On Multiple Edge Diffraction and Multiple Reflections of Microwaves over Terrain

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

 Microwave diffraction, microwave reflection, microwave propagation over terrain, microwave edge diffraction, knife edges, multiple diffracting knife edges, diffracting ray paths.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

 This report describes a computer model which is an extension of the method of Deygout-Meeks for computing power density on target from microwaves propagated over terrain. The Meeks procedure is concerned with broadcast/isotropic radiation at very high frequencies (vhf) and accounts for the effects of diffraction across a single knife edge, as well as ground reflections of microwaves over electrically interactive terrain at low incidence angles of transmission. This model is extended to describe either broadcast vhf radiation or beamed microwaves that are diffracted over two edges.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>5</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>7</td>
</tr>
<tr>
<td>2. Direct Ray Path</td>
<td>8</td>
</tr>
<tr>
<td>3. Indirect Ray Path</td>
<td>11</td>
</tr>
<tr>
<td>4. Application of the DOUBLEDGE Computer Program</td>
<td>17</td>
</tr>
<tr>
<td>5. Discussion of Results</td>
<td>18</td>
</tr>
<tr>
<td>5.1 Comparison of Power Loss of Double Versus Single Diffraction</td>
<td>18</td>
</tr>
<tr>
<td>5.2 Comparison of Power Loss of 3-m Versus 6-m Antenna Height</td>
<td>19</td>
</tr>
<tr>
<td>5.3 Verification of the DOUBLEDGE Diffraction Theory with Collected</td>
<td>20</td>
</tr>
<tr>
<td>Field Data</td>
<td></td>
</tr>
<tr>
<td>5.4 Comparison of Theoretically Derived Power Density Loss for Single</td>
<td>22</td>
</tr>
<tr>
<td>Diffraction with Data for Diffraction over Two Peaks</td>
<td></td>
</tr>
<tr>
<td>5.5 Plots for Doubly Diffracted Horizontally Polarized Microwaves</td>
<td>22</td>
</tr>
<tr>
<td>Based on Theory and the Application of Program DOUBLE_PLOT</td>
<td></td>
</tr>
<tr>
<td>Literature Cited</td>
<td>23</td>
</tr>
<tr>
<td>Distribution</td>
<td>79</td>
</tr>
</tbody>
</table>

Appendices

A.—Picturing Diffractive Ray-Path Geometries for Two Knive Edges. | 25 |
B.—Computer Program DOUBLEDGE. | 29 |
C.—Computer Program DOUBLE_PLOT. | 49 |
D.—Plots of Computer Studies of Doubly Diffracted Horizontally Polarized Microwaves | 53 |
E.—Plots Comparing Power Density at Target | 65 |
Appendices

F.—Plots Comparing a Theoretically Derived Curve for Two Diffractions over Terrain with a Curve Prepared from Field Measurement Data for Two Diffractions over Terrain .. 71

G.—Plot Comparing a Theoretically Derived Curve for a Single Diffraction over Terrain (using the KNIFEDGE Program) with a Curve Prepared from Field Measurement Data for Two Diffractions over Terrain .. 75

Figures

1. Knife-edge diffraction and reflection for example of two diffractions and three reflections .. 7
2. Clearance of direct ray path over knife edges F_1 and F_2 .. 10
3. Geometry for determining direct path over edge F_1 or F_2 .. 10
4. Ray-path geometry for determining grazing angles over terrain regions ... 12
5. Double-knife-edge model over terrain .. 18
Executive Summary

In response to a recommendation stemming from an earlier report* that "the knife edge model be extended to include multiple knife edges," this study develops, as a special case, a computer program model of microwave diffraction over two edges/hills that are situated on a flat earth.

In summary, the following has been accomplished in this report:

An extension is made of the Meeks knife-edge method for computing power density on target, in order to consider double diffraction. Whereas Meeks' method (which itself is an extension of Deygout's 1966 simplification of diffraction computations for the Kirchhoff knife-edge theory) models the broadcast of microwaves over a single knife edge, the method described here models, at the discretion of the user, either isotropically broadcast or anisotropically beamed microwave radiation over two knife edges.

In order to make this extension, one constructs a set of uniquely described ray paths from the source antenna to the sink antenna. The model describes double diffraction of microwaves across electrically interactive terrain with ground reflections at low incidence angles. This method can be further extended for diffraction over more than two edges.

*Albert G. Gluckman, *The Lobing Structure of Microwave Radiations due to Reflection and Diffraction from Terrain (U)*, Harry Diamond Laboratories, HDL-TM-86-10 (September 1986). (CONFIDENTIAL)
1. Introduction

Suppose a ray path of a microwave train is diffracted by two knife edges which are set on a flat earth. How can we determine by how much or by how many decibels the power level is diminished by the diffraction? And if interference occurs between this ray and a direct ray, how does this interference affect the power level of the train of microwaves? Further, if reflection occurs at one, two, or three points that are separated by the knife edges (see fig. 1), how much power density of the train of microwaves is lost to eddy currents in the conductive soil?

Apropos both the computational characteristics and the theoretical underpinnings/foundations of propagation models, the following question comes to mind. How can the reduction in power level for a single knife edge [1-6] be extended to apply to the problem of determining the reduction in power level for two knife edges, for all reflection path geometries that are encountered?

The purpose of this report is to show how this may be accomplished. The FORTRAN program to do this (called DOUBLEDGE) is shown in appendix B. It can handle the propagation of either broadcast radiation at vhf or of beamed microwaves which have much higher frequencies.

Figure 1. Knife-edge diffraction and reflection for example of two diffractions and three reflections.

- References are listed at the end of the main body of text (p 23).
The report first discusses propagation of the direct ray, next the indirect ray, and then the application of the double-knife-edge model, ending with a discussion of the results.

Appendix A shows the diffractive ray-path geometries for two knife edges, appendix B is a listing of the FORTRAN computer program of the model, and appendix C is a program listing which was used to extract the data subset for making the plots shown in appendix D.

The plots in appendix D show the change in power density at the target, expressed in decibel scale (relative to free space level of 0-dB decrement), versus target height. The plots show a good agreement of accepted theory with the results from the model. Because of its simplicity, this method takes little computer time.

Appendix E contains plots of single diffraction and double diffraction of microwaves. Some of these plots are used to show how power density at the target after single diffraction will compare to power density at the target after double diffraction. Some other plots in appendix E show how, by changing emitter height, battlefield saturation by radiation can be enhanced.

Appendix F shows a plot comparing a theoretically derived curve for two diffractions over electrically interactive terrain with a curve that is derived from actual propagation data collected in the field from measurements. These propagation data are taken with respect to the transmitter on an azimuth to a location called Forest Hill.

Appendix G shows a plot comparing a theoretically derived curve for a single diffraction over terrain (using the KNIFEDGE program) to a curve prepared from field measurement data for two diffractions over terrain. These propagation data are taken with respect to the transmitter on an azimuth to Forest Hill.

2. Direct Ray Path

There are three possible geometries to describe the clearance of the direct ray path over two knife edges. The three geometries depend on whether
the heights of the two knife edges, \(F_1 \) and \(F_2 \), are as \(F_1 < F_2 \), as \(F_1 > F_2 \), or as \(F_1 = F_2 \). These geometries are pictured in figure 2.

With sufficient distance above the knife edges, relative to wave length, these ray paths exhibit no diffraction. They are called the direct ray paths, or the direct rays.

Let us consider knife-edge heights \(F_1 \) and \(F_2 \); the distances \(d_1, d_2, \) and \(d_3 \) downrange; the height of the transmitter, \(z_1 \); and the height of the target, \(z_2 \), as illustrated in figure 2. From these three diagrams in figure 2, a logical choice can be made as to which path geometry is appropriate. This is done by a testing algorithm which is based on (1) the sign and magnitude of the slope angles of the paths over the edges and on (2) whether \(F_1 \) is greater than, equal to, or less than \(F_2 \).

From figure 3, the slope angles are

\[
\alpha_1 = \tan^{-1} \left(\frac{(F_1 - z_1)}{d_1} \right)
\]

and

\[
\alpha_2 = \tan^{-1} \left(\frac{(F_2 - z_1)}{(d_1 + d_2)} \right)
\]

So, if

\[
F_1 < F_2 \text{ and } \alpha_1 < \alpha_2 ,
\]

the direct path has \(F_2 \) as its edge of closest approach. In this case, the normalized electric amplitude \(A_{12} \) associated with the Fresnel diffraction of an assumed wave over \(F_2 \) is calculated. If

\[
F_1 < F_2 \text{ and } \alpha_1 \geq \alpha_2 ,
\]

or if,

\[
F_1 > F_2 \text{ and } \alpha_1 \geq \alpha_2 ,
\]

the direct path has \(F_1 \) as its edge of closest approach. In this case, the normalized electric amplitude \(A_{11} \) associated with the Fresnel diffraction of an assumed wave over \(F_1 \) is calculated.
Figure 2. Clearance of direct ray path over knife edges F_1 and F_2.

Figure 3. Geometry for determining direct path over edge F_1 or F_2, based on slope angle and ray path and relative heights of F_1 and F_2.

10
The normalized electric amplitudes, \(A \), of these direct ray paths (as well as the indirect paths discussed in the next section, which experience reflection as well as diffraction) are computed with the aid of the Cornu spiral approximations for the Fresnel integrals.

3. Indirect Ray Path

The indirect ray path is a path along which a microray experiences diffraction from one or more knife edges, as well as reflection from the ground/terrain. A microray is a ray at microwave frequency. The theory of ray optics was applied by Deygout, and later Meeks, to the problem of microwave propagation from a point-source emitter.

The ray path emanating from the point-source microwave transmitter is hypothesized to be a continuous signal. This signal can be diffracted by intervening hills/ridges, as well as reflected by flattened terrain profile features. Interference patterns arise when these diffracted and reflected rays interfere with the direct rays.

This method for determining diffraction over two geometries takes into account the diminution of electric amplitude that is associated with each ray path geometry.

From figures 2 and 4, it can be seen that reflection of a ray can occur

on \(d_1 \) or on \(d_2 \) or on \(d_3 \) separately;

or on \(d_1 \) and \(d_2 \), or on \(d_1 \) and \(d_3 \), or on \(d_2 \) and \(d_3 \) conjointly;

or on \(d_1 \) and \(d_2 \) and \(d_3 \) in concert.

Furthermore, it is evident that diffraction can occur at \(F_1 \) or at \(F_2 \) or at both \(F_1 \) and \(F_2 \), together with any of the possibilities of reflection just mentioned. This means that a total of 14 ray-path geometries are possible for an indirect ray path.

Another level of complication in the theory is that the target height is raised in discrete intervals, so that for each increase, the reflection points alter or shift in position on the terrain, and the grazing angles change. Since the reflecting electric ray interacts electrically with the terrain, eddy currents are formed in the soil at the point of reflection, and electric energy is lost in the soil in the form of Joule heat. This means that the resulting
reflected electric microray has a diminished amplitude. The reflection coefficient depends upon permittivity (which is the dielectric constant) of the soil, wave length, conductivity of the soil (in siemens), and the grazing angle (in radian measure). Figure 4 shows how to determine the respective grazing angles PSI1, PSI2, and PSI3 of a ray over terrain regions d_1, d_2, and d_3, respectively.

In the computer program (with fig. 3 in mind), CTV is the vertical polarization reflection coefficient and CTH is the corresponding horizontal polarization reflection coefficient. The reflection coefficient determines the diminution (or reduction) in the (normalized) electric amplitude of the ray, after reflection on the ground. This means that after reflection, there is a corresponding reduction in the eventual power density output at target from this ray path.

The subroutine FRESNL (in app B) computes the reflection coefficient. The FORTRAN parameter ANG in subroutine FRESNL takes the values $PSI1$, $PSI2$, or $PSI3$ of the grazing angles in radians. $PSI1$, $PSI2$, and $PSI3$ are the grazing angles over d_1, d_2, and d_3, respectively.

![Figure 4. Ray-path geometry for determining grazing angles over terrain regions (needed for computing reflection coefficients CT_i, where $i = 1, 2, or 3$).](image)

\[
\tan^{-1}\left(\frac{z_i + F_i}{d_i}\right) = PSI_i
\]

\[
\tan^{-1}\left(\frac{z_2 + F_1}{d_2 + d_3}\right) = PSI_2
\]

\[
\tan^{-1}\left(\frac{z_2 + F_2}{d_3}\right) = PSI_3
\]
For either horizontally or vertically polarized microwaves, the calculated Fresnel reflection coefficient \((CTH\) or \(CTV\)) and the ground reflectivity \(REFL_i\) (in FORTRAN computer code) are multiplied together in one-to-one correspondence with the appropriate terrain interval \(d_i\). This means that

\[
CT_i = \begin{cases}
CTH \\
CTV
\end{cases} \times REFL_i , \text{ where } i = 1, 2, \text{ or } 3 ,
\]

and \(CT_i\) is the amended reflection coefficient.

In order to distinguish beamed/anisotropic propagation at microwave frequency from broadcast/isotropic propagation at vhf, the computer program relies on the data input of either "anisotropic" or "isotropic." If a beam is formed, a corresponding high-frequency input is necessary in order to satisfy the physical requirements of the generic theory. Just as in the KNIFEDGE program [7] of the diffraction of a microray (or its associated microwave) caused by a single edge, so too, in this DOUBLEDGE program model is the nonisotropic radiator incorporated into the theory by considering the on-axis ray of the antenna as the direct ray and the off-axis ray as the reflected ray. The magnitude of the reflected ray is less than that of the direct ray by an E-field reduction factor:

\[
E_R = GRdB = 10^{(G - C) / 20} ,
\]

where \(G\) is the gain of the antenna in decibels and \(C\) is the on-axis antenna gain. In the isotropic case, gain due to directivity is not considered.

Corresponding to each of the two knife edges \(F_1\) and \(F_2\), there is a clearance parameter of a first Fresnel zone. For edge \(F_1\), this is

\[
\Delta_{12} = \sqrt{\frac{\lambda d_1 d_2}{d_1 + d_2}}
\]

and for \(F_2\), this is

\[
\Delta_{23} = \sqrt{\frac{\lambda d_2 d_3}{d_2 + d_3}} .
\]
For the edge F_1, the argument u of the Fresnel integrals

\[C(u) = \int_0^u \cos \frac{\pi}{2} u^2 \, du \quad \text{and} \quad S(u) = \int_0^u \sin \frac{\pi}{2} u^2 \, du \]

when multiplied by the factor $2^{-1/2}$ forms the ratio of the clearance parameter Δ of the direct ray over or through (if negative clearance below) the knife edge F_1 expressed in units of clearance of the first Fresnel zone Δ_{12}. Thus $u = \Delta 2^{1/2}/\Delta_{12}$.

On the other hand, for the edge F_2, $u2^{-1/2}$ is the ratio of the clearance parameter Δ of the direct ray over or through (if negative clearance below) the knife edge F_2 expressed in units of clearance of the first Fresnel zone. Thus $u = \Delta 2^{1/2}/\Delta_{23}$.

Clearance parameters Δ_{12}, corresponding to edge F_1, are calculated for each of the seven generic indirect ray paths over F_1, and this calculation is iterated for each change that occurs due to the stepping of the target height as it gains altitude. Likewise, clearance parameters Δ_{23}, corresponding to edge F_2, are calculated for each of the defined seven generic indirect ray paths over F_2.

The choice of the direct ray path may be taken over either knife-edge F_1 or F_2, but this choice is decided by the method that is described in section 2. If knife edge F_1 is the one of closest approach to the ray, yet far away enough not to contribute any diffractive effects (i.e., the bending of the ray due to the presence of the knife edge), the normalized electric amplitude A_{11}, corresponding to F_1 is calculated. If, on the other hand, F_2 satisfies this condition, the normalized electric amplitude A_{12} is calculated. Note that in the notation A_{11} and A_{12}, the first subscript, 1, refers to the direct ray; the second subscript refers to either edge F_1 or F_2.

14
In more detail, normalized electric field amplitudes for each of the direct rays over \(F_1 \) or \(F_2 \) are computed independently; and this is true for all computations involving the indirect rays as well. The choice of either direct ray over \(F_1 \) or over \(F_2 \) is made by the decision algorithm based on slope and the relative heights of edges \(F_1 \) and \(F_2 \) that is described in figure 3 of section 2. There can only be one direct ray.

Likewise, normalized electric field amplitudes \(A_{ij} \) corresponding to each of the 14 remaining generic indirect ray paths are computed in a stepwise fashion for each iteration, as the target height increases step by step to the maximum designated height. The electric field contributions for all paths at a particular height are summed for their total field value. The normalized electric amplitudes \(A_{ij} \), where \(i = 1 \) through 8 (corresponding to path), and \(j = 1 \) or 2 (corresponding to edge \(F_1 \) or \(F_2 \)), is derived from the equation

\[
A_{ij} \sqrt{2} = (C + 0.5)^2 + (S + 0.5)^2 ,
\]

where

\[0 \leq A_{ij} \leq 1 . \]

All \(A_{ij} \) values are derived independently of each other. For the case of the 14 paired indirect-ray-path geometries, the electric amplitudes of the seven pairs of ray paths (shown in app A) are combined as

\[
A_{21}A_{22}, A_{31}A_{32}, A_{41}A_{42}, A_{51}A_{52}, A_{61}A_{62}, A_{71}A_{72}, A_{81}A_{82}
\]

for all iterations on target height. These products of normalized electric amplitudes reduce the available energy on target, because of diffractive loss due to the bending of rays into the shadow region behind the hills.

Because the values of the amplitudes \(A_{ij} \) theoretically lie between 0 and 1 (except that in actual practical use numerical error may cause this condition to be sometimes violated to some extent), they act to diminish the power density of the electric field corresponding to each ray path associated with this diffracted forward scattering. The combined effect of the pairwise products of these amplitudes (which may be called product
amplitudes), as shown just above, are a measure of the reduction in power density at the target due to the diffraction induced by both knife edges F_1 and F_2.

The expression CE_i is a complex number expressing the magnitude (amplitude) and the phase lag angle of each contribution of the electric field corresponding to each iteration of the target height, for each generic path. The total magnitude for each field contribution is expressed as $A_{i1}A_{i2}$ multiplied by the appropriate combination of reflection coefficients, CT_i, and by the gain reduction factor, E_R, to account for the beam concentration of microwave radiation.

The phase lag angle B, where

$$B = \tan^{-1} \left(\frac{S + 0.5}{C + 0.5} \right) + \frac{k\pi}{4}, \quad k = -1 \text{ or } 3,$$

is due to the difference between the phase angle of the reflected ray and direct ray, at target, and this is a consequence of the differences in the path lengths of the direct and indirect (reflected) rays. Therefore, the relative power density at target in decibel units, relative to propagation in free space is

$$20 \log CE_1 + \sum_{i=2}^{8} CE_i,$$

where CE_1 is the complex form for the electric contribution $A_{11}e^{B\sqrt{-1}}$ or $A_{12}e^{B\sqrt{-1}}$ for the direct ray; and $CE_i, i = 2 \text{ to } 8$, is the complex form of the electric contribution for each of the paired generic indirect ray paths, expressed as

$$CE_{22} = A_{21}A_{22} e^{B\sqrt{-1}} e^{-2\pi\Delta R_{21}/\lambda} e^{-2\pi\Delta R_{22}/\lambda} \Gamma_1 E_R$$

$$CE_{32} = A_{31}A_{32} e^{B\sqrt{-1}} e^{-2\pi\Delta R_{31}/\lambda} e^{-2\pi\Delta R_{32}/\lambda} \Gamma_2 E_R$$

$$CE_{42} = A_{41}A_{42} e^{B\sqrt{-1}} e^{-2\pi\Delta R_{41}/\lambda} e^{-2\pi\Delta R_{42}/\lambda} \Gamma_1 \Gamma_2 E_R$$

$$CE_{52} = A_{51}A_{52} e^{B\sqrt{-1}} e^{-2\pi\Delta R_{51}/\lambda} e^{-2\pi\Delta R_{52}/\lambda} \Gamma_3 E_R$$
\[CE_{62} = A_{61} A_{62} e^{\frac{\Gamma_3}{\lambda}} e^{-2\pi\Delta R_{61}/\lambda} \frac{1}{\lambda} e^{-2\pi\Delta R_{62}/\lambda} \Gamma_2 \Gamma_3 \] \[CE_{72} = A_{71} A_{72} e^{\frac{\Gamma_3}{\lambda}} e^{-2\pi\Delta R_{71}/\lambda} \frac{1}{\lambda} e^{-2\pi\Delta R_{72}/\lambda} \Gamma_1 \Gamma_3 \] \[CE_{82} = A_{81} A_{82} e^{\frac{\Gamma_3}{\lambda}} e^{-2\pi\Delta R_{81}/\lambda} \frac{1}{\lambda} e^{-2\pi\Delta R_{82}/\lambda} \Gamma_1 \Gamma_2 \Gamma_3 \]

where the amended reflection coefficients \(CT_i = \Gamma_i \) each correspond to their associated terrain region \(d_i \).

The normalized electric amplitudes \(A_{i1} \) and \(A_{i2} \) (\(i = 2 \) through \(8 \)) refer to diffraction at edges \(F_1 \) and \(F_2 \), respectively, for all pairs of ray path geometries that are described in figure A-1 of appendix A.

4. Application of the DOUBLEDGE Computer Program

Figure 5 shows how terrain with two prominent features/hills can be pictured for the particular example where the transmitter, \(T \), is set up on a high hill overlooking the predominantly downhill terrain. Two large hills lie between the transmitter, \(T \), and the target, \(S \), located downrange. The intervening hilltops are located at positions \((X_4, Y_4)\) and \((X_6, Y_6)\). The line \(X_1X_2 \) is parallel to sea level in the flat earth model. The terrain distance and height parameters are referenced to the lowest position above sea level, \(X_2 \), in the same manner as this was done by Gluckman [7] in his KNIFEDGE computer model of a microwave beam that is diffracting over a single hill/ridge. The microwave targeting position lies above position \(X_2 \) at location ground zero.

With the use of the appropriate data derived from actual measured field transmissions and receptions, this doubly diffractive model with attendant/accompanying reflections can be tested for its accuracy in representing actual physical conditions of terrain, polarity of the wave, and frequency, with respect to the measured signal strength.
5. Discussion of Results

By the expedient of raising or lowering the height of the high-power microwave transmitter, one can alter the elevations of the power density lobes. This would result in increasing the coverage of electric energy on targets over or about the position of ground zero. This procedure would change the amount of diffracted energy in the umbra/shadow which is below the line of sight, thereby increasing the energy level of radiation that can be placed on a target behind a hill. The method developed in this report to determine power loss resulting from two diffractions, for ray paths reflecting from electrically interactive terrain, can be extended to the case of diffraction occurring over n edges.

5.1 Comparison of Power Loss of Double Versus Single Diffraction

In comparing the plots of appendix E in figure E-1, where $D1 = 2500$ m and $D2 = 5000$ m,
figure E-2, where $D1 = 3750$ m and $D2 = 3750$ m, and
figure E-3, where $D1 = 5000$ m and $D2 = 2500$ m,
all other electric and geometric terrain parameters remaining the same, one
makes the following observations.

In all three plots, power loss due to double diffraction is greater than for
single diffraction, and the double-diffraction power loss curves asymptoti-
cally follow the single diffraction curves for dB down (loss). Above line
of sight at target, the power loss curves for double- and single-edge dif-
fraction intertwine with each other in a dampening oscillation through/at
the 0-dB region. It is noticed that when the single knife edge is closer to
the emitter, the power loss curves for double- and single-edge diffraction
show a closer asymptotic approach, as shown in figure E-1. As the single
knife edge arrives at the midpoint of the target range, the two curves fall
further apart, nevertheless maintaining their parallel character, as shown in
figure E-2. This characteristic is further accentuated as the single knife
edge approaches the target, as shown in figure E-3. In all three cases,
however, the power loss curve at target, of diffraction due to two knife
edges, exhibits spikes of high loss, but these spikes are very narrow.
However, these spikes appear as natural extensions of the oscillations of
the single-knife-edge power loss curves. The tails of these isolated spikes
may show a power loss at their corresponding height above the terrain, as
much as 30 to 35 dB less than power loss due to single-edge diffraction.

5.2 Comparison of Power Loss of 3-m Versus 6-m Antenna
Height

Diffraction due to two knife edges. Plot E-4 (see app E) shows that power
loss is greater for an emitting antenna placed at a height of 3 m than at
6 m. Note that in both cases, all the electric and geometric terrain
parameters remain the same.

Diffraction due to a single knife edge. In comparing the plots of appendix
E in
figure E-5, where \(D_1 = 2500 \text{ m}\) and \(D_2 = 5000 \text{ m}\),
figure E-6, where \(D_1 = 3750 \text{ m}\), and \(D_2 = 3750 \text{ m}\),
figure E-7, where \(D_1 = 5000 \text{ m}\) and \(D_2 = 2500 \text{ m}\),
all other electric and geometric terrain parameters remaining the same, one
makes the following observation.
Where the knife edge is at first closer to the emitter, and moves to a location midway between the emitter and the target, as shown in figures E-5 and E-6, the power loss is greater for an antenna set at a 3-m height than for an antenna situated higher, at a 6-m height above the terrain. Both power loss curves, however, show parallelism, as if they were shifted apart by a horizontal translation along the abscissa. At the 0-dB vertical region of the plot (at free space propagation on the decibel scale considered as a reference-value/origin, against which to measure propagation over terrain), the two power loss curves intertwine in a dampening oscillation as altitude of the target increases (i.e., as altitude increases, the dampening of the power loss oscillation increases).

Where the knife edge is set farther away from the emitter, and therefore closer to the target, as shown in figure E-7, the difference in diffractive power loss due to changing the emitter-antenna height from 3 to 6 m is lost.

5.3 Verification of the DOUBLEDGE Diffraction Theory with Collected Field Data

In November 1979 and February 1980, M. L. Meeks conducted an on-site measurement survey of electric field output (or equivalently, of power output) for the Lincoln Laboratory of the Massachusetts Institute of Technology (MIT). His transmitter was a vhf omnidirectional radio station, used as an aircraft navigation aid, situated on a hilltop about 80 km west of Boston, MA. This station transmitter propagated a signal at 110.6 MHz, with an omnidirectional pattern which was symmetrical in azimuth. The polarization was horizontal.

The survey measurements were made onboard a vertically descending helicopter. The receiving antenna was a horizontal dipole located under the fuselage. The effect of antenna gain due to elevation was ignored. In the horizontal plane, however, gain was isotropic, that is, the same in all directions. Additional details of these survey measurements are available elsewhere [4,5].

Lincoln Laboratory supplied Harry Diamond Laboratories (HDL) with raw digital measurement data from the azimuthal propagation path, along
which (for our study) the signal was measured above the terrain at the target. This path was from the transmitter to a location called Forest Hill. Two measurements were made independently for this path across the terrain. This particular path was chosen because it displayed two prominent diffractive hills across which the signal was propagated.

The forest population consisted of a mix of evergreen and deciduous trees which had lost their leaves for the winter season.

At HDL, the two independent aggregates of signal measurements were averaged at 5-m interval heights for this path from the transmitter to the Forest Hill location.

The curve shown in plot F-1 of appendix F, describing an averaged data measurement set, was compared with the theoretically derived curve for this azimuth. As can be seen, the results are very favorable, and the closeness of fit verifies the validity of the "doubledge" theory. It is recommended that a statistical study be made of the characteristics of this closeness.

In the computations of the theoretically derived curves, care was taken to calculate the scattering/reflectivity coefficient, \(\rho \), for each plot, in accordance with theory. To this end, the formula

\[
\rho_{av}^2 = e^{-\Delta \phi^2} ; \quad \Delta \phi = \frac{4\pi \Delta h \sin \psi}{\lambda}
\]

was applied, where

\(\phi \) is phase lag angle,

\(\Delta \phi \) is phase difference between two rays reflecting from the surface,

\(\Delta h \) is standard deviation of normal distribution of hill heights,

\(\psi \) is the grazing angle, and

\(\lambda \) is wave length.
5.4 Comparison of Theoretically Derived Power Density Loss for Single Diffraction with Data for Diffraction over Two Peaks

In appendix G, plot G-1 shows the theoretically derived curve of power density loss due to diffraction over one peak (using the four-ray-path-theory computer program describing diffraction over a single edge, with reflections on electrically interactive terrain [3,7]) compared to field measurement data for signal transmission over two peaks.

5.5 Plots for Doubly Diffracted Horizontally Polarized Microwaves Based on Theory and the Application of Program DOUBLE_PLOT

It should be noted that appendix D shows plots of power density at target heights downrange for doubly diffracted horizontally polarized microwaves.

The computer program DOUBLE_PLOT, listed in appendix C, sets up the numerical power density values (as the abscissa) versus target heights (as the ordinate) for each plot in appendices D through G.
Literature Cited

Appendix A. — Picturing Diffractive Ray-Path Geometries for Two Knife Edges

The following diagrams represent unique ray paths associated with each of their normalized electric amplitudes A_{jk}, where $j = 2, ..., 8$, and $k = 1, 2$.

Note that in this appendix, each pair of ray path diagrams (designated A_{i1} and A_{i2}) shown in figure A-1 describes the diffraction that occurs when a ray passes over two knife edges. The diagrams of the figure give insight first to the diffractive influence caused by the passage of the ray over peak F_1 and, second, to the diffractive influence caused by passage of the ray over peak F_2. To each diagram (A_{i1} or A_{i2}; $i = 2, ..., 8$) there corresponds a version of the algebraic expression for computing the total indirect ray path amplitude $A_{i1}A_{i2}$. The notation designating the diagrams of the figure and the notation designating the respective amplitudes are the same.
Figure A-1. Indirect ray paths and their corresponding normalized electric amplitudes (note: path 1 is the direct ray).
Figure A-1. Indirect ray paths and their corresponding normalized electric amplitudes (cont’d).
Appendix B. — Computer Program DOUBLEDGE
Listed below are the input parameters of the computer program DOUBLEDGE:

Geometric parameters*

- Z1 is antenna height
- Z2S is minimal receiver height
- Z2E is maximal hypothetical receiver height of interest
- DZ2 is step in meters to next height level of receiver
- D1 is distance from transmitter to first knife edge
- D2 is distance from first knife edge to second one
- D3 is distance from second knife edge to receiver
- F1 is height of first knife edge
- F2 is height of second knife edge

Electric and terrain parameters

- EPSLN1 is \(\varepsilon_1 \), which is the relative dielectric constant** over D1
- EPSLN2 is \(\varepsilon_2 \), which is the relative dielectric constant* over D2
- EPSLN3 is \(\varepsilon_3 \), which is the relative dielectric constant** over D3
- S1 is conductivity of the ground† over D1 in mhos/meters
- S2 is conductivity of the ground† over D2 in mhos/meters
- S3 is conductivity of the ground† over D3 in mhos/meters
- REFL1 is the roughness‡ factor over D1
- REFL2 is the roughness‡ factor over D2
- REFL3 is the roughness‡ factor over D3
- RLAMDA is the wavelength in meters
- POLR is the polarization of the electric field E and may be either horizontal "H" or vertical "V"

AEOLOOTROPIC is a parameter that distinguishes between a beamed radar signal and a broadcast/isotropic lower frequency signal. It is therefore input as either "ANISOTROPIC" or as "ISOTROPIC," with an appropriate change in the wavelength RLAMDA

*All heights and distances are in meters.

**This is also called permittivity.

†The unit mho is a reciprocal ohm. One ohm is the same as one siemen in SI units.

‡This satisfies the Rayleigh criterion.
APPENDIX B

PROGRAM DOULEDGE

THIS MODEL CALCULATES THE PATTERN PROPAGATION FACTOR F FOR RADIO PROPAGATION OVER FLAT TERRAIN ON WHICH 2 KNIFE-EDGE OBSTRUCTIONS LIE PERPENDICULAR TO THE DIRECTION OF PROPAGATION.

INPUT:

GEOMETRICAL DISTANCES IN METERS
WAVELENGTH IN METERS
POLARIZATION: H OR V
GROUND PROPERTIES TO THE LEFT AND RIGHT OF EACH MASK

OUTPUT:

TABLE CONSISTING OF:
RADIATING SOURCE ANTENNA HEIGHT Z1 (IN METERS)
TARGET HEIGHT Z2 (METERS)
GRAZING ANGLES AT THE TRANSMITTER AND THE TARGET

VARIABLES THAT START WITH THE LETTER C ARE COMPLEX

CHARACTER*1 POLAR(2), PCLR
CHARACTER*11 BEAM(2), AEOLOTROPIC
COMPLEX CT1,CT2,CT3,CF,CTH,CTV
COMPLEX CE11,CE12,CE21,CE31,CE41
COMPLEX CE52,CE62,CE71,CE72,CE81,CE82
COMPLEX CE32, CE42, CE52, CE61

REAL*8 R1,R2,R3,R4,R5,R6,R7,R8,A,B,VTEPM,DD,D
REAL*8 VC11,VC12,VC21,VC31,VC41
REAL*8 VC52,VC62,VC71,VC72,VC81,VC82
REAL*8 VS11,VS12,VS21,VS31,VS41
REAL*8 VS52,VS62,VS71,VS72,VS81,VS82
REAL*8 VC32,VC42,VC51,VC61
REAL*8 VS32,VS42,VS52,VS51,VS61
REAL*4 PLAMDA

DATA POLAR/'H','V'/
DATA BEAM/'ANISOTROPIC','ISOTROPIC'/

OPEN INPUT AND OUTPUT FILES, AND DEFINE SOME QUANTITIES.
OPEN(1, NAME = "DOULEDGE.DAT", TYPE = "OLD")
OPEN(2, NAME = "DOULEDGE.OUT", TYPE = "NEW")

READ(1,*), LCASES
PI = 3.14159
RAD = 57.29578
SORT2 = SQRT(2.0)

AA = -92914.54
BB = 126.3854
CC = 48.07834
RCS = 1.0 ! RADAR CROSS-SECTION

DO 300 ICASE = 1, LCASES
READ GEOMETRIC PARAMETERS.

THREE RECORDS CONSTITUTE A SUB-FILE
APPENDIX B

C READ GEOMETRIC PARAMETERS
C Z1 IS ANTENNA HEIGHT
C Z2S IS MINIMAL RECEIVER HEIGHT
C Z2E IS MAXIMAL HYPOTHETICAL RECEIVER HEIGHT OF INTEREST
C D22 IS STEP IN METERS TO NEXT HEIGHT LEVEL OF RECEIVER
C D1 IS DISTANCE FROM TRANSMITTER TO FIRST KNIFE EDGE
C D2 IS DISTANCE FROM FIRST KNIFE EDGE TO THE SECOND ONE
C D3 IS DISTANCE FROM THE SECOND KNIFE EDGE TO THE RECEIVER
C F1 IS HEIGHT OF FIRST KNIFE EDGE
C F2 IS HEIGHT OF SECOND KNIFE EDGE

READ(1,*, END = 16) Z1, Z2S, Z2E, D22, D1, D2, D3, F1, F2

C READ IN DIELECTRIC CONSTANTS AND FRESNEL FACTORS AND WAVELENGTH
C EPSLN1 IS EPSILON (PERMITIVITY) - RELATIVE DIELECTRIC CONSTANT OVER D1
C EPSLN2 IS EPSILON (PERMITIVITY) - RELATIVE DIELECTRIC CONSTANT OVER D2
C EPSLN3 IS EPSILON (PERMITIVITY) - RELATIVE DIELECTRIC CONSTANT OVER D3
C S1 IS CONDUCTIVITY OF GROUND OVER D1 IN MHOS/METER
C S2 IS CONDUCTIVITY OF GROUND OVER D2 IN MHOS/METER
C S3 IS CONDUCTIVITY OF GROUND OVER D3 IN MHOS/METER
C REFL1 IS ROUGHNESS FACTOR OVER D1
C REFL2 IS ROUGHNESS FACTOR OVER D2
C REFL3 IS ROUGHNESS FACTOR OVER D3
C RLAMDA IS WAVELENGTH IN METERS

READ(1,*) EPSLN1, EPSLN2, EPSLN3, S1, S2, S3, REFL1, REFL2, REFL3, RLAMDA

C POLR IS POLARIZATION, AND MAY EITHER BE VERTICAL "V" OR HORIZONTAL "H".
C READ IN POLARIZATION
C READ(1,3) POLR
C ANISOTROPIC/AEOLOTROPIC MEANS THAT THE MICROWAVES ARE BEAMED & THEREFORE NOT BROADCAST (I.E., IS ISOTROPIC)

IF(POLR.EQ.POLAR(1)) IPCL = 1
IF(POLR.EQ.POLAR(2)) IPCL = 2
IF(AEOLOTROPIC.EQ.BEAM(1)) ITROPIC = 1
IF(AEOLOTROPIC.EQ.BEAM(2)) ITROPIC = 2

C INITIALIZE SOME VALUES BEFORE THE MAIN PROCESSING LOOP: Z2 IS THE HEIGHT OF RECEIVER (M), RLAMDA IS THE WAVELENGTH.

Z2 = Z2S - D22

C ECHO CHECK THE INPUTS AND PREPARE THE OUTPUT TABLE.

WRITE(2,10) Z1, D1, D2, D3, F1, F2, RLAMDA, POLR, EPSLN1, EPSLN2, EPSLN3, S1, S2, S3, REFL1, REFL2, REFL3

C CALCULATE THE TWO CLEARANCE PARAMETERS
C FIRST PARAMETER

MO1 = RLAMDA * D1 * D2
APPENDIX B

H02 = D1 * D2
H001 = SQRT(H01/H02)

C
SECOND PARAMETER
H03 = R* D2 * D3
H04 = D2 + D3
H002 = SQRT(H03/H04)

C
MAIN PROCESSING LOOP: LOOP OVER TARGET HEIGHT FROM INITIAL
TARGET HEIGHT TO FINAL TARGET HEIGHT BY THE INCREMENT DZ2

100 Z2 = Z2 + DZ2
IF(Z2 .GT. Z2E) GOTO 1000

C
COMPUTF THE GRAZING ANGLES FOR CHANGES OF TARGET HEIGHT
TTHETA2 = (Z1 +Z2)/(D1 +D2 +D3*1.0D+00)
TTHETA1 = (Z2 -Z1)/(D1 +D2 +D3*1.0D+00)

PHI = TTHETA1 + TTHETA2

IF(ITROPIC .EQ. 1) GO TO 102
GRdB = 1.
IF(ITROPIC .EQ. 2) GO TO 101
102 CONTINUE
G = AA*PHI*PHI +BB*PHI +CC/SUPER
GRdB = 10.**SUPER
101 CONTINUE

C
CALCULATE R1, R2, R3, AND R4

C
CALCULATION OF DIFFRACTION CLEARANCE - DELTA PARAMETERS

C
CALCULATE V11, V12, V21, V31, V41,
C
V52, V62, V71, V72, V81, V82, V61,
C
ALSO CALCULATE V32, V42, V22, V42,
C
V52, V62, V72, V42,
C
GROUPING OF INSTRUCTIONS

D = D1 +D2*1.0D+00
DD = D +D3

C
CLEARANCE DELTA IS (ZI +VTERM -F1) & DELTA-ZERO IS H001
VTERM = (Z2 -Z1)*D1/DD
V11 = SORT2 * (Z1 +VTERM -F1)/H001
! INTERPRETATION. DIRECT CASE.

C
CLEARANCE DELTA IS (Z1 +VTERM -F2) & DELTA-ZERO IS H002
VTERM = (Z2 -Z1)*D0/DD
V12 = SORT2 * (Z1 +VTERM -F2)/H002
! INTERPRETATION. DIRECT CASE.

C
CLEARANCE DELTA IS (-Z1 +VTERM -F1) & DELTA-ZERO IS H001
VTERM = (Z1 +Z2)*D1/DD
APPENDIX B

\[
V21 = \text{SQRT}2 \times (\frac{-Z1 + \text{VTERM} - F1}{H001})
\]

\[
\text{CLEARANCE DELTA IS (} Z1 + \text{VTERM} - F1 \text{) & DELTA-ZFRC IS H001}
\]
\[
\text{VTERM} = (\frac{Z1 - Z2)\times D1/DC}{D/DC}
\]
\[
V31 = \text{SQRT}2 \times (\frac{Z1 + \text{VTERM} - F1}{H001})
\]

\[
\text{CLEARANCE DELTA IS (} -Z1 + \text{VTERM} - F1 \text{) & DELTA-ZFRC IS H001}
\]
\[
\text{VTERM} = (\frac{Z1 - Z2)\times D1/DC}{D/DC}
\]
\[
V41 = \text{SQRT}2 \times (\frac{-Z1 + \text{VTERM} - F1}{H001})
\]

\[
\text{CLEARANCE DELTA IS (} Z1 + \text{VTERM} - F1 \text{) & DELTA-ZFRC IS H002}
\]
\[
\text{VTERM} = (\frac{Z1 - Z2)\times D1/DC}{D/DC}
\]
\[
V52 = \text{SQRT}2 \times (\frac{-Z1 + \text{VTERM} - F2}{H002})
\]

\[
\text{CLEARANCE DELTA IS (} -Z1 + \text{VTERM} - F2 \text{) & DELTA-ZFRC IS H002}
\]
\[
\text{VTERM} = (\frac{Z1 - Z2)\times D1/DC}{D/DC}
\]
\[
V62 = \text{SQRT}2 \times (\frac{-Z1 + \text{VTERM} - F2}{H002})
\]

\[
\text{CLEARANCE DELTA IS (} Z1 + \text{VTERM} - F1 \text{) & DELTA-ZFRC IS H001}
\]
\[
\text{VTERM} = (\frac{Z1 - Z2)\times D1/DC}{D/DC}
\]
\[
V71 = \text{SQRT}2 \times (\frac{-Z1 + \text{VTERM} - F1}{H001})
\]

\[
\text{CLEARANCE DELTA IS (} -Z1 + \text{VTERM} - F2 \text{) & DELTA-ZFRC IS H002}
\]
\[
\text{VTERM} = (\frac{Z1 - Z2)\times D1/DC}{D/DC}
\]
\[
V72 = \text{SQRT}2 \times (\frac{-Z1 + \text{VTERM} - F2}{H002})
\]

\[
\text{CLEARANCE DELTA IS (} Z1 + \text{VTERM} - F1 \text{) & DELTA-ZFRC IS H001}
\]
\[
\text{VTERM} = (\frac{-Z2 + Z1)\times D1/DC}{D/DC}
\]
\[
V81 = \text{SQRT}2 \times (\frac{-Z1 + \text{VTERM} - F1}{H001})
\]

\[
\text{CLEARANCE DELTA IS (} -Z1 + \text{VTERM} - F2 \text{) & DELTA-ZFRC IS H002}
\]
\[
\text{VTERM} = (\frac{-Z2 + Z1)\times D1/DC}{D/DC}
\]
\[
V82 = \text{SQRT}2 \times (\frac{-Z1 + \text{VTERM} - F2}{H002})
\]

\[
\text{VTERM} = (\frac{Z1 + Z2)\times D1/DC}{D/DC}
\]
\[
V32 = \text{SQRT}2 \times (\frac{-Z1 + \text{VTERM} - F2}{H002})
\]
\[
\text{VTERM} = (\frac{Z1 + Z2)\times D1/DC}{D/DC}
\]
\[
V42 = \text{SQRT}2 \times (\frac{-Z1 + \text{VTERM} - F2}{H002})
\]
\[
\text{VTERM} = (\frac{-Z1 + Z2)\times D1/DC}{D/DC}
\]
\[
V51 = \text{SQRT}2 \times (\frac{Z1 + \text{VTERM} - F1}{H001})
\]
\[
\text{VTERM} = (\frac{-Z1 + Z2)\times D1/DC}{D/DC}
\]
\[
V61 = \text{SQRT}2 \times (\frac{Z1 + \text{VTERM} - F1}{H001})
\]

\[
\text{C TEST FOR CHOICE OF DIRECT PATH PAY}
\]
\[
\text{ALPHA1} = \text{ATAN}((\frac{F1 - Z1)/D1}{D1/DC})
\]
\[
\text{ALPHA2} = \text{ATAN}((\frac{F2 - Z1)/D}{D1/DC})
\]

\[
\text{IF(} (F1, \text{LT, F2)} \text{. AND. (ALPHA1, LT, ALPHA2)) THEN}
\]
\[
\text{GO TO 52}
\]
\[
\text{ELSE}
\]
\[
\text{GO TO 50}
\]
\[
\text{END IF}
\]

\[
\text{IF(} (F1, \text{LT, F2)} \text{. AND. (ALPHA1, GE, ALPHA2)) THEN}
\]

\[
35
\]
APPENDIX B

C GOTO 50
C IF((F1 .GE. F2) .AND. (ALPHA1 .GE. ALPHA2)) THEN
C GO TO 50
C ELSE
C GO TO 52
C END IF

IF((F1 .LT. F2) .AND. (ALPHA1 .LT. ALPHA2)) GOTO 50
IF((F1 .LT. F2) .AND. (ALPHA1 .GE. ALPHA2)) GOTO 50
IF((F1 .LT. F2) .AND. (ALPHA1 .GE. ALPHA2)) GOTO 50

C CALCULATE A11 USING V11 CORRESP. TO F1

50 CALL DCS(VC11, VS11, V11)
A11 = 1./SQR2 * DSORT((VC11 +0.5)**2 + (VS11 +0.5)**2)
IF(VC11 +0.5 .GE. 0.) THEN
 B = DATAN((VS11 +0.5)/(VC11 +0.5)) -PI/4.
ELSE
 B = PI +DATAN((VS11 +0.5)/(VC11 +0.5)) -PI/4.
END IF
A1 = A11 * DSIN(B)
B1 = A11 * DCCS(B)
CE11 = CMPLX(B1,A1)
CE1 = CE11
GOTO 53

C CALCULATE A12 USING V12 CORRESP. TO F2

52 CALL DCS(VC12, VS12, V12)
A12 = 1./SQR2 * DSORT((VC12 +0.5)**2 + (VS12 +0.5)**2)
IF(VC12 +0.5 .GE. 0.) THEN
 B = DATAN((VS12 +0.5)/(VC12 +0.5)) -PI/4.
ELSE
 B = PI +DATAN((VS12 +0.5)/(VC12 +0.5)) -PI/4.
END IF
A1 = A12 * DSIN(B)
B1 = A12 * DCCS(B)
CE12 = CMPLX(B1,A1)
CE1 = CE12

C COMPUTATION OF GRAZING ANGLE PSI1 OVER D1,
C PSI2 OVER D2, AND PSI3 OVER D3.

C GRAZING ANGLE FOR PATH 21
53 IF(V21 .GE. 0.) GOTO 200

C RAY INTERSECTS THE MASK F1
PSI1 = DATAN((Z1 +F1)/D1*1.0D+00)
GOTO 201

C RAY IS CLEAR OF THE MASK F1
200 CONTINUE
PSI1 = DATAN((Z2 +Z1)/D0)

36
CALL THE COMPLEX REFLECTION SUBROUTINE FOR THE
TERRAIN REGION D1
CALL FRESLN(EPSLN1,RLAMCA,S1,PSI1,CTH,CTV)

MULTIPLY BY FACTORS
CTH = CTH * REFL1
CTV = CTV * REFL1

SET CT1 OVER D1
IF(IPOL .EQ. 1) CT1 = CTH
IF(IPOL .EQ. 2) CT1 = CTV

888 SHOWS NO REFLECTION OVER D1
IF(EPSLN1 .EQ. 888. AND. S1 .EQ. 888.) CT1 = CMPLX(0.0,0.0)

CALCULATE A21 USING V21 CORRESP. TO F1
CALL DCS(VC21, VS21, V21)
A21 = (VS21 +0.5)**2 +(VC21 +0.5)**2

GRAZING ANGLE FOR PATH 22
IF(V22 .GE. 0.) GOTO 220

RAY INTERSECTS THE MASK F2
PSI1 = DATAN((Z1 +F2)/C)
GOTO 221

RAY IS CLEAR OF THE MASK F2
CONTINUE
PSI1 = DATAN((Z1 +Z2)/C)

GRAZING ANGLE FOR PATH 31
IF(V31 .GE. 0.) GOTO 310

37
RAY INTERSECTS THE MASK F1
PS11 = DATAN((Z1 +F1)/(D2 +D3*1.0D+00))
GOTO 301

RAY IS CLEAR OF THE MASK F1
CONTINUE
PS11 = DATAN((Z1 +Z2)/DD)
CONTINUE

CALL FRESNL(EPSLN1, RLAMDA,S1,PSII,CTH,CTV)
CTH = CTH * REFL1
CTV = CTV * REFL1
IF(IPOL .EQ. 1) CT1 = CTH
IF(IPOL .EQ. 2) CT1 = CTV
IF(EPSLN1 .EQ. 888. .AND. S1 .EQ. 888.) CT1 = CMPLX(0.0,0.0)

CALCULATE A31 USING V31 CORRESP. TO F1
CALL DCS(VC31, VS31, V31)
A31 = 1./SQRT2 * DSORT(((VC31 +0.5)**2 + (VS31 +0.5)**2)

GRAZING ANGLE FOR PATH 32
IF(V32 .GE. 0.) GOTO 320

RAY INTERSECTS THE MASK F2
PS11 = DATAN((Z1 +F2)/D)
GOTO 321

RAY IS CLEAR OF THE MASK F2
CONTINUE
PS11 = DATAN((Z1 +Z2)/DD)
CONTINUE

CALL FRESNL(EPSLN1, RLAMDA,S1,PSII,CTH,CTV)
CTH = CTH * REFL1
CTV = CTV * REFL1
IF(IPOL .EQ. 1) CT1 = CTH
IF(IPOL .EQ. 2) CT1 = CTV
IF(EPSLN1 .EQ. 888. .AND. S1 .EQ. 888.) CT1 = CMPLX(0.0,0.0)

CALCULATE AE32 USING V32 CORRESP. TO F2
CALL DCS(VC32, VS32, V32)
A32 = 1./SQRT2 * DSORT(((VC32 +0.5)**2 + (VS32 +0.5)**2)

IF(VC32 +0.5 .GE. 0.) THEN
B = DATAN((VS32 +0.5)/(VC32 +0.5)) -PI/4.
ELSE
R = PT +DATAN((VS32 +0.5)/(VC32 +0.5)) -PI/4.
END IF
A1 = A32 * A31 * DSIN(B)
B1 = A32 * A31 * DCOS(B)
CF32 = CMPLX(P1,A1) * CT2 * CR4R

GRAZING ANGLE FOR PATH 41
IF(V41 .GE. 0.) GOTO 400

RAY INTERSECTS THE MASK F1

38
PS11 = DATAN((F1 +Z1)/D1 * 1.0D+00)
PS12 = DATAN((Z2 +F1)/D)

CALL FRESNL(EPSLN1,RLAMDA,S1,PSI1,CTH,CTV)
CTH = CTH * REFL1
CTV = CTV * REFL1
IF(IPOL.EQ.1) CT1 = CTH
IF(IPOL.EQ.2) CT1 = CTV
IF(EPSLN1.EQ.888. .AND. S1.EQ.888.) CT1 = CMPLX(0.0,0.0)

CALL THE COMPLEX COEFFICIENT OVER D2
CALL FRESNL(EPSLN2,RLAMDA,S2,PS12,CTH,CTV)

CALL MULTIPLY BY FACTORS
CTH = CTH * REFL2
CTV = CTV * REFL2

SET CT2 OVER D2
IF(IPOL.EQ.1) CT2 = CTH
IF(IPOL.EQ.2) CT2 = CTV

888 SHOWS O REFLECTION OVER D2
IF(EPSLN2.EQ.888. .AND. S2.EQ.888.) CT2 = CMPLX(0.0,0.0)

GOTO 401

RAY IS CLEAR OF THE MASK F1

PSI1 = DATAN((Z1-Z2)/DD)

CALL FRFSNL(EPSLN1,RLAMDA,S1,PSI1,CTH,CTV)
CTH = CTH * REFL1
CTV = CTV * REFL1
IF(IPOL.EQ.1) CT1 = CTH
IF(IPOL.EQ.2) CT1 = CTV
IF(EPSLN1.EQ.888. .AND. S1.EQ.888.) CT1 = CMPLX(0.0,0.0)

GOTO 401

CALCULATE A41 USING V41 CORRESP. TO F1

CALL DCS(VC41, VS41, V41)
A41 = 1./SORT2 * DSORT((VC41 + 0.5)**2 + (VS41 + 0.5)**2)

GRAZING ANGLE FOR PATH 42
IF(V42.GE.0.) GOTO 420

RAY INTERSECTS THE MASK F2
PSI1 = DATAN((Z1+F1)/D1 * 1.0D+00)

C

PSI2 = DATAN((Z1+F2)/D)

CALL FRESNL(EPSLN1,RLAMDA,S1,PSI1,CTH,CTV)
CTH = CTH * REFL1
CTV = CTV * REFL1
IF(IPOL.EQ.1) CT1 = CTH
IF(IPOL.EQ.2) CT1 = CTV
IF(EPSLN1.EQ.888. .AND. S1.EQ.888.) CT1 = CMPLX(0.0,0.0)

CALL FRESNL(EPSLN2,RLAMDA,S2,PS12,CTH,CTV)
CTH = CTH * REFL2

39
APPENDIX B

CTV = CTV * REFL2
IF(IPOL .EQ. 1) CT2 = CTH.
IF(IPOL .EQ. 2) CT2 = CTV
IF(EPSLN2 .EQ. 888. .AND. S2 .EQ. 888.) CT2 = CMPLX(0.0,0.0)
GOTO 421

C RAY IS CLEAR OF THE MASK F2
420 CONTINUE
PSI1 = DATAN((Z1 +Z2)/DD)

CALL FRESNL(EPSLN1,RLAMDA,S1,PSI1,CTH,CTV)
CTH = CTH * REFL1
CTV = CTV * REFL1
IF(IPOL .EQ. 1) CT1 = CTH
IF(IPOL .EQ. 2) CT1 = CTV
IF(EPSLN1 .EQ. 888. .AND. S1 .EQ. 888.) CT1 = CMPLX(0.0,0.0)

421 CONTINUE

C CALCULATE CE42 USING V42 CORRESP. TO F2
CALL DCS(VC42, VS42, V42)
A42 = 1./SQRT2 * SQRT((VC42 +0.5)**2 + (VS42 +0.5)**2)
IF(VC42 +0.5 .GE. 0.) THEN
 P = DATAN((VS42 +0.5)/(VC42 +0.5)) -PI/4.
ELSE
 P = PI +DATAN((VS42 +0.5)/(VC42 +0.5)) -PI/4.
END IF
A1 = A42 * A41 * DSIN(P)
B1 = A42 * A41 * DCOS(P)
CE42 = CMPLX(A1,A1) * CT1 * CT2 * GRdP

C GRAZING ANGLE FOR PATH 51
IF(V51 .GE. 0.) GOTO 590

C RAY INTERSECTS THE MASK F1
PSI3 = DATAN((Z2 +F2)/ R3*1.0D+00)

C CALL THE COMPLEX COEFFICIENT OVER D3
CALL FRESNL(EPSLN3,RLAMDA,S3,PSI3,CTH,CTV)

C MULTIPLY BY FACTORS
CTH = CTH * REFL3
CTV = CTV * REFL3

C SET CT3 OVER D3
IF(IPOL .EQ. 1) CT3 = CTH
IF(IPOL .EQ. 2) CT3 = CTV

C IF(EPSLN3 .EQ. 888. .AND. S3 .EQ. 888.) CT3 = CMPLX(0.0,0.0)
GOTO 501

C RAY CLEAR OF THE MASK F1
590 CONTINUE
PSI1 = DATAN((Z1 +Z2)/ DD)

CALL FRESNL(EPSLN1,RLAMDA,S1,PSI1,CTH,CTV)
CTH = CTH * REFL1

40
APPENDIX B

CTV = CTV * REFL1
IF(IPOL.EQ.1) CT1 = CTH
IF(IPOL.EQ.2) CT1 = CTV
IF(FPSLN1.EQ.888 .AND. S1 .EQ. 888.) CT1 = CMPLX(0.0,0.0)
501 CONTINUE

C CALCULATE A51 USING V51 CORRESP. TO F1
CALL DCS(VC51, VS51, V51)
A51 = 1./SORT2 * DSORT((VC51 +0.5)**2 +(VS51 +0.5)**2)

C GRAZING ANGLE FOR PATH 52
IF(V52 .GE. 0.) GOTO 520

C RAY INTERSECTS THE MASK F2
PS13 = DATAN((Z2+F2)/D3 * 1.0D+00)
CALL FRESNL(EPSLN3,RLAMDA,S3,PSI3,CTH,CTV)

C RAY IS CLEAR CF THE MASK F2
PSII = DATAN((Z1+Z2)/DD)
CALL FRESNL(EPSLN2,RLAMDA,S2,PSI2,CTH,CTV)

C CALCULATE CE52 USING V52 CORRESP. TO F2
NOTE. DITTO AS ABOVE FOR CASE 51. R5 -R1 = 0
CALL DCS(VC52, VS52, V52)
A52 = 1./SORT2 * DSORT((VC52 +0.5)**2 +(VS52 +0.5)**2)

IF(VC52 < 0.5 .GE. 0.) THEN
 B = DATAN((VS52 +0.5)/(VC52 +0.5)) -PI/4.
ELSE
 B = PI +DATAN((VS52 +0.5)/(VC52 +0.5)) -PI/4.
END IF
R = R *(2. * PI)/ RLAMDA *(R5 -R1)
A1 = A51 * A52 * DSIN(B)
H1 = A52 * A51 * DCOS(B)
CE52 = CMPLX(B1,A1) * CT3 * GR4A

C 511 GRAZING ANGLE FOR PATH 61
IF(V61 .GE. 0.) GOTO 6000

C RAY INTERSECTS THE MASK F1
PS12 = DATAN((Z2+F1)/ (D2 +D3*1.0D+00))
PS13 = DATAN((Z2+F2)/ D3 * 1.0D+00)

CALL FRESNL(EPSLN2,RLAMDA,S2,PSI2,CTH,CTV)

C 611 GRAZING ANGLE FOR PATH 61
IF(V61 .GE. 0.) GOTO 6000
APPENDIX B

IF(IPOL .EQ. 2) CT2 = CTV
IF(EPSLN2 .EQ. 888. AND. S2 .EQ. 888.) CT2 = CMPLX(0,0,0)

CALL FRESNL(EPSLN3,RLAMDA,S3,PSI3,CTH,CTV)
CTH = CTH * REFL3
CTV = CTV * REFL3
IF(IPOL .EQ. 1) CT3 = CTH
IF(IPOL .EQ. 2) CT3 = CTV
IF(EPSLN3 .EQ. 888. AND. S3 .EQ. 888.) CT3 = CMPLX(0,0,0)
GOTO 601

C RAY CLEAR OF THE MASK F1
6000 CONTINUE
PSI1 = DATAN((Z1 + Z2)/ED)
CALL FRESNL(EPSLN1,RLAMDA,S1,PSI1,CTH,CTV)
CTH = CTH * REFL1
CTV = CTV * REFL1
IF(IPOL .EQ. 1) CT1 = CTH
IF(IPOL .EQ. 2) CT1 = CTV
IF(EPSLN1 .EQ. 888. AND. S1 .EQ. 888.) CT1 = CMPLX(0,0,0)
601 CONTINUE

C CALCULATE A61 USING V61 CORRESP. TO F1
CALL DCS(VC61, VS61, V61)
A61 = 1./SORT2 * DSQRT((VC61 +0.5)**2 + (VS61 +0.5)**2)

C GRAZING ANGLE FOR PATH 62
IF(V62 .GE. 0.) GOTO 620

C RAY INTERSECTS THF MASK F2
PSI2 = DATAN((Z1 - Z2)/D)
PSI3 = DATAN((F2 + Z2)/D3 * 1.0D+00)
CALL FRESNL(EPSLN2,RLAMDA,S2,PSI2,CTH,CTV)
CTH = CTH * REFL2
CTV = CTV * REFL2
IF(IPOL .EQ. 1) CT2 = CTH
IF(IPOL .EQ. 2) CT2 = CTV
IF(EPSLN2 .EQ. 888. AND. S2 .EQ. 888.) CT2 = CMPLX(0,0,0)

CALL FRESNL(EPSLN3,RLAMDA,S3,PSI3,CTH,CTV)
CTH = CTH * REFL3
CTV = CTV * REFL3
IF(IPOL .EQ. 1) CT3 = CTH
IF(IPOL .EQ. 2) CT3 = CTV
IF(EPSLN3 .EQ. 888. AND. S3 .EQ. 888.) CT3 = CMPLX(0,0,0)
GOTO 621

C RAY CLEAR OF THE MASK F2
620 CONTINUE
PSI1 = DATAN((Z1 + Z2)/DD)
CALL FRESNL(EPSLN1,RLAMDA,S1,PSI1,CTH,CTV)
CTH = CTH * REFL1
CTV = CTV * REFL1
IF(IPOL .EQ. 1) CT1 = CTH
IF(IPOL .EQ. 2) CT1 = CTV
IF(EPSLN1 .EQ. 888. AND. S1 .EQ. 888.) CT1 = CMPLX(0,0,0)
621 CONTINUE
APPENDIX B

CALCULATE CE62 USING V62 CORRESP. TO F2
NOTE. DITTO AS ABOVE FOR CASE 52. R6 = R1 = 0
CALL DCS(VC62, VS62, V62)
A62 = 1./SORT2 * DSORT((VC62 +0.5)**2 + (VS62 +0.5)**2)

IF(VC62 +0.5 .GE. 0.) THEN
 B = DATAN((VS62 +0.5)/(VC62 +0.5)) - PI/4.
ELSE
 B = PI + DATAN((VS62 +0.5)/(VC62 +0.5)) - PI/4.
END IF

A1 = A61 * A62 * DSIN(B)
R1 = A62 * A61 * DCOS(B)
CE62 = CMPLX(B1, A1) * CT2 * CT3 * GRdB

GRAZING ANGLE FOR PATH 71
IF (V71 .GE. 0.) GOTO 7000

RAY INTERSECTS THE MASK F1
PSI1 = DATAN((F1 +Z1)/R1 * 1.00+00)
GOTO 701

RAY CLEAR OF THE MASK F1
CONTINUE
PSI1 = DATAN((21 -Z2)/ 00)
CONTINUE
CALL FRESNL(EPSLN1, R1AMDA, S1, PSI1, CTH, CTV)
CTH = CTH * REFL1
CTV = CTV * REFL1
IF(IPOL .EQ. 1) CT1 = CTH
IF(IPOL .EQ. 2) CT1 = CTV
IF(FPSLN1 .EQ. 888. .AND. S1 .EQ. 988.) CT1 = CMPLX(0.0,0,0)

CALCULATE A71 USING V71 CORRESP. TO F1
NOTE. DITTO AS ABOVE FOR CASE 51. R7 = R1 = 0
CALL DCS(VC71, VS71, V71)
A71 = 1./SORT2 * DSORT((VC71 +0.5)**2 + (VS71 +0.5)**2)

GRAZING ANGLE FOR PATH 72
IF(V72 .GE. 0.) GOTO 720

RAY INTERSECTS THE MASK F2
PSI3 = DATAN((Z2 +F2) / D3 * 1.00+00)
CALL FRESNL(EPSLN3, R1AMDA, S3, PSI3, CTH, CTV)
CTH = CTH * REFL3
CTV = CTV * REFL3
IF(IPOL .EQ. 1) CT3 = CTH
IF(IPOL .EQ. 2) CT3 = CTV
IF(FPSLN3 .EQ. 888. .AND. S3 .EQ. 888.) CT3 = CMPLX(0.0,0,0)
GOTO 721

RAY CLEAR OF THE MASK F2
CONTINUE
PSI1 = DATAN((Z1 -Z2)/ 00)
CALL FRESNL(EPSLN1, R1AMDA, S1, PSI1, CTH, CTV)
CTH = CTH * REFL1
CTV = CTV * REFL1
IF(IPOL .EQ. 1) CT1 = CTH
IF(IPOL .EQ. 2) CT1 = CTV

43
APPENDIX B

IF(EPSLN1 .EQ. 888. .AND. S1 .EQ. 888.) CT1 = CMPLX(0.0,0.0)
CONTINUE

C
CALCULATE CE72 USING V72 CORRESP. TO F2
NOTE. DITTO AS ABOVE FOR CASE 51. R7 = RI = 0
CALL DCS(VC72, VS72, V72)
A72 = 1./SORT2 * DSORT((VC72 +0.5)**2 + (VS72 +0.5)**2)

IF(VC72 +0.5 .GE. 0.) THEN
B = DATAN((VS72 +0.5)/(VC72 +0.5)) -PI/4.
ELSE
B = PI +DATAN((VS72 +0.5)/(VC72 +0.5)) -PI/4.
END IF

A1 = A72 * A71 * DSIN(B)
B1 = A72 * A71 * DCOS(B)
CE72 = CMPLX(B1,A1) * CT1 * CT3 * GRdB

C
GRAZING ANGLE FOR PATH 81
IF(V81 .GE. 0.) GOTO 800

C
RAY INTERSECTS THE MASK F1
PSI1 = DATAN((Z1 +F1)/D1 * 1.0D+00)
PSI2 = DATAN((F1 +Z2)/(D2 +D3 * 1.0D+00))

CALL FRESNL(EPSLN1,RLAMDA,S1,PSI1,CTH,CTV)
CTH = CTH * REFL1
CTV = CTV * REFL1
IF(IPOL .EQ. 1) CT1 = CTH
IF(IPOL .EQ. 2) CT1 = CTV
IF(EPSLN1 .EQ. 888. .AND. S1 .EQ. 888.) CT1 = CMPLX(0.0,0.0)

CALL FRESNL(EPSLN2,RLAMDA,S2,PSI2,CTH,CTV)
CTH = CTH * REFL2
CTV = CTV * REFL2
IF(IPOL .EQ. 1) CT2 = CTH
IF(IPOL .EQ. 2) CT2 = CTV
IF(EPSLN2 .EQ. 888. .AND. S2 .EQ. 888.) CT2 = CMPLX(0.0,0.0)
GOTO 801

C
RAY CLEAR OF THE MASK F1
GOTO 800
CONTINUE

PSI1 = DATAN((F2 +Z2)/D3 * 1.0D+00)
GOTO 801
CONTINUE

C
CALCULATE AR1 USING V81 CORRESP. TO F1
CALL DCS(VC81, VS81, V81)
AR1 = 1./SORT2 * DSORT((VC81 +0.5)**2 + (VS81 +0.5)**2)

C
GRAZING ANGLE FOR PATH 82
IF(V82 .GE. 0.) GOTO 820

C
RAY INTERSECTS THE MASK F2
PSI3 = DATAN((F2 +Z2)/D3 * 1.0D+00)

CALL FRESNL(EPSLN3,RLAMDA,S3,PSI3,CTH,CTV)
CTH = CTH * REFL3
CTV = CTV * REFL3
IF(IPOL .EQ. 1) CT3 = CTH

44
APPENDIX B

IF(IPOL .EQ. 2) CT3 = CTV
IF(EPSLN3 .EQ. 888. .AND. S3 .EQ. 888.) CT3 = CMPLX(0.0,0.0)
GOTO 821

C RAY IS CLEAR OF THE MASK F2

820 CONTINUE
PSIl = DATAN((Z1 -Z2)/DC)

CALL FRESNL(EPSLN1,RLAMDA,S1,PSI,CTH,CTV)
CTH = CTH * REFLI
CTV = CTV * REFLI
IF(IPOL .EQ. 1) CT1 = CTH
IF(IPOL .EQ. 2) CT1 = CTV
IF(EPSLN1 .EQ. 888. .AND. S1 .EQ. 888.) CT1 = CMPLX(0.0,0.0)
GOTO 821

C CALCULATE CE82 USING V82 CORRESP. TO F2

CALL DCS(VC82, VS82, V82)
A82 = 1./DSQRT((VC82 +0.5)**2 + (VS82 +0.5)**2)

IF(VC82 +0.5 .GE. 0.) THEN
R = DATAN((VS82 +0.5)/(VC82 +0.5)) -PI/4.
ELSE
R = PI +DATAN((VS82 +0.5)/(VC82 +0.5)) -PI/4.
END IF
A1 = A82 * A81 * DSIN(R)
B1 = A82 * A81 * DCOS(R)
CE82 = CMPLX(B1,A1) * CT1 * CT2 * CT3 * GRdB

C CALCULATE COMPLEX F (CF)

C BY FIRST CALCULATING THE COMPLEX PARTS CE11, CE12,
C CE21, CE31, CE41, CE52, CE62, CE71, CE72, CE91, CE92
C CE32, CE42, CE22, CE51, CE61

C NOW ADD TO GET CF

CF = +CE1 +CE22 +CE32 +CE41 +CE52 +CE62 +CF72 +CF82
GOTO 216

C 215 CF = CE11 +CE21 +CE31 +CE41
C WRITE OUT ANSWERS

216 FO = CABS(CF)
FLOG = 20. * ALOG10(FO)
WRITE(2,*)
WRITE(2,*)
WRITE(2,11)
WRITE(2,12)
WRITE(2,14) FLOG, Z2

700 WRITE(2,19)
WRITE(2,20)
WRITE(2,37)
WRITE(2,18) V11, V21, V31, V41
WRITE(2,38)
WRITE(2,18) V12, V22, V32, V42
WRITE(2,40)
WRITE(2,18) V51, V52, V61, V62
WRITE(2,46)
WRITE(2,18) V71, V72, VR1, VR2

45
GO TO 100

C COME HERE WHEN FINISHED.

1000 CONTINUE
WRITE(2,600) Z2S, Z2, CZ2
WRITE(2,20)
CONTINUE
16 CLOSE(1)
CLOSE(2)
STOP
1 FORMAT(" INPUT ZI, D1, C2, D3, F1, F2, Z2S, DZ2'/)
2 FORMAT(" INPUT POLARIZATION.. H=HORIZONTAL, V=VERTICAL'/)
3 FORMAT(A1)
4 FORMAT(IIAI)
10 FORMAT(* ANTENNA HEIGHT (M):
 F6.2/)
2 DIST. FROM TRANSMITTER TO EDGE F1 (M):
 F10.1/
3 DIST. FROM F1 TO EDGE F2 (M):
 F10.1/
4 HEIGHT OF KNIFE EDGE F1 (M):
 F10.1/
5 HEIGHT OF KNIFE EDGE F2 (M):
 F10.1/
6 WAVELENGTH (M):
 F10.5/
7 POLARIZATION:
 A1/
8 EPSILON 1 (EPSLN1) OVER D1:
 F8.3/
9 EPSILON 2 (EPSLN2) OVER D2:
 F8.3/
1 EPSILON 3 (EPSLN3) OVER D3:
 F8.3/
2 SIGMA 1 (S1) OVER D1:
 F10.3/
3 SIGMA 2 (S2) OVER D2:
 F10.3/
4 SIGMA 3 (S3) OVER D3:
 F10.3/
5 REFLECTION (REFL1) OVER D1:
 F10.3/
6 REFLECTION (REFL2) OVER D2:
 F10.3/
7 REFLECTION (REFL3) OVER D3:
 F10.3//)
600 FORMAT(" TARGET HT (M) FROM ",F5.0," TO ",F9.4," BY ",F5.1/)
11 FORMAT(55H POWER GAIN IN TARGET HT POWER GAIN OF SCATTERED)
12 FORMAT(55H db, 20 X LOG(F) (METERS) FIELD @ GROUND ZERO (db))
14 FORMAT(4F15.4//)
15 FORMAT(55H MAGNITUDES OF ELECTRIC FIELD COMPONENTS ASSOCIATED WITH)
61 FORMAT(41H EACH RAY PATH, EXPRESSED IN VOLTS/METER/)
17 FORMAT(55H E11MAG E21MAG E31MAG E41MAG)
18 FORMAT(4F15.4//)
19 FORMAT(55H INTEGRATION PARAMs OF FRENSNEL INTEGRALS DERIVED FROM)
20 FORMAT(25H Z1, Z2, D1, C2, AND D3/)
22 FORMAT(55H GRAZING ANGLE GRAZING ANGLE GRAZING ANGLE)
23 FORMAT(47H AT SOURCE (RAD) AT TARGET (RAD) FACTOR/)
25 FORMAT(39H FRENSNEL REFLECTION COEFFICIENT OVER:)
26 FORMAT(46H D1 D2 D3/)
28 FORMAT(35H PHASE LAG ANGLE IN DEGREES OVER:)
29 FORMAT(2F15.4//)
30 FORMAT(51H E12MAG E22MAG E32MAG E42MAG)
32 FORMAT(51H E51MAG E52MAG E61MAG E62MAG)
33 FORMAT(27H D1 D2/)
34 FORMAT(54H OFF-AXIS BEAM ANGLE)
35 FORMAT(49H TTTHETA1 (RAD) TTTHETA2 (RAD) OF ANTENNA PHI)
37 FORMAT(49H V11 V21 V31 V41)
38 FORMAT(49H V12 V22 V32 V42)
40 FORMAT(49H V51 V52 V61 V62)
41 FORMAT(3F15.4/////)
42 FORMAT(39H GRAZE ANGLE GRAZE ANGLE GRAZE ANGLE)
43 FORMAT(55H AT SOURCE OVER D2 OVER D3 GAIN REDUCTION)
SUBROUTINE FOR COMPLEX REFLECTION COEFFICIENTS

SUBROUTINE FRESNL(E1, WAVE, CONDUC, ANG, CTH, CTV)
COMPLEX CAK, CTV1, CTV2, CTH, CTH1, CTH2

F1 THE DIELECTRIC CONSTANT (FROM 0 TO 100)
LAMDA THE WAVELENGTH IN METERS
CONDUC THE CONDUCTIVITY IN MHOS/METER
ANG THE ANGLE IN RADIANS

CALCULATE THE COMPLEX CONSTANT

AKI = -60. * WAVE * CONDUC
CAK = CMPLX(E1, AKI)

CALCULATE THE VERTICAL POLARIZATION REFLECTION COEFFICIENT

CTV1 = CAK * SIN(ANG) - CSORT(CAK - COS(ANG)**2)
CTV2 = CAK * SIN(ANG) + CSORT(CAK - COS(ANG)**2)
CTV = CTV1 / CTV2

CALCULATE THE HORIZONTAL POLARIZATION REFLECTION COEFFICIENT

CTH1 = SIN(ANG) - CSORT(CAK - COS(ANG)**2)
CTH2 = SIN(ANG) + CSORT(CAK - COS(ANG)**2)
CTH = CTH1 / CTH2

1000 RETURN

SUBROUTINE TO EVALUATE THE FRESNEL INTEGRALS

SUBROUTINE DCS(C, S, X)
IMPLICIT REAL*8 (A-H, O-Z)
DIMENSION AA(12), RR(12), CC(12), DD(12)
PIE2 = 1.57079632680D+00
Y = PIE2 * X * X
Z = DABS(X)
IF(Z .NE. 0.D+00) GOTO 1000
C = 0.D+00
S = 0.D+00
X = U
RETURN
1000 CONTINUE
IF(Z = 4.0D+00) 3, 3, 4
3 C = DCOS(Z)
S = DSSIN(Z)
Z = Z / 4.0D+00
APPENDIX B

DZ = DSORT(Z)
ASUM = AA(1)
PSUM = BB(1)
DO 40 J = 2, 12
ASUM = ASUM + AA(J) * Z**(J - 1)
PSUM = PSUM + BB(J) * Z**(J - 1)
40 CONTINUE
FC = DZ * (S*BSUM +C*ASUM)
FS = DZ * (-C*BSUM +S*ASUM)
C = FC
S = FS
GOTO 5

4 CONTINUE
D = DCOS(Z)
S = DSIN(Z)
Z = 4.000D0 / Z
CSUM = CC(1)
DSUM = DD(1)
DO 30 J = 2, 12
CSUM = CSUM + CC(J) * Z**(J - 1)
DSUM = DSUM + DD(J) * Z**(J - 1)
30 CONTINUE
X = U
IF(U .GT. 0.00) GOTO 6
C = -C
S = -S
6 CONTINUE
RETURN
DATA AA(1), AA(2) / 0.159576914D+01, -0.170205D-05 / 48
Appendix C. — Computer Program DOUBLE_PLOT
C PROGRAM DOUBLE_PLOT

CHARACTER*1 DUMMY

C PROGRAM TO SET UP HT VS. dB VALUES FOR EZGRAPH

OPEN(1, NAME = 'DOUBLEDGE.OUT', TYPE = 'OLD')
OPEN(2, NAME = 'PLOT.DAT', TYPE = 'NEW')

O = 3001
DO 1 I = 1, O
 DO 3 J = 1, 23
 READ(1,99) DUMMY
 CONTINUE
1 CONTINUE
2 CONTINUE
3 READ(1,*, END = 2) FLOG, Z2
4 WRITE(2,*) FLOG, Z2

CLOSE(1)
CLOSE(2)
STOP
FO FORMAT(A1)
END
Appendix D. — Plots of Computer Studies of Doubly Diffracted Horizontally Polarized Microwaves

This appendix presents plots of horizontally polarized microwaves with the hill closer to the source set at a 15-m height and the hill farther away from the source varying in height from 5 to 45 m.

These figures show the effect of terrain on a source with nonuniform antenna gain. Gain of power density relative to free space is shown in decibel scale versus target height.
Figure D-1. Case of hill 15 m high near source and hill 5 m high near target, with horizontal polarization. Antenna height is 3 m.

Figure D-2. Case of hill 15 m high near source and hill 10 m high near target, with horizontal polarization. Antenna height is 3 m.
APPENDIX D

Figure D-3. Case of hill 15 m high near source and hill 15 m high near target, with horizontal polarization. Antenna height is 3 m.

Figure D-4. Case of hill 15 m high near source and hill 20 m high near target, with horizontal polarization. Antenna height is 3 m.
Figure D-5. Case of hill 15 m high near source and hill 25 m high near target, with horizontal polarization. Antenna height is 3 m.

Figure D-6. Case of hill 15 m high near source and hill 30 m high near target, with horizontal polarization. Antenna height is 3 m.
APPENDIX D

STUDY OF POWER LOBE STRUCTURE

Figure D-7. Case of moist ground: sigma=3., dielec. const.=10., "H" polarization; diffuse reflection
hill hts: L=15 m, R=35 m, freq=10 GHz, D1=2500, D2=2500, D3=2500, ant ht=3 m, gain

Figure D-8. Case of hill 15 m high near source and hill 40 m high near target, with horizontal polarization. Antenna height is 3 m.
Figure D-9. Case of hill 15 m high near source and hill 45 m high near target, with horizontal polarization. Antenna height is 3 m.

Figure D-10. Case of hill 30 m high near source and hill 5 m high near target, with horizontal polarization. Antenna height is 3 m.
APPENDIX D

STUDY OF POWER LOBE STRUCTURE

Figure D-11. Case of moist ground: sigma=3., dielec. const.=10., "H" polarization; diffuse reflection
hill hts: l=30 m, R=10 m, freq=10 GHz, D1=2500, D2=2500, D3=2500, ant ht=3 m, gain.

Figure D-12. Case of moist ground: sigma=3., dielec. const.=10., "H" polarization; diffuse reflection
hill hts: l=30 m, R=15 m, freq=10 GHz, D1=2500, D2=2500, D3=2500, ant ht=3 m, gain.

Antenna height is 3 m.
Figure D-13. Case of moist ground: \(\sigma = 3 \), dielectric constant = 10, "H" polarization; diffuse reflection hill hts: \(L = 30 \) m, \(R = 20 \) m, freq = 10 GHz, \(D_1 = 2500 \), \(D_2 = 2500 \), \(D_3 = 2500 \), ant ht = 3 m, gain.

Figure D-14. Case of moist ground: \(\sigma = 3 \), dielectric constant = 10, "H" polarization; diffuse reflection hill hts: \(L = 30 \) m, \(R = 25 \) m, freq = 10 GHz, \(D_1 = 2500 \), \(D_2 = 2500 \), \(D_3 = 2500 \), ant ht = 3 m, gain.
Figure D-15. Case of hill 30 m high near source and hill 30 m high near target, with horizontal polarization. Antenna height is 3 m.

Figure D-16. Case of hill 30 m high near source and hill 35 m high near target, with horizontal polarization. Antenna height is 3 m.
Figure D-17. Case of hill 30 m high near source and hill 40 m high near target, with horizontal polarization. Antenna height is 3 m.

Figure D-18. Case of hill 30 m high near source and hill 45 m high near target, with horizontal polarization. Antenna height is 3 m.
Figure D-19. Case of hill 30 m high near source and hill 100 m high near target, with horizontal polarization. Antenna height is 3 m.
Appendix E. — Power Density Comparison Plots at Target:
(1) Double Diffraction Versus Single Diffraction (fig. E-1 to E-3)
and
(2) Transmitter Height of 3 m Versus 6m (fig. E-4 to E-7)
Figure E-1. Comparison (over electrically interactive terrain) of power density loss from diffraction over two edges to power density loss resulting from diffraction over one edge. Positive or negative gain in decibel units is measured relative to free space propagation at 0 dB. In this case, single edge is set closer to microwave emitter than to target.

Figure E-2. Comparison (over electrically interactive terrain) of power density loss from diffraction over two edges to power density loss resulting from diffraction over one edge. Positive or negative gain in decibel units is measured relative to free space propagation at 0 dB. In this case, single edge is set midway between emitter and target.
APPENDIX E

Figure E-3. Comparison (over electrically interactive terrain) of power density loss from diffraction over two edges to power density loss resulting from diffraction over one edge. Positive or negative gain in decibel units is measured relative to free space propagation at 0 dB. In this case, single edge is set closer to target than to microwave emitter.

Figure E-4. Comparison (over electrically interactive terrain) of power density loss from diffraction over two 15-m-high edges for microwave emitters set at heights of 3 and 6 m, respectively. Solid curve shows antenna height at 3 m, and dotted curve, at 6 m.
Figure E-5. Comparison (over electrically interactive terrain) of power density loss from diffraction over a single knife edge set at a 15-m height to microwave emitters set at 3- and 6-m heights, respectively. Solid curve shows antenna height at 3 m, and dotted curve, at 6 m. Edge is here set closer to emitters than it is to target.

Figure E-6. Comparison (over electrically interactive terrain) of power density loss from diffraction over a single knife edge set at a 15-m height to microwave emitters set at 3- and 6-m heights, respectively. Solid curve shows antenna height at 3 m, and dotted curve, at 6 m. Edge is here set midway between emitters and target.
Figure E-7. Comparison (over electrically interactive terrain) of power density loss from diffraction over a single knife edge set at a 15-m height to microwave emitters set at 3- and 6-m heights, respectively. Solid curve shows antenna height at 3 m, and dotted curve, at 6 m. Edge is here set closer to target than to microwave emitters.
Appendix F. — Plot Comparing a Theoretically Derived Curve for Two Diffractions over Terrain with a Curve Prepared from Field Measurement Data for Two Diffractions over Terrain
Figure F-1. Comparison of theoretically derived curve for two consecutive diffractions with curve derived from field measurement data for signal transmission over two peaks. Path is Forest Hill azimuth relative to transmitter. Transmitter is 392.95 m above sea level; ground zero is 276 m above sea level.

FOREST HILL AZIMUTHAL PATH ALONG TERRAIN
F1: 112m, F2: 72m, ont. @ 116.95m above ground zero, lambda = 2.7125m
av. of VHF meas. 1, 2 @ 5m intervals; H polariz., D1=3.41km, D2=3.56km, D3=3.62km
cconductivity .005 mho/m; perm 15; rho = .2913; theory 1 m intervals, dh = 30.7m
Appendix G. — Plot Comparing a Theoretically Derived Curve for a Single Diffraction over Terrain (using the KNIFEDGE Program) with a Curve Prepared from Field Measurement Data for Two Diffractions over Terrain
Figure G-1. Comparison of theoretically derived curve for a single diffraction with curve derived from field measurement data for signal transmission over two peaks. Path is Forest Hill azimuth relative to transmitter. Transmitter is 392.95 m above sea level; ground zero is 276 m above sea level.

STUDY OF POWER LOBE STRUCTURE (Forest Hill azimuth)

Comparison of M.J.T. double diffraction data with single edge theory
sigma=.005 mho/m, dielec. const.=15., 'H' polarization, lambda = 2.7125
F1 ht:112 m, D1=3410 m, D2=7180 m, ant. & hill=116.95 m, rho=0.2913, dH=30.7 m
DISTRIBUTION

ADMINISTRATOR
DEFENSE TECHNICAL INFORMATION CENTER
ATTN DTIC-DDA (12 COPIES)
CAMERON STATION, BUILDING 5
ALEXANDRIA, VA 22304-6145

DEFENSE NUCLEAR AGENCY
ATTN G. KWIATKOSKI
ATTN J. BACHKOSKY
ATTN J. PIERRE
WASHINGTON, DC 20305-1000

DEFENSE INTELLIGENCE AGENCY
ATTN DC-D, COL R. M. ATCHISON
WASHINGTON, DC 20301

MR. L. HURZON
PO BOX 1925
WASHINGTON, DC 20013

HEADQUARTERS
DEPT OF THE ARMY
ATTN DAMO-FDI, LTC D. HEARN
ATTN DAMO-FDI, LTC J. RILEY
ATTN SARD-ZT, H. WOODALL
ATTN DACS(DMP), LTC M. TOCH
ATTN DAMO-FDI, COL M. M. PARRILLI
ATTN SARD-SS, LTC PURDIN
ATTN SARD-TNS, DR. J. B. STEKERT
WASHINGTON, DC 20310

HEADQUARTERS
US ARMY ARMAMENT RESEARCH, DEVELOPMENT, & ENGR CENTER
ATTN SMCAR-AE, G. TAYLOR
PICATINNY ARSENAL, NJ 07806-5000

BALLISTIC RESEARCH LABORATORY
ATTN SLCBR-VL-I, J. E. KAMMERER
ABERDEEN PROVING GROUND, MD 21005-5066

US ARMY BELVOIR RESEARCH DEVELOPMENT & ENGINEERING CENTER
ATTN STRBE-FGE, L. I. AMSTUTZ
ATTN D. C. HEBERLEIN
ATTN STRBE-JC, J. OWEN
FT BELVOIR, VA 22060-5606

US ARMY CENTER FOR SIGNALS WARFARE
ATTN DIRECTOR, H. S. HOVEY, JR
VINT HILL FARMS STATION
WARRENTON, VA 22186-5100

US ARMY COMBINED ARMS CENTER
ATTN ATZL-SCT, J. FOX
ATTN ATZL-CAP, COL J. HENDERSON
ATTN ATZL-CAP/D, MAJ M. MCKEE
ATTN ATZL-CAP/D, MAJ K. PECHAK

US ARMY COMBINED ARMS CENTER (cont'd)
ATTN ATZL-CAP/D, LTC O. STOKES
FT LEAVENWORTH, KS 66017-5000

DARPA
ATTN TTO, J. ENTZMINGER
ATTN DEO, L. BUCHANAN
1400 WILSON BLVD
ARLINGTON, VA 22209

ELECTRONICS TECHNOLOGY AND DEVICES LAB
ATTN SLCET-ML, S. LEVY
ATTN SLCET-D, C. THORNTON
FT MONMOUTH, NJ 07719-5000

HEADQUARTERS
INSCOM
ATTN COL S. SEMERLY
ATTN MAJ R. JACKSON
ARLINGTON HALL STATION
ARLINGTON, VA 22205

US ARMY MATERIEL SYS ANAL AGENCY
ATTN AMXSYS-CS, P. BEAVERS
ABERDEEN PROVING GROUND, MD 21005

HEADQUARTERS
US ARMY MATERIEL COMMAND
ATTN AMCDRA, R. O. BLACK
ATTN AMCPKO-AM-MS, L. STANTON
ATTN AMCPKO-AM-MS, LTC K. STARR
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333-0001

US ARMY MISSILE COMMAND
ATTN DRSMI-RD-DE, E. B. JENNINGS
ATTN DRSMI-RD-DE, R. CONRAD
ATTN DRSMI-RD-DE, B. JACKSON
REDSTONE ARSENAL, AL 35898-5000

OUSDA (R&AT/EST)
ATTN MR. D. N. FREDERICKSEN
ATTN COL B. D. CRANE
ATTN J. MacCALLUM
ATTN W. SNOWDEN
WASHINGTON, DC 20301-5000

US ARMY TRAINING & DOCTRINE COMMAND
ATTN ATCD-G, J. M. GRAY
FT MONROE, VA 23651

VULNERABILITY ASSESSMENT LABORATORY
ATTN SLCVA-TAC, D. ALVAREZ
WHITE SANDS MISSILE RANGE, NM 88002

79
HEADQUARTERS
DEPARTMENT OF THE NAVY
ATTN OP-987, F. SHOUP
ATTN OP-50W3, LT C. SPRINKLE
ATTN OP-076, G. WORKMAN
WASHINGTON, DC 20350

NAVAL RESEARCH LABORATORY
ATTN T. WEITING
ATTN W. ELLIS
ATTN D. NAGEL
ATTN W. MANHEIMER
4555 OVERLOOK AVENUE, SW
WASHINGTON, DC 20375

NAVAL SURFACE WEAPONS CENTER
ATTN J. TINO, HEAD, PROTECTION SYSTEMS DEPARTMENT H
ATTN J. F. GOFF, R301 HEAD, MATERIALS APPLICATIONS OFFICE
ATTN D. LYNCH, H21, BUILDING 130
ATTN J. GOELLER, V02 DEPUTY DEPARTMENT HEAD, UNDERWATER SYSTEMS DEPT
ATTN R. WOODHAM, U31, BUILDING 4
ATTN G. GIBSON, U31, BUILDING 4
ATTN G. GAUNAUD, R43
SILVER SPRING, MD 20903-5000

SPACE AND NAVAL WARFARE SYSTEMS COMMAND
ATTN PMW-145, CPT J. D. FONTANA
ATTN PMW-145, CDR M. KAISER
WASHINGTON, DC 20363-5100

HEADQUARTERS
DEPARTMENT OF THE AIR FORCE
ATTN AFCSA/SORA, MAJ R. L. EILERS
WASHINGTON, DC 20330

US AIR FORCE SYSTEMS COMMAND
ATTN AFSC/XTWT, LTCOL W. DUNGAN
ANDREWS AFB, MD 20334-5000

AIR FORCE WEAPONS LABORATORY
ATTN AFWL/AWP, W. L. BAKER
KIRTLAND AFB, NM 87117-6008

MARINE CORPS DEV CENTER
FIREPOWER DIV (D-094)
ATTN LTC H. L. MAY
QUANTICO, VA 22134

NASA
GODDARD SPACE FLIGHT CENTER
ATTN J. SIRY, CODE 671, BLDG 22
GREENBELT, MD 20771

FOREIGN SCIENCE & TECHNOLOGY CENTER
ATTN AIAST-RA-ST1, T. CALDOWELL
220 SEVENTH STREET NE
CHARLOTTESVILLE, VA 22901

LAWRENCE LIVERMORE NATIONAL LAB
ATTN H. S. CABAYAN
ATTN D. J. CHASE
PO BOX 5504
LIVERMORE, CA 94550

LOS ALAMOS NATIONAL LAB
ATTN DR. J. TOEVS, MS 5000
ATTN R. F. HOBERLING, MS F668
PO BOX 1663
LOS ALAMOS, NM 87545

SANDIA NATIONAL LAB
ATTN J. HOFFMAN, DIV 1236
ATTN J. POWELL, DIV 1230
PO BOX 5800
ALBUQUERQUE, NM 87185

US ARMY LABORATORY COMMAND
ATTN TECHNICAL DIRECTOR, AMSLC-TD

INSTALLATION SUPPORT ACTIVITY
ATTN LEGAL OFFICE, SLCIS-CC

USAISC
ATTN RECORD COPY, AMSLC-IM-TS
ATTN TECHNICAL REPORTS BRANCH, AMSLC-IM-TR (2 COPIES)

HARRY DIAMOND LABORATORIES
ATTN DIRECTOR, SLCHD-D
ATTN DIVISION DIRECTORS
ATTN DIVISION DIRECTOR, SLCHD-NW
ATTN LIBRARY, SLCHD-TL (3 COPIES)
ATTN LIBRARY, SLCHD-TL (WOODBRIDGE)
ATTN CHIEF, SLCHD-NW-E
ATTN CHIEF, SLCHD-NW-RP
ATTN CHIEF, SLCHD-NW-EH
ATTN CHIEF, SLCHD-NW-ES
ATTN CHIEF, SLCHD-NW-R
ATTN CHIEF, SLCHD-NW-TN
ATTN CHIEF, SLCHD-NW-RP
ATTN CHIEF, SLCHD-NW-CS
ATTN CHIEF, SLCHD-NW-TS
ATTN CHIEF, SLCHD-NW-RS
ATTN CHIEF, SLCHD-NW-P
ATTN E. BROWN, SLCHD-HPM
ATTN S. GRAYBILL, SLCHD-HPM
ATTN R. GARVER, SLCHD-NW-CS
ATTN S. HAYES, SLCHD-NW-CS

NASA
GODDARD SPACE FLIGHT CENTER
ATTN J. SIRY, CODE 671, BLDG 22
GREENBELT, MD 20771
DISTRIBUTION (cont'd)

HARRY DIAMOND LABORATORIES (cont'd)
ATTN S. SADDOW, SLCHD-NW-CS
ATTN J. TATUM, SLCHD-NW-CS
ATTN H. BRANDT, SLCHD-NW-RS
ATTN L. LIBELO, SLCHD-NW-RS
ATTN A. BABA, SLCHD-NW-TN
ATTN L. BELLIVEAU, SLCHD-NW-TN
ATTN W. SHVODIAN, SLCHD-ST-AR
ATTN G. PISANE, SLCHD-ST-MW
ATTN J. DAVID, SLCHD-ST-R
ATTN A. KENDALL, SLCHD-ST-R
ATTN P. ALEXANDER, SLCHD-ST-SA
ATTN C. ARSEM, SLCHD-ST-SA
ATTN H. LE, SLCHD-ST-SA
ATTN D. WONG, SLCHD-ST-SA
ATTN R. GOODMAN, SLCHD-TA-ES
ATTN A. STEWART, SLCHD-V
ATTN T. WHITE, SMSLD-AS-SA
ATTN H. HARRELSON, SLCSM-AT
ATTN J. ORSEGA, SLCSM-GS
ATTN A. GLUCKMAN, SLCHD-NW-TN (5 COPIES)