dr Carol L. Krumbansen
Department of Psychology
Uris Hall
Cornell University
Ithaca NY 14853

Dr Michael Kubovy
Psychology Department
Tillett Hall
Rutgers University
New Brunswick NJ 08903

Dr David Laberge
School of Social Science
University of California
Irvine CA 92717

Dr Marcy Lansman
Psychology Department Davie Hall 013A
University of North Carolina
Chapel Hill NC 27514

Dr Joseph Levin
Department of Psychology
Vanderbilt University
Nashville TN 37240

Dr Lester Lefton
Department of Psychology
University of South Carolina
Columbus SC 29208

Dr Alvin Liberman
Haskins Laboratories
270 Crown Street
New Haven CT 06510

Dr Gregory Lockhead
Department of Psychology
Duke University
Durham NC 27706

Dr Elizabeth Loftus
Department of Psychology
University of Washington
Seattle WA 98195

Dr Gregorv Loftus
Department of Psychology
University of Illinois
Champaign IL 61820

Dr Jack M. Loomis
Department of Psychology
University of California
Santa Barbara CA 93106

Dr Lola Lopes
Department of Psychology
University of Wisconsin
Madison WI 53706

Dr R. Duncan Luce
William James Hall
Harvard University
Cambridge MA 02138

Dr George Mandler
Center Human Information Processing
University of California
La Jolla CA 92093

Dr Joan M. Mandler
Department of Psychology
University of California
La Jolla CA 92037

Dr Ellen M. Hartman
Psychology Building 420
Stanford University
Stanford CA 94305

Dr Dominic Massaro
Program in Experimental Psychology
University of California
Santa Cruz CA 95064
<table>
<thead>
<tr>
<th>Name</th>
<th>Department of Psychology</th>
<th>University</th>
<th>City, State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Michael S. Gazzaniga</td>
<td>1300 York Avenue</td>
<td>New York University</td>
<td>New York, NY 10021</td>
</tr>
<tr>
<td>Dr. R. E. Geiselman</td>
<td>Department of Psychology</td>
<td>University of California</td>
<td>Los Angeles, CA 90024</td>
</tr>
<tr>
<td>Dr. E. Scott Geller</td>
<td>Department of Psychology</td>
<td>Virginia Tech</td>
<td>Blacksburg, VA 24061</td>
</tr>
<tr>
<td>Dr. Roche Gelman</td>
<td>Department of Psychology</td>
<td>3813-15 Walnut Street</td>
<td>Philadelphia, PA 19104</td>
</tr>
<tr>
<td>Dr. Dedre Gentner</td>
<td>University of Illinois</td>
<td>Champaign, IL 61820</td>
<td></td>
</tr>
<tr>
<td>Dr. Eleanor J. Gibson</td>
<td>Department of Psychology</td>
<td>Uris Hall</td>
<td>Cornell University, Ithaca, NY 14853</td>
</tr>
<tr>
<td>Dr. Murray Glanzer</td>
<td>Department of Psychology</td>
<td>New York University</td>
<td>New York, NY 10003</td>
</tr>
<tr>
<td>Dr. Arnold L. Glass</td>
<td>Psychology Department-Busch Campus</td>
<td>Rutgers University</td>
<td>New Brunswick, NJ 08903</td>
</tr>
<tr>
<td>Dr. Henry Glass</td>
<td>Psychology Department</td>
<td>3815 Walnut Street</td>
<td>University of Pennsylvania, Philadelphia, PA 19104</td>
</tr>
<tr>
<td>Dr. Arthur Glenberg</td>
<td>Department of Psychology</td>
<td>University of Wisconsin</td>
<td>Madison, WI 53706</td>
</tr>
<tr>
<td>Dr. Sam Glucksburg</td>
<td>Department of Psychology</td>
<td>Princeton University</td>
<td>Princeton, NJ 08544</td>
</tr>
<tr>
<td>Dr. Walter C. Gogel</td>
<td>Department of Psychology</td>
<td>University of California</td>
<td>Santa Barbara, CA 93106</td>
</tr>
<tr>
<td>Dr. Judith Goggin</td>
<td>Department of Psychology</td>
<td>University of Texas-El Paso</td>
<td>El Paso, TX 79968</td>
</tr>
<tr>
<td>Dr. Bruce Goldstein</td>
<td>Department of Psychology</td>
<td>University of Pittsburgh</td>
<td>Pittsburgh, PA 15260</td>
</tr>
<tr>
<td>Dr. Paula Goolkasian</td>
<td>Department of Psychology</td>
<td>University of North Carolina</td>
<td>Charlotte, NC 28223</td>
</tr>
<tr>
<td>Dr. Daniel Gopher</td>
<td>Department of Indus. Engin. & Mngmt. Techn</td>
<td>Haifa 3200</td>
<td>Israel</td>
</tr>
<tr>
<td>Dr. Arthur Graesser</td>
<td>Department of Psychology</td>
<td>California State University</td>
<td>Fullerton, CA 92634</td>
</tr>
<tr>
<td>Dr. Norma Graham</td>
<td>314 Schermerhorn Hall, Psychology</td>
<td>Columbia University</td>
<td>New York, NY 10027</td>
</tr>
<tr>
<td>Dr. Douglas S. Grant</td>
<td>Department of Psychology</td>
<td>The University of Alberta</td>
<td>Edmonton, Alta, Canada</td>
</tr>
<tr>
<td>Dr. David R. Greenberg</td>
<td>Department of Psychology</td>
<td>Harvard University</td>
<td>Cambridge, MA 02138</td>
</tr>
<tr>
<td>Dr. James Greenberg</td>
<td>University of California at Berkeley</td>
<td>Berkeley, CA 94720</td>
<td></td>
</tr>
<tr>
<td>Dr. Anthony Greenwald</td>
<td>Ohio State University</td>
<td>404C W 17th Avenue</td>
<td>Columbus, OH 43210</td>
</tr>
</tbody>
</table>