VALIDATION OF THE BOUNDARY ELEMENT METHOD APPLIED TO COMPLEX FRACTURE MECHANICS CONDITIONS

THESIS

Ralph E. Urch
Captain, USAF

AFIT/GAE/ENY/99D-39

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY
AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

90 01 02 097
VALIDATION OF THE BOUNDARY ELEMENT METHOD APPLIED TO COMPLEX FRACTURE MECHANICS CONDITIONS

THESIS

Ralph E. Urch
Captain, USAF

Approved for public release; distribution unlimited
VALIDATION OF THE BOUNDARY ELEMENT METHOD APPLIED
TO COMPLEX FRACTURE MECHANICS CONDITIONS

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of
Master of Science in Aeronautical Engineering

Ralph E. Urch, B.S.
Captain, USAF

December 1989

Approved for public release; distribution unlimited
Preface

The purpose of this study was to develop a computer code which would validate the use of the Boundary Element Method (BEM) in problems of fracture mechanics. Specifically, I used the Displacement Discontinuity Method (developed by Stephen L. Crouch) to solve several fracture configurations.

Originally, I modified the code only slightly in order to solve problems involving isotropic materials. Having obtained results for those cases, I then modified the code even further to include specially orthotropic materials (such as 0° and 90° composite laminates).

For introducing me to the concepts of the BEM, and especially for his patience and understanding during these past several months, I thank my faculty advisor, Dr. Anthony Palazotto. For coming up with the displacement discontinuity solution for an orthotropic material, I give credit to divine intervention. Perhaps most importantly, for helping to break the tension which seemed to build to new levels each week, I am grateful for the presence of all the regular participants in "Friday at the FlyWright."

Ralph E. Urch
Table of Contents

Preface .. 11
List of Figures v
List of Tables vii
List of Symbols viii
Abstract ... x
I. Introduction 1-1
II. Theoretical Discussion 2-1
 The Method 2-2
 Computer Implementation 2-14
 Stress Intensity Factors 2-18
 Modeling Considerations 2-23
III. Isotropic Materials 3-1
 Theoretical Development 3-1
 Stress Analysis Application 3-5
 Fracture Mechanics Applications 3-6
 Offset Parallel Cracks 3-6
 Slanted Embedded Crack (45° Angle) 3-9
 Single Edge Crack Near a Hole 3-11
IV. Orthotropic Materials 4-1
 Theoretical Development 4-1
 Stress Analysis Application 4-14
 Fracture Mechanics Applications 4-17
 Symmetric Edge Cracks Emanating from a Hole .. 4-17
 Slanted Embedded Crack (45° Angle) 4-19
 Single Edge Crack Near a Hole 4-21
V. Conclusions and Recommendations 5-1
 Conclusions 5-1
 Recommendations 5-2
Appendix A: Orthotropic Solution A-1
Appendix B: Proofs

Theorem 1: \(q_1 q_2 = 1 \)

Theorem 2: \(\left[(R \pm a + \frac{v}{\sqrt{A_i^2}}) + \frac{v_i}{\sqrt{A_i}} \right] = \frac{A_i (R \pm a)^2 + L_i (R \pm a)v_i + C_i v_i^2}{A_i} \)

Appendix C: FORTRAN Program TWODD

Appendix D: FORTRAN Program TWODDO

Bibliography

Vita
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.</td>
<td>Numerical Methods of Structural Analysis</td>
<td>1-2</td>
</tr>
<tr>
<td>2.1.</td>
<td>Line Crack in an Infinite Plate</td>
<td>2-3</td>
</tr>
<tr>
<td>2.2.</td>
<td>Coordinate Systems for a Single Element</td>
<td>2-4</td>
</tr>
<tr>
<td>2.3.</td>
<td>Series of N Line Cracks Joined End-to-End</td>
<td>2-6</td>
</tr>
<tr>
<td>2.4.</td>
<td>Defining the Boundary of a Problem</td>
<td>2-11</td>
</tr>
<tr>
<td>2.5.</td>
<td>Line of Symmetry</td>
<td>2-15</td>
</tr>
<tr>
<td>2.6.</td>
<td>Fracture Mechanics Modes</td>
<td>2-19</td>
</tr>
<tr>
<td>2.7.</td>
<td>Coordinates for the Near-Field Solution</td>
<td>2-20</td>
</tr>
<tr>
<td>2.8.</td>
<td>Typical Curve Generated from Application of the DDM</td>
<td>2-21</td>
</tr>
<tr>
<td>2.9.</td>
<td>Modeling a Half-Crack Using DDM Elements</td>
<td>2-24</td>
</tr>
<tr>
<td>3.1.</td>
<td>Displacement Discontinuity along a Line Crack</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2.</td>
<td>Circular Hole in an Infinite Plate under Uniaxial Tension (Isotropic)</td>
<td>3-2</td>
</tr>
<tr>
<td>3.3.</td>
<td>Stress Distribution for a Circular Hole in an Infinite Plate under Uniaxial Tension (Isotropic)</td>
<td>3-7</td>
</tr>
<tr>
<td>3.4.</td>
<td>Offset Parallel Cracks in an Infinite Plate (Isotropic)</td>
<td>3-8</td>
</tr>
<tr>
<td>3.5.</td>
<td>Slanted Embedded Crack (Isotropic)</td>
<td>3-10</td>
</tr>
<tr>
<td>3.6.</td>
<td>Single Edge Crack Near a Hole (Isotropic)</td>
<td>3-12</td>
</tr>
<tr>
<td>4.1.</td>
<td>Constant Traction Applied to a Line Crack</td>
<td>4-2</td>
</tr>
<tr>
<td>4.2.</td>
<td>Circular Hole in an Infinite Plate under Uniaxial Tension (Orthotropic)</td>
<td>4-15</td>
</tr>
<tr>
<td>4.3.</td>
<td>Symmetric Edge Cracks Emanating from a Hole (Orthotropic)</td>
<td>4-18</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>4.4.</td>
<td>Slanted Embedded Crack (Orthotropic)</td>
<td>4-20</td>
</tr>
<tr>
<td>4.5.</td>
<td>Single Edge Crack Near a Hole (Orthotropic)</td>
<td>4-22</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Offset Parallel Cracks (Isotropic)</td>
<td>3-9</td>
</tr>
<tr>
<td>3.2</td>
<td>Slanted Embedded Crack (Isotropic)</td>
<td>3-11</td>
</tr>
<tr>
<td>3.3</td>
<td>Single Edge Crack Near a Hole (Isotropic)</td>
<td>3-13</td>
</tr>
<tr>
<td>4.1</td>
<td>Tangential Stress at Edge of a Circular Hole (Orthotropic)</td>
<td>4-16</td>
</tr>
<tr>
<td>4.2</td>
<td>Symmetric Edge Cracks Emanating from a Hole (Orthotropic)</td>
<td>4-19</td>
</tr>
<tr>
<td>4.3</td>
<td>Slanted Embedded Crack (Orthotropic)</td>
<td>4-21</td>
</tr>
<tr>
<td>4.4</td>
<td>Single Edge Crack Near a Hole (Orthotropic)</td>
<td>4-23</td>
</tr>
</tbody>
</table>
List of Symbols

\[\partial \]

- partial derivative with respect to \(x \) of the parameter \([\cdot]\): \(\frac{\partial}{\partial x} [\cdot] \)

\[^{i} \]

- value of parameter \([\cdot]\) evaluated at the center of the \(i \)th element

\[u_{A}^{n} \]

- influence coefficient relating stress in the \(n \)-direction at the center of the \(i \)th element due to a displacement discontinuity in the \(s \)-direction at the \(j \)th element

\[u_{B}^{s} \]

- influence coefficient relating displacement in the \(s \)-direction at the center of the \(i \)th element due to a displacement discontinuity in the \(n \)-direction at the \(j \)th element

\[D_{n} \]

- displacement discontinuity in the \(n \)-direction

\[E \]

- Young's modulus for an isotropic material

\[E_{1} \]

- Young's modulus in the principal direction for an orthotropic material

\[E_{2} \]

- Young's modulus in the secondary direction for an orthotropic material

\[G \]

- shear modulus for an isotropic material

\[G_{12} \]

- shear modulus for an orthotropic material

\[K_{I} \]

- Mode I stress intensity factor

\[K_{II} \]

- Mode II stress intensity factor

\[P_{x} \]

- traction in the \(x \)-direction along a line segment

\[r_{f,v} \]

- index of correlation for a least squares fit to a set of data

\[u_{s} \]

- displacement in the \(s \)-direction

\[\beta \]

- angle between global \(x \)-axis and local \(x \)-axis of an element

\[\nu \]

- Poisson's ratio for an isotropic material
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_{12}</td>
<td>Poisson's ratio for an applied strain in the principal direction of an orthotropic material</td>
</tr>
<tr>
<td>σ_n</td>
<td>normal component of stress at the center of the ith element</td>
</tr>
<tr>
<td>σ_s</td>
<td>shear component of stress at the center of the ith element</td>
</tr>
<tr>
<td>σ_{xx}</td>
<td>normal stress in the x-direction</td>
</tr>
<tr>
<td>σ_{yy}</td>
<td>normal stress in the y-direction</td>
</tr>
<tr>
<td>τ_{xy}</td>
<td>shear stress evaluated in x-y coordinates</td>
</tr>
</tbody>
</table>
Abstract

This investigation presents analyses of several fracture mechanics problems via the Boundary Element Method. Specifically, an indirect procedure known as the Displacement Discontinuity Method was used to solve problems involving cracks in isotropic or specially orthotropic materials. Infinite as well as finite regions were considered.

A series of configurations were analyzed and compared with either analytic solutions or results from a finite element model. Agreement for the infinite-domain problems was excellent, while solutions to the finite-domain problems ranged from good to excellent.

Advantages and disadvantages of the Displacement Discontinuity Method are briefly discussed. The main advantage of the method is the requirement to model only the boundary of the problem under consideration. The major disadvantage is the time required to solve the resulting fully-populated matrix equation.

Separate FORTRAN codes are provided as appendices for the two material types — isotropic and orthotropic. These programs may be utilized for either stress or fracture analyses. Program outputs include displacements, stresses, and stress intensity factors, as appropriate.
VALIDATION OF THE BOUNDARY ELEMENT METHOD APPLIED TO COMPLEX FRACTURE MECHANICS CONDITIONS

I. Introduction

In analyzing aircraft structures, a mathematical model is usually developed which involves an approximate representation of the physical component under consideration. The most common methods discretize the structure into a manageable number of smaller elements for which a mathematical solution is available. These methods may be divided into two groups (see Figure 1.1) based upon whether the entire domain or just the boundary is modeled.

The most common domain technique is the Finite Element Method (FEM), "which is a piecewise variation to minimize the total potential energy" (11:1) of the system. Another example is the Finite Difference Method, in which the differential equations of the system are approximated by finite differences (Newton forward difference, backward difference, central difference, etc.). In all cases, the domain techniques are characterized by an approximation of the system partial differential equations. The boundary conditions, however, are satisfied exactly. (See Cook (5) and Desai (9).)
Figure 1.1. Numerical Methods of Structural Analysis

On the other hand, boundary techniques approximate the boundary conditions of the problem but they exactly satisfy the system partial differential equations. These methods can be further classified into direct or indirect methods, according to whether the boundary parameters are solved for directly or from some other system parameters (2:2).

The most common direct boundary element technique is the Boundary Integral Equation (BIE), or Boundary Element Method (BEM). This involves combining the problem at hand with another (for which the solution is known) in such a way that, when the strain energy of the system is integrated over the volume, Green's formula may be used to translate the volume integral into integrals involving only the
boundary of the problem. Applying the required boundary conditions then yields the solution. (See, for example, Rizzo (16), Snyder and Cruse (21), Fenner (10), Rizzo and Shippy (17), Cruse (8), Okada et al (14), Shi and Bezine (19), and Shih and Palazotto (20).)

A lesser-known direct method, called the Fictitious Stress Method (FSM), discretizes the boundary into a number of straight line segments over which the traction is assumed constant. As will be shown later, it is related to the indirect method chosen for this study — the Displacement Discontinuity Method (DDM) — both of which are presented by Crouch and Starfield (7).

The DDM is well-suited to problems in fracture mechanics because it uses as its basic element a line crack. That is, each element is considered to be composed of two surfaces which are coincident along a line segment. By a judicious selection of the definitions of each element, problems involving cracks in a finite or in an infinite body may be solved.

Besides being able to provide solutions to problems involving infinite domains, the boundary techniques have an advantage over the domain techniques due to the requirement to model only the boundary. This reduction of order of the problem is especially useful considering that fewer elements (and therefore fewer degrees of freedom) must be used to solve a given problem.
There are drawbacks, however. The domain techniques are able to take full advantage of efficient, banded-matrix solution routines. The boundary techniques, on the other hand, produce fully-populated matrices, which increases the computational time required for a given number of degrees of freedom. Thus, there is a trade-off between both techniques in problems requiring a large number of elements.

Nevertheless, a boundary element technique — specifically, the Displacement Discontinuity Method — was used in this study and its use in problems of fracture mechanics validated. First, a general outline of the method is presented, followed by its use for an isotropic material. Next, application of the DDM to problems involving a specially orthotropic material is demonstrated. For both cases, stress analysis and fracture mechanics applications are reviewed. Finally, some of the advantages and disadvantages of the DDM are briefly discussed.

Included as appendices are the two FORTRAN programs used in this study. The first program (TWODD — Appendix C) was extracted directly from Crouch and Starfield (7:293-300) for the analysis of an isotropic material. This program was modified only slightly to include computation of stress intensity factors. The second program (TWODDO — Appendix D) is a modification of the former to incorporate a specially orthotropic material.
II. Theoretical Discussion

The DDM involves the concept of a displacement discontinuity along a line crack, which may be imagined "as a line crack whose opposing surfaces have been displaced relative to one another." (7:79) The DDM uses the special case where the relative displacements are constant along the entire crack. In reality, the relative displacements vary over the entire length of the crack; however, if the line crack is discretized into a sufficient number of smaller line cracks (elements), the displacements will be approximately constant over the length of each element. The solution obtained by superposition of the displacement fields of all the elements will then represent the true solution with sufficient accuracy. This is the basis of the DDM.

If a series of line cracks in an infinite plane are joined end-to-end to form a closed contour, two regions are formed. The interior region may be used to obtain the solution to a problem involving finite dimensionality, while the exterior region may be used to represent a cavity in an infinite body.

As will be seen later, the DDM involves the solution of a system of equations which are determined by specifying either (i) the tractions on each element, (ii) the displace-
ments of one of the surfaces of each element, or (iii) a combination of the two.

A. The Method

The Displacement Discontinuity Method is characterized by use of the solution to a line crack in an infinite plate where the two surfaces of the crack have a constant displacement with respect to one another (Figure 2.1). The displacement field for an arbitrarily oriented crack (element) is obtained from this solution via coordinate transformation.

For two or more elements, linear superposition is used by alternately considering only one element to have a displacement discontinuity present (i.e. - the displacements are considered continuous at the other element locations). The sum of each of these displacements then yields the displacement due to the presence of all the elements, assuming of course that the material is linearly elastic.

By applying appropriate boundary conditions, a linear system of equations is formed. Solution of this system for the relative displacements at each element then allows determination of the displacements and stresses at each element. The stresses and displacements at other points in the body can be obtained based on these same relative surface displacements.

The procedure may be divided into the following 11 steps:
Requirement:
Displacements are continuous everywhere except across the crack.

Normal: \(u^+ - u^- = D_n = \text{constant} \)
Shear: \(u^+ - u^- = D_s = \text{constant} \)

Figure 2.1. Line Crack in an Infinite Plate

(1) Use the solution to the problem of a constant displacement discontinuity along a line segment (crack) in an infinite plate, which takes the following form:

\[
\begin{align*}
 u_x &= f_{1x}(x,y) \, D_s + f_{1y}(x,y) \, D_n \\
 u_y &= f_{2x}(x,y) \, D_s + f_{2y}(x,y) \, D_n \\
 \sigma_{xx} &= f_{3x}(x,y) \, D_s + f_{3y}(x,y) \, D_n
\end{align*}
\]
\[
\begin{align*}
\sigma_{yy} &= f_{4y}(x, y) D_s + f_{4y}(x, y) D_n \\
\tau_{xy} &= f_{5y}(x, y) D_s + f_{5y}(x, y) D_n
\end{align*}
\]

where \(\bar{x}, \bar{y} \) (or \(s, n \)) is the local coordinate system (see Figure 2.2), the functions \(f_{4y} \) and \(f_{5y} \) depend only upon the local coordinates and the length of the crack, and \(D_s \) and \(D_n \) are the shear and normal displacement discontinuities, respectively. That is, \(D_s \) is a (displacement) discontinuity in the \(\bar{x} \)-direction while \(D_n \) is a discontinuity in the \(\bar{y} \)-direction such that

\[
\begin{align*}
D_s &= u_s^- - u_s^+ = u_s^- - u_s^+ \\
D_n &= u_n^- - u_n^+ = u_n^- - u_n^+
\end{align*}
\]

Figure 2.2. Coordinate Systems for a Single Element
where the superscripts "+" and "-" refer to the positive and negative surfaces, respectively, of the crack.

(2) Use coordinate transformation to relate the local coordinates \((\bar{R}, \bar{Y})\) to the global coordinates \((x, y)\) for an arbitrary rotation \(i\beta\) and translation \((iX, iY)\) as depicted in Figure 2.2:

\[
\bar{R} = (x - iX) \cos i\beta - (y - iY) \sin i\beta \quad (2.8)
\]
\[
\bar{Y} = -(x - iX) \sin i\beta + (y - iY) \cos i\beta \quad (2.9)
\]
\[
u_x = u_{\bar{R}} \cos i\beta - u_{\bar{Y}} \sin i\beta \quad (2.10)
\]
\[
u_y = u_{\bar{R}} \sin i\beta + u_{\bar{Y}} \cos i\beta \quad (2.11)
\]
\[
\sigma_{xx} = \sigma_{\bar{R}\bar{R}} \cos^2 i\beta + \tau_{xy} \sin 2i\beta + \sigma_{\bar{Y}\bar{Y}} \sin^2 i\beta \quad (2.12)
\]
\[
\sigma_{yy} = \sigma_{\bar{R}\bar{R}} \sin^2 i\beta + \tau_{xy} \sin 2i\beta + \sigma_{\bar{Y}\bar{Y}} \cos^2 i\beta \quad (2.13)
\]
\[
\tau_{xy} = (\sigma_{\bar{R}\bar{R}} - \sigma_{\bar{Y}\bar{Y}}) \sin i\beta \cos i\beta + \tau_{xy} \cos^2 i\beta - \sin^2 i\beta \quad (2.14)
\]

(3) Consider a series of \(N\) line cracks (elements) joined end-to-end (Figure 2.3). Determine the effect on the \(i\)th element of displacement discontinuities at the \(j\)th element. Because the displacements and stresses prescribed at each element are specified in the local coordinate directions of the element, transform the above equations to the \(i\)th element's local system \((\bar{R}', \bar{Y}')\):

\[
\bar{u}_{\bar{R}'} = u_x \cos i\beta + u_y \sin i\beta \quad (2.15)
\]
\[
\bar{u}_{\bar{Y}'} = -u_x \sin i\beta + u_y \cos i\beta \quad (2.16)
\]
\[
\bar{\tau}_{\bar{X}\bar{Y}'} = \sigma_{\bar{R}\bar{R}} \cos^2 i\beta + \tau_{xy} \sin 2i\beta + \sigma_{\bar{Y}\bar{Y}} \sin^2 i\beta \quad (2.17)
\]
Figure 2.3: Series of N Line Cracks Joined End-to-End

\[\sigma_{\gamma\gamma} = \sigma_{xx} \sin^2 \beta - \tau_{xy} \sin 2\beta + \sigma_{yy} \cos^2 \beta \]
(2.18)

\[\tau_{x\gamma} = -\left(\sigma_{xx} - \sigma_{yy}\right) \sin^2 \beta + \tau_{xy} \cos^2 \beta - \sin^2 \beta \]
(2.19)

Note that the displacements \(u_x \) and \(u_y \), and the stresses \(\sigma_{\gamma\gamma} \) and \(\tau_{x\gamma} \), are equivalent to the local shear and normal displacements and stresses at the \(i \)th element:

2-6
\[\begin{align*}
\dot{u}_s &= \dot{u}_x, \\
\dot{u}_n &= \dot{u}_y, \\
\dot{\sigma}_s &= \dot{\tau}_{x'y'}, \\
\dot{\sigma}_n &= \dot{\sigma}_{y'y'}.
\end{align*} \] (2.20) (2.21) (2.22) (2.23)

(5) Use the above four steps to express the effect of displacement discontinuities \(j^D_S \) and \(j^D_n \) at the \(j \)th element on the displacements and stresses at the center of the \(i \)th element:

\[\begin{align*}
\dot{u}_s &= u_x \cos \dot{\beta} + u_y \sin \dot{\beta}, \\
\dot{u}_n &= -u_x \sin \dot{\beta} + u_y \cos \dot{\beta}, \\
\dot{\sigma}_s &= -(\sigma_{xx} - \sigma_{yy}) \sin \dot{\beta} \cos \dot{\beta} + \tau_{xy} (\cos^2 \dot{\beta} - \sin^2 \dot{\beta}), \\
\dot{\sigma}_n &= \sigma_{xx} \sin^2 \dot{\beta} - \tau_{xy} \sin 2\dot{\beta} + \sigma_{yy} \cos^2 \dot{\beta}.
\end{align*} \] (2.24) (2.25) (2.26) (2.27)

where subscripts "x" and "y" refer to the global coordinate directions, and

\[\begin{align*}
\dot{u}_x &= u_x \cos \dot{\beta} - u_y \sin \dot{\beta} = \left[f_{1x}(\bar{R},\bar{Y}) j^D_S \cos \dot{\beta} + f_{1y}(\bar{R},\bar{Y}) j^D_n \cos \dot{\beta} \\
&\quad - f_{2x}(\bar{R},\bar{Y}) j^D_S \sin \dot{\beta} - f_{2y}(\bar{R},\bar{Y}) j^D_n \sin \dot{\beta} \right] \\
&= \left[f_{1x}(\bar{R},\bar{Y}) \cos \dot{\beta} - f_{2x}(\bar{R},\bar{Y}) \sin \dot{\beta} \right] j^D_S \\
&\quad + \left[f_{1y}(\bar{R},\bar{Y}) \cos \dot{\beta} - f_{2y}(\bar{R},\bar{Y}) \sin \dot{\beta} \right] j^D_n.
\end{align*} \] (2.28)
\[u_y = u_x \sin \beta + u_y \cos \beta \]
\[= f_{1\bar{x}}(\bar{R},\bar{Y})D_s \sin \beta + f_{1\bar{y}}(\bar{R},\bar{Y})D_n \sin \beta \]
\[+ f_{2\bar{x}}(\bar{R},\bar{Y})D_s \cos \beta + f_{2\bar{y}}(\bar{R},\bar{Y})D_n \cos \beta \]
\[= \left[f_{1\bar{x}}(\bar{R},\bar{Y}) \sin \beta + f_{2\bar{x}}(\bar{R},\bar{Y}) \cos \beta \right]D_s \]
\[+ \left[f_{1\bar{y}}(\bar{R},\bar{Y}) \sin \beta + f_{2\bar{y}}(\bar{R},\bar{Y}) \cos \beta \right]D_n \]

\[\sigma_{xx} = \sigma_{\bar{R}\bar{R}} \cos^2 \beta - \tau_{\bar{R} \bar{Y}} \sin 2\beta + \sigma_{\bar{Y} \bar{Y}} \sin^2 \beta \]
\[= f_{3\bar{x}}(\bar{R},\bar{Y})D_s \cos^2 \beta + f_{3\bar{y}}(\bar{R},\bar{Y})D_n \cos^2 \beta \]
\[- f_{5\bar{x}}(\bar{R},\bar{Y})D_s \sin 2\beta - f_{5\bar{y}}(\bar{R},\bar{Y})D_n \sin 2\beta \]
\[+ f_{4\bar{x}}(\bar{R},\bar{Y})D_s \sin^2 \beta + f_{4\bar{y}}(\bar{R},\bar{Y})D_n \sin^2 \beta \]
\[= \left[f_{3\bar{x}}(\bar{R},\bar{Y}) \cos^2 \beta - f_{5\bar{x}}(\bar{R},\bar{Y}) \sin 2\beta \right]D_s \]
\[+ \left[f_{4\bar{x}}(\bar{R},\bar{Y}) \sin^2 \beta + f_{5\bar{y}}(\bar{R},\bar{Y}) \cos^2 \beta \right]D_n \]

\[\sigma_{yy} = \sigma_{\bar{R}\bar{R}} \sin^2 \beta + \tau_{\bar{R} \bar{Y}} \sin 2\beta + \sigma_{\bar{Y} \bar{Y}} \cos^2 \beta \]
\[= f_{6\bar{x}}(\bar{R},\bar{Y})D_s \sin^2 \beta + f_{6\bar{y}}(\bar{R},\bar{Y})D_n \sin^2 \beta \]
\[+ f_{5\bar{x}}(\bar{R},\bar{Y})D_s \sin 2\beta + f_{5\bar{y}}(\bar{R},\bar{Y})D_n \sin 2\beta \]
\[+ f_{4\bar{x}}(\bar{R},\bar{Y})D_s \cos^2 \beta + f_{4\bar{y}}(\bar{R},\bar{Y})D_n \cos^2 \beta \]
\[= \left[f_{6\bar{x}}(\bar{R},\bar{Y}) \sin^2 \beta + f_{5\bar{x}}(\bar{R},\bar{Y}) \sin 2\beta \right]D_s \]
\[+ \left[f_{4\bar{x}}(\bar{R},\bar{Y}) \cos^2 \beta + f_{5\bar{y}}(\bar{R},\bar{Y}) \cos^2 \beta \right]D_n \]
\[\tau_{xy} = \left(\sigma_{x\bar{r}} - \sigma_{y\bar{r}} \right) \sin^2 \beta \cos^2 \beta + \tau_{\bar{r}y} \left(\cos^2 \beta - \sin^2 \beta \right) \]

\[
= \left\{ f_{3x} (\bar{r},\bar{y},\beta)^I D_s + f_{3y} (\bar{r},\bar{y},\beta)^I D_n - f_{4x} (\bar{r},\bar{y},\beta)^I D_s \right. \\
- f_{4y} (\bar{r},\bar{y},\beta)^I D_n \left. \right\} \sin \beta \cos \beta + \left\{ f_{5x} (\bar{r},\bar{y},\beta)^I D_s \\
+ f_{5y} (\bar{r},\bar{y},\beta)^I D_n \right\} \left(\cos^2 \beta - \sin^2 \beta \right) \\
= \left\{ \left[f_{3x} (\bar{r},\bar{y}) - f_{4x} (\bar{r},\bar{y}) \right] \sin \beta \cos \beta \\
+ f_{5x} (\bar{r},\bar{y}) \left(\cos^2 \beta - \sin^2 \beta \right) \right\} D_s \\
+ \left\{ \left[f_{3y} (\bar{r},\bar{y}) - f_{4y} (\bar{r},\bar{y}) \right] \sin \beta \cos \beta \\
+ f_{5y} (\bar{r},\bar{y}) \left(\cos^2 \beta - \sin^2 \beta \right) \right\} D_n \tag{2.32} \]

By properly defining a new set of functions \(f_{ix} \) and \(f_{iy} \), the global displacements and stresses can be written in the form

\[
u_x = f_{ix} (\bar{r},\bar{y},\beta)^I D_s + f_{iy} (\bar{r},\bar{y},\beta)^I D_n \tag{2.33} \]

\[
u_y = f_{2x} (\bar{r},\bar{y},\beta)^I D_s + f_{2y} (\bar{r},\bar{y},\beta)^I D_n \tag{2.34} \]

\[
\sigma_{xx} = f_{3x} (\bar{r},\bar{y},\beta)^I D_s + f_{3y} (\bar{r},\bar{y},\beta)^I D_n
\tag{2.35} \]

\[
\sigma_{yy} = f_{4x} (\bar{r},\bar{y},\beta)^I D_s + f_{4y} (\bar{r},\bar{y},\beta)^I D_n \tag{2.36} \]

\[
\tau_{xy} = f_{5x} (\bar{r},\bar{y},\beta)^I D_s + f_{5y} (\bar{r},\bar{y},\beta)^I D_n \tag{2.37} \]

while, by using Eqs (2.24) through (2.27), the local displacements and stresses take the following form:

\[
u_s = \nu_{ss} (\bar{r},\bar{y},\beta)^I D_s + \nu_{sn} (\bar{r},\bar{y},\beta)^I D_n \tag{2.38} \]

\[
u_n = \nu_{ns} (\bar{r},\bar{y},\beta)^I D_s + \nu_{nn} (\bar{r},\bar{y},\beta)^I D_n \tag{2.39} \]

\[
\sigma_s = \sigma_{ss} (\bar{r},\bar{y},\beta)^I D_s + \sigma_{sn} (\bar{r},\bar{y},\beta)^I D_n \tag{2.40} \]

\[
\sigma_n = \sigma_{ns} (\bar{r},\bar{y},\beta)^I D_s + \sigma_{nn} (\bar{r},\bar{y},\beta)^I D_n \tag{2.41} \]
where i_B^{ss}, i_B^{sn}, ..., i_A^{nn} are referred to as influence coefficients.

(6) Compute the total effect at the ith element as the sum of the effects of all N elements:

\[
\begin{align*}
 i_u^s &= \sum_{j=1}^{N} i_B^{ss} i_D^s + \sum_{j=1}^{N} i_B^{sn} i_D^n \\
 i_u^n &= \sum_{j=1}^{N} i_B^{ns} i_D^s + \sum_{j=1}^{N} i_B^{nn} i_D^n \\
 i_o^s &= \sum_{j=1}^{N} i_A^{ss} i_D^s + \sum_{j=1}^{N} i_A^{sn} i_D^n \\
 i_o^n &= \sum_{j=1}^{N} i_A^{ns} i_D^s + \sum_{j=1}^{N} i_A^{nn} i_D^n
\end{align*}
\]

(7) Determine the effect of the ith element on itself (element self-effects) by computing the influence coefficients for the case that $i = j$ and $\bar{x} = \bar{y} = 0$. The result is that all of the stress influence coefficients (i_A's) are single-valued, but that some of the displacement influence coefficients (i_B's) are dual-valued. Namely,

\[
\begin{align*}
 i_B^{ss} = i_B^{nn} = \frac{i_D^0}{2} \text{ for } \bar{y} = 0
\end{align*}
\]

The discontinuous nature of i_B^{ss} and i_B^{nn} does not cause complications, however, if a direction of travel is chosen consistently when defining the boundary of a problem. Referring to Figure 2.4, Crouch and Starfield (7:64-65)
Direction of travel shown is for an exterior problem (cavity in an infinite plane).

Figure 2.4. Defining the Boundary of a Problem

state that

the values of coefficients \([B]_{ss}\) and \([B]_{nn}\) depend upon the way in which curve \(C\) is approached....
Curves \(C_+\) and \(C_-\) can be regarded as the boundaries of the interior and exterior regions, respectively, of curve \(C\).... [If] we traverse curve \(C\) in the clockwise sense ... then the negative side of the curve defines the boundary of the interior region. We can therefore avoid having to use different values for the coefficients \([B]_{ss}\) and \([B]_{nn}\) if we agree always to traverse the boundary in such a way that the outward normal points away from the region of interest. Accordingly, we adopt the following convention: The boundary of a finite body is traversed in the clockwise sense, whereas the boundary of a cavity is traversed in the counterclockwise sense. This convention leads to some simplification in computer programming because it means that coefficients \([B]_{ss}\) and \([B]_{nn}\) are equal to \(+1/2\) for both types of problems.
(8) Choose the equations appropriate for the prescribed boundary conditions of the problem. The boundary conditions at each element can be grouped into four categories:

(i) \(\sigma_s \) and \(\sigma_n \) are prescribed
(ii) \(u_s \) and \(u_n \) are prescribed
(iii) \(u_s \) and \(\sigma_n \) are prescribed
or (iv) \(\sigma_s \) and \(u_n \) are prescribed.

Thus, a system of \(2N \) equations is formed:

\[
\begin{align*}
\sum_{j=1}^{N} i_{c_{ss}} i_{D_s} + & \sum_{j=1}^{N} i_{c_{sn}} i_{D_n} \quad i = 1,2,...N \\
\sum_{j=1}^{N} i_{c_{ns}} i_{D_s} + & \sum_{j=1}^{N} i_{c_{nn}} i_{D_n} \quad i = 1,2,...N
\end{align*}
\]

(2.47)

(2.48)

where

\[
\begin{align*}
i_{b_s} &= \sigma_s \text{ or } u_s \\
i_{b_n} &= \sigma_n \text{ or } u_n \\
i_{c_{ss}} &= i_{A_{ss}} \text{ or } i_{B_{ss}} \\
i_{c_{ns}} &= i_{A_{ns}} \text{ or } i_{B_{ns}} \\
i_{c_{sn}} &= i_{A_{sn}} \text{ or } i_{B_{sn}} \\
i_{c_{nn}} &= i_{A_{nn}} \text{ or } i_{B_{nn}}
\end{align*}
\]

(2.49)

as appropriate.

(9) Solve the system of \(2N \) equations for the \(2N \) unknowns (\(N \) unknown \(i_{D_s} \) + \(N \) unknown \(i_{D_n} = 2N \) unknowns) using direct Gaussian elimination. Because of the diagonal dominance of the matrix, no pivoting is required to ensure an accurate result.
(10) Compute the displacements and stresses at each element using

\[u_s = \sum_{j=1}^{N} i_j B_{ss} s_j + \sum_{j=1}^{N} i_j B_{sn} n_j \]
(2.50)

\[u_n = \sum_{j=1}^{N} i_j B_{ns} s_j + \sum_{j=1}^{N} i_j B_{nn} n_j \]
(2.51)

\[\sigma_s = \sum_{j=1}^{N} i_j A_{ss} s_j + \sum_{j=1}^{N} i_j A_{sn} n_j \]
(2.52)

\[\sigma_n = \sum_{j=1}^{N} i_j A_{ns} s_j + \sum_{j=1}^{N} i_j A_{nn} n_j \]
(2.53)

\[u_s^+ = u_s - D_s \]
(2.54)

\[u_n^+ = u_n - D_n \]
(2.55)

(11) Compute displacements and stresses at other points in the body using

\[u_x = \sum_{j=1}^{N} f_{1x}(\bar{x}, \bar{y}, \beta) s_j + \sum_{j=1}^{N} f_{1y}(\bar{x}, \bar{y}, \beta) n_j \]
(2.56)

\[u_y = \sum_{j=1}^{N} f_{2x}(\bar{x}, \bar{y}, \beta) s_j + \sum_{j=1}^{N} f_{2y}(\bar{x}, \bar{y}, \beta) n_j \]
(2.57)

\[\sigma_{xx} = \sum_{j=1}^{N} f_{3x}(\bar{x}, \bar{y}, \beta) s_j + \sum_{j=1}^{N} f_{3y}(\bar{x}, \bar{y}, \beta) n_j \]
(2.58)

\[\sigma_{yy} = \sum_{j=1}^{N} f_{4x}(\bar{x}, \bar{y}, \beta) s_j + \sum_{j=1}^{N} f_{4y}(\bar{x}, \bar{y}, \beta) n_j \]
(2.59)
\[\tau_{xy} = \sum_{j=1}^{N} f_{5x}(\vec{R},\vec{y},\beta) \, ^{1}B_{s} + \sum_{j=1}^{N} f_{5y}(\vec{R},\vec{y},\beta) \, ^{1}B_{n} \]

(2.60)

where

\[\vec{R} = (x - \xi) \cos \beta + (y - \eta) \sin \beta \]

(2.61)

\[\vec{y} = -(x - \xi) \sin \beta + (y - \eta) \cos \beta \]

(2.62)

and \((\xi, \eta)\) are the midpoint coordinates of the \(j\)th element.

B. Computer Implementation

The DDM lends itself to being programmed into a computer with ease due to the modular nature of the procedure. Appendix C provides a listing of the FORTRAN code for program TWODD, along with an explanation of the input deck. First, the material properties and symmetry conditions are defined. Next, as the boundary conditions of the problem are input, the system of equations is set up. Then, the system is solved using direct Gaussian elimination. The stresses and displacements at each boundary element are then computed, followed by displacements and stresses at any other points of interest. Other features (inclusion of a title, initializing counters for loops, etc.) are added where appropriate.

For an isotropic material, the only material properties required for input are Young's modulus \((E)\) and Poisson's ratio \((\nu)\). The shear modulus \((G)\) is computed from these by
\[G = \frac{1}{2} \frac{E}{1 + \nu} \]
\hspace{1cm} (2.63)

For an orthotropic material \(E_1, E_2, G_{12}, \) and \(\nu_{12} \) must be input.

If symmetry of geometry and loading exist in the problem, they may be incorporated to reduce the number of unknowns in the matrix equation. For example, suppose \(x = 0 \) is a line of symmetry (Figure 2.5). Then the conditions at element 2 are determined by those at element 1:

\[
\begin{align*}
^{2}u_s &= -^{1}u_s \\
^{2}u_n &= +^{1}u_n \\
^{2}\sigma_s &= +^{1}\sigma_s \\
^{2}\sigma_n &= +^{1}\sigma_n
\end{align*}
\]
\hspace{1cm} (2.64)

![Figure 2.5. Line of Symmetry](image)

\hspace{1cm} 2-15
In place of the original system of equations,

\[\begin{align*}
1_u &= 1^{1}_s c^{1}_s s + 1^{2}_c c^{2}_s s + 1^{1}_c c^{1}_s n + 1^{2}_c c^{2}_s n \\
1_n &= 1^{1}_c c^{1}_n s + 1^{2}_c c^{2}_n s + 1^{1}_c c^{1}_n n + 1^{2}_c c^{2}_n n \\
2_u &= 2^{1}_c c^{1}_s s + 2^{2}_c c^{2}_s s + 2^{1}_c c^{1}_s n + 2^{2}_c c^{2}_s n \\
2_n &= 2^{1}_c c^{1}_n s + 2^{2}_c c^{2}_n s + 2^{1}_c c^{1}_n n + 2^{2}_c c^{2}_n n
\end{align*} \] (2.65)

a new system of equations may be formed:

\[\begin{align*}
1_u &= 1^{1}_s c^{1}_s s + 1^{2}_c c^{2}_s s + 1^{1}_c c^{1}_s n + 1^{2}_c c^{2}_s n \\
1_n &= 1^{1}_c c^{1}_n s + 1^{2}_c c^{2}_n s + 1^{1}_c c^{1}_n n + 1^{2}_c c^{2}_n n \\
2_u &= 2^{1}_c c^{1}_s s + 2^{2}_c c^{2}_s s + 2^{1}_c c^{1}_s n + 2^{2}_c c^{2}_s n \\
2_n &= 2^{1}_c c^{1}_n s + 2^{2}_c c^{2}_n s + 2^{1}_c c^{1}_n n + 2^{2}_c c^{2}_n n
\end{align*} \] (2.66)

\[\begin{align*}
2_D_s &= -1_D_s \\
2_D_n &= +1_D_n
\end{align*} \] (2.67)

By substituting the last two equations into the first two,

these may be rewritten as

\[\begin{align*}
1_u &= (1^{1}_c c^{1}_s s - 1^{2}_c c^{2}_s s) + (1^{1}_c c^{1}_s n + 1^{2}_c c^{2}_s n) \\
1_n &= (1^{1}_c c^{1}_n s - 1^{2}_c c^{2}_n s) + (1^{1}_c c^{1}_n n + 1^{2}_c c^{2}_n n) \\
2_D_s &= -1_D_s \\
2_D_n &= +1_D_n
\end{align*} \] (2.68)

Now, instead of solving four equations in four unknowns

\[(1_D_s, 1_D_n, 2_D_s, 2_D_n), \]

only the first two equations in two unknowns must be solved. The conditions at element 2 are then computed from the last two equations. Thus, application of symmetry cuts in half the size of the matrix equation. If two lines of symmetry exist, then the size of the matrix equation is reduced by a factor of four.
In order to solve problems involving infinite domains with a remotely applied stress, changes in displacement and stress are considered. This is done by adjusting the boundary conditions of each element to include the negatives of the tractions that would exist if the elements were not present. The solution is then obtained by summation of the stress and displacement changes, assuming zero initial displacement throughout the plane.

After the system of linear algebraic equations is set up, it may be solved using direct Gaussian elimination with no pivoting. This is because the logarithmic terms in the influence coefficients make the matrix diagonally dominant: a nearby element has more effect than a faraway element. Since the diagonal terms account for element self-effects, these coefficients are larger in magnitude than the other coefficients in the corresponding row/column.

Once the discontinuities at each element are determined, the stresses and displacements are computed readily as the sum of the influences from each element. In order to reduce the size of the program, only one subroutine is used for all influence coefficient calculations. The coefficients computed are the functions f_{1x}, f_{1y}, ..., f_{xy} in step 11 above (The Method). Coordinate transformation of these coefficients allows calculating the ^{u}A's and ^{u}B's, while no transformation is required for computing conditions at non-boundary points.
C. Stress Intensity Factors

When dealing with problems involving cracks in structures, a very useful parameter is the stress intensity factor, denoted by K. For two-dimensional, elastic fracture mechanics problems, this measure of the intensity of the stress singularity at the crack tip may be decomposed into two modes (Figure 2.6): Mode I is the "opening" mode and Mode II is the "shearing" mode.

If an infinite plate contains a single crack (Figure 2.7), the stress intensity factors in a region very close to the crack tip (the near-field solution) are given by (3.79, 81)

Mode I:

$$\sigma_y = \frac{K_I}{\sqrt{2\pi r}} \cos \theta/2 \left[1 + \sin \theta/2 \sin 3\theta/2 \right]$$ \hspace{1cm} (2.77)

Mode II:

$$\tau_{xy} = \frac{K_{II}}{\sqrt{2\pi r}} \cos \theta/2 \left[1 - \sin \theta/2 \sin 3\theta/2 \right]$$ \hspace{1cm} (2.78)

For a problem in which the stress field in the vicinity of the crack tip is known, the stress intensity factors may be determined by a limiting procedure (3.343):

$$K_I = \lim_{r \to \text{small}} \sigma_y \sqrt{2\pi r} \left[\cos \theta/2 \left(1 + \sin \theta/2 \sin 3\theta/2 \right) \right]^{-1}$$ \hspace{1cm} (2.79)
Figure 2.8. Fracture Mechanics Modes
Figure 2.7. Coordinates for the Near-Field Solution

\[K_{II} = \lim_{r \to \text{small}} \frac{1}{r \sqrt{2\pi r}} \left[\cos \theta/2 \left(1 + \sin \theta/2 \sin 3\theta/2 \right) \right]^{-1} \]

where \(r \) is the distance from the crack tip.

Due to numerical inaccuracies associated with digital computers when dealing with singularities, the stress intensity factors in this study were obtained by applying a least squares linear fit (1.264) to a plot of \(\sqrt{2\pi r} \) vs. \(r \) (or \(\sqrt{2\pi r} \) vs. \(r \) for Mode II). Here the stresses are calculated directly in front of the crack (\(\theta = 0 \)). Figure 2.8 depicts a typical curve generated using the DDM, along with the associated linear fit. Note the inaccuracy of the solution near the crack tip (\(r = 0 \)). Far from the crack tip, the near-field solution is no longer valid. Therefore, the solution tends away from a straight line there.
Figure 2.8. Typical Curve Generated from Application of
the DDM
The suitability of the straight-line fit may be determined by examining the index of correlation (1:264–287), defined for an nth-order polynomial fit to m data points by

\[r_{f,Y} = \left(1 - \frac{\gamma^2}{m \sigma_Y^2} \right)^{1/2} \]

(2.81)

in which

\[\gamma^2 = \sum_{k=1}^{m} y_k^2 - \sum_{i=1}^{n} c_i v_i \]

(2.82)

\[\sigma_Y^2 = \text{var} = \frac{1}{m} \sum_{j=1}^{m} (y_j - \mu_Y)^2 \]

(2.83)

\[\mu_Y = \text{avg} = \frac{1}{m} \sum_{j=1}^{m} y_j \]

(2.84)

The best-fit polynomial is

\[y = \sum_{i=1}^{n} c_i x_i^{i-1} \]

(2.85)

with the coefficients \(c_i \) being determined by solving the linear system of equations

\[b_{ij} c_i = v_j \quad i = 1,2,...,n; \quad j = 1,2,...,n \]

(2.86)

where

\[b_{ij} = s_{i+j-1} \]

(2.87)

\[s_i = \sum_{k=1}^{m} x_k^{i-1} \quad i = 1,2,...,2n-1 \]

(2.88)
\[v_i = \sum_{k=1}^{m} x_{k}^{i-1} y_k \quad i = 1, 2, \ldots, n \]

(2.89)

and \((x_k', y_k')\) are the coordinates of the \(k\)th data point.

For a linear fit, the definition of the index of correlation may be expressed as (12)

\[
r_{f,Y} = \frac{\sum_{k=1}^{m} x_k y_k - \frac{1}{m} \sum_{k=1}^{m} x_k \sum_{k=1}^{m} y_k}{\left\{ \left[\sum_{k=1}^{m} x_k^2 - \frac{1}{m} \left(\sum_{k=1}^{m} x_k \right)^2 \right]^2 \left[\sum_{k=1}^{m} y_k^2 - \frac{1}{m} \left(\sum_{k=1}^{m} y_k \right)^2 \right] \right\}^{1/2}}
\]

(2.90)

The value of \(r_{f,Y}\) may range from zero to unity. The closer \(r_{f,Y}\) is to unity, the better the fit. A perfect fit is represented by a value of exactly unity, while an extremely poor fit produces an index close to zero.

D. Modeling Considerations

Because the relative displacements of the surfaces of a real crack are not constant (as is assumed for the DDM element), a method of modeling a crack was chosen which would more closely resemble the true situation (Figure 2.9). Each half-crack (containing only one crack tip) was discretized into at least three DDM elements. For the coarsest case, the element at the tip was one-sixth the length of the half-crack, while the element furthest from the tip was one-half
Physical Model of One Half-Crack

3 Half-Crack Elements:

6 Half-Crack Elements:

192 Half-Crack Elements:

Figure 2.9. Modeling a Half-Crack Using DDM Elements
the length of the half-crack. This left the middle element
with a length of one-third the total length.

Finer element meshes were created by dividing each
element into equal numbers of smaller elements. Thus, a
result stating that "192 half-crack elements were used"
means that 64 equally-sized elements were used in the first
one-sixth of the half-crack, 64 equally-sized elements were
used in the next one-third, etc. This allowed the crack to
more easily take on the elliptic shape it would assume under
a tension loading.
III. Isotropic Development

A. Theoretical Development

The basic solution required for the Displacement Discontinuity Method for an isotropic material subjected to plane strain is given by Crouch (6). Using the notation from Chapter II, the displacements due to a constant displacement discontinuity along a line crack defined on $|\bar{x}| < a$ (Figure 3.1) is presented as

$$\bar{u}_x = D_s [2(1 - \nu)\bar{f}_{,\bar{y}} - \bar{\gamma}f_{,\bar{r}}] + D_n [- (1 - 2\nu)\bar{f}_{,\bar{r}} - \bar{\gamma}f_{,\bar{y}}]$$

(3.1)

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure3.1.png}
\caption{Displacement Discontinuity along a Line Crack}
\end{figure}
\[u_y = D_s \left[- (1 - 2\nu) f_{,\bar{R}} - \bar{y} f_{,\bar{y}} \right] + D_n \left[2(1 - \nu) f_{,\bar{y}} + \bar{y} f_{,\bar{y}} \right] \]

(3.2)

where

\[f(\bar{R}, \bar{y}) = - \frac{1}{4\pi(1 - \nu)} \left[\bar{y} \left(\arctan \frac{\bar{y}}{\bar{R} - a} - \arctan \frac{\bar{y}}{\bar{R} + a} \right) \right. \]

\[- (\bar{R} - a) \ln \left((\bar{R} - a)^2 + \bar{y}^2 \right)^{1/2} \]

\[+ (\bar{R} + a) \ln \left((\bar{R} + a)^2 + \bar{y}^2 \right)^{1/2} \]

(3.3)

\[D_s = u_\bar{R}^+ - u_\bar{R}^- = \text{constant} \quad \text{on} \quad |\bar{R}| < a \quad (3.4) \]

\[D_n = u_\bar{y}^+ - u_\bar{y}^- = \text{constant} \quad \text{on} \quad |\bar{R}| < a \quad (3.5) \]

and the derivatives of \(f(\bar{R}, \bar{y}) \) are

\[f_{,\bar{R}} = \frac{+1}{4\pi(1 - \nu)} \left[\ln \left((\bar{R} - a)^2 + \bar{y}^2 \right)^{1/2} \right. \]

\[\left. - \ln \left((\bar{R} + a)^2 + \bar{y}^2 \right)^{1/2} \right] \]

(3.6)

\[f_{,\bar{y}} = \frac{-1}{4\pi(1 - \nu)} \left[\arctan \frac{\bar{y}}{\bar{R} - a} - \arctan \frac{\bar{y}}{\bar{R} + a} \right] \]

(3.7)

\[f_{,\bar{y}} = \frac{+1}{4\pi(1 - \nu)} \left[\frac{\bar{y}}{(\bar{R} - a)^2 + \bar{y}^2} - \frac{\bar{y}}{(\bar{R} + a)^2 + \bar{y}^2} \right] \]

(3.8)

\[f_{,\bar{R},\bar{y}} = - f_{,\bar{y},\bar{R}} = \frac{+1}{4\pi(1 - \nu)} \left[\frac{\bar{R} - a}{(\bar{R} - a)^2 + \bar{y}^2} - \frac{\bar{R} + a}{(\bar{R} + a)^2 + \bar{y}^2} \right] \]

(3.9)

The stresses for the isotropic material are determined from the stress-displacement relationships:

\[\sigma_{\bar{R},\bar{R}} = \frac{2G}{1 - 2\nu} \left[(1 - \nu) u_{\bar{R},\bar{R}} + \nu u_{\bar{R},\bar{y}} \right] \]

(3.10)

\[\sigma_{\bar{y},\bar{y}} = \frac{2G}{1 - 2\nu} \left[\nu u_{\bar{R},\bar{y}} + (1 - \nu) u_{\bar{y},\bar{y}} \right] \]

(3.11)
\[
\tau_{xy} = G \left(u_{x,y} + u_{y,x} \right)
\]

where \(G = \frac{E}{2(1 + \nu)} \) is the material shear modulus.

Applying coordinate transformation, the displacements in the global \((x, y)\) coordinate system are (7.91)

\[
\begin{align*}
\mathbf{u}_x &= D_s \left[- \langle 1 - 2\nu \rangle \sin \beta f_{,\bar{x}} + 2 \langle 1 - \nu \rangle \cos \beta f_{,\bar{y}} \\
&\quad + \bar{y} \left[\sin \beta f_{,\bar{x}} - \cos \beta f_{,\bar{y}} \right] \right] + D_n \left[- \langle 1 - 2\nu \rangle \cos \beta f_{,\bar{x}} - 2 \langle 1 - \nu \rangle \sin \beta f_{,\bar{y}} \\
&\quad - \bar{y} \left[\cos \beta f_{,\bar{x}} + \sin \beta f_{,\bar{y}} \right] \right] \\
\mathbf{u}_y &= D_s \left[+ \langle 1 - 2\nu \rangle \cos \beta f_{,\bar{x}} + 2 \langle 1 - \nu \rangle \sin \beta f_{,\bar{y}} \\
&\quad - \bar{y} \left[\cos \beta f_{,\bar{x}} + \sin \beta f_{,\bar{y}} \right] \right] + D_n \left[- \langle 1 - 2\nu \rangle \sin \beta f_{,\bar{x}} + 2 \langle 1 - \nu \rangle \cos \beta f_{,\bar{y}} \\
&\quad - \bar{y} \left[\sin \beta f_{,\bar{x}} - \cos \beta f_{,\bar{y}} \right] \right]
\end{align*}
\]

From these, the stresses in the global coordinate system are determined to be (7.92)

\[
\begin{align*}
\sigma_{xx} &= 2G D_s \left[2 \cos^2 \beta f_{,\bar{x}} + \sin 2\beta f_{,\bar{xx}} \\
&\quad + \bar{y} \left[\cos 2\beta f_{,\bar{xy}} - \sin 2\beta f_{,\bar{yy}} \right] \right] + 2G D_n \left[- f_{,\bar{xx}} + \bar{y} \left[\sin 2\beta f_{,\bar{xy}} + \cos 2\beta f_{,\bar{yy}} \right] \right] \\
\sigma_{yy} &= 2G D_s \left[2 \sin^2 \beta f_{,\bar{y}} - \sin 2\beta f_{,\bar{yy}} \\
&\quad - \bar{y} \left[\cos 2\beta f_{,\bar{xy}} - \sin 2\beta f_{,\bar{yy}} \right] \right] + 2G D_n \left[- f_{,\bar{yy}} - \bar{y} \left[\sin 2\beta f_{,\bar{xy}} + \cos 2\beta f_{,\bar{yy}} \right] \right]
\end{align*}
\]
\[\tau_{xy} = 2G D_n \left[\sin 2\beta f_{x,\bar{y}} - \cos 2\beta f_{x,\bar{x}} + \bar{y} \left(\sin 2\beta f_{x,\bar{y}y} + \cos 2\beta f_{x,\bar{y}y} \right) \right] + 2G D_n \left[-\bar{y} \left(\cos 2\beta f_{x,\bar{y}y} - \sin 2\beta f_{x,\bar{y}y} \right) \right] \] (3.17)

with \(f_{x,\bar{y}y} \) and \(f_{y,\bar{y}y} \) given by

\[f_{x,\bar{y}y} = \frac{-1}{4\pi(1-\nu)} \left[\frac{(\bar{x} - a)^2 - \bar{y}^2}{\left((\bar{x} - a)^2 + \bar{y}^2 \right)^2} - \frac{(\bar{x} + a)^2 - \bar{y}^2}{\left((\bar{x} + a)^2 + \bar{y}^2 \right)^2} \right] \] (3.18)

\[f_{y,\bar{y}y} = \frac{+2\bar{y}}{4\pi(1-\nu)} \left[\frac{\bar{x} - a}{\left((\bar{x} - a)^2 + \bar{y}^2 \right)^2} - \frac{\bar{x} + a}{\left((\bar{x} + a)^2 + \bar{y}^2 \right)^2} \right] \] (3.19)

The functions \(f_{x,\bar{x}}(\bar{x},\bar{y};\beta) \) through \(f_{y,\bar{y}}(\bar{x},\bar{y};\beta) \) (Chapter II) can be determined from the form of the displacements and stresses:

\[u_x = f_{1x}(\bar{x},\bar{y},\beta) D_n + f_{1y}(\bar{x},\bar{y},\beta) D_n \] (3.20)

\[u_y = f_{2x}(\bar{x},\bar{y},\beta) D_n + f_{2y}(\bar{x},\bar{y},\beta) D_n \] (3.21)

\[\sigma_{xx} = f_{3x}(\bar{x},\bar{y},\beta) D_n + f_{3y}(\bar{x},\bar{y},\beta) D_n \] (3.22)

\[\sigma_{yy} = f_{4x}(\bar{x},\bar{y},\beta) D_n + f_{4y}(\bar{x},\bar{y},\beta) D_n \] (3.23)

\[\tau_{xy} = f_{5x}(\bar{x},\bar{y},\beta) D_n + f_{5y}(\bar{x},\bar{y},\beta) D_n \] (3.24)

The required equations now exist for computer implementation of the Displacement Discontinuity Method for an isotropic plate in a state of plane strain (program TWODD in Appendix C).
B. Stress Analysis Application

To verify the stress solutions used in program TWODD, the case of a circular hole in an infinite plate under uniaxial tension was considered (Figure 3.2). The analytical solution for the tangential stress of this problem is given by Timoshenko and Goodier (21:91) as

\[\sigma_t = \frac{S}{2} \left(1 + \frac{a^2}{r^2} \right) - \frac{S}{2} \left(1 + 3 \frac{a^4}{r^4} \right) \cos 2\theta \]

(3.25)

Figure 3.2. Circular Hole in an Infinite Plate under Uniaxial Tension (Isotropic)
For the case that $\theta = 0^\circ$ (along the positive x-axis), the solution becomes

$$\sigma_i = \sigma_{xx} = \frac{S}{2} \left(2 + \frac{a^2}{r^2} + 3 \frac{a^4}{r^4} \right)$$ \hspace{1cm} (3.26)

Program TWODD was used to solve this doubly-symmetric problem using as few as three, and as many as 192, elements per quarter circle. Figure 3.3 indicates that even for the case of three elements, the solution obtained using the DDM is extremely accurate.

C. Fracture Mechanics Applications

Since the purpose of this study was to validate use of the DDM for fracture mechanics applications, the following problems were solved using program TWODD: (i) offset parallel cracks, (ii) slanted embedded crack (45° angle), and (iii) single edge crack near a hole.

1. Offset Parallel Cracks. The first fracture mechanics problem analyzed was the case of two offset cracks parallel to each other (Figure 3.4). The solution to this problem for an infinite plate was determined by Rooke and Cartwright (19) to be approximately

 Location "A": $K_I = 1.77$ psi in$^{1/2}$

 Location "B": $K_I = 1.66$ psi in$^{1/2}$

with an applied stress of 1 psi, and dimension "a" equal to 2 inches.

3-6
Figure 3.3. Stress Distribution for a Circular Hole in an Infinite Plate under Uniaxial Tension (Isotropic)
Figure 3.4. Offset Parallel Cracks in an Infinite Plate (Isotropic)
For the same configuration, the DDM yields the values in Table 3.1, indicating good convergence.

Table 3.1. Offset Parallel Cracks (Isotropic)

<table>
<thead>
<tr>
<th>Elements</th>
<th>K_I (A)</th>
<th>K_I (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1.879</td>
<td>2.023</td>
</tr>
<tr>
<td>48</td>
<td>1.787</td>
<td>1.918</td>
</tr>
<tr>
<td>192</td>
<td>1.756</td>
<td>1.886</td>
</tr>
</tbody>
</table>

2. Slanted Embedded Crack (45° Angle). The second fracture mechanics problem analyzed was the case of a crack at a 45-degree angle to the direction of the applied load in a finite panel (Figure 3.5). Rajiyah and Atluri (16) describe a boundary element alternating method which they used to obtain the solution to this problem:

$$K_{II} = 1.378 \text{ psi in}^{1/2}$$

when the applied stress is 1 psi. For an applied load of 1000 psi, the solution would therefore be

$$K_{II} = 1378 \text{ psi in}^{1/2}$$

For this 1000 psi load, the DDM yields (with 192 half-crack elements) the values in Table 3.2, where “Length” is the size of each element along the outer boundary of the part (in inches). Again, good convergence is demonstrated — this time for a finite plate.
SLANTED EMBEDDED CRACK - ISOTROPIC

K_{II} (psi in $\frac{1}{2}$)

Border Element Size: 0.125", 0.25", 0.5"

Figure 3.5. Slanted Embedded Crack (Isotropic)
Table 3.2. Slanted Embedded Crack (Isotropic)

<table>
<thead>
<tr>
<th>Length</th>
<th>K_{II}</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>1382</td>
<td>+0.3</td>
</tr>
<tr>
<td>0.25</td>
<td>1382</td>
<td>+0.3</td>
</tr>
<tr>
<td>0.125</td>
<td>1381</td>
<td>+0.2</td>
</tr>
</tbody>
</table>

3. Single Edge Crack Near a Hole. The last fracture mechanics problem analyzed was the case of a single crack emanating from a hole at the edge of a finite plate (Figure 3.6). The solution to this problem, according to Rajiyah and Atluri (16), is

$$K_I = 3.493 \text{ psi in}^{1/2}$$

under an applied stress of 1 psi. Since this is a Mode I problem, $K_{II} = 0 \text{ psi in}^{1/2}$.

For a 1 psi load, the DDM yields (with 96 half-crack elements) the values in Table 3.3, where "Length", again, is the size of each element along the outer boundary of the plate (in inches). Notice that convergence is slower for this more complicated boundary. However, the trend of monotonically approaching the solution as the number of elements increases is still evident.
Figure 3.6. Single Edge Crack Near a Hole (Isotropic)
Table 3.3. Single Edge Crack Near a Hole (Isotropic)

<table>
<thead>
<tr>
<th>Length</th>
<th>K_I</th>
<th>% Error</th>
<th>K_{II}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>3.785</td>
<td>+8.4</td>
<td>-0.015</td>
</tr>
<tr>
<td>0.50</td>
<td>3.707</td>
<td>+6.1</td>
<td>-0.013</td>
</tr>
<tr>
<td>0.25</td>
<td>3.663</td>
<td>+4.9</td>
<td>-0.011</td>
</tr>
<tr>
<td>0.125</td>
<td>3.635</td>
<td>+4.1</td>
<td>-0.009</td>
</tr>
</tbody>
</table>
IV. Orthotropic Materials

The use of laminated composites in the construction of aircraft components has led to complications in problems of fracture mechanics. The theoretical solutions for isotropic materials, by themselves, will no longer suffice for determining stresses and stress intensity factors in modern aircraft parts. The isotropic DDM, however, may be modified to include specially orthotropic materials. That is accomplished in this chapter.

A. Theoretical Development

Reading through Crouch and Starfield (7), I noticed that for an isotropic material the form of the displacement solution required by the DDM could be determined from the solution to Kelvin’s problem, which involves a concentrated load applied at a point in an infinite solid. If the load is distributed uniformly along the x-axis between \(x = -a \) and \(x = +a \) (Figure 4.1), integration yields the solution to a constant traction applied to a line crack (7:48):

\[
\begin{align*}
 u_x &= \frac{P}{2G} \left[(3-4\nu)f + yf_y \right] + \frac{P}{2G} \left[-yf_x \right] \\
 u_y &= \frac{P}{2G} \left[-yf_x \right] + \frac{y}{2G} \left[(3-4\nu)f + yf_y \right]
\end{align*}
\]

where \(f(x,y) \) is the same function as that in Chapter III for
Differentiating these displacements with respect to y only,

$$u_{x,y} = \frac{P_x}{2G} [(4 - 4\nu)f_{,y} + f_{,yy}] + \frac{P_y}{2G} [-f_{,x} - yf_{,xy}] \quad (4.3)$$

$$u_{y,y} = \frac{P_y}{2G} [-f_{,x} - yf_{,xy}] + \frac{P_x}{2G} [(4-4\nu)f_{,y} + f_{,yy}] \quad (4.4)$$

These may be written in the form

$$u_{x,y} = P_x [A f_{,y} + B y f_{,yy}] + P_y [C f_{,x} + D y f_{,xy}] \quad (4.5)$$

$$u_{y,y} = P_x [E f_{,x} + F y f_{,xy}] + P_y [G f_{,y} + H y f_{,yy}] \quad (4.6)$$
where A, B, ..., W are constants which depend only upon material properties.

Comparing to the solution presented for a constant displacement discontinuity (7.201),

\[
\begin{align*}
\mathbf{u}_x &= D \left[2(1 - \nu)f_{,y} - yf_{,xx} \right] + D \left[-2(1 - \nu)f_{,y} - yf_{,xx} \right] \\
\mathbf{u}_y &= D \left[(1 - 2\nu)f_{,x} - xf_{,yy} \right] + D \left[2(1 - \nu)f_{,x} - xf_{,yy} \right]
\end{align*}
\]

and realizing that $f_{,xx} = -f_{,yy}$, it is seen that the forms are identical. Therefore, in developing the displacement discontinuity solution for an orthotropic material, I used the solution to a constant traction along a line crack as a starting point (7.202):

\[
\begin{align*}
\mathbf{u}_x &= \frac{q_1 q_2}{2\pi c_{66} (q_1 - q_2)} P \left[\frac{r_{11} \langle \mathbf{R}, \mathbf{y}, \mathbf{y} \rangle - r_{21} \langle \mathbf{R}, \mathbf{y}, \mathbf{y} \rangle}{q_{11} \langle \mathbf{R}, \mathbf{y}, \mathbf{y} \rangle - q_{21} \langle \mathbf{R}, \mathbf{y}, \mathbf{y} \rangle} \right] \\
&+ \frac{-1}{2\pi c_{66} (q_1 - q_2)} P \left[\frac{I_2 \langle \mathbf{R}, \mathbf{y}, \mathbf{y} \rangle - I_2 \langle \mathbf{R}, \mathbf{y}, \mathbf{y} \rangle}{q_{11} \langle \mathbf{R}, \mathbf{y}, \mathbf{y} \rangle - q_{21} \langle \mathbf{R}, \mathbf{y}, \mathbf{y} \rangle} \right] \\
\mathbf{u}_y &= \frac{-q_1 q_2}{2\pi c_{66} (q_1 - q_2)} P \left[I_2 \langle \mathbf{R}, \mathbf{y}, \mathbf{y} \rangle - I_2 \langle \mathbf{R}, \mathbf{y}, \mathbf{y} \rangle \right] \\
&+ \frac{-1}{2\pi c_{66} (q_1 - q_2)} P \left[\frac{r_{11} \langle \mathbf{R}, \mathbf{y}, \mathbf{y} \rangle - r_{21} \langle \mathbf{R}, \mathbf{y}, \mathbf{y} \rangle}{q_{11} \langle \mathbf{R}, \mathbf{y}, \mathbf{y} \rangle - q_{21} \langle \mathbf{R}, \mathbf{y}, \mathbf{y} \rangle} \right]
\end{align*}
\]

where
\[I_1(\bar{x}, \bar{y}, \gamma_i) = \frac{\bar{y}}{\gamma_i A_i} \left[\Theta_1(\gamma_i) - \Theta_2(\gamma_i) \right] \]
\[- \left(\bar{x} - a + \frac{B_i \bar{y}}{2A_i} \right) \ln r_1(\gamma_i) + \left(\bar{x} + a + \frac{B_i \bar{y}}{2A_i} \right) \ln r_2(\gamma_i) \]
(4.11)

\[I_2(\bar{x}, \bar{y}, \gamma_i) = - \left(\bar{x} - a + \frac{B_i \bar{y}}{2A_i} \right) \Theta_1(\gamma_i) + \left(\bar{x} + a + \frac{B_i \bar{y}}{2A_i} \right) \Theta_2(\gamma_i) - \frac{\bar{y}}{\gamma_i A_i} \left[\Theta_1(\gamma_i) - \Theta_2(\gamma_i) \right] \]
(4.12)

\[\Theta_1(\gamma_i) = \arctan \left(\frac{\bar{y}/\gamma_i A_i}{(\bar{x} - a) + \frac{1}{2} B_i \bar{y}/A_i} \right) \]
(4.13)

\[\Theta_2(\gamma_i) = \arctan \left(\frac{\bar{y}/\gamma_i A_i}{(\bar{x} + a) + \frac{1}{2} B_i \bar{y}/A_i} \right) \]
(4.14)

\[r_1(\gamma_i) = \left[A_i (\bar{x} - a)^2 + B_i (\bar{x} - a)\bar{y} + C_i \bar{y}^2 \right]^{1/2} \]
(4.15)

\[r_2(\gamma_i) = \left[A_i (\bar{x} + a)^2 + B_i (\bar{x} + a)\bar{y} + C_i \bar{y}^2 \right]^{1/2} \]
(4.16)

\[A_i = \frac{\gamma_i^2 \cos^2 \beta + \sin^2 \beta}{\gamma_i^2} \]
(4.17)

\[B_i = (1 - \gamma_i^2) \sin 2\beta / \gamma_i^2 \]
(4.18)

\[C_i = \frac{\gamma_i^2 \sin \beta \cos \beta}{\gamma_i^2} \]
(4.19)

\[c_{11} c_{66} \gamma_i^4 + [c_{12}(c_{12} + c_{66}) - c_{11} c_{22}] \gamma_i^2 + c_{22} c_{66} = 0 \]
(4.20)

\[\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \tau_{xy} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & 0 \\ c_{12} & c_{12} & 0 \\ 0 & 0 & c_{66} \end{bmatrix} \begin{bmatrix} u_{x,x} \\ u_{y,y} \\ u_{x,y} + u_{y,x} \end{bmatrix} \]
(4.21)

and \(\beta \) is the angle measured counterclockwise from the global \(x \)-axis to the line crack's local \(\bar{x} \)-axis. By differentiating
u_x and u_y with respect to y only, we can obtain the functions required for the DDM when the material is orthotropic.

If the form of the solution for a constant displacement discontinuity along $|x| < a$ is assumed to be

\begin{align}
 u_x &= D_x \left\{ A \left[\Theta_1 (\gamma_1) - \Theta_2 (\gamma_1) \right] + B \left[\Theta_1 (\gamma_2) - \Theta_2 (\gamma_2) \right] \right\} \\
 &\quad + D_y \left\{ C \left[\ln r_1 (\gamma_1) / r_2 (\gamma_1) \right] + D \left[\ln r_1 (\gamma_2) / r_2 (\gamma_2) \right] \right\} \\
 u_y &= D_x \left\{ E \left[\Theta_1 (\gamma_1) - \Theta_2 (\gamma_1) \right] + F \left[\Theta_1 (\gamma_2) - \Theta_2 (\gamma_2) \right] \right\} \\
 &\quad + D_y \left\{ G \left[\ln r_1 (\gamma_1) / r_2 (\gamma_1) \right] + H \left[\ln r_1 (\gamma_2) / r_2 (\gamma_2) \right] \right\}
\end{align}

then the coefficients A, B, \ldots, H may be determined by requiring u_x and u_y satisfy (i) the appropriate boundary conditions and (ii) the equations of equilibrium. Coordinate transformation can then be used to represent u_x and u_y in terms of the local discontinuities D_x and D_y.

The solution to constant displacement discontinuities D_x and D_y over a line segment of length $2a$ (see Figure 3.1) for an orthotropic plate in a state of generalized plane stress is thus given by (see Appendix A)
\[u_x = + Q D \frac{q_2}{\gamma_2} \left[\frac{\theta_1(\gamma_1) - \theta_2(\gamma_1)}{\gamma_1} - \frac{q_1}{\gamma_1} \left(\frac{\theta_1(\gamma_2) - \theta_2(\gamma_2)}{\gamma_2} \right) \right] \cos \beta \]

\[+ Q D \frac{q_2}{\gamma_2} \left[\ln \left(\frac{r_1(\gamma_1)/r_2(\gamma_1)}{r_1(\gamma_2)/r_2(\gamma_2)} \right) - \ln \left(\frac{r_1(\gamma_1)}{r_2(\gamma_1)} \right) \right] \sin \beta \]

\[- Q D \frac{q_1}{\gamma_1} \left[\frac{\theta_1(\gamma_1) - \theta_2(\gamma_1)}{\gamma_1} - \frac{q_2}{\gamma_2} \left(\frac{\theta_1(\gamma_2) - \theta_2(\gamma_2)}{\gamma_2} \right) \right] \sin \beta \]

\[+ Q D \frac{q_1}{\gamma_1} \left[\ln \left(\frac{r_1(\gamma_1)/r_2(\gamma_1)}{r_1(\gamma_2)/r_2(\gamma_2)} \right) - \ln \left(\frac{r_1(\gamma_1)}{r_2(\gamma_1)} \right) \right] \cos \beta \]

(4.24)

\[u_y = + \frac{Q}{\gamma_1 \gamma_2} D \frac{q_1}{\gamma_1} \left[\ln \left(\frac{r_1(\gamma_1)/r_2(\gamma_1)}{r_1(\gamma_2)/r_2(\gamma_2)} \right) - \ln \left(\frac{r_1(\gamma_1)}{r_2(\gamma_1)} \right) \right] \cos \beta \]

\[- Q D \frac{q_1}{\gamma_1} \left[\frac{\theta_1(\gamma_1) - \theta_2(\gamma_1)}{\gamma_1} - \frac{q_2}{\gamma_2} \left(\frac{\theta_1(\gamma_2) - \theta_2(\gamma_2)}{\gamma_2} \right) \right] \sin \beta \]

\[- \frac{Q}{\gamma_1 \gamma_2} D \frac{q_1}{\gamma_1} \left[\ln \left(\frac{r_1(\gamma_1)/r_2(\gamma_1)}{r_1(\gamma_2)/r_2(\gamma_2)} \right) - \ln \left(\frac{r_1(\gamma_1)}{r_2(\gamma_1)} \right) \right] \sin \beta \]

\[- Q D \frac{q_1}{\gamma_1} \left[\frac{\theta_1(\gamma_1) - \theta_2(\gamma_1)}{\gamma_1} - \frac{q_2}{\gamma_2} \left(\frac{\theta_1(\gamma_2) - \theta_2(\gamma_2)}{\gamma_2} \right) \right] \cos \beta \]

(4.25)

where

\[\theta_1(\gamma_i) = \arctan \left(\frac{\bar{y}/(\gamma_i A_i)}{R - a + \frac{1}{2} B \bar{y}/A_i} \right) \]

(4.26)

\[\theta_2(\gamma_i) = \arctan \left(\frac{\bar{y}/(\gamma_i A_i)}{R + a + \frac{1}{2} B \bar{y}/A_i} \right) \]

(4.27)

\[r_i(\gamma_i) = \left[A_i (R - a)^2 + B_i (R - a) \bar{y} + C_i \bar{y}^2 \right]^{1/2} \]

(4.28)
\[r_2 (\gamma_i) = \left[A_i (x + a)^2 + B_i (x + a)\tilde{y} + C_i \tilde{y}^2 \right]^{1/2} \quad (4.29) \]

\[A_i = (\gamma_i^2 \cos^2 \beta + \sin^2 \beta) / \gamma_i^2 \quad (4.30) \]

\[B_i = (1 - \gamma_i^2) \sin 2\beta / \gamma_i^2 \quad (4.31) \]

\[C_i = (\gamma_i^2 \sin^2 \beta + \cos^2 \beta) / \gamma_i^2 \quad (4.32) \]

\[Q = \frac{1}{2\pi} \frac{\gamma_1 \gamma_2}{q_1 \gamma_1 - q_2 \gamma_2} \quad (4.33) \]

\[c_{11} \epsilon_{\epsilon} \gamma_i^4 + [c_{12} (c_{12} + 2c_{22}) - c_{11} c_{22} \gamma_i^2 + c_{22} \epsilon_{\epsilon} = 0 \quad (4.34) \]

\[q_i = (c_{11} \gamma_i^2 - c_{\epsilon\epsilon})/(c_{12} + c_{\epsilon\epsilon}) \quad (4.35) \]

and \(c_{ij} \) are the orthotropic moduli:

\[c_{11} = \frac{E_1}{1 - \nu_{12} \nu_{21}} \quad c_{12} = \frac{\nu_{12} E_2}{1 - \nu_{12} \nu_{21}} = \frac{\nu_{21} E_1}{1 - \nu_{12} \nu_{21}} \quad (4.36) \]

\[c_{22}^{\epsilon\epsilon} = \frac{E_2}{1 - \nu_{12} \nu_{21}} \quad c_{\epsilon\epsilon} = G_{12} \]

The stresses for the orthotropic material are determined from the stress-displacement relationships:

\[\sigma_{xx} = c_{11} u_{x,x} + c_{12} u_{y,y} \quad (4.37) \]

\[\sigma_{yy} = c_{12} u_{x,x} + c_{22} u_{y,y} \quad (4.38) \]

\[\tau_{xy} = c_{\epsilon\epsilon} u_{x,y} + c_{\epsilon\epsilon} u_{y,x} \quad (4.39) \]

For a coordinate system \(\tilde{x}, \tilde{y} \) at an angle \(\beta \) with the global (material) coordinate system, the stress-displacement relationships become:

\[\sigma_{xx} = c_{11} \cos \beta u_{x,\tilde{x}} - c_{11} \sin \beta u_{x,\tilde{y}} \]

\[+ c_{12} \sin \beta u_{y,\tilde{x}} + c_{12} \cos \beta u_{y,\tilde{y}} \quad (4.40) \]
\[\sigma_{yy} = c_{12} \cos \beta \ u_{x,\bar{y}} - c_{12} \sin \beta \ u_{x,\bar{y}} \]
\[+ c_{22} \sin \beta \ u_{y,\bar{y}} + c_{22} \cos \beta \ u_{y,\bar{y}} \]
\[(4.41) \]
\[\tau_{xy} = c_{66} \sin \beta \ u_{x,\bar{y}} + c_{66} \cos \beta \ u_{x,\bar{y}} \]
\[+ c_{66} \cos \beta \ u_{y,\bar{y}} - c_{66} \sin \beta \ u_{y,\bar{y}} \]
\[(4.42) \]

Thus, for the case of constant displacement discontinu-
ities, the stresses may be written (Appendix A)

\[\sigma_{xx} = Q D \bar{\xi} \left[S_{11} c_{11} \cos^2 \beta - S_{12} c_{12} \sin \beta \cos \beta \right. \]
\[- S_{31} c_{12} \sin^2 \beta - S_{41} c_{12} \sin \beta \cos \beta \]
\[+ (R_{31} - R_{32})(c_{11} + c_{12} / \gamma_1 \gamma_2) \sin \beta \cos \beta \]
\[- (R_{41} - R_{42})(c_{11} \sin^2 \beta - c_{12} \cos^2 \beta / \gamma_1 \gamma_2) \]
\[- Q D \bar{\eta} \left[S_{11} c_{11} \sin \beta \cos \beta - S_{22} c_{12} \sin^2 \beta \right. \]
\[+ S_{32} c_{12} \sin \beta \cos \beta + S_{42} c_{12} \cos^2 \beta \]
\[- (R_{31} - R_{32})(c_{12} \sin^2 \beta - c_{12} \cos^2 \beta / \gamma_1 \gamma_2) \]
\[- (R_{41} - R_{42})(c_{11} + c_{12} / \gamma_1 \gamma_2) \sin \beta \cos \beta \]
\[(4.43) \]
\[\sigma_{yy} = Q D \bar{\xi} \left[S_{11} c_{12} \cos^2 \beta - S_{22} c_{12} \sin \beta \cos \beta \right. \]
\[- S_{32} c_{22} \sin^2 \beta - S_{42} c_{22} \sin \beta \cos \beta \]
\[+ (R_{31} - R_{32})(c_{12} + c_{22} / \gamma_1 \gamma_2) \sin \beta \cos \beta \]
\[- (R_{41} - R_{42})(c_{12} \sin^2 \beta - c_{22} \cos^2 \beta / \gamma_1 \gamma_2) \]
\[- Q D \bar{\eta} \left[S_{12} c_{12} \sin \beta \cos \beta - S_{22} c_{22} \sin^2 \beta \right. \]
\[+ S_{32} c_{22} \sin \beta \cos \beta + S_{42} c_{22} \cos^2 \beta \]
\[- (R_{31} - R_{32})(c_{12} \sin^2 \beta - c_{22} \cos^2 \beta / \gamma_1 \gamma_2) \]
\[- (R_{41} - R_{42})(c_{12} + c_{22} / \gamma_1 \gamma_2) \sin \beta \cos \beta \]
\[(4.44) \]
\[
\tau_{xy} = Q D \chi \cos \theta
\left[S_1 \sin \beta \cos \beta + S_2 \cos^2 \beta
- S_3 \sin \beta \cos \beta + S_4 \sin^2 \beta
+ (R_{31} - R_{32})(\sin^2 \beta + \cos^2 \beta / \gamma_1 \gamma_2)
+ (R_{41} - R_{42})(1 - 1/\gamma_1 \gamma_2) \sin \beta \cos \beta \right]
- Q D \chi \cos \theta
\left[S_1 \sin^2 \beta + S_2 \sin \beta \cos \beta + S_3 \cos^2 \beta
- S_3 \sin \beta \cos \beta - (R_{31} - R_{32})(1 - 1/\gamma_1 \gamma_2) \sin \beta \cos \beta
- (R_{41} - R_{42})(\cos^2 \beta + \sin^2 \beta / \gamma_1 \gamma_2) \right]
\] (4.45)

where

\[
S_1 = \frac{q_2}{\gamma_2} R_{11} + \frac{q_1}{\gamma_1} R_{12}
\] (4.46)

\[
S_2 = \frac{q_2}{\gamma_2} R_{21} + \frac{q_1}{\gamma_1} R_{22}
\] (4.47)

\[
S_3 = \frac{q_1}{\gamma_1} R_{11} + \frac{q_2}{\gamma_2} R_{12}
\] (4.48)

\[
S_4 = \frac{q_1}{\gamma_1} R_{21} + \frac{q_2}{\gamma_2} R_{22}
\] (4.49)

\[
R_{1i} = \left[\Theta_i \gamma_1 - \Theta_i \gamma_2 \right] \bar{\gamma} \bar{r}
\] (4.50)

\[
= \frac{\bar{y} / \gamma_i}{A_i (\bar{r} - a)^2 + B_i (\bar{r} - a)\bar{y} + C_i \bar{y}^2}
+ \frac{\bar{y} / \gamma_i}{A_i (\bar{r} + a)^2 + B_i (\bar{r} + a)\bar{y} + C_i \bar{y}^2}
\] (4.50)
\[
R_{2i} = \left[\Theta_1 (\gamma_i) - \Theta_2 (\gamma_i) \right], \tilde{\gamma}
\]

\[
= \frac{(\tilde{\gamma} - a) / \gamma_i}{A_i (\tilde{\gamma} - a)^2 + B_i (\tilde{\gamma} - a)\tilde{\gamma} + C_i \tilde{\gamma}^2}
- \frac{(\tilde{\gamma} + a) / \gamma_i}{A_i (\tilde{\gamma} + a)^2 + B_i (\tilde{\gamma} + a)\tilde{\gamma} + C_i \tilde{\gamma}^2}
\]

\[\text{(4.51)}\]

\[
R_{3i} = \left[\ln \left(r_1 (\gamma_i) / r_2 (\gamma_i) \right) \right], \tilde{\gamma}
\]

\[
= \frac{A_i (\tilde{\gamma} - a) + \frac{1}{2} B_i \tilde{\gamma}}{A_i (\tilde{\gamma} - a)^2 + B_i (\tilde{\gamma} - a)\tilde{\gamma} + C_i \tilde{\gamma}^2}
- \frac{A_i (\tilde{\gamma} + a) + \frac{1}{2} B_i \tilde{\gamma}}{A_i (\tilde{\gamma} + a)^2 + B_i (\tilde{\gamma} + a)\tilde{\gamma} + C_i \tilde{\gamma}^2}
\]

\[\text{(4.52)}\]

and

\[
R_{4i} = \left[\ln \left(r_1 (\gamma_i) / r_2 (\gamma_i) \right) \right], \tilde{\gamma}
\]

\[
= \frac{\frac{1}{2} B_i (\tilde{\gamma} - a) + C_i \tilde{\gamma}}{A_i (\tilde{\gamma} - a)^2 + B_i (\tilde{\gamma} - a)\tilde{\gamma} + C_i \tilde{\gamma}^2}
- \frac{\frac{1}{2} B_i (\tilde{\gamma} + a) + C_i \tilde{\gamma}}{A_i (\tilde{\gamma} + a)^2 + B_i (\tilde{\gamma} + a)\tilde{\gamma} + C_i \tilde{\gamma}^2}
\]

\[\text{(4.53)}\]

Thus, the functions in Chapter II for an orthotropic material are
\[
f_{\text{1}_x}(\vec{r}, \vec{y}, \beta) = Q \left[\frac{q_2}{\gamma_2} \left(\gamma \langle \gamma \rangle_1 - \gamma \langle \gamma \rangle_2 \right) - \frac{q_1}{\gamma_1} \left(\gamma \langle \gamma \rangle_2 - \gamma \langle \gamma \rangle_2 \right) \right] \cos \beta \\
+ Q \left[\ln \left(\frac{r \langle \gamma \rangle_1}{r \langle \gamma \rangle_2} \right) - \ln \left(\frac{r \langle \gamma \rangle_2}{r \langle \gamma \rangle_2} \right) \right] \sin \beta \\
\tag{4.54}
\]

\[
f_{\text{1}_y}(\vec{r}, \vec{y}, \beta) = Q \left[\ln \left(\frac{r \langle \gamma \rangle_1}{r \langle \gamma \rangle_2} \right) - \ln \left(\frac{r \langle \gamma \rangle_2}{r \langle \gamma \rangle_2} \right) \right] \cos \beta \\
- Q \left[\frac{q_2}{\gamma_2} \left(\gamma \langle \gamma \rangle_1 - \gamma \langle \gamma \rangle_2 \right) - \frac{q_1}{\gamma_1} \left(\gamma \langle \gamma \rangle_2 - \gamma \langle \gamma \rangle_2 \right) \right] \sin \beta \\
\tag{4.55}
\]

\[
f_{\text{2}_x}(\vec{r}, \vec{y}, \beta) = \frac{Q}{\gamma_1 \gamma_2} D_{\vec{r}} \left[\ln \left(\frac{r \langle \gamma \rangle_1}{r \langle \gamma \rangle_2} \right) - \ln \left(\frac{r \langle \gamma \rangle_2}{r \langle \gamma \rangle_2} \right) \right] \cos \beta \\
- Q \left[\frac{q_2}{\gamma_2} \left(\gamma \langle \gamma \rangle_1 - \gamma \langle \gamma \rangle_2 \right) - \frac{q_2}{\gamma_2} \left(\gamma \langle \gamma \rangle_2 - \gamma \langle \gamma \rangle_2 \right) \right] \sin \beta \\
\tag{4.56}
\]

\[
f_{\text{2}_y}(\vec{r}, \vec{y}, \beta) = - Q \left[\frac{q_1}{\gamma_1} \left(\gamma \langle \gamma \rangle_1 - \gamma \langle \gamma \rangle_2 \right) - \frac{q_2}{\gamma_2} \left(\gamma \langle \gamma \rangle_2 - \gamma \langle \gamma \rangle_2 \right) \right] \cos \beta \\
- \frac{Q}{\gamma_1 \gamma_2} D_{\vec{r}} \left[\ln \left(\frac{r \langle \gamma \rangle_1}{r \langle \gamma \rangle_2} \right) - \ln \left(\frac{r \langle \gamma \rangle_2}{r \langle \gamma \rangle_2} \right) \right] \sin \beta \\
\tag{4.57}
\]

\[
f_{\text{3}_x}(\vec{r}, \vec{y}, \beta) = Q \left[S_{\gamma_1} \gamma_1 \left(\gamma \langle \gamma \rangle_1 - \gamma \langle \gamma \rangle_2 \right) - S_{\gamma_1} \gamma_2 \sin \beta \cos \beta \\
- S_{\gamma_1} \gamma_1 \sin \beta \cos \beta + \frac{\gamma_1}{\gamma_2} \gamma \langle \gamma \rangle_2 \sin \beta \cos \beta \\
+ \left(R_{\gamma_1} - R_{\gamma_2} \right) \gamma_1 \sin \beta \cos \beta \\
- \left(R_{\gamma_1} - R_{\gamma_2} \right) \gamma_1 \sin \beta \cos \beta \right] \\
\tag{4.58}
\]
\[f_{3y} (\bar{r}, \bar{y}, \beta) = - Q \left[S_{11} \sin \beta \cos \beta - S_{21} \sin^2 \beta \right. \\
+ S_{912} \sin \beta \cos \beta + S_{412} \cos^2 \beta \\
- \left(R_{31} - R_{32} \right) \left(\cos \beta - c_{12} \sin \beta / \gamma \right) \\
+ \left(R_{41} - R_{42} \right) \left[c_{11} + c_{12} / \gamma \right] \sin \beta \cos \beta \right] \] (4.59)

\[f_{4x} (\bar{r}, \bar{y}, \beta) = Q \left[S_{12} \cos \beta - S_{212} \sin \beta \cos \beta \\
- S_{922} \sin \beta - S_{422} \cos \beta \\
+ \left(R_{31} - R_{32} \right) \left(\cos \beta + c_{12} / \gamma \right) \sin \beta \cos \beta \\
- \left(R_{41} - R_{42} \right) \left[c_{12} + c_{22} / \gamma \right] \sin \beta \cos \beta \right] \] (4.60)

\[f_{4y} (\bar{r}, \bar{y}, \beta) = - Q \left[S_{112} \sin \beta \cos \beta - S_{212} \sin^2 \beta \right. \\
+ S_{922} \sin \beta \cos \beta + S_{422} \cos^2 \beta \\
- \left(R_{31} - R_{32} \right) \left(\cos \beta - c_{12} \sin \beta / \gamma \right) \\
+ \left(R_{41} - R_{42} \right) \left[c_{12} + c_{22} / \gamma \right] \sin \beta \cos \beta \right] \] (4.61)

\[f_{5x} (\bar{r}, \bar{y}, \beta) = Q c_{66} \left[S_{1} \sin \beta \cos \beta + S_{2} \cos^2 \beta \right. \\
- S_{9} \sin \beta \cos \beta + S_{4} \sin^2 \beta \\
+ \left(R_{31} - R_{32} \right) \left(\sin^2 \beta + \cos^2 \beta / \gamma \right) \\
+ \left(R_{41} - R_{42} \right) \left(1 - \gamma \right) \sin \beta \cos \beta \right] \] (4.62)

\[f_{5y} (\bar{r}, \bar{y}, \beta) = - Q c_{66} \left[S_{1} \sin^2 \beta + S_{2} \sin \beta \cos \beta \right. \\
+ S_{9} \cos^2 \beta - S_{4} \sin \beta \cos \beta \\
- \left(R_{31} - R_{32} \right) \left(1 + \gamma \right) \sin \beta \cos \beta \\
- \left(R_{41} - R_{42} \right) \left(\cos^2 \beta + \sin^2 \beta / \gamma \right) \] (4.69)

Recalling also from Chapter II the convention of computing element self-effects on the negative side of the discontinuity, determination of the values of coefficients.
"B_{ss} and "B_{nn} requires computing the following limits with \(n = 0 \):

\[
\lim_{y \to 0^-} \left(\Theta(r_1) - \Theta(r_2) \right) = -\pi
\]

\[
\lim_{y \to 0^-} \left[\ln \left(\frac{r_1 \gamma_1}{r_2 \gamma_2} \right) - \ln \left(\frac{r_1 \gamma_2}{r_2 \gamma_2} \right) \right] = 0
\]

Thus,

\[
\begin{aligned}
\left[\frac{q_2}{r_2} \left(\frac{q_1}{r_1} \right) \right] & \left[\begin{array}{c} \sin \beta + \cos \beta \\
\cos \beta + \sin \beta \end{array} \right] \\
& = \frac{1}{2\pi} \frac{r_1 r_2}{q_1 r_2 - q_2 r_1} \left[\begin{array}{c} q_2 - q_1 \\\nq_1 - q_2 \end{array} \right] \left[\begin{array}{c} \sin \beta + \cos \beta \\
\cos \beta + \sin \beta \end{array} \right] \\
& = -\frac{1}{2} \frac{r_1 r_2 - q_1 r_2}{q_1 r_2 - q_2 r_1} \left(\begin{array}{c} \sin \beta + \cos \beta \\
\cos \beta + \sin \beta \end{array} \right) \\
& = + \frac{1}{2} \left(\begin{array}{c} \sin \beta + \cos \beta \\
\cos \beta + \sin \beta \end{array} \right)
\end{aligned}
\]

and

\[
\begin{aligned}
\left[\frac{q_1}{r_1} \right] & \left[\begin{array}{c} \sin \beta + \cos \beta \\
\cos \beta + \sin \beta \end{array} \right] \\
& = \frac{1}{2\pi} \frac{r_1 r_2}{q_1 r_2 - q_2 r_1} \left[\begin{array}{c} q_2 - q_1 \\\nq_1 - q_2 \end{array} \right] \left[\begin{array}{c} \sin \beta + \cos \beta \\
\cos \beta + \sin \beta \end{array} \right] \\
& = + \frac{1}{2} \frac{r_1 r_2 - q_1 r_2}{q_1 r_2 - q_2 r_1} \left(\begin{array}{c} \sin \beta + \cos \beta \\
\cos \beta + \sin \beta \end{array} \right) \\
& = + \frac{1}{2} \left(\begin{array}{c} \sin \beta + \cos \beta \\
\cos \beta + \sin \beta \end{array} \right)
\end{aligned}
\]

Therefore, the local displacements become
\[\begin{align*}
\vec{u}_s &= \vec{u}_x = \vec{u}_x \cos \beta + \vec{u}_y \sin \beta \\
&= + \frac{1}{2} (\cos^2 \beta + \sin^2 \beta) \vec{D}_x \\
&= + \frac{1}{2} \vec{D}_x \\
\end{align*} \]
\[(4.68) \]

\[\begin{align*}
\vec{u}_n &= \vec{u}_y = -\vec{u}_x \sin \beta + \vec{u}_y \cos \beta \\
&= + \frac{1}{2} (\sin^2 \beta + \cos^2 \beta) \vec{D}_y \\
&= + \frac{1}{2} \vec{D}_y \\
\end{align*} \]
\[(4.69) \]

Thus, \(B_{ss} = B_{nn} = + \frac{1}{2} \), as stated in Chapter II.

The required equations now exist for computer implementation of the Displacement Discontinuity Method for an orthotropic plate in a state of generalized plane stress (program TWODDO in Appendix D). This method may also be used to determine the solution for an isotropic plate in a state of generalized plane stress. Since the orthotropic solution is singular for a truly isotropic material \(E_x = E_y \), \(E \) implies \(q_1 = q_2 = 1 \) and \(\gamma_1 = \gamma_2 \), it is not possible to use \(E_x = E_y = E \) directly. However, if the values of \(E_x \) and \(E_y \) are within a few hundredths of a percent of one another, an isotropic material will be sufficiently represented.

B. Stress Analysis Application

To verify the stress solutions used in program TWODDO, the case of a circular hole in an infinite plate under uniaxial tension was again considered (Figure 4.2). Lekhnitskii (13:163-171) demonstrates that the tangential stress along the boundary of the hole is given by
CIRCULAR HOLE - ORTHOTROPIC

Figure 4.2. Circular Hole in an Infinite Plate under Uniaxial Tension (Orthotropic)
\[\sigma_t = p \frac{E_t}{E_1} \left[\mu_{12} \cos^2 \theta + (1 + n) \sin^2 \theta \right] \quad (4.70) \]

where

\[\mu_{12} = - \left(\frac{E_1}{E_2} \right)^{1/2} \quad (4.71) \]

\[n = \left(\frac{E_{12}}{E_1} - 2\nu_{12} - 2\mu_{12} \right)^{1/2} \quad (4.72) \]

and

\[\frac{1}{E_1} = \frac{\sin^2 \theta}{E_1} + \left(\frac{1}{G_{12}} - \frac{2\nu_{12}}{E_1} \right) \sin^2 \theta \cos^2 \theta + \frac{\cos^2 \theta}{E_2} \quad (4.73) \]

for a uniform traction \(p \) at infinity.

For the case \(\theta = 90^\circ \), the maximum stress is determined to be \(\sigma_t = \sigma_x = p(1 + n) \). Then, assuming a boron/epoxy laminate \(E_1 = 30 \times 10^6 \) psi, \(E_2 = 2.7 \times 10^6 \) psi, \(G_{12} = 0.65 \times 10^6 \) psi, and \(\nu_{12} = 0.21 \), the theoretical maximum stress at the edge of the hole is \(\sigma_x = 823.9 \) psi. The results from program TWODDO were extrapolated to the edge of the hole by assuming an inverse fourth-order least squares curve fit (1:264) is appropriate. The results are shown in Table 4.1.

<table>
<thead>
<tr>
<th>Elements</th>
<th>(\sigma_t) at (\theta = 90^\circ)</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>304.6</td>
<td>-63.0</td>
</tr>
<tr>
<td>12</td>
<td>400.9</td>
<td>-51.3</td>
</tr>
<tr>
<td>48</td>
<td>482.6</td>
<td>-41.4</td>
</tr>
<tr>
<td>96</td>
<td>523.8</td>
<td>-36.4</td>
</tr>
<tr>
<td>800</td>
<td>690.0</td>
<td>-16.3</td>
</tr>
</tbody>
</table>

Table 4.1. Tangential Stress at Edge of a Circular Hole (Orthotropic)
The extrapolated stress at the boundary converges very slowly due to the presence of stress singularities at the ends of each element. The difference in stress values a short distance from the boundary, however, is less than 2% when the 3-element case is compared to the 800-element case. Thus, the stress solution is accurate except very close to a boundary element.

C. Fracture Mechanics Applications

Two of the fracture mechanics problems analyzed for an isotropic material were considered again for an orthotropic material: (i) slanted embedded crack (45° angle), and (ii) single edge crack near a hole. Analyzed first was the case of symmetric edge cracks emanating from a hole.

1. Symmetric Edge Cracks Emanating from a Hole. This first fracture mechanics problem involves cracks extending from two sides of a circular hole in an orthotropic panel (Figure 4.3). The solution to this problem is presented by Tan and Bigelow (23) as

\[K_I = S \sqrt{\pi a F} \] \hspace{1cm} (4.74)

where \(F \) is a correction factor based upon the geometry and the material properties.

The case analyzed was a [0°] graphite/epoxy laminate having the following properties and configuration:
Figure 4.3. Symmetric Edge Cracks Emanating from a Hole (Orthotropic)
\[E_x = 11.72 \text{ GPa} = 1.70 \times 10^6 \text{ psi} \]
\[E_y = 144.8 \text{ GPa} = 21.0 \times 10^6 \text{ psi} \]
\[G_{xy} = 9.65 \text{ GPa} = 1.40 \times 10^6 \text{ psi} \]
\[\nu_{xy} = 0.017 \]
\[S = 1000 \text{ psi} \]
\[a = 1.60 \text{ in} \quad 2a/W = 0.20 \quad 2R/W = 0.125 \quad H/W = 2.00 \]

For these conditions, Tan and Bigelow (23) predict a stress intensity factor of \(K_I = 2394 \text{ psi in}^{1/2} \) \((F = 1.0679)\). Program TWODDO produced the results in Table 4.2 for 96 half-crack elements.

Table 4.2. Symmetric Edge Cracks Emanating from a Hole (Orthotropic)

<table>
<thead>
<tr>
<th>Length</th>
<th>(K_I)</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>2327</td>
<td>-2.8</td>
</tr>
<tr>
<td>0.50</td>
<td>2302</td>
<td>-3.8</td>
</tr>
<tr>
<td>0.25</td>
<td>2285</td>
<td>-4.6</td>
</tr>
<tr>
<td>0.125</td>
<td>2274</td>
<td>-5.0</td>
</tr>
</tbody>
</table>

2. Slanted Embedded Crack (45° Angle). The geometry for this problem is similar to that for the isotropic case (Figure 4.4). The material properties used, however, were

\[E_x = 30 \times 10^6 \text{ psi} \quad G_{xy} = 0.65 \times 10^6 \text{ psi} \]
\[E_y = 2.7 \times 10^6 \text{ psi} \quad \nu_{xy} = 0.21 \]

which corresponds to a boron/epoxy laminate. Using a finite element alternating method, Chen and Atluri (4) determined the Mode II stress intensity factor for the loading shown in
Figure 4.4. Slanted Embedded Crack (Orthotropic)
Figure 4.4 to be \(K_{II} = 1.1097 \text{ psi in}^{1/2} \). The results obtained from program TWODDO are compared to this in Table 4.3 for 192 half-crack elements.

Table 4.3. Slanted Embedded Crack (Orthotropic)

<table>
<thead>
<tr>
<th>Length</th>
<th>(K_{II})</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>1.116</td>
<td>+0.6</td>
</tr>
<tr>
<td>0.25</td>
<td>1.116</td>
<td>+0.6</td>
</tr>
<tr>
<td>0.125</td>
<td>1.116</td>
<td>+0.6</td>
</tr>
</tbody>
</table>

3. Single Edge Crack Near a Hole. Here, the same geometry was used for the orthotropic case as was used for the isotropic case (Figure 4.5). The material considered was a \([0^\circ]\) layup of graphite/epoxy with the following properties:

\[
E_x = 20.5 \times 10^6 \text{ psi} \quad G_{xy} = 0.752 \times 10^6 \text{ psi} \\
E_y = 1.37 \times 10^6 \text{ psi} \quad \nu_{xy} = 0.31
\]

For this problem, Chen and Atluri (4) obtained \(K_I = 3.2349 \text{ psi in}^{1/2} \) with a 1 psi load. For an applied stress of 1000 psi,

\[K_I = 3235 \text{ psi in}^{1/2} \quad (4.75) \]

The results from program TWODDO presented in Table 4.4 indicate slower convergence than for the more compact problems analyzed earlier. However, the trend of overestimating the
Figure 4.5. Single Edge Crack Near a Hole (Orthotropic)
stress intensity factor is evident by the monotonic convergence of the results.

Table 4.4. Single Edge Crack Near a Hole (Orthotropic)

<table>
<thead>
<tr>
<th>Length</th>
<th>(K_I)</th>
<th>% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>3734</td>
<td>+15.4</td>
</tr>
<tr>
<td>0.50</td>
<td>3610</td>
<td>+11.6</td>
</tr>
<tr>
<td>0.25</td>
<td>3540</td>
<td>+9.4</td>
</tr>
</tbody>
</table>
V. Conclusions and Recommendations

A. Conclusions

As demonstrated by the results in this study, the Displacement Discontinuity Method may be used as a tool for both stress analysis and fracture mechanics applications. Its rapid convergence for problems involving infinite domains allows for an accurate solution with only a few elements, as demonstrated by both stress analysis applications and by the case of parallel offset cracks in an isotropic material. The method's accuracy in problems with boundaries composed of straight line segments is also unquestioned. (See the slanted embedded crack results.) On the other hand, for fracture mechanics problems containing curved boundaries the DDM showed much slower convergence than it did in the other cases discussed above.

The Displacement Discontinuity Method has an advantage over finite element techniques due to the fact that only the boundary of the problem must be modeled versus modeling the entire domain. This, coupled with its rapid convergence, allows the DDM to obtain accurate solutions using fewer elements than finite element methods. Mesh refinement is also accomplished more easily with the DDM because of the reduction in order of the problem from a two-dimensional domain to a one-dimensional boundary.
The main disadvantage of the Displacement Discontinuity Method is that the matrix equation developed by the technique contains a fully-populated matrix. Finite element techniques are able to use banded matrix operations to increase their efficiency; the DDM cannot.

B. Recommendations

This thesis dealt mostly with development and validation of a plane stress displacement discontinuity method. Further research should be done to characterize the technique. This characterization could include (i) determining the range over which a least squares fit is appropriate (as a function of distance from the crack tip), (ii) obtaining a rough estimate of the number of elements required to obtain an accurate solution for a given problem, and (iii) determining the effect of refining the mesh for a half-crack in another manner (e.g. the method used by Harris (ii) for the plane strain DDM).

Another recommendation is to improve the efficiency of Program TWODDO. This could be accomplished by using a matrix equation solution routine other than Gaussian elimination, which is of order \(N^3 \). Since the program is modular, incorporating a different matrix-solving algorithm should not be difficult.

Also, the current Displacement Discontinuity Method is limited to two-dimensional analyses. Extension of the DDM
to three dimensions may be possible if a 3-Dimensional Fictitious Stress Method could be developed.
Appendix A: Orthotropic Solution

1. Introduction

This appendix demonstrates that the orthotropic solution used in the body of this thesis satisfies (i) the boundary conditions appropriate for a displacement discontinuity and (ii) the equations of equilibrium for a panel subjected to a state of generalized plane stress.

The first of these requirements (satisfying the boundary conditions for a displacement discontinuity) can be written in the following form:

$$\lim_\limits{y \to 0^-} u_i = \lim_\limits{y \to 0^+} u_i = u_i - D_i |x| < a$$ \hspace{1cm} (A.1)

where $i = x, y$. This represents a discontinuity in the displacement field along a line crack lying on the x-axis between $x = -a$ and $x = +a$. This discontinuity can be either a shear discontinuity ($i = x$) or a normal discontinuity ($i = y$).

The second condition requires that the stresses satisfy the equations of equilibrium:

\[\sigma_{xx,x} + \tau_{xy,y} = 0 \quad \text{(x-direction)} \] \hspace{1cm} (A.2)

\[\sigma_{yy,y} + \tau_{xy,x} = 0 \quad \text{(y-direction)} \] \hspace{1cm} (A.3)
These equations are appropriate for a thin panel in which body forces and through-the-thickness shear are neglected.

The orthotropic solution presented is shown to be correct as follows: First, the solution for a shear displacement discontinuity is demonstrated to be correct. Next, the solution for a normal displacement discontinuity is validated. The two results are then combined to yield a more general solution. This solution is then generalized further to determine the displacement field for an arbitrary orientation of the crack with respect to the material coordinate system. Finally, the stresses for this general solution are determined.

2. Shear Displacement Discontinuity

Let u_x represent displacement in the x-direction and let u_y represent displacement in the y-direction. Consider the following displacement field:

$$
\begin{align*}
 u_x &= Q D x \left\{ \frac{q_2}{\gamma_2} \left[\arctan \left(\frac{y}{y_1} \right) - \arctan \left(\frac{y}{y_1} \right) \right] \\
 &\quad - \frac{q_1}{\gamma_1} \left[\arctan \left(\frac{y}{y_2} \right) - \arctan \left(\frac{y}{y_2} \right) \right] \right\} \quad (A.4) \\
 u_y &= \frac{Q}{\gamma_1 \gamma_2} D x \left\{ \ln \left[\frac{(x - a)^2 + (y/y_1)^2}{(x + a)^2 + (y/y_1)^2} \right]^{1/2} \\
 &\quad - \ln \left[\frac{(x - a)^2 + (y/y_2)^2}{(x + a)^2 + (y/y_2)^2} \right]^{1/2} \right\} \quad (A.5)
\end{align*}
$$
with

\[Q = \frac{1}{2\pi} \frac{\gamma_1 \gamma_2}{q_1 \gamma_2 - q_2 \gamma_1} \]

\[q_1 = (\gamma_1 \gamma_2 - c_{66})/(c_{11} + c_{66}) \]

\[q_2 = (\gamma_1 \gamma_2 - c_{66})/(c_{12} + c_{66}) \]

\[c_{11} \gamma_1 \gamma_1 + (c_{12}(c_{12} + 2c_{66}) - c_{11} c_{22}) \gamma_1^2 + c_{22} c_{66} = 0 \]

and

\[D = \text{constant} \]

Then, on the x-axis

\[u_x = Q D \left\{ q_2 \lim_{y \to 0} \left[\arctan \left(\frac{y}{x - a} \right) - \arctan \left(\frac{y}{x + a} \right) \right] - q_1 \lim_{y \to 0} \left[\arctan \left(\frac{y}{x - a} \right) - \arctan \left(\frac{y}{x + a} \right) \right] \right\} \quad \text{(A.6)} \]

\[u_y = 0 \quad \text{(A.7)} \]

The limits depend upon the value of x and upon from which direction \(y = 0 \) is approached. The limits of the arctangent function are

\[\lim_{y \to 0^+} \arctan \left(\frac{y}{x \pm a} \right) = 0 \quad \text{for} \quad |x| > a \quad \text{(A.8)} \]

\[\lim_{y \to 0^-} \arctan \left(\frac{y}{x \pm a} \right) = \pi \quad \text{for} \quad |x| < a \quad \text{(A.9)} \]

\[\lim_{y \to 0^0} \arctan \left(\frac{y}{x \pm a} \right) = -\pi \quad \text{for} \quad |x| < a \quad \text{(A.10)} \]
This means \(u_x = 0 \) on \(|x| > a \). If \(|x| < a \),

\[
\begin{align*}
 u_x &= \begin{cases}
 Q D_x \left\{ \frac{q_2}{\gamma_0} (\pi) - \frac{q_1}{\gamma_1} (\pi) \right\} & \text{for } y \to 0_+ \\
 Q D_x \left\{ \frac{q_2}{\gamma_0} (-\pi) - \frac{q_1}{\gamma_1} (-\pi) \right\} & \text{for } y \to 0_-
 \end{cases}
 \\
 &- Q D_x \frac{q_2}{\gamma_0} \frac{1}{\gamma_1} \text{ for } y \to 0_-
\end{align*}
\]

\[
\begin{align*}
 u_x &= \begin{cases}
 Q D_x \pi \left\{ \frac{q_2}{\gamma_0} (\pi) - \frac{q_1}{\gamma_1} (\pi) \right\} & \text{for } y \to 0_+ \\
 Q D_x \pi \left\{ \frac{q_2}{\gamma_0} (-\pi) - \frac{q_1}{\gamma_1} (-\pi) \right\} & \text{for } y \to 0_-
 \end{cases}
 \\
 &- Q D_x \pi \frac{q_2}{\gamma_0} \frac{1}{\gamma_1} \text{ for } y \to 0_-
\end{align*}
\]

\[
\begin{align*}
 u_x &= - \frac{1}{2} D_x \text{ for } y \to 0_+ \\
 &+ \frac{1}{2} D_x \text{ for } y \to 0_-
\end{align*}
\] \hfill (A.11)

Thus, \(u_x \) and \(u_y \) satisfy the displacement discontinuity boundary conditions

\[
\begin{align*}
 u_x^- - u_x^+ &= D_x \text{ on } |x| < a, \ y = 0 \quad \text{(A.12)} \\
 u_x^- - u_x^+ &= 0 \text{ on } |x| > a, \ y = 0 \quad \text{(A.13)}
\end{align*}
\]
The displacements \(u_x \) and \(u_y \) must also satisfy the equilibrium equations:

\[
\sigma_{xx,x} + \tau_{xy,y} = 0 \quad \text{(x-direction)} \tag{A.2}
\]

\[
\sigma_{yy,y} + \tau_{xy,x} = 0 \quad \text{(y-direction)} \tag{A.3}
\]

which, when combined with the stress-strain relationships,

\[
\begin{pmatrix}
\sigma_{xx} \\
\sigma_{yy} \\
\tau_{xy}
\end{pmatrix}
= \begin{pmatrix}
c_{11} & c_{12} & 0 \\
c_{12} & c_{22} & 0 \\
0 & 0 & c_{yy}
\end{pmatrix}
\begin{pmatrix}
u_{x,x} \\
u_{y,y} \\
u_{x,y} + u_{y,x}
\end{pmatrix}
\tag{A.14}
\]

may be written

\[
c_{11} u_{x,xx} + c_{66} u_{x,yy} + (c_{12} + c_{66}) u_{y,xy} = 0 \quad \text{(x)} \tag{A.15}
\]

\[
c_{22} u_{y,yy} + c_{66} u_{y,xx} + (c_{12} + c_{66}) u_{x,xy} = 0 \quad \text{(y)} \tag{A.16}
\]

Carrying out the differentiation in the x-equilibrium equation,

\[
c_{11} u_{x,xx} + c_{66} u_{x,yy} + (c_{12} + c_{66}) u_{y,xy}
= c_{11} Q D \frac{q_2}{Y_2} \left[\frac{2(x - a)(y/y_1^*)}{[(x - a)^2 + (y/y_1^*)^2]^2} - \frac{2(x + a)(y/y_1^*)}{[(x + a)^2 + (y/y_1^*)^2]^2} \right]
+ c_{11} Q D \frac{q_1}{Y_1} \left[\frac{2(x - a)(y/y_2^*)}{[(x - a)^2 + (y/y_2^*)^2]^2} - \frac{2(x + a)(y/y_2^*)}{[(x + a)^2 + (y/y_2^*)^2]^2} \right]
+ c_{66} Q D \frac{q_2}{Y_2} \left[\frac{-2(x - a)(y/y_1^*)/y_1^*}{[(x - a)^2 + (y/y_1^*)^2]^2} - \frac{-2(x + a)(y/y_1^*)/y_1^*}{[(x + a)^2 + (y/y_1^*)^2]^2} \right]
\]

\[
\]
\[
+ c_{60} Q \frac{q_1}{\gamma_1} \left[\frac{-2(x - a)(y/\gamma_2)/\gamma_2^2}{(x - a)^2 + (y/\gamma_2)^2} - \frac{-2(x + a)(y/\gamma_2)/\gamma_2^2}{(x + a)^2 + (y/\gamma_2)^2} \right]

+ (c_{12} + c_{06}) \frac{Q}{\gamma_1' \gamma_2} \left[\frac{-2(x - a)(y/\gamma_1)/\gamma_1}{(x - a)^2 + (y/\gamma_1)^2} - \frac{-2(x + a)(y/\gamma_1)/\gamma_1}{(x + a)^2 + (y/\gamma_1)^2} \right]

+ (c_{12} + c_{06}) \frac{Q}{\gamma_1' \gamma_2} \left[\frac{-2(x - a)(y/\gamma_2)/\gamma_2}{(x - a)^2 + (y/\gamma_2)^2} - \frac{-2(x + a)(y/\gamma_2)/\gamma_2}{(x + a)^2 + (y/\gamma_2)^2} \right]

= \left[\frac{2(x - a)(y/\gamma_1)}{(x - a)^2 + (y/\gamma_1)^2} \right] \left\{ c_{11} Q \frac{q_2}{\gamma_2} - c_{60} Q \frac{q_2}{\gamma_1' \gamma_2} - (c_{12} + c_{06}) \frac{Q}{\gamma_1' \gamma_2} \right\}

- \left[\frac{2(x + a)(y/\gamma_1)}{(x + a)^2 + (y/\gamma_1)^2} \right] \left\{ c_{11} Q \frac{q_2}{\gamma_2} - c_{60} Q \frac{q_2}{\gamma_1' \gamma_2} - (c_{12} + c_{06}) \frac{Q}{\gamma_1' \gamma_2} \right\}

+ \left[\frac{2(x - a)(y/\gamma_2)}{(x - a)^2 + (y/\gamma_2)^2} \right] \left\{ c_{11} Q \frac{q_1}{\gamma_1} - c_{60} Q \frac{q_1}{\gamma_1' \gamma_2} - (c_{12} + c_{06}) \frac{Q}{\gamma_1' \gamma_2} \right\}

A-6
I}

\[\frac{2(x+a)(y/\gamma_2)}{[(x+a)^2 + (y/\gamma_2)^2]^2} \left\{ \frac{Q_{11} D_x}{\gamma_1^2 \gamma_2} \left\{ q_1 (c_{11} \gamma_2^2 - c_{66}) \right. \right. \]

\[- (c_{12} + c_{66}) \bigg) \right\} \]

\[\frac{2(x-a)(y/\gamma_1)}{[(x-a)^2 + (y/\gamma_1)^2]^2} \left\{ \frac{Q_{11} D_x}{\gamma_1^2 \gamma_2} \left\{ q_2 (c_{11} \gamma_1^2 - c_{66}) \right. \right. \]

\[- (c_{12} + c_{66}) \bigg) \right\} \]

Now, if

\[q_1 (c_{11} \gamma_2^2 - c_{66}) = c_{12} + c_{66} \quad (A.18) \]

and if

\[q_2 (c_{11} \gamma_1^2 - c_{66}) = c_{12} + c_{66} \quad (A.19) \]
then each term in Eq (A.17) is zero and x-direction equilibrium is satisfied. Using the definitions of q_1 and q_2, it is seen that

$$q_1 = \frac{c_{12} + c_{66}}{c_{11} \gamma_2^2 - c_{66}} = \frac{1}{q_2}$$

(A.20)

and

$$q_2 = \frac{c_{12} + c_{66}}{c_{11} \gamma_1^2 - c_{66}} = \frac{1}{q_1}$$

(A.21)

or,

$$q_1 q_2 = 1$$

(A.22)

If Eq (A.22) holds, then x-direction equilibrium is satisfied. The proof is given in Appendix B (Theorem 1).

Carrying out the differentiation for the y-equilibrium equation,

$$c_{22} u_{yy} + c_{66} u_{yx} + (c_{12} + c_{66}) u_{xy} =$$

$$\frac{c_{22} Q}{\gamma_1 \gamma_2} \Delta \left[\frac{[(x-a)^2 - (y/\gamma_1)^2]/\gamma_1^2}{[(x-a)^2 + (y/\gamma_1)^2]/\gamma_1^2} \right]$$

A-9
\[-\frac{(x + a)^2 - (y/\gamma_1)^2}{(x + a)^2 + (y/\gamma_1)^2} \frac{\gamma_1}{\gamma_2} \d X - \frac{(x - a)^2 - (y/\gamma_2)^2}{(x - a)^2 + (y/\gamma_2)^2} \frac{\gamma_1}{\gamma_2} \d X \]

\[+ \frac{c_{e0}}{\gamma_1 \gamma_2} q D_x \left[- \frac{(x - a)^2 - (y/\gamma_1)^2}{(x - a)^2 + (y/\gamma_1)^2} \right] \]

\[+ \frac{c_{12} + c_{e0}}{\gamma_1} q \frac{q_2}{\gamma_2} \left[- \frac{(x - a)^2 - (y/\gamma_1)^2}{(x - a)^2 + (y/\gamma_1)^2} \right] \]

\[+ \frac{(x + a)^2 - (y/\gamma_2)^2}{(x + a)^2 + (y/\gamma_2)^2} \frac{\gamma_1}{\gamma_2} \d X \]

\[- \frac{(x + a)^2 - (y/\gamma_1)^2}{(x + a)^2 + (y/\gamma_1)^2} \frac{\gamma_1}{\gamma_2} \d X + \frac{c_{12} + c_{e0}}{\gamma_1} q \frac{q_1}{\gamma_1} \left[- \frac{(x - a)^2 - (y/\gamma_2)^2}{(x - a)^2 + (y/\gamma_2)^2} \right] \]

\[+ \frac{(x + a)^2 - (y/\gamma_2)^2}{(x + a)^2 + (y/\gamma_2)^2} \frac{\gamma_1}{\gamma_2} \d X \]
\[
\begin{align*}
Q D_x &= \frac{\gamma_1 \gamma_2}{(x - a)^2 - (y/\gamma_1)^2} \left\{ \frac{c_{22}}{\gamma_1^2} - c_{66} - (c_{12} + c_{66}) q_2 \right\} \\
&\quad - \frac{Q D_x}{\gamma_1 \gamma_2} \left[\frac{(x + a)^2 - (y/\gamma_1)^2}{(x - a)^2 + (y/\gamma_1)^2} \left\{ \frac{c_{22}}{\gamma_1^2} - c_{66} - (c_{12} + c_{66}) q_2 \right\} \right] \\
&\quad - \frac{Q D_x}{\gamma_1 \gamma_2} \left[\frac{(x - a)^2 - (y/\gamma_2)^2}{(x - a)^2 + (y/\gamma_2)^2} \left\{ \frac{c_{22}}{\gamma_2^2} - c_{66} - (c_{12} + c_{66}) q_1 \right\} \right] \\
&\quad + \frac{Q D_x}{\gamma_1 \gamma_2} \left[\frac{(x - a)^2 - (y/\gamma_2)^2}{(x - a)^2 + (y/\gamma_2)^2} \left\{ \frac{c_{22}}{\gamma_2^2} - c_{66} - (c_{12} + c_{66}) q_1 \right\} \right].
\end{align*}
\]
(A.23)

Equilibrium in the y-direction is satisfied if

\[
\frac{c_{22}}{\gamma_1^2} - c_{66} - (c_{12} + c_{66}) q_2 = 0
\]
(A.24)

and

\[
\frac{c_{22}}{\gamma_2^2} - c_{66} - (c_{12} + c_{66}) q_1 = 0
\]
(A.25)

because each term in the equilibrium equation (Eq (A.23)) is then identically zero.

Recalling the definitions of \(q_1\) and \(q_2\), and realizing that \(q_1 q_2 = 1\),
\[
\frac{c_{12}}{\gamma_1^2} - \frac{c_{06}}{\gamma_1^2} - \frac{(c_{12} + c_{06})q_1}{\gamma_1^2} = \frac{c_{22}}{\gamma_1^2} - \frac{c_{06}}{\gamma_1^2} - \frac{(c_{12} + c_{06})}{\gamma_1^2}q_1
\]

\[
- c_{11}c_{06} \gamma_1^4 + \frac{(-c_{11}c_{22} - c_{12} - 2c_{12}c_{06}) \gamma_1^2}{\gamma_1^2(c_{11} \gamma_1^2 - c_{06})} - c_{22}c_{06}
\]

\[
= \frac{c_{11}c_{06} \gamma_1^4 + (-c_{11}c_{22} - c_{12} - 2c_{12}c_{06}) \gamma_1^2}{\gamma_1^2(c_{11} \gamma_1^2 - c_{06})} + c_{22}c_{06}
\]

\[
(A.26)
\]

and

\[
\frac{c_{22}}{\gamma_2^2} - \frac{c_{06}}{\gamma_2^2} - \frac{(c_{12} + c_{06})q_2}{\gamma_2^2} = \frac{c_{22}}{\gamma_2^2} - \frac{c_{06}}{\gamma_2^2} - \frac{(c_{12} + c_{06})}{\gamma_2^2}q_2
\]

\[
- c_{11}c_{06} \gamma_2^4 + \frac{(-c_{11}c_{22} - c_{12} - 2c_{12}c_{06}) \gamma_2^2}{\gamma_2^2(c_{11} \gamma_2^2 - c_{06})} - c_{22}c_{06}
\]

\[
= \frac{c_{11}c_{06} \gamma_2^4 + (-c_{11}c_{22} - c_{12} - 2c_{12}c_{06}) \gamma_2^2}{\gamma_2^2(c_{11} \gamma_2^2 - c_{06})} + c_{22}c_{06}
\]
Thus, y-direction equilibrium is satisfied if

$$\frac{c_1 c_6 y^4 + (c_1 (c_1 + 2c_2) - c_1 c_2) y^2 + c_2 c_8}{\gamma^2 (c_{11} y^2 + c_{66})} = 0$$

which is the characteristic equation.

3. Normal Displacement Discontinuity

Again, let u_x represent displacement in the x-direction and let u_y represent displacement in the y-direction. Now consider a displacement field defined by

$$u_x = Q D_y \left\{ \frac{\ln \left[(x - a)^2 + (y/\gamma)^2 \right]^{1/2}}{(x + a)^2 + (y/\gamma)^2} \right\}$$

$$u_y = - Q D_y \left\{ \frac{q_1}{\gamma_1} \left[\arctan\left(\frac{y/\gamma}{x - a} \right) - \arctan\left(\frac{y/\gamma}{x + a} \right) \right] \right\}$$

with D_y constant, and all other variables defined as in the shear displacement discontinuity solution.

Following the procedure above, for $|x| > a$, $u_x = u_y = 0$.

For $|x| < a$, $u_x = 0$ and
\[u_y = -Q \frac{1}{D_y} \lim_{y \to 0^+} \left[\arctan \left(\frac{y/\gamma_1}{x-a} \right) - \arctan \left(\frac{y/\gamma_1}{x+a} \right) \right] \]

\[-Q \frac{1}{D_y} \lim_{y \to 0^+} \left[\arctan \left(\frac{y/\gamma_2}{x-a} \right) - \arctan \left(\frac{y/\gamma_2}{x+a} \right) \right] \] \hspace{1cm} \text{(A.31)}

The limits depend upon from which direction \(y = 0 \) is approached.

\[u_y = \begin{cases}
- \frac{Q}{D_y} \left\{ \frac{q_1}{\gamma_1} - \frac{q_2}{\gamma_2} \right\} & \text{for } y+0_+ \\
- \frac{Q}{D_y} \left\{ -\frac{q_1}{\gamma_1} - \frac{q_2}{\gamma_2} \right\} & \text{for } y+0_-
\end{cases} \]

\[u_y = \begin{cases}
- \frac{Q}{D_y} \pi \left\{ \frac{q_1}{\gamma_1} - \frac{q_2}{\gamma_2} \right\} & \text{for } y+0_+ \\
\frac{Q}{D_y} \pi \left\{ \frac{q_1}{\gamma_1} - \frac{q_2}{\gamma_2} \right\} & \text{for } y+0_-
\end{cases} \]

\[u_y = \begin{cases}
- \frac{Q}{D_y} \pi \left\{ \frac{q_1 \gamma_2 - q_2 \gamma_1}{\gamma_1 \gamma_2} \right\} & \text{for } y+0_+ \\
\frac{Q}{D_y} \pi \left\{ \frac{q_1 \gamma_2 - q_2 \gamma_1}{\gamma_1 \gamma_2} \right\} & \text{for } y+0_-
\end{cases} \]

\[u_y = \begin{cases}
- \frac{1}{z} \left(D_y \right) & \text{for } y+0_+ \\
+ \frac{1}{z} \left(D_y \right) & \text{for } y+0_-
\end{cases} \] \hspace{1cm} \text{(A.32)}

A-13
Thus, u_x and u_y satisfy the displacement discontinuity boundary conditions

$$u_x^- - u_x^+ = D_x \quad \text{on } |x| < a, \ y = 0 \quad (A.33)$$

$$u_y^- - u_y^+ = 0 \quad \text{on } |x| > a, \ y = 0 \quad (A.34)$$

The displacements u_x and u_y must also satisfy the equilibrium equations:

$$c_{11} u_{x,xx} + c_{66} u_{x,yy} + (c_{12} + c_{66}) u_{y,xy} = 0 \quad (x) \quad (A.15)$$

$$c_{22} u_{y,yy} + c_{66} u_{x,xx} + (c_{12} + c_{66}) u_{x,xy} = 0 \quad (y) \quad (A.16)$$

Carrying out the differentiation in the x-equilibrium equation (Eq (A.15)),

$$c_{11} u_{x,xx} + c_{66} u_{x,yy} + (c_{12} + c_{66}) u_{y,xy} =$$

$$c_{11} Q D_y \left[- \frac{(x - a)^2 - (y/\gamma_1)^2}{[(x - a)^2 + (y/\gamma_1)^2]^2} \right.$$

$$+ \frac{(x + a)^2 - (y/\gamma_1)^2}{[(x + a)^2 + (y/\gamma_1)^2]^2} + \frac{(x - a)^2 - (y/\gamma_2)^2}{[(x - a)^2 + (y/\gamma_2)^2]^2}$$

$$- \frac{(x + a)^2 - (y/\gamma_2)^2}{[(x + a)^2 + (y/\gamma_2)^2]^2}$$

$$+ c_{66} Q D_y \frac{[(x - a)^2 - (y/\gamma_1)^2]/\gamma_1^2}{[(x - a)^2 + (y/\gamma_1)^2]^2} \right]$$
\[- \frac{(x + a)^2 - (y/\gamma_1)^2}{(x + a)^2 + (y/\gamma_1)^2} \gamma_1^2 \]
\[+ \frac{(x + a)^2 - (y/\gamma_2)^2}{(x + a)^2 + (y/\gamma_2)^2} \gamma_2^2 \]

\[- (c_{12} + c_{60}) Q D_y \gamma_1 \left[- \frac{(x - a)^2 - (y/\gamma_1)^2}{(x - a)^2 + (y/\gamma_1)^2} \gamma_1^2 \right] \]
\[+ \frac{(x + a)^2 - (y/\gamma_1)^2}{(x + a)^2 + (y/\gamma_1)^2} \gamma_1^2 \]

\[+ (c_{12} + c_{60}) Q D_y \gamma_2 \left[- \frac{(x - a)^2 - (y/\gamma_2)^2}{(x - a)^2 + (y/\gamma_2)^2} \gamma_2^2 \right] \]
\[+ \frac{(x + a)^2 - (y/\gamma_2)^2}{(x + a)^2 + (y/\gamma_2)^2} \gamma_2^2 \]

\[- Q D_y \left[\frac{(x - a)^2 - (y/\gamma_1)^2}{(x - a)^2 + (y/\gamma_1)^2} \right] \left(c_{11} - \frac{c_{60}}{\gamma_1^2} - \frac{q_1}{\gamma_1^2} (c_{12} + c_{60}) \right) \]

\[+ Q D_y \left[\frac{(x + a)^2 - (y/\gamma_1)^2}{(x + a)^2 + (y/\gamma_1)^2} \right] \left(c_{11} - \frac{c_{60}}{\gamma_1^2} - \frac{q_1}{\gamma_1^2} (c_{12} + c_{60}) \right) \]

\[+ Q D_y \left[\frac{(x - a)^2 - (y/\gamma_2)^2}{(x - a)^2 + (y/\gamma_2)^2} \right] \left(c_{11} - \frac{c_{60}}{\gamma_2^2} - \frac{q_2}{\gamma_2^2} (c_{12} + c_{60}) \right) \]

\[- Q D_y \left[\frac{(x + a)^2 - (y/\gamma_2)^2}{(x + a)^2 + (y/\gamma_2)^2} \right] \left(c_{11} - \frac{c_{60}}{\gamma_2^2} - \frac{q_2}{\gamma_2^2} (c_{12} + c_{60}) \right) \]

\[(A.35)\]
Note that each term is identically zero if

\[c_{11} - c_{66} \gamma_1^2 - q_1 (c_{12} + c_{66}) \gamma_1^2 = 0 \]
(A.36)

and

\[c_{11} - c_{66} \gamma_2^2 - q_2 (c_{12} + c_{66}) \gamma_2^2 = 0 \]
(A.37)

Recalling the definitions of \(q_1 \) and \(q_2 \),

\[c_{11} - c_{66} \gamma_1^2 - q_1 (c_{12} + c_{66}) \gamma_1^2 = \]

\[\frac{c_{11} \gamma_1^2 - c_{66}}{\gamma_1} - \frac{c_{11} \gamma_1^2 - c_{66}}{\gamma_1} \frac{c_{12} + c_{66}}{\gamma_1} = 0 \]
(A.38)

and

\[c_{11} - c_{66} \gamma_2^2 - q_2 (c_{12} + c_{66}) \gamma_2^2 = \]

\[\frac{c_{11} \gamma_2^2 - c_{66}}{\gamma_2} - \frac{c_{11} \gamma_2^2 - c_{66}}{\gamma_2} \frac{c_{12} + c_{66}}{\gamma_2} = 0 \]
(A.39)

Thus, each term in Eq (A.35) is zero, and \(x \)-direction equilibrium is satisfied.

Now, carrying out the differentiation for the \(y \)-equilibrium equation (Eq (A.16)),

\[c_{22} u_{y,yy} + c_{66} u_{y,xx} + (c_{12} + c_{66}) u_{x,xy} = \]

\[- c_{22} Q \frac{q_1}{\gamma_1^2} \left[- \frac{2(x - a)(y/\gamma_1)}{[(x - a)^2 + (y/\gamma_1)^2]} \right] \]
\[I + \frac{2(x - a)(y/\gamma_1)}{(x - a)^2 + (y/\gamma_1)^2} \]

\[+ \frac{2(x - a)(y/\gamma_1)}{(x - a)^2 + (y/\gamma_1)^2} \]

\[+ c_{22} Q_{Dy} \frac{q_2}{\gamma_2} \left[- \frac{2(x - a)(y/\gamma_2)}{(x - a)^2 + (y/\gamma_2)^2} \right] \]

\[+ \frac{2(x - a)(y/\gamma_2)}{(x - a)^2 + (y/\gamma_2)^2} \]

\[- c_{66} Q_{Dy} \frac{q_1}{\gamma_1} \left[\frac{2(x - a)(y/\gamma_1)}{(x - a)^2 + (y/\gamma_1)^2} \right] \]

\[+ \frac{2(x - a)(y/\gamma_1)}{(x - a)^2 + (y/\gamma_1)^2} \]

\[+ c_{66} Q_{Dy} \frac{q_2}{\gamma_2} \left[\frac{2(x - a)(y/\gamma_2)}{(x - a)^2 + (y/\gamma_2)^2} \right] \]

\[+ \frac{2(x - a)(y/\gamma_2)}{(x - a)^2 + (y/\gamma_2)^2} \]

\[+ (c_{12} + c_{66}) Q_{Dy} \frac{q_1}{\gamma_1} \left[- \frac{2(x - a)(y/\gamma_1)}{(x - a)^2 + (y/\gamma_1)^2} \right] \]

\[+ \frac{2(x + a)(y/\gamma_1)}{(x + a)^2 + (y/\gamma_1)^2} + \frac{2(x - a)(y/\gamma_1)}{(x - a)^2 + (y/\gamma_1)^2} \]

\[- \frac{2(x + a)(y/\gamma_2)}{(x + a)^2 + (y/\gamma_2)^2} \]

\[- \frac{2(x + a)(y/\gamma_2)}{(x + a)^2 + (y/\gamma_2)^2} \]
\[Q D_y \left[\frac{2(x - a)(y/\gamma_1^2)}{(x - a)^2 + (y/\gamma_1^2)^2} \right] \left\{ c_{22} q_1 - c_{66} q_1 \gamma_1^2 \right\} - (c_{12} + c_{66} \gamma_1^2) \]

\[Q D_y \left[\frac{2(x + a)(y/\gamma_1^2)}{(x + a)^2 + (y/\gamma_1^2)^2} \right] \left\{ c_{22} q_1 - c_{66} q_1 \gamma_1^2 \right\} - (c_{12} + c_{66} \gamma_1^2) \]

\[Q D_y \left[\frac{2(x - a)(y/\gamma_2^2)}{(x + a)^2 + (y/\gamma_2^2)^2} \right] \left\{ c_{22} q_2 - c_{66} q_2 \gamma_2^2 \right\} - (c_{12} + c_{66} \gamma_2^2) \]

\[Q D_y \left[\frac{2(x + a)(y/\gamma_2^2)}{(x + a)^2 + (y/\gamma_2^2)^2} \right] \left\{ c_{22} q_2 - c_{66} q_2 \gamma_2^2 \right\} - (c_{12} + c_{66} \gamma_2^2) \]

Equilibrium in the y-direction is satisfied if

\[c_{22} q_1 - c_{66} q_1 \gamma_1^2 = 0 \quad (A.41) \]

and

\[c_{22} q_2 - c_{66} q_2 \gamma_2^2 = 0 \quad (A.42) \]
since each term in the equilibrium equation (Eq A.40) would then be zero. Recalling the definitions of q_1 and q_2,

$$
\begin{align*}
c_{22} q_1 - c_{66} q_1 \gamma_1^2 - \langle c_{12} + c_{96} \rangle \gamma_1^2 &= \\
\langle c_{22} - c_{66} \gamma_1^2 \rangle q_1 - \langle c_{12} + c_{96} \rangle \gamma_1^2 &= \\
= \langle c_{22} - c_{66} \gamma_1^2 \rangle q_1 - \langle c_{12} + c_{96} \rangle \gamma_1^2 &= \\
= \frac{1}{c_{12} + c_{96}} \left[\langle c_{22} - c_{66} \gamma_1^2 \rangle \langle c_{11} \gamma_2^2 - c_{66} \rangle - \langle c_{12} + c_{96} \rangle \gamma_2^2 \right] &= \\
= - \frac{c_{11} c_{66} \gamma_1^4 + [c_{12} (c_{12} + 2c_{66}) - c_{11} c_{22}] \gamma_2^2 + c_{22} c_{96}}{c_{12} + c_{96}}
\end{align*}
$$

(A.43)

and

$$
\begin{align*}
c_{22} q_2 - c_{66} q_2 \gamma_2^2 - \langle c_{12} + c_{96} \rangle \gamma_2^2 &= \\
\langle c_{22} - c_{66} \gamma_2^2 \rangle q_2 - \langle c_{12} + c_{96} \rangle \gamma_2^2 &= \\
= \langle c_{22} - c_{66} \gamma_2^2 \rangle q_2 - \langle c_{12} + c_{96} \rangle \gamma_2^2 &= \\
= \frac{1}{c_{12} + c_{96}} \left[\langle c_{22} - c_{66} \gamma_2^2 \rangle \langle c_{11} \gamma_2^2 - c_{66} \rangle - \langle c_{12} + c_{96} \rangle \gamma_2^2 \right] &= \\
= - \frac{c_{11} c_{66} \gamma_2^4 + [c_{12} (c_{12} + 2c_{66}) - c_{11} c_{22}] \gamma_2^2 + c_{22} c_{96}}{c_{12} + c_{96}}
\end{align*}
$$

(A.44)
Thus, y-direction equilibrium is satisfied if

\[
\begin{align*}
c_{11} c_{22} y^4 & + c_{12} (c_{12} + 2c_{66}) - c_{11} c_{22} y^2 c_{22} = 0
\end{align*}
\]

which, again, is the characteristic equation.

4. Combined Shear and Normal Displacement Discontinuities

Since the material is assumed to be linearly elastic, the displacements resulting from one set of boundary conditions may be added to those resulting from another set to provide the solution to a problem involving both sets of boundary conditions. Therefore, the displacements for combined shear and normal displacement discontinuities are

\[
\begin{align*}
\mathbf{u}_x &= + Q D_x \left\{ \frac{q_2}{\gamma_2} \left[\arctan \left(\frac{y/\gamma_1}{x-a} \right) - \arctan \left(\frac{y/\gamma_1}{x+a} \right) \right] \\
&\quad - \frac{q_1}{\gamma_1} \left[\arctan \left(\frac{y/\gamma_2}{x-a} \right) - \arctan \left(\frac{y/\gamma_2}{x+a} \right) \right] \right\} \\
\mathbf{u}_y &= + \frac{Q}{\gamma_1 \gamma_2} D_x \left\{ \ln \left[\frac{(x-a)^2 + (y/\gamma_1)^2}{(x+a)^2 + (y/\gamma_1)^2} \right]^{1/2} \\
&\quad - \ln \left[\frac{(x-a)^2 + (y/\gamma_2)^2}{(x+a)^2 + (y/\gamma_2)^2} \right]^{1/2} \right\}
\end{align*}
\]
5. Coordinate Transformation to Obtain the General Solution

If the crack is not aligned with the x-axis, the displacements may be determined by coordinate transformation. For a crack aligned with the x, y system, transformation into the x, y (material) system involves the following relationships:

\[
\begin{align*}
\dot{x} &= R \cos \beta - y \sin \beta \\
\dot{y} &= R \sin \beta + y \cos \beta \\
\dot{u}_x &= u_x \cos \beta - u_y \sin \beta \\
\dot{u}_y &= u_x \sin \beta + u_y \cos \beta
\end{align*}
\]

where \(\beta \) is the rotation angle measured counterclockwise from the x-axis to the R-axis.

Carrying out the transformation on the form of the logarithm functions used in the displacement equations,

\[
\ln \left[x^2 + (y/\gamma_1)^2 \right]^{1/2} = \ln \left[A_i R^2 + B_i R y + C_i y^2 \right]^{1/2}
\]

\[
\begin{align*}
A_i &= \frac{\gamma_i^2 \cos^2 \beta + \sin^2 \beta}{\gamma_1} \\
B_i &= \frac{(1 - \gamma_i^2) \sin 2\beta}{\gamma_1} \\
C_i &= \frac{\gamma_i^2 \sin^2 \beta + \cos^2 \beta}{\gamma_1}
\end{align*}
\]
leads to using

\[
\ln \left[\frac{A_i (R - a)^2 + B_i (R - a) y + C_i y^2}{A_i (R + a)^2 + B_i (R + a) y + C_i y^2} \right]^{1/2}
\]

Although at first it would appear that the form of the arctangent function should be

\[
\arctan \left(\frac{y/y_i}{x} \right) = \arctan \left(\frac{1}{r_i} \frac{x \sin \beta + y \cos \beta}{y_i \frac{r \cos \beta - y \sin \beta}{x \cos \beta + y \sin \beta}} \right)
\]

this would imply that the crack lies along the x-axis instead of along the R-axis. To account for this, the form of the arctangent function used is

\[
\arctan \left(\frac{y/(\gamma_i A_i)}{R + \frac{1}{2} B_i y/A_i} \right)
\]

Thus, the following arctangent expressions are appropriate:

\[
\arctan \left(\frac{y/(\gamma_i A_i)}{(R - a) + \frac{1}{2} B_i y/A_i} \right)
\]

\[
\arctan \left(\frac{y/(\gamma_i A_i)}{(R + a) + \frac{1}{2} B_i y/A_i} \right)
\]

The limits as \(y \) approaches zero are readily seen to be the same as before when \(y \) approached zero. Making these substitutions yields
\[u_x = +Q D_x \left\{ \frac{q_2}{\gamma_2} \left[\arctan \left(\frac{y/(\gamma_1 A_1)}{(R - a) + \frac{1}{2} B_1 y/A_1} \right) \right. \right. \]
\[- \arctan \left(\frac{y/(\gamma_1 A_1)}{(R + a) + \frac{1}{2} B_1 y/A_1} \right) \] \[- \frac{q_1}{\gamma_1} \left[\arctan \left(\frac{y/(\gamma_2 A_2)}{(R - a) + \frac{1}{2} B_2 y/A_2} \right) \right. \]
\[- \arctan \left(\frac{y/(\gamma_2 A_2)}{(R + a) + \frac{1}{2} B_2 y/A_2} \right) \} \right\} + Q D_y \left\{ \ln \left[\frac{A_1 (R - a)^2 + B_1 (R - a)y + C_1 y^2}{A_1 (R + a)^2 + B_1 (R + a)y + C_1 y^2} \right]^{1/2} \right\} + \frac{A_2 (R - a)^2 + B_2 (R - a)y + C_2 y^2}{A_2 (R + a)^2 + B_2 (R + a)y + C_2 y^2} \right\}^{1/2} \right\}^{1/2} \] (A.56)

and

\[u_y = +\frac{Q}{\gamma_1 \gamma_2} D_x \left\{ \ln \left[\frac{A_1 (R - a)^2 + B_1 (R - a)y + C_1 y^2}{A_1 (R + a)^2 + B_1 (R + a)y + C_1 y^2} \right]^{1/2} \right\} - \frac{q_1}{\gamma_1} \left[\arctan \left(\frac{y/(\gamma_1 A_1)}{(R - a) + \frac{1}{2} B_1 y/A_1} \right) \right. \]
\[- \arctan \left(\frac{y/(\gamma_1 A_1)}{(R + a) + \frac{1}{2} B_1 y/A_1} \right) \] \[- \frac{q_2}{\gamma_2} \left[\arctan \left(\frac{y/(\gamma_2 A_2)}{(R - a) + \frac{1}{2} B_2 y/A_2} \right) \right. \]
\[- \arctan \left(\frac{y/(\gamma_2 A_2)}{(R + a) + \frac{1}{2} B_2 y/A_2} \right) \} \right\} \right\} \] (A.57)

A-23
By making the following definitions,

\[\Theta_1 (\gamma_i) = \arctan \left(\frac{\gamma / (\gamma_i A_i)}{\sigma_i - a} + \frac{1}{2} B_i y / A_i \right) \]
(A.58)

\[\Theta_2 (\gamma_i) = \arctan \left(\frac{\gamma / (\gamma_i A_i)}{\sigma_i + a} + \frac{1}{2} B_i y / A_i \right) \]
(A.59)

\[r_1 (\gamma_i) = \left(A_i (\sigma_i - a)^2 + B_i (\sigma_i - a) y + C_i y^2 \right)^{1/2} \]
(A.60)

\[r_2 (\gamma_i) = \left(A_i (\sigma_i + a)^2 + B_i (\sigma_i + a) y + C_i y^2 \right)^{1/2} \]
(A.61)

the equations can be written in a more compact form:

\[u_x = D_x \left[\frac{q_x}{r_1} \left(\Theta_1 (\gamma_i) - \Theta_2 (\gamma_i) \right) - \frac{q_y}{r_2} \left(\Theta_1 (\gamma_i) - \Theta_2 (\gamma_i) \right) \right] \]

\[+ D_y \left[\ln \left(\frac{r_1 (\gamma_i)}{r_2 (\gamma_i)} \right) - \ln \left(\frac{r_1 (\gamma_i)}{r_2 (\gamma_i)} \right) \right] \]
(A.62)

\[u_y = -D_y \left[\frac{q_1}{r_1} \left(\Theta_1 (\gamma_i) - \Theta_2 (\gamma_i) \right) - \frac{q_2}{r_2} \left(\Theta_1 (\gamma_i) - \Theta_2 (\gamma_i) \right) \right] \]

\[+ \frac{D_x}{r_1 r_2} \left[\ln \left(\frac{r_1 (\gamma_i)}{r_2 (\gamma_i)} \right) - \ln \left(\frac{r_1 (\gamma_i)}{r_2 (\gamma_i)} \right) \right] \]
(A.63)

Since the displacement discontinuities of interest are

\[D_x \] and \[D_y \], the above expressions are transformed using

\[D_x = D_x \cos \beta - D_y \sin \beta \]
(A.64)

\[D_y = D_x \sin \beta + D_y \cos \beta \]
(A.65)
The result is

\[u_x = + Q \frac{q_2}{\gamma_2} \left[\frac{q_1}{\gamma_1} \left(\phi_1 \langle \gamma_1 \rangle - \phi_2 \langle \gamma_1 \rangle \right) - \frac{q_1}{\gamma_1} \left(\phi_1 \langle \gamma_2 \rangle - \phi_2 \langle \gamma_2 \rangle \right) \cos \beta \right] \]

\[- Q \frac{q_2}{\gamma_2} \left[\frac{q_1}{\gamma_1} \left(\phi_1 \langle \gamma_1 \rangle - \phi_2 \langle \gamma_1 \rangle \right) - \frac{q_1}{\gamma_1} \left(\phi_1 \langle \gamma_2 \rangle - \phi_2 \langle \gamma_2 \rangle \right) \sin \beta \right] \]

\[+ Q \frac{q_2}{\gamma_2} \left[\ln \left(\frac{r_1 \langle \gamma_1 \rangle}{r_2 \langle \gamma_1 \rangle} \right) - \ln \left(\frac{r_1 \langle \gamma_2 \rangle}{r_2 \langle \gamma_2 \rangle} \right) \right] \cos \beta \]

\[+ Q \frac{q_2}{\gamma_2} \left[\ln \left(\frac{r_1 \langle \gamma_1 \rangle}{r_2 \langle \gamma_1 \rangle} \right) - \ln \left(\frac{r_1 \langle \gamma_2 \rangle}{r_2 \langle \gamma_2 \rangle} \right) \right] \sin \beta \]

\[u_y = + \frac{Q}{\gamma_1 \gamma_2} \left[\frac{q_1}{\gamma_1} \left(\phi_1 \langle \gamma_1 \rangle - \phi_2 \langle \gamma_1 \rangle \right) - \frac{q_1}{\gamma_1} \left(\phi_1 \langle \gamma_2 \rangle - \phi_2 \langle \gamma_2 \rangle \right) \cos \beta \right] \]

\[- \frac{Q}{\gamma_1 \gamma_2} \left[\ln \left(\frac{r_1 \langle \gamma_1 \rangle}{r_2 \langle \gamma_1 \rangle} \right) - \ln \left(\frac{r_1 \langle \gamma_2 \rangle}{r_2 \langle \gamma_2 \rangle} \right) \right] \sin \beta \]

\[- Q \frac{q_2}{\gamma_2} \left[\phi_1 \langle \gamma_1 \rangle - \phi_2 \langle \gamma_1 \rangle \right] \]

\[- \frac{q_2}{\gamma_2} \left[\phi_1 \langle \gamma_2 \rangle - \phi_2 \langle \gamma_2 \rangle \right] \cos \beta \]

\[- Q \frac{q_2}{\gamma_2} \left[\phi_1 \langle \gamma_1 \rangle - \phi_2 \langle \gamma_1 \rangle \right] \]

\[- \frac{q_2}{\gamma_2} \left[\phi_1 \langle \gamma_2 \rangle - \phi_2 \langle \gamma_2 \rangle \right] \sin \beta \]

\[(A.66) \]

\[(A.67) \]
These equations are also valid if the origin of the \(x, y \) system is located at \((c_x, c_y)\) with respect to the \(x, y \) system. In that case, the \(x, y \) coordinates are defined by

\[
\begin{align*}
x & = (x - c_x) \cos \beta + (y - c_y) \sin \beta \\
y & = - (x - c_x) \sin \beta + (y - c_y) \cos \beta
\end{align*}
\] (A.68)

8. Stresses for the General Solution

The stresses are determined from the stress-strain relationships:

\[
\begin{pmatrix}
\sigma_{xx} \\
\sigma_{yy} \\
\tau_{xy}
\end{pmatrix} =
\begin{bmatrix}
c_{11} & c_{12} & 0 \\
c_{12} & c_{22} & 0 \\
0 & 0 & c_{66}
\end{bmatrix}
\begin{pmatrix}
u_{x,x} \\
u_{y,y} \\
u_{x,y} + u_{y,x}
\end{pmatrix}
\] (A.14)

and the coordinate transformation relationships:

\[
\frac{\partial}{\partial x} = (\cos \beta) \frac{\partial}{\partial \bar{x}} - (\sin \beta) \frac{\partial}{\partial \bar{y}}
\] (A.70)

\[
\frac{\partial}{\partial y} = (\sin \beta) \frac{\partial}{\partial \bar{x}} + (\cos \beta) \frac{\partial}{\partial \bar{y}}
\] (A.71)

These are combined to yield

\[
\begin{align*}
\sigma_{xx} &= c_{11} \cos \beta \ u_{x,x} + c_{12} \sin \beta \ u_{x,y} \\
&\quad + c_{12} \sin \beta \ u_{y,x} + c_{11} \cos \beta \ u_{y,y}
\end{align*}
\] (A.72)
\[\sigma_{yy} = c_{12} \cos \beta \, u_{x,y} - c_{12} \sin \beta \, u_{x,y} + c_{22} \sin \beta \, u_{y,x} + c_{22} \cos \beta \, u_{y,y} \]
\tag{A.73}

\[\tau_{xy} = c_{66} \sin \beta \, u_{x,y} + c_{66} \cos \beta \, u_{x,y} + c_{66} \cos \beta \, u_{y,x} - c_{66} \sin \beta \, u_{y,y} \]
\tag{A.74}

With the definitions of \(u_x \) and \(u_y \) above, we determine the following partial derivatives:

\[\frac{\partial}{\partial x} \Theta_1 (\gamma_i) = \frac{\partial}{\partial x} \Theta_2 (\gamma_i) \]

\[\frac{\partial}{\partial y} \Theta_1 (\gamma_i) = \frac{\partial}{\partial y} \Theta_2 (\gamma_i) \]

\[\frac{\partial}{\partial x} \ln \left(\frac{r_1(\gamma_i)}{r_2(\gamma_i)} \right) = \frac{\partial}{\partial y} \ln \left(\frac{r_1(\gamma_i)}{r_2(\gamma_i)} \right) \]

These are readily obtained as

\[\frac{\partial}{\partial x} \Theta_1 (\gamma_i) = - \frac{\gamma_i \Lambda_i}{\langle R - a + \frac{1}{2} B_i y/A_i \rangle^2 + \langle \gamma_i \Lambda_i \rangle^2} \]

\tag{A.75}

\[\frac{\partial}{\partial x} \Theta_2 (\gamma_i) = - \frac{\gamma_i \Lambda_i}{\langle R + a + \frac{1}{2} B_i y/A_i \rangle^2 + \langle \gamma_i \Lambda_i \rangle^2} \]

\tag{A.76}

\[\frac{\partial}{\partial y} \Theta_1 (\gamma_i) = + \frac{\langle R - a \rangle / \gamma_i \Lambda_i}{\langle R - a + \frac{1}{2} B_i y/A_i \rangle^2 + \langle \gamma_i \Lambda_i \rangle^2} \]

\tag{A.77}
\[\frac{\partial}{\partial y} \Theta_1(y_i) = -\frac{y_i}{\gamma_i} \]
\[\frac{\partial}{\partial y} \Theta_2(y_i) = -\frac{y_i}{\gamma_i} \]
\[\frac{\partial}{\partial y} \Theta_3(y_i) = -\frac{y_i}{\gamma_i} \]
\[\frac{\partial}{\partial y} \Theta_4(y_i) = \frac{\gamma_i}{\gamma_i} \]

But, from Theorem 2 in Appendix B,

\[(y_i \pm \frac{1}{2} B \bar{y}/A_i)^2 + (y_i/\gamma_i) \]
\[= A_i (y_i \pm a)^2 + B_i (y_i \pm a)\bar{y} + C_i y_i^2 \]

So the derivatives of \(\Theta_1 \) and \(\Theta_2 \) can be written

\[\frac{\partial}{\partial y} \Theta_1(y_i) = -\frac{y_i}{\gamma_i} \]
\[\frac{\partial}{\partial y} \Theta_2(y_i) = -\frac{y_i}{\gamma_i} \]
\[\frac{\partial}{\partial y} \Theta_3(y_i) = -\frac{y_i}{\gamma_i} \]
\[\frac{\partial}{\partial y} \Theta_4(y_i) = \frac{\gamma_i}{\gamma_i} \]

\[A-28 \]
Thus, we can define the following terms:

\[
R_{2i} = \frac{\partial}{\partial \Psi}\left[\Theta_1(\gamma_i) - \Theta_2(\gamma_i) \right]
\]

\[
= -\frac{\Psi/\gamma_i}{A_i(\Psi - a)^2 + B_i(\Psi - a)\Psi + C_i\Psi^2} + \frac{\Psi/\gamma_i}{A_i(\Psi + a)^2 + B_i(\Psi + a)\Psi + C_i\Psi^2}
\]

\[
R_{2i} = \frac{\partial}{\partial \Psi}\ln\left[r_1(\gamma_i)/r_2(\gamma_i) \right]
\]

\[
= \frac{A_i(\Psi - a) + \frac{1}{2}B_i\Psi}{A_i(\Psi - a)^2 + B_i(\Psi - a)\Psi + C_i\Psi^2} - \frac{A_i(\Psi + a) + \frac{1}{2}B_i\Psi}{A_i(\Psi + a)^2 + B_i(\Psi + a)\Psi + C_i\Psi^2}
\]
\[R_{4i} = \frac{\partial}{\partial y} \ln \left[\frac{\tau_i \langle \gamma_i \rangle / \tau_2 \langle \gamma_i \rangle}{1/2 B_i \langle \mathcal{R} - a \rangle + C_i y} \right] \]

\[= \frac{\frac{1}{2} B_i \langle \mathcal{R} - a \rangle + C_i y}{A_i \langle \mathcal{R} - a \rangle^2 + B_i \langle \mathcal{R} - a \rangle y + C_i y^2} \]

\[- \frac{\frac{1}{2} B_i \langle \mathcal{R} + a \rangle + C_i y}{A_i \langle \mathcal{R} + a \rangle^2 + B_i \langle \mathcal{R} + a \rangle y + C_i y^2} \]

\[\text{(A.90)} \]

Now, with Eqs (A.66) and (A.67) we have

\[u_{x,R} = \frac{Q}{\gamma_1} D_R \left[\frac{q_2 R_{21} - q_1 R_{12}}{\gamma_2} \right] \cos \beta - \frac{Q}{\gamma_1} D_R \left[\frac{q_2 R_{11} - q_1 R_{22}}{\gamma_1} \right] \sin \beta \]

\[+ \frac{Q}{\gamma_1} D_R \left[R_{21} - R_{12} \right] \cos \beta + \frac{Q}{\gamma_1} D_R \left[R_{11} - R_{22} \right] \sin \beta \]

\[\text{(A.91)} \]

\[u_{x,\bar{y}} = \frac{Q}{\gamma_1} D_R \left[\frac{q_2 R_{21} - q_1 R_{12}}{\gamma_2} \right] \cos \beta - \frac{Q}{\gamma_1} D_R \left[\frac{q_2 R_{11} - q_1 R_{22}}{\gamma_1} \right] \sin \beta \]

\[+ \frac{Q}{\gamma_1} D_R \left[R_{41} - R_{42} \right] \cos \beta + \frac{Q}{\gamma_1} D_R \left[R_{41} - R_{42} \right] \sin \beta \]

\[\text{(A.92)} \]

\[u_{y,R} = \frac{Q}{\gamma_1 \gamma_2} D_R \left[R_{21} - R_{12} \right] \cos \beta - \frac{Q}{\gamma_1 \gamma_2} D_R \left[R_{11} - R_{22} \right] \sin \beta \]

\[- \frac{Q}{\gamma_1 \gamma_2} D_R \left[\frac{q_1 R_{21} - q_2 R_{12}}{\gamma_2} \right] \cos \beta - \frac{Q}{\gamma_1 \gamma_2} D_R \left[\frac{q_1 R_{11} - q_2 R_{22}}{\gamma_1} \right] \sin \beta \]

\[\text{(A.93)} \]

\[u_{y,\bar{y}} = \frac{Q}{\gamma_1 \gamma_2} D_R \left[R_{41} - R_{42} \right] \cos \beta - \frac{Q}{\gamma_1 \gamma_2} D_R \left[R_{41} - R_{42} \right] \sin \beta \]

\[- \frac{Q}{\gamma_1 \gamma_2} D_R \left[\frac{q_1 R_{21} - q_2 R_{22}}{\gamma_2} \right] \cos \beta - \frac{Q}{\gamma_1 \gamma_2} D_R \left[\frac{q_1 R_{21} - q_2 R_{22}}{\gamma_2} \right] \sin \beta \]

\[\text{(A.94)} \]
Defining

\[S_1 = \frac{q_2}{\gamma_2} R_{11} - \frac{q_1}{\gamma_1} R_{12} \]
\[S_2 = \frac{q_2}{\gamma_2} R_{21} - \frac{q_1}{\gamma_1} R_{22} \]
\[S_3 = \frac{q_1}{\gamma_1} R_{11} - \frac{q_2}{\gamma_2} R_{12} \]
\[S_4 = \frac{q_1}{\gamma_1} R_{21} - \frac{q_2}{\gamma_2} R_{22} \]

the partial derivatives become

\[u_{x,\xi} = Q D S \cos \beta - Q D S \sin \beta + Q D (R_{11} - R_{22}) \cos \beta \]
\[+ Q D (R_{21} - R_{12}) \sin \beta \] \hspace{1cm} (A.95)

\[u_{x,\eta} = Q D S \cos \beta - Q D S \sin \beta + Q D (R_{41} - R_{42}) \cos \beta \]
\[+ Q D (R_{41} - R_{42}) \sin \beta \] \hspace{1cm} (A.96)

\[u_{y,\xi} = \frac{Q}{\gamma_1 \gamma_2} D (R_{11} - R_{22}) \cos \beta - \frac{Q}{\gamma_1 \gamma_2} D (R_{21} - R_{12}) \sin \beta \]
\[- Q D S \cos \beta - Q D S \sin \beta \] \hspace{1cm} (A.97)

\[u_{y,\eta} = \frac{Q}{\gamma_1 \gamma_2} D (R_{41} - R_{42}) \cos \beta - \frac{Q}{\gamma_1 \gamma_2} D (R_{41} - R_{42}) \sin \beta \]
\[- Q D S \cos \beta - Q D S \sin \beta \] \hspace{1cm} (A.98)

Using the stress-strain relationships (Eq (A.14)) results in
\[
\sigma_{xx} = c_{11} \cos \beta \ u_{x,\bar{r}} - c_{12} \sin \beta \ u_{x,\bar{y}} + c_{44} \sin \beta \ u_{y,\bar{r}} + c_{12} \cos \beta \ u_{y,\bar{y}} \\
= Q \ D_{R} \left[S_{11} \cos^2 \beta - S_{22} \sin^2 \beta \right. \\
\left. - S_{12} \sin \beta \cos \beta \right] \\
+ (R_{11} - R_{22}) (c_{11} \sin \gamma_{1} \gamma_{2} \sin \beta \cos \beta) \\
- (R_{41} - R_{42}) (c_{12} \sin^2 \beta - c_{12} \cos^2 \beta \cos \gamma_{1} \gamma_{2}) \\
- Q \ D_{y} \left[S_{11} \sin \beta \cos \beta - S_{22} \sin^2 \beta \right. \\
\left. + S_{12} \sin \beta \cos \beta + S_{44} \cos^2 \beta \right] \\
+ (R_{11} - R_{22}) (c_{11} \sin^2 \beta - c_{12} \cos^2 \beta \cos \gamma_{1} \gamma_{2}) \\
\left. + (R_{41} - R_{42}) (c_{12} \cos \beta \sin \beta \cos \gamma_{1} \gamma_{2}) \right] \\
\] \\
\sigma_{yy} = c_{12} \cos \beta \ u_{x,\bar{r}} - c_{12} \sin \beta \ u_{x,\bar{y}} + c_{22} \sin \beta \ u_{y,\bar{r}} + c_{22} \cos \beta \ u_{y,\bar{y}} \\
= Q \ D_{R} \left[S_{11} \cos^2 \beta - S_{22} \sin^2 \beta \right. \\
\left. - S_{12} \sin \beta \cos \beta \right] \\
+ (R_{11} - R_{22}) (c_{12} \sin \gamma_{1} \gamma_{2} \sin \beta \cos \beta) \\
- (R_{41} - R_{42}) (c_{22} \sin^2 \beta - c_{22} \cos^2 \beta \cos \gamma_{1} \gamma_{2}) \\
- Q \ D_{y} \left[S_{11} \sin \beta \cos \beta - S_{22} \sin^2 \beta \right. \\
\left. + S_{12} \sin \beta \cos \beta + S_{44} \cos^2 \beta \right] \\
+ (R_{11} - R_{22}) (c_{22} \sin^2 \beta - c_{22} \cos^2 \beta \cos \gamma_{1} \gamma_{2}) \\
\left. + (R_{41} - R_{42}) (c_{22} \cos \beta \sin \beta \cos \gamma_{1} \gamma_{2}) \right] \\
\] \\
\tau_{xy} = c_{66} \sin \beta \ u_{x,\bar{r}} + c_{66} \cos \beta \ u_{x,\bar{y}} + c_{66} \cos \beta \ u_{y,\bar{r}} - c_{66} \sin \beta \ u_{y,\bar{y}} \\
= Q \ D_{R} c_{66} \left[S_{11} \sin \beta \cos \beta + S_{22} \cos^2 \beta \right. \\
\left. - S_{12} \sin \beta \cos \beta + S_{44} \sin^2 \beta \right] \\
+ (R_{11} - R_{22}) (\sin^2 \beta + \cos^2 \beta \cos \gamma_{1} \gamma_{2}) \\
+ (R_{41} - R_{42}) (-1 + \gamma_{1} \gamma_{2} \sin \beta \cos \beta) \\
- Q \ D_{y} c_{66} \left[S_{11} \cos^2 \beta + S_{22} \sin \beta \cos \beta + S_{44} \cos^2 \beta \right. \\
\left. - S_{12} \sin \beta \cos \beta - (R_{11} - R_{22}) (-1 + \gamma_{1} \gamma_{2} \sin \beta \cos \beta) \right. \\
\left. + (R_{41} - R_{42}) (\cos^2 \beta + \sin^2 \beta \cos \gamma_{1} \gamma_{2}) \right] \\
\] \\
\]
As can be seen from the definitions of the R_{ij}'s in Eqs (A.87) through (A.90), the stresses tend to zero as the distance from the origin tends to infinity. Thus, the final boundary condition of zero stress at infinity is satisfied.
Appendix B: Proofs

Theorem 1. Given the material constants $c_{11}, c_{12}, c_{22}, c_{66}, \gamma_1, \gamma_2$ and

\[
q_1 = \frac{c_{11} \gamma_1^2 - c_{66}}{c_{12} + c_{66}}, \quad q_2 = \frac{c_{11} \gamma_2^2 - c_{66}}{c_{12} + c_{66}}
\]

then $q_1 q_2 = 1$.

Proof:

Using the definitions of q_1 and q_2 leads to

\[
q_1 q_2 = \frac{(c_{11} \gamma_1^2 - c_{66})(c_{11} \gamma_2^2 - c_{66})}{(c_{12} + c_{66})^2}
\]

(B.1)

Define

\[
\delta^2 = (c_{11} c_{22} - c_{12} (c_{12} + c_{66}))^2 - 4 c_{11} c_{22} c_{66}.
\]

(B.2)

Then, from the characteristic equation:

\[
c_{11} c_{66} \gamma_4 + [c_{12} (c_{12} + 2 c_{66}) - c_{11} c_{22}] \gamma^2 + c_{11} c_{22} = 0
\]

(B.3)

we have

\[
\gamma_1^2 = \frac{c_{11} c_{22} - c_{12} (c_{12} + 2 c_{66})}{2 c_{11} c_{66}} - \frac{\delta}{2 c_{11} c_{66}}
\]

(B.4)
\[
\gamma^2 = \frac{c_{11} c_{22} - c_{12} (c_{12} + 2c_{66})}{2c_{11} c_{66}} + \frac{\delta}{2c_{11} c_{66}} \quad (B.5)
\]

So,
\[
c_{11} \gamma_1^2 - c_{66} = \frac{c_{11} c_{22} - c_{12} (c_{12} + 2c_{66}) - 2c_{66}^2}{2c_{66}} + \frac{\delta}{2c_{66}} \quad (B.6)
\]

and
\[
c_{11} \gamma_2^2 - c_{66} = \frac{c_{11} c_{22} - c_{12} (c_{12} + 2c_{66}) - 2c_{66}^2}{2c_{66}} + \frac{\delta}{2c_{66}} \quad (B.7)
\]

Therefore,
\[
\langle c_{11} \gamma_1^2 - c_{66} \rangle \langle c_{11} \gamma_2^2 - c_{66} \rangle = \frac{1}{4c_{66}^2} \left[\frac{c_{11} c_{22} - c_{12} (c_{12} + 2c_{66}) - 2c_{66}^2 + \gamma^2 - \delta^2}{2c_{66}} \right] - \left[\frac{\delta}{2c_{66}} \right]^2
\]

\[
= \frac{1}{4c_{66}^2} \left[\frac{c_{11} c_{22} - c_{12} (c_{12} + 2c_{66}) - 2c_{66}^2 + \gamma^2 - \delta^2}{2c_{66}} \right]
\]

\[
= \frac{1}{4c_{66}^2} \left[\frac{c_{11} c_{22} - c_{12} (c_{12} + 2c_{66})^2}{2c_{66}} - 2(2c_{66}^2 \times c_{11} c_{22} - c_{12} (c_{12} + 2c_{66}) + 4c_{66}^4 - \delta^2) \right]
\]

B-2
\[
\begin{align*}
\frac{1}{4c_{12}^2} & \left[[c_{11} c_{22} - c_{12} (c_{12} + 2c_{66})]^2 - 4c_{11} c_{22} c_{66}^2 + 4c_{12}^2 c_{22}^2
+ 8c_{12} c_{66}^3 + 4c_{66}^4 - [c_{11} c_{22} - c_{12} (c_{12} + c_{66})]^2
+ 4c_{11} c_{22} c_{66}^2 \right] \\
= \frac{1}{4c_{12}^2} & \left[4c_{12}^2 c_{66}^2 + 8c_{12} c_{66}^3 + 4c_{66}^4 \right] \\
= c_{12}^2 & + 2c_{12} c_{66} + c_{66}^2 \\
= (c_{12} + c_{66})^2
\end{align*}
\]

Thus,
\[
(c_{11} \gamma_1^2 - c_{66})(c_{11} \gamma_2^2 - c_{66}) = (c_{12} + c_{66})^2
\] \hspace{1cm} \text{(B.8)}

and
\[
q_1 q_2 = \frac{(c_{11} \gamma_1^2 - c_{66})(c_{11} \gamma_2^2 - c_{66})}{(c_{12} + c_{66})^2} = \frac{(c_{12} + c_{66})^2}{(c_{12} + c_{66})^2} = 1
\] \hspace{1cm} \text{(B.9)}

Therefore, \(q_1 q_2 = 1 \). \(\Box \)
Theorem 2. Given the material constants \(\gamma_1, \gamma_2 \), the measured angle \(\beta \), and the half-crack length \(a \), and defining the parameters

\[
A_i = \frac{\gamma_i^2 \cos^2 \beta + \sin^2 \beta}{\gamma_i^2} \\
B_i = \frac{(1 - \gamma_i^2) \sin 2\beta}{\gamma_i^2} \\
C_i = \frac{(\gamma_i^2 \sin^2 \beta + \cos^2 \beta)}{\gamma_i^2}
\]

then

\[
[\mathcal{R} \pm a + \frac{1}{2} B_i \gamma_i A_i] \gamma_i^2 + \frac{1}{2} \gamma_i^2 (B_i / A_i)^2 \gamma_i^2
\]

\[
= (A_i \mathcal{R} \pm a)^2 + B_i \mathcal{R} \pm a) \gamma_i + C_i \gamma_i^2 / A_i
\]

where \(\mathcal{R}, \gamma \) are the local coordinates.

Proof:

Expanding the binomial,

\[
[\mathcal{R} \pm a + \frac{1}{2} B_i \gamma_i A_i] \gamma_i^2 + \frac{1}{2} \gamma_i^2 (B_i / A_i)^2 \gamma_i^2
\]

\[
= (\mathcal{R} \pm a)^2 + (B_i / A_i)(\mathcal{R} \pm a) \gamma_i + \frac{1}{2} \gamma_i^2 (B_i / A_i)^2 + \frac{1}{2} \gamma_i^2 (\gamma A_i)^2
\]

\[
= (\mathcal{R} \pm a)^2 + (B_i / A_i)(\mathcal{R} \pm a) \gamma_i + (\frac{1}{2} B_i^2 + \gamma_i^2 / A_i^2) \gamma_i^2
\]

Using the definition of \(B_i \):

\[
B_i = \frac{(1 - \gamma_i^2) \sin 2\beta}{\gamma_i^2} = 2 \frac{(1 - \gamma_i^2) \sin \beta \cos \beta}{\gamma_i^2}
\]

leads to
\[
\begin{align*}
\langle B^2 \rangle_i + \frac{1}{\gamma_i^2} \langle A_i^2 \rangle &= \langle 1 - \gamma_i^2 \rangle \sin^2 \beta \cos^2 \beta + \gamma_i^2 \langle \frac{1}{\gamma_i^2} \rangle \\
&= \left[\sin^2 \beta \cos^2 \beta + 2 \gamma_i^2 \sin^2 \beta \cos^2 \beta \right] \frac{1}{\gamma_i^2 A_i^2} \\
&= \left[\sin^2 \beta \cos^2 \beta + 2 \gamma_i^2 \sin^2 \beta \cos^2 \beta \right] \frac{1}{\gamma_i^2 A_i^2} \\
&= \left[\sin^2 \beta \cos^2 \beta - \gamma_i^2 \sin^2 \beta \cos^2 \beta + \gamma_i^4 \sin^2 \beta \cos^2 \beta \right] \frac{1}{\gamma_i^2 A_i^2} \\
&= \left[\gamma_i^4 \sin^2 \beta \cos^2 \beta + \gamma_i^4 \sin^2 \beta \cos^2 \beta + \gamma_i^4 \sin^2 \beta \cos^2 \beta \right] \frac{1}{\gamma_i^2 A_i^2} \\
&= \left[\gamma_i^4 \sin^2 \beta \cos^2 \beta + \gamma_i^4 \sin^2 \beta \cos^2 \beta \right] \frac{1}{\gamma_i^2 A_i^2} \\
&= \left[\gamma_i^4 \sin^2 \beta \cos^2 \beta + \gamma_i^4 \sin^2 \beta \cos^2 \beta \right] \frac{1}{\gamma_i^2 A_i^2} \\
&= \left[\gamma_i^4 \sin^2 \beta \cos^2 \beta + \gamma_i^4 \sin^2 \beta \cos^2 \beta \right] \frac{1}{\gamma_i^2 A_i^2} \\
B-5
\end{align*}
\]
\begin{equation*}
\left(\gamma_i^2 \sin^2 \beta + \cos^2 \beta \right) \left(\gamma_i^2 \cos^2 \beta + \sin^2 \beta \right) \frac{1}{\gamma_i^4 A_i^2}
\end{equation*}

Thus,

\begin{equation}
\left(\frac{1}{\gamma_i^2} \right)^2 + 1 \gamma_i^2 A_i^2 = \left[\left(\gamma_i^2 \sin^2 \beta + \cos^2 \beta \right) \left(\gamma_i^2 \cos^2 \beta + \sin^2 \beta \right) \frac{1}{\gamma_i^4 A_i^2} \right]
\end{equation}

Using the definition of \(A_i \) leads to

\begin{equation}
\left(\frac{1}{\gamma_i^2} \right)^2 + 1 \gamma_i^2 A_i^2 = \frac{\gamma_i^2 \sin^2 \beta + \cos^2 \beta}{ \gamma_i^2 A_i^2 } \tag{B.12}
\end{equation}

while using the definition of \(C_i \) leads to

\begin{equation}
\left(\frac{1}{\gamma_i^2} \right)^2 + 1 \gamma_i^2 A_i^2 = C_i / A_i. \tag{B.13}
\end{equation}

Thus,

\begin{equation}
\left[(R \pm a)^2 + \frac{1}{2} B_i y / A_i \right] ^2 + \frac{(y / \langle y / A_i \rangle)^2}{(R \pm a)^2 + B_i (R \pm a) y + C_i y^2 / A_i.} \tag{B.14}
\end{equation}

Therefore, \((R \pm a + \frac{1}{2} B_i y / A_i)^2 + \frac{(y / \langle y / A_i \rangle)^2}{(R \pm a)^2 + B_i (R \pm a) y + C_i y^2 / A_i.} \)
Appendix C: Program TWODD

NOTE: The information in this appendix is taken directly from Crouch and Starfield (Reference 7) with only slight modification.

1. Input (Data) Deck

Program TWODD requires the following six sets of cards:

Set 1: Free FORMAT; one card must be given (may be blank).
Columns 1-80 of this card contain any desired information to identify the problem being solved.

Set 2: FORMAT (314); one card must be given to specify the following control parameters.
- NUMBS = number of straight line boundary segments (each containing at least one boundary element) used to define boundary contours.
- NUMOS = number of other line segments (not on a boundary) along which displacements, stresses, and stress intensity factors are to be computed.
- KSYM =
 1 no symmetry conditions imposed.
 2 x=XSYM (Card 3) is a line of symmetry.
 3 y=YSYM (Card 3) is a line of symmetry.
 4 x=XSYM and y=YSYM (Card 3) are lines of symmetry.

Set 3: FORMAT (F6.2,E11.4,2F12.4); one card must be given to define the elastic constants and specify the locations of lines of symmetry (if any).
- PR = Poisson's ratio (ν).
- E = Young's modulus (E).
- XSYM = location of line of symmetry parallel to y-axis (XSYM is ignored if KSYM = 1 or 3 on Card 2).
- YSYM = location of line of symmetry parallel to x-axis (YSYM is ignored if KSYM = 2 or 4 on Card 2).

Set 4: FORMAT (3E11.4); one card must be given to define the initial stresses (if any) in the region of interest.
- PXX = σ_{xx} at infinity.
- PYX = σ_{xy} at infinity.
- PXY = τ_{xy} at infinity.
Set 5: FORMAT (I4,4F12.4,I4,2E11.4); NUMBS cards must be given to define the locations and boundary conditions of the boundary elements.

NUM = number of equally spaced boundary elements along a straight line segment, all elements having the same boundary conditions.

XBEG = x-coordinate of beginning of line segment.

YBEG = y-coordinate of beginning of line segment.

XEND = x-coordinate of end of line segment.

YEND = y-coordinate of end of line segment.

$\begin{align*}
KODE &= \begin{cases}
1 & \sigma_x \text{ and } \sigma_y \text{ prescribed.} \\
2 & u_x \text{ and } u_y \text{ prescribed.} \\
3 & u_x \text{ and } \sigma_y \text{ prescribed.} \\
4 & \sigma_x \text{ and } u_y \text{ prescribed.}
\end{cases} \\
BVS &= \text{resultant shear stress } (\sigma_x) \text{ or displacement } (u_x). \\
BVN &= \text{resultant normal stress } (\sigma_y) \text{ or displacement } (u_y).
\end{align*}$

Set 6: FORMAT (4F12.4,2I4); NUMOS cards must be given to define locations of points inside the region of interest where displacements, stresses, and stress intensity factors are to be computed.

XBEG = x-coordinate of first point on line.

YBEG = y-coordinate of first point on line.

XEND = x-coordinate of last point on line.

YEND = y-coordinate of last point on line.

NUMPB = number of equally spaced points between the specified first and last points.

$\begin{align*}
KTYPE &= \begin{cases}
0 & \text{compute displacements and stresses only.} \\
1 & \text{compute stress intensity factors as well.}
\end{cases}
\end{align*}$

Note: If KTYPE=1, (XBEG,YBEG) must be the location of a crack tip, and the line defined by (XEND,YEND) must extend in the direction of the crack in order for the computed stress intensity factors to have any meaning.
2. Program TWODD Listing

PROGRAM TWODD

COMMON/S1/PI,PR,PR1,PR2,CON,CONS
COMMON/S2/SXN,SYN,SYS,SXYS,SYYS,SYXY,SXYN,UXN,UYN
COMMON/S3/C(1600,1600),B(1600),D(1600)

DIMENSION XM(800),YM(800),A(800),COSSET(800),SINSET(800),KOD(800)
DIMENSION TITLE(20)

OPEN (UNIT=5,FILE='TWODD.DAT',STATUS='OLD')
OPEN (UNIT=6,FILE='TWODD.LIS',STATUS='NEW')
READ (5,1) (TITLE(I),I=1,20)
WRITE (6,2) (TITLE(I),I=1,20)
READ (5,3) NUMBS,NUMOS,KSYM
READ (5,4) PR,E,XSYM,YSYM
READ (5,5) PXX,PYY,PXY
WRITE (6,6) NUMBS,NUMOS
GO TO (80,85,90,95),KSYM

80 WRITE (6,7) GO TO 100
85 WRITE (6,8) XSYM GO TO 100
90 WRITE (6,9) YSYM GO TO 100
95 WRITE (6,10) XSYM,YSYM

100 CONTINUE
WRITE (6,11) PR,E
WRITE (6,12) PXX,PYY,PXY

PI=4.*ATAN(1.)
CON=1./(4.*PI*(1.-PR))
CONS=E/(1.+PR)
PR1=1.-2.*PR
PR2=2.*(1.-PR)

DEFINE LOCATIONS, SIZES, ORIENTATIONS AND BOUNDARY CONDITIONS OF
BOUNDARY ELEMENTS.

NUMBE=0
DO 110 N=1,NUMBS
READ (5,14) NUM, XBEG, YBEG, XEND, YEND, KODE, BV8, BVN
XD=(XEND-XBEG)/NUM
YD=(YEND-YBEG)/NUM
SW=SQRT(XD*XD+YD*YD)

110 CONTINUE
NUMBE=NUMBE+1
N=NUMBE

C-3
XM(M) = XBEG + 0.5*(2.*NE-1.)*XD
YM(M) = YBEG + 0.5*(2.*NE-1.)*YD
A(M) = 0.5*SW
SINBET(M) = YD/SW
COSBET(M) = XD/SW
KOD(M) = KODE
MN = 2*M
MS = MN - 1
B(MS) = BVS
110 B(MN) = BVN

WRITE (6,13)
DO 115 M = 1, NUMBE
SIZE = 2.*A(M)
ANGLE = 180.*ATAN2(SINBET(M), COSBET(M))/PI
WRITE (6,15) M, KOD(K), XM(M), YM(M), SIZE, ANGLE, B(2*M-1), B(2*M)
115 CONTINUE

C ADJUST STRESS BOUNDARY VALUES TO ACCOUNT FOR INITIAL STRESSES.
C
DO 150 N = 1, NUMBE
NN = 2*N
NS = NN - 1
COSB = COSBET(N)
SINB = SINBET(N)
SIGS = (PYX-PYO)*SINB*COSB+PYX*(COSB*COSB-SINB*SINB)
SIGN = PYX*SINB*SINB-2.*PYX*SINB*COSB+PYX*COSB*COSB
GO TO (120, 150, 130, 140), KOD(N)
120 B(NS) = B(NS) - SIGS
B(NN) = B(NN) - SIGN
GO TO 150
130 B(NN) = B(NN) - SIGN
GO TO 150
140 B(NS) = B(NS) - SIGS
150 CONTINUE
C
C COMPUTE INFLUENCE COEFFICIENTS AND SET UP SYSTEM OF ALGEBRAIC
C EQUATIONS.
C
DO 300 I = 1, NUMBE
IN = 2*I
IS = IN - 1
XI = XM(I)
YI = YM(I)
COSBI = COSBET(I)
SINBI = SINBET(I)
KODE = KOD(I)
C
DO 300 J = 1, NUMBE
JN = 2*J
JS = JN - 1

C-4
CALL INITL
XJ=XM(J)
YJ=YM(J)
COSBJ=COSBET(J)
SINBJ=SINBET(J)
AJ=A(J)
call COEFF(XI,YI,XJ,YJ,AJ,COSBJ,SINBJ,+1)
go to (240,210,220,230),KSYM

210 XJ=2.*XSIN-XM(J)
call COEFF(XI,YI,XJ,YJ,AJ,COSBJ,-SINBJ,-1)
go to 240

220 YJ=2.*YSIN-YM(J)
call COEFF(XI,YI,XJ,YJ,AJ,-COSBJ,SINBJ,-1)
go to 240

230 XJ=2.*XSIN-XM(J)
call COEFF(XI,YI,XJ,YJ,AJ,COSBJ,-SINBJ,-1)
XJ=XM(J)
YJ=2.*YSIN-YM(J)
call COEFF(XI,YI,XJ,YJ,AJ,-COSBJ,SINBJ,-1)
XJ=2.*XSIN-XM(J)
call COEFF(XI,YI,XJ,YJ,AJ,-COSBJ,-SINBJ,+1)

240 CONTINUE
go to (250,260,270,280),KODE

250 C(IS,JS)=(SYN-SXN)*SINBI*COSBI+SYN*(COSBI*COSBI-SINBI*SINBI)
C(IS,JN)=(SYN-SXN)*SINBI*COSBI+SYN*(COSBI*COSBI-SINBI*SINBI)
C(IN,JS)=SXN*SINBI*SINBI-2.*SXN*SINBI*COSBI+SXX*COSBI*COSBI
C(IN,JN)=SXN*SINBI*SINBI-2.*SXN*SINBI*COSBI+SXX*COSBI*COSBI
go to 300

260 C(IS,JS)=UXS*COSBI+UYN*SINBI
C(IS,JN)=UXS*COSBI+UYN*SINBI
C(IN,JS)=UXS*COSBI+UYN*SINBI
C(IN,JN)=UXS*COSBI+UYN*SINBI
go to 300

270 C(IS,JS)=UXS*COSBI+UYN*SINBI
C(IS,JN)=UXS*COSBI+UYN*SINBI
C(IN,JS)=SXN*SINBI*SINBI-2.*SXN*SINBI*COSBI+SXX*COSBI*COSBI
C(IN,JN)=SXN*SINBI*SINBI-2.*SXN*SINBI*COSBI+SXX*COSBI*COSBI
go to 300

280 C(IS,JS)=(SYN-SXN)*SINBI*COSBI+SYN*(COSBI*COSBI-SINBI*SINBI)
C(IS,JN)=(SYN-SXN)*SINBI*COSBI+SYN*(COSBI*COSBI-SINBI*SINBI)
C(IN,JS)=UXS*SINBI+UYN*COSBI
C(IN,JN)=UXS*SINBI+UYN*COSBI
300 CONTINUE
C S OLVE SYSTEM OF ALGEBRAIC EQUATIONS.
C
N=2*NUMBE
CALL SOLVE(N)
C
COMPUTE BOUNDARY DISPLACEMENTS AND STRESSES.
C
WRITE (6,16)
DO 600 I=1,NUMBE
IN=2*I
IS=IN-1
XI=XM(I)
YI=YM(I)
COSBI=COSBET(I)
SINBI=SINBET(I)
C
UXNEG=0.
UYNEG=0.
SIGXX=PIXX
SIGYY=PYY
SIGXY=PXY
C
DO 570 J=1,NUMBE
JN=2*J
JS=JN-1
CALL INITL
XJ=XM(J)
YJ=YM(J)
AJ=A(J)
COSBJ=COSBET(J)
SINBJ=SINBET(J)
CALL COEFF(XI,YI,XJ,YJ,AJ,COSBJ,SINBJ,+1)
GO TO (540,510,520,530),XSYM
C
510 XJ=2.*XSYM-XM(J)
CALL COEFF(XI,YI,XJ,YJ,AJ,COSBJ,-SINBJ,-1)
GO TO 540
C
520 XJ=2.*YSYM-YM(J)
CALL COEFF(XI,YI,XJ,YJ,AJ,-COSBJ,SINBJ,-1)
GO TO 540
C
530 XJ=2.*XSYM-XM(J)
CALL COEFF(XI,YI,XJ,YJ,AJ,00SD,-SINDJ,-1)
XJ=2.*XSYM-XM(J)
YJ=2.*YSYM-YM(J)
CALL COEFF(XI,YI,XJ,YJ,AJ,-COSBJ,SINBJ,-1)
XJ=2.*XSYM-XM(J)
CALL COEFF(XI,YI,XJ,YJ,AJ,-COSBJ,-SINBJ+1)
I540 CONTINUE
U=U+X*S*D(JS)+U*X*N*D(JN)
Y=U+Y*S*D(JS)+U*Y*N*D(JN)
SIGX=SIGX+XX*S*D(JS)+XX*N*D(JN)
SIGY=SIGY+YY*S*D(JS)+YY*N*D(JN)
SIGXY=SIGX+XY*S*D(JS)+XY*N*D(JN)

I570 CONTINUE
USNEG=USNEG*COSBI+UYNEG*SINBI
UNNEG=UNNEG*SINBI+UYNEG*COSBI
USPOS=USNEG-D(IS)
UNPOS=UNNEG-D(IN)
UXPOS=USPOS*COSBI-UNPOS*SINBI
UYPOS=USPOS*SINBI+UNPOS*COSBI
SIGS=(SIGY-SIGX)*SINBI*COSBI+SIGXY*(COSBI*COSBI-SINBI*SINBI)
SIGN=SIGX*SINBI+SINBI-2.*SIGY*SINBI*COSBI+SIGXY*COSBI*COSBI

WRITE (6,17) I,D(IS),USNEG,USPOS,D(IN),UNNEG,UNPOS,UXNEG,UYNEG,1
UXPOS,UYPOS,SIGE,SIGN

I600 CONTINUE

COMPUTE DISPLACEMENTS AND STRESSES AT SPECIFIED POINTS IN BODY.

IF (NUMOS.LE.0) GO TO 900
NPOINT=0
DO 900 N=1,NUMOS
READ (5,19) XSEG,YSEG,XEND,YEND,NUMP,KTYPE
IF (KTYPE.EQ.0) WRITE (6,22)
IF (KTYPE.EQ.1) WRITE (6,18)
NUMP=NUMP+1
DELX=(XEND-XSEG)/NUMP
DELY=(YEND-YSEG)/NUMP
IF (NUMP.GT.0) NUMP=NUMP+1
IF (DELX**2+DELY**2.EQ.0.) NUMP=1

ANGLE=ATAN2(YEND-YSEG,XEND-XSEG)

DO 890 NI=1,NUMP
XP=XSEG+(NI-1)*DELX
YP=YSEG+(NI-1)*DELY
UX=0.
UY=0.
SIGX=FXX
SIGY=FYY
SIGXY=FXY

C-7
DO 880 J=1,NUMBE
 JN=2*J
 JS=JN-1
 CALL INITL
 XJ=XH(J)
 YJ=YH(J)
 AJ=A(J)
C
 IF (SQR((XP-XJ)**2+(YP-YJ)**2).LT.2.*AJ) GO TO 890
 IF (KTYPE.EQ.1) R=SQR((XP-XH(J))*((XP-XH(J))+(YP-YH(J))**2))
C
 COSBJ=COSBJ(J)
 SINBJ=SINBJ(J)
 CALL COEFF(XP,YP,XJ,YJ,AJ,COSBJ,SINBJ,+1)
 GO TO (840,810,820,830),KSYM
C
 810 XJ=2.*XS YM-XM(J)
 CALL COEFF(XP,YP,XJ,YJ,AJ,COSBJ,-SINBJ,-1)
 GO TO 840
C
 820 YJ=2.*YSYM-YM(J)
 CALL COEFF(XP,YP,XJ,YJ,AJ,-COSBJ,SINBJ,+1)
 GO TO 840
C
 830 XJ=2.*XS YM-XM(J)
 CALL COEFF(XP,YP,XJ,YJ,AJ,COSBJ,-SINBJ,-1)
 XJ=XH(J)
 YJ=2.*YSYM-YM(J)
 CALL COEFF(XP,YP,XJ,YJ,AJ,-COSBJ,SINBJ,-1)
 XJ=2.*XS YM-XM(J)
 CALL COEFF(XP,YP,XJ,YJ,AJ,-COSBJ,-SINBJ,+1)
C
 840 CONTINUE
C
 UX=UX+UXS*D(JS)+UXN*D(JN)
 UY=UY+UYS*D(JS)+UYN*D(JN)
 SIGXX=SIGXX+SX S* D(JS)+SX N*D(JN)
 SIGYY=SIGYY+SY S* D(JS)+SY N*D(JN)
 SIGXY=SIGXY+SXYS* D(JS)+SXYN*D(JN)
C
 880 CONTINUE
C
 NPOINT=NPOINT+1
 IF (KTYPE.EQ.1) GO TO 885
 WRITE (6,20) NPOINT,XP,YP,UX,UY,SIGXX,SIGYY,SIGXY
 GO TO 890
885 RAD=SQR((SIGXX-SIGXY)*(SIGXX-SIGYY)/4.+SIGXY*SIGXY)
 ANG=PI-ATAN2(-2.*SIGXY,SIGXX-SIGYY)-2.*ANGL
 SIG2=(SIGXX+SIGXY)/2.+RAD*COS(ANG)

C-8
SIG12=-(RAD*SIN(ANG))
SIG1=SQR(2.*PI*R)*SIG2
SIG2=SQR(2.*PI*R)*SIG12
WRITE (6,20) NPOINT,XP,YP,UX,UY,SIGXX,SIGYY,SIGXY,SIF1,SIF2

C 890 CONTINUE
C 900 CONTINUE
C
C FORMAT STATEMENTS.
C
1 FORMAT (20A4)
2 FORMAT (1H1,/,25X,20A4,/
3 FORMAT (314)
4 FORMAT (F6.2,E11.4,2F12.4)
5 FORMAT (3E11.4)
6 FORMAT (/,.109H NUMBER OF STRAIGHT-LINE SEGMENTS (EACH CONTAINING A
17 LEAST ONE BOUNDARY ELEMENT) USED TO DEFINE BOUNDARIES =,I3,/,12
23H NUMBER OF STRAIGHT-LINE SEGMENTS USED TO SPECIFY OTHER LOCATION
38 (I.E., NOT ON A BOUNDARY) WHERE RESULTS ARE TO BE FOUND =,I3)
7 FORMAT (/,.32H NO SYMMETRY CONDITIONS IMPOSED.)
8 FORMAT (/,.18H THE LINE X = XS =,F12.4,23H IS A LINE OF SYMMETRY.)
9 FORMAT (/,.18H THE LINE Y = YS =,F12.4,23H IS A LINE OF SYMMETRY.)
10 FORMAT (/,.19H THE LINES X = XX =,F12.4,13H AND Y = YS =,F12.4,
1,23H ARE LINES OF SYMMETRY.)
11 FORMAT (/,.18H POISSON'S RATIO =,F6.2,/,18H YOUNG'S MODULUS =,E11.
14)
12 FORMAT (/,.31H XX-COMPONENT OF FIELD STRESS =,E11.4,/,31H YY-COMPON
113 ENT OF FIELD STRESS =,E11.4,/,31H XY-COMPONENT OF FIELD STRESS =
2,E11.4)
13 FORMAT (1H1,/,27H BOUNDARY ELEMENT DATA.,/,96H ELEMENT X
10DE X (CENTER) Y (CENTER) LENGTH ANGLE US OR SIGMA-N
2 UN OR SIGMA-S,
14 FORMAT (I4,4F12.4,I4,2E11.4)
15 FORMAT (2I19,3F12.4,F12.2,2E15.4)
16 FORMAT (1H1,/,66H DISPLACEMENTS AND STRESSES AT MIDPOINTS OF B
10UNARY ELEMENTS.,/,40H ELEMENT DS US(-) US(+),
2 60H DN UN(-) UN(+), UX(-) UY(-) UX(+),
3 30H UX(+), SIGMA-S SIGMA-N,
17 FORMAT (110,10F10.6,2F10.1)
18 FORMAT (1H1,/,63H DISPLACEMENTS AND STRESSES AT SPECIFIED POINT
18 IN THE BODY.,/,117H POINT X CO-ORD Y CO-ORD U
1X 2X UX SIGXX SIGYY SIGXY KI
3 K11,/
19 FORMAT (4F12.4,2I4)
20 FORMAT (19,2F12.4,2F12.6,5F12.1)
22 FORMAT (1H1,/,63H DISPLACEMENTS AND STRESSES AT SPECIFIED POINT
18 IN THE BODY.,/,93H POINT X CO-ORD Y CO-ORD UX
2 2Y SIGXX SIGYY SIGXY,/)

C CLOSE (5)
CLOSE (6)
END
SUBROUTINE INITL
C
COMMON/S2/SXXS,SXXN,SYYS,SYYN,SYYS,SXXN,UXS,UXN,UYN
C
SXXS=0.
SXXN=0.
SYYS=0.
SYYN=0.
SYYS=0.
SXXN=0.
C
UXS=0.
UXN=0.
UYN=0.
C
RETURN
END
SUBROUTINE COEFF(X,Y,CX,CY,A,COSB,SINB,SYM)
C
COMMON/S1/P1,PR,PR1,PR2,CON,CONS
COMMON/S2/SXXS,SXXN,SYYS,SYYN,SXXS,UXS,UXN,UYN
C
COS2B=COSB*COSB-SINB*SINB
SIN2B=2.*SINB*COSB
COSB2=COSB*COSB
SINB2=SINB*SINB
C
XB=(X-CX)*COSB+(Y-CY)*SINB
YB=-(X-CX)*SINB+(Y-CY)*COSB
C
RLS=(XB-A)*(XB-A)+YB*YB
R2S=(XB+A)*(XB+A)+YB*YB
FL1=0.5*ALOG(RLS)
FL2=0.5*ALOG(R2S)
FB2=CON*(FL1-FL2)
IF (YB.NE.0.) GO TO 10
FB3=0.
IF (ABS(X).LT.A) FB3=CON*PI
GO TO 20
10 FB3=CON*(ATAN((XB+A)/YB)-ATAN((XB-A)/YB))
20 FB4=CON*((YB/R1S-YB/R2S)
FB5=CON*(((XB-A)/R1S-(XB+A)/R2S)
FB6=CON*((((XB-A)**2-YB*YB)/R1S**2-((XB+A)**2-YB*YB)/R2S**2)
FB7=2.*CON*YB*(((XB-A)/R1S**2-(XB+A)/R2S**2)
C
UXDS=-PR1*SINB*FB2+PR2*COSB*FB3+YB*(SINB*FB4-COSB*FB5)
UXDN=-PR1*COSB*FB2-PR2*SINB*FB3-YB*(COSB*FB4+SINB*FB5)
UYDS=PR1*COSB*FB2+PR2*SINB*FB3-YB*(COSB*FB4+SINB*FB5)
CURDN = PR1*SINFB2 + PR2*COSFB3 - YB*(SINFB4 - COSFB5)

CSXDS = CONS*(2.0*COSFB2*FB4 + SINFB2*FB5 + YB*(COSFB2*FB6 - SINFB2*FB7))
CSXDN = CONS*(-FB5 + YB*(SINFB2*FB6 + COSFB2*FB7))
SYYD6 = CONS*(2.0*SINFB2*FB4 - SINFB2*FB5 - YB*(COSFB2*FB6 - SINFB2*FB7))
SYYN = CONS*(-FB5 - YB*(SINFB2*FB6 + COSFB2*FB7))
SXYD6 = CONS*(SINFB2*FB4 - COSFB2*FB5 + YB*(SINFB2*FB6 + COSFB2*FB7))
SXYD6 = CONS*(-YB*(COSFB2*FB6 - SINFB2*FB7))

UXN = UXN + UXN
UXS = UXS + UXS
UXD = UXN + UXN
UXS = UXS + UXS
UXN = UXN + UXN

C
SXXS = SXXS + SYM*SXXS
SXXN = SXXN + SXXDN
SYYS = SYYS + SYM*SYYS
SYYN = SYYN + SYYDN
SXXS = SXXS + SXYD6
SXYN = SXYN + SXYDN

RETURN
END

SUBROUTINE SOLVE(N)

COMMON/S3/ A(1600,1600), B(1600), X(1600)

NB = N - 1
DO 10 J = 1, NB
L = J + 1
DO 20 JJ = L, N
XH = A(JJ, J)/A(J, J)
10 A(JJ, I) = A(JJ, I) - A(J, I)*XH
20 B(JJ) = B(JJ) - B(J)*XH

X(N) = B(N)/A(N, N)
DO 40 J = 1, NB
JJ = N - J
L = JJ + 1
SUM = 0.
DO 30 I = L, N
30 SUM = SUM + A(JJ, I)*X(I)
40 X(JJ) = (B(JJ) - SUM)/A(JJ, JJ)

RETURN
END
Appendix D: Program TWODDO

NOTE: Most of the information in this appendix is taken directly from Crouch and Starfield (Reference 7) with only slight modification.

1. Input (Data) Deck

Program TWODDO requires the following six sets of cards:

Set 1: Free FORMAT; one card must be given (may be blank). Columns 1-80 of this card contain any desired information to identify the problem being solved.

Set 2: FORMAT (314); one card must be given to specify the following control parameters.

- **NUMBS** = number of straight line boundary segments (each containing at least one boundary element) used to define boundary contours.
- **NUMOS** = number of other line segments (not on a boundary) along which displacements, stresses, and stress intensity factors are to be computed.
 - 1: no symmetry conditions imposed.
 - 2: x=XSYM (Card 3) is a line of symmetry.
 - 3: y=YSYM (Card 3) is a line of symmetry.
 - 4: x=XSYM and y=YSYM (Card 3) are lines of symmetry.

Set 3: FORMAT (3E11.4,F6.2,2F12.4); one card must be given to define the elastic constants and specify the locations of lines of symmetry (if any).

- **E11** = Young's modulus in x-direction (E_x).
- **E22** = Young's modulus in y-direction (E_y).
- **G12** = Shear modulus for xy-direction (G_xy).
- **V12** = Poisson's ratio for xy-direction (ν_xy).
- **XSYM** = location of line of symmetry parallel to y-axis (XSYM is ignored if KSYM = 1 or 3 on Card 2).
- **YSYM** = location of line of symmetry parallel to x-axis (YSYM is ignored if KSYM = 2 or 4 on Card 2).

Set 4: FORMAT (3E11.4); one card must be given to define the initial stresses (if any) in the region of interest.

- **PXX** = σ_xx at infinity.
- **PYY** = σ_yy at infinity.
- **PXY** = τ_xy at infinity.
Set 5: FORMAT (I4,4F12.4,I4,2E11.4); NUMBS cards must be given to define the locations and boundary conditions of the boundary elements.

NUM = number of equally spaced boundary elements along a straight line segment, all elements having the same boundary conditions.

XBEG = x-coordinate of beginning of line segment.
YBEG = y-coordinate of beginning of line segment.
XEND = x-coordinate of end of line segment.
YEND = y-coordinate of end of line segment.

KODE =
1. \(\sigma_x \) and \(\sigma_y \) prescribed.
2. \(u_x \) and \(u_y \) prescribed.
3. \(u_x \) and \(\sigma_y \) prescribed.
4. \(\sigma_x \) and \(u_y \) prescribed.

BVS = resultant shear stress \((\sigma_x) \) or displacement \((u_x) \).
BNV = resultant normal stress \((\sigma_y) \) or displacement \((u_y) \).

Set 6: FORMAT (4F12.4,2I4); NUMBS cards must be given to define locations of points inside the region of interest where displacements, stresses, and stress intensity factors are to be computed.

XBEG = x-coordinate of first point on line.
YBEG = y-coordinate of first point on line.
XEND = x-coordinate of last point on line.
YEND = y-coordinate of last point on line.
NUMPB = number of equally spaced points between the specified first and last points.

KTYPE =
0. compute displacements and stresses only.
1. compute stress intensity factors as well.

Note: If KTYPE=1, (XBEG,YBEG) must be the location of a crack tip, and the line defined by (XEND,YEND) must extend in the direction of the crack in order for the computed stress intensity factors to have any meaning.
2. Program TWODDO Listing

PROGRAM TWODDO

COMMON/S1,P1,CON1,CON2,G1,G2,C11,C12,C12,G12
COMMON/S2/SX5,SXN,SXYS,SXYS,SXYS,SXNS,SXNS,UXS,UXS,UYN,UYN
COMMON/B3/C(1600,1600),B(1600),D(1600)

DIMENSION XM(800),YM(800),A(800),COSBET(800),SINBET(800),KOD(800)
DIMENSION TITLE(20)

OPEN (UNIT=5,FILE='TWODDO.DAT',STATUS='OLD')
OPEN (UNIT=6,FILE='TWODDO.LIS',STATUS='NEW')
READ (5,1) (TITLE(I),I=1,20)
WRITE (6,2) (TITLE(I),I=1,20)
READ (5,3) NUMS,NUMOS,KSYM
READ (5,4) E11,E22,G12,V12,XSYM,YSYM
READ (5,5) PXX,PYY,PXY
WRITE (6,6) NUMS,NUMOS
GO TO (80,85,90,95),KSYM
80 WRITE (6,7)
GO TO 100
85 WRITE (6,8) XSYM
GO TO 100
90 WRITE (6,9) YSYM
GO TO 100
95 WRITE (6,10) XSYM,YSYM

100 CONTINUE
WRITE (6,11) E11,E22,G12,V12
WRITE (6,12) PXX,PYY,PXY

PI=4.*ATAN(1.)
CON1=1.-V12*V12*E22/E11
CON1=E11*G12
CON2=V12*E22*(V12*E22/CON+2.*G12)-E11*E22/CON
CON3=E22*G12
G1=SQRTR((-CON2+SQRTR(CON2*CON2-4.*CON1*CON3))/2./CON1)
G2=SQRTR((-CON2-SQRTR(CON2*CON2-4.*CON1*CON3))/2./CON1)
C11=E11/CON
C22=E22/CON
C12=V12*C22
C12=(C11*G1*G1-C12)/((C12+G12)
CON2=G1*G2/2./PI/(CON1*G2-C12/CON1)

DEFINE LOCATIONS, SIZES, ORIENTATIONS AND BOUNDARY CONDITIONS OF
BOUNDARY ELEMENTS.

NUMB=0
DO 110 N=1,NUMBS
READ (5,14) NUM,XEBG,YEBG,XEND,YEND,KODE,BV8,BVN
XD=(XEND-XEBG)/NUM

D-3
```fortran
YD = (YEND - YBEG) / NUM
SW = SQRT(XD^2 + YD^2)

DO 110 NE = 1, NUM
    NUMB = NUMB + 1
    M = NUMB
    XM(NM) = XBEGIN + 0.5 * (2 * NE - 1) * XD
    YM(NM) = YBEGIN + 0.5 * (2 * NE - 1) * YD
    A(M) = 0.5 * SW
    SINSET(M) = YD / SW
    COSSET(M) = XD / SW
    KOD(M) = KODE
    MN = 2 * M
    NS = MN - 1
    B(NS) = BVS
110 B(MN) = BVN

WRITE (6, 13)
DO 115 M = 1, NUMB
    SIZ = 2 * A(M)
    ANGLE = 180 * ATAN2(SINSET(M), COSSET(M)) / PI
    WRITE (6, 15) M, KOD(M), XM(M), YM(M), SIZ, ANGLE, B(2 * M - 1), B(2 * M)
115 CONTINUE

ADJUST STRESS BOUNDARY VALUES TO ACCOUNT FOR INITIAL STRESSES.

DO 150 N = 1, NUMB
    NN = 2 * N
    NS = NN - 1
    COSB = COSSET(N)
    SINS = SINSET(N)
    SIGS = (PY-PXX) * SINS * COSB + PXY * (COSB * COSB - SINS * SINS)
    SIGN = PXX * SINS * SINS - 2 * PXY * SINS * COSB + PY * COSB * COSB
    GO TO (120, 150, 130, 140), KOD(N)
120 B(NS) = B(NS) - SIGS
130 B(NN) = B(NN) - SIGN
    GO TO 150
140 B(NS) = B(NS) - SIGS
150 CONTINUE

COMPUTE INFLUENCE COEFFICIENTS AND SET UP SYSTEM OF ALGEBRAIC EQUATIONS.

DO 300 I = 1, NUMB
    IN = 2 * I
    IS = IN - 1
    XI = XM(I)
    YI = YM(I)
    COSBI = COSSET(I)
    SINSI = SINSET(I)
```

D-4
KODE=KOD(1)
C
DO 300 J=1,NUMBE
JN=2*J
JS=JN-1
CALL INITL
XJ=XM(J)
YJ=YM(J)
COSBJ=COSBET(J)
SINBJ=SINBET(J)
AJ=A(J)
CALL COEFF(XI,YI,XJ,YJ,AJ,COSBJ,SINBJ,+1)
GO TO (240,210,220,230),KSYM
C
210 XJ=2.*XSYM-XM(J)
CALL COEFF(XI,YI,XJ,YJ,AJ,COSBJ,-SINBJ,-1)
GO TO 240
C
220 YJ=2.*YSYM-YM(J)
CALL COEFF(XI,YI,XJ,YJ,AJ,-COSBJ,SINBJ,-1)
GO TO 240
C
230 XJ=2.*XSYM-XM(J)
CALL COEFF(XI,YI,XJ,YJ,AJ,COSBJ,-SINBJ,-1)
XJ=XM(J)
YJ=2.*YSYM-YM(J)
CALL COEFF(XI,YI,XJ,YJ,AJ,-COSBJ,SINBJ,-1)
XJ=2.*XSYM-XM(J)
CALL COEFF(XI,YI,XJ,YJ,AJ,-COSBJ,-SINBJ,1)
C
240 CONTINUE
GO TO (250,260,270,280),KODE
C
250 C(IS,JS)=(-SYM-SXXS)*SINBI*COSBI+SYM*SYM*(COSBI*COSBI-SINBI*SINBI)
C(IS,JS)=(-SYM-SXXS)*SINBI*COSBI+SYM*SYM*(COSBI*COSBI-SINBI*SINBI)
C(IN,JS)=(-SYM)*SINBI*SINBI-2.*SYM*SYM*SINBI*COSBI+SYM*SYM*SYM*SYM*SYM*SYM*SYM
C(IN,JS)=(-SYM)*SINBI*SINBI-2.*SYM*SYM*SINBI*COSBI+SYM*SYM*SYM*SYM*SYM*SYM*SYM
GO TO 300
C
260 C(IS,JS)=UXS*COSBI+UYB*SYM
C(IS,JS)=UXS*COSBI+UYB*SYM
C(IN,JS)=UXS*SYM+UYB*COSBI
C(IN,JS)=UXS*SYM+UYB*COSBI
GO TO 300
C
270 C(IS,JS)=UXS*COSBI+UYB*SYM
C(IS,JS)=UXS*COSBI+UYB*SYM
C(IN,JS)=UXS*SYM+UYB*COSBI
C(IN,JS)=UXS*SYM+UYB*COSBI
GO TO 300
C
280 C(IS,JS)=(SYM-SXXS)*SINBI*COSBI+SYM*(COSBI*COSBI-SINBI*SINBI)
C(IS, JN) = (SYYN-SXN)*SINBI*COSBI+SXN*(COSBI*COSBI-SINBI*SINBI)
C(IN, JS) = -UXS*SINBI+UYS*COSBI
C(IN, JN) = -UXN*SINBI+UYN*COSBI

C 300 CONTINUE
C
C SOLVE SYSTEM OF ALGEBRAIC EQUATIONS.
C
N = 2*NUMBE
CALL SOLVE(N)
C
C COMPUTE BOUNDARY DISPLACEMENTS AND STRESSES.
C
WRITE (6,16)
DO 600 I = 1, NUMBE
IN = 2*I
JS = IN-1
XI = XM(I)
YI = YM(I)
COSBI = COSBET(I)
SINBI = SINBET(I)
UXNEG = 0.
UYNEG = 0.
SIGX = PXX
SIGY = PYY
SIGXY = PXY
C
DO 570 J = 1, NUMBE
JN = 2*J
JS = JN-1
CALL INITL
XJ = XM(J)
YJ = YM(J)
AJ = A(J)
COSBJ = COSBET(J)
SINBJ = SINBET(J)
CALL COEFF(XI, YI, XJ, YJ, AJ, COSBJ, SINBJ, +1)
GO TO (540, 510, 520, 530), KSYM
C
510 XJ = 2.*XSYM-XM(J)
CALL COEFF(XI, YI, XJ, YJ, AJ, COSBJ, -SINBJ, -1)
GO TO 540
C
520 YJ = 2.*YSYM-YM(J)
CALL COEFF(XI, YI, XJ, YJ, AJ, -COSBJ, SINBJ, -1)
GO TO 540
C
530 XJ = 2.*XSYM-XM(J)
CALL COEFF(XI, YI, XJ, YJ, AJ, COSBJ, -SINBJ, -1)
XJ = XM(J)
YJ = 2.*YSYM-YM(J)
CALL COEFFF(XI,YI,XJ,YJ,AJ,-COSB2,-SINBJ,-1)
XJ=2.*XSINM-XH(J)
CALL COEFFF(XI,YI,XJ,YJ,AJ,-COSB2,-SINBJ,+1)

C 540 CONTINUE
C
UXNEG=UXNEG+UXS*D(JS)+UXN*D(JN)
UYNEG=UYNEG+UYS*D(JS)+UYN*D(JN)
SIGXX=SIGXX+SXIXS*D(JS)+SXIXN*D(JN)
SIGYY=SIGYY+SYYS*D(JS)+SYYN*D(JN)
SIGXY=SIGXY+SYXS*D(JS)+SYXN*D(JN)

C 570 CONTINUE
C
USNEG=UXNEG*COSBI+UYNEG*SINBI
UNNEG=UXNEG*SINBI+UYNEG*COSBI
USPOS=USNEG-D(IS)
UNPOS=UNNEG-D(IN)
UXPOS=USPOS*COSBI-UNPOS*SINBI
UYPOS=USPOS*SINBI+UNPOS*COSBI
SIG=(SIGYY-SIGXX)*SINBI*COSBI+SIGXX*(COSBI*COSBI-SINBI*SINBI)
SIGN=SIGXX*SINBI*SINBI-2.*SIGXX*SINBI*COSBI+SIGYY*COSBI*COSBI

WRITE (6,17) I,D(IS),USNEG,USPOS,D(IN),UNNEG,UNPOS,UXNEG,UYNEG,
UXPOS,UYPOS,SIGS,SIGN

C 600 CONTINUE
C
COMPUTE DISPLACEMENTS AND STRESSES AT SPECIFIED POINTS IN BODY.

IF (NUMPOS.LE.0) GO TO 900
NPOINT=0
DO 900 N=1,NUMPOS
READ (5,19) XBEG,YBEG,XEND,YEND,NUMPB,KTYPE
IF (KTYPE.EQ.0) WRITE (6,22)
IF (KTYPE.EQ.1) WRITE (6,18)
NUMP=NUMPB+1
DELX=(XEND-XBEG)/NUMP
DELY=(YEND-YBEG)/NUMP
IF (NUMPB.GT.0) NUMP=NUMPB+1
IF (DELX**2+DELY**2.0.E0.) NUMP=1

ANGLE=ATAN2(YEND-YBEG,XEND-XBEG)

DO 890 NI=1,NUMP
XP=XBEG+(NI-1)*DELX
YP=YBEG+(NI-1)*DELY

UX=0.
UY=0.
SIGXX=PIX
SIGYY=PYY
DO 880 J=1,NUMBE
 JN=2*J
 JS=JN-1
 CALL INITL
 XJ=XH(J)
 YJ=YN(J)
 AJ=A(J)

 IF (SQR((X-P)*2+(Y-Q)**2).LT.2.*AJ) GO TO 890
 IF (KTYPE.EQ.1) R=SQR((XP-X**2)+(YP-Y**2)+(XP-X**2)+(YP-Y**2))

 COBJ=COSBT(J)
 SBJ=SINBT(J)
 CALL COEFF(XP,YP,XJ,YJ,AJ,COBJ,SBJ,+1)
 GO TO (840,810,820,830),KSYM

 XJ=2.*XSYM-XH(J)
 CALL COEFF(XP,YP,XJ,YJ,AJ,COBJ,-SBJ,-1)
 GO TO 840

 YJ=2.*YSYM-YN(J)
 CALL COEFF(XP,YP,XJ,YJ,AJ,-COBJ,SBJ,-1)
 GO TO 840

 XJ=2.*XSYM-XH(J)
 YJ=2.*YSYM-YN(J)
 CALL COEFF(XP,YP,XJ,YJ,AJ,-COBJ,-SBJ,-1)
 XJ=XH(J)
 YJ=2.*YSYM-YN(J)
 CALL COEFF(XP,YP,XJ,YJ,AJ,-COBJ,-SBJ,-1)
 XJ=2.*XSYM-XH(J)
 CALL COEFF(XP,YP,XJ,YJ,AJ,-COBJ,-SBJ,+1)

 CONTINUE

 UX=UX+UXS*JS(JN)+UXN*JN
 UY=UY+UYS*JS(JN)+UYN*JN
 SIGXX=SIGXX+XXS*JS(JN)+XXN*JN
 SIGYY=SIGYY+YYS*JS(JN)+YYN*JN
 SIGXY=SIGXY+XYS*JS(JN)+XYN*JN

 CONTINUE

 NPOINT=NPOINT+1
 IF (KTYPE.EQ.1) GO TO 885
 WRITE (6,20) NPOINT,XP,YP,UX,UY,SIGXX,SIGYY,SIGXY
 GO TO 890

 RAD=SQR((SIGXX-SIGYY)*(SIGXX-SIGYY)/4.+SIGXY*SIGXY)
 ANG=PI-ATAN2(-2.*SIGXY,SIGXX-SIGYY)-2.*ANG
 SIGZ=(SIGXX+SIGYY)/2.+RAD*COS(ANG)
 SIG12=-RAD*SIN(ANG)
SIF1=SQRT(2.*PI*R)*SIG2
SIF2=SQRT(2.*PI*R)*SIG12
WRITE (6,20) NPOINT,XP,YP,UX,UY,SIGXX,SIGYY,SIGXY,SIF1,SIF2
C 890 CONTINUE
C 900 CONTINUE
C C FORMAT STATEMENTS.
C C
1 FORMAT (20A4)
2 FORMAT (1H1,/,25X,20A4,/)
3 FORMAT (3I4)
4 FORMAT (3E11.4,F6.2,2F12.4)
5 FORMAT (3E11.4)
6 FORMAT (/,.10H NUMBER OF STRAIGHT-LINE SEGMENTS (EACH CONTAINING A
1 LEAST ONE BOUNDARY ELEMENT) USED TO DEFINE BOUNDARIES =,13,/,12
23H NUMBER OF STRAIGHT-LINE SEGMENTS USED TO SPECIFY OTHER LOCATION
3S (I.E., NOT ON A BOUNDARY) WHERE RESULTS ARE TO BE FOUND =,13)
7 FORMAT (/,.32H NO SYMMETRY CONDITIONS IMPOSED.)
8 FORMAT (/,.18H THE LINE X = XS =,F12.4,23H IS A LINE OF SYMMETRY.)
9 FORMAT (/,.18H THE LINE Y = YS =,F12.4,23H IS A LINE OF SYMMETRY.)
10 FORMAT (/,.19H THE LINES X = XS =,F12.4,13H AND Y = YS =,F12.4,
1 23H ARE LINES OF SYMMETRY.)
11 FORMAT (/,.14H MODULUS EOX =,E11.4,/,14H MODULUS EOX =,E11.4,/,14H
1MODULUS EYX =,E11.4,/,20H POISSON RATIO VXY =,F6.2)
12 FORMAT (/,.31H XX-COMPONENT OF FIELD STRESS =,E11.4,/,31H YY-COMPON
1ENT OF FIELD STRESS =,E11.4,/,31H XY-COMPONENT OF FIELD STRESS =,E11.4,)
13 FORMAT (1H1,/,27H BOUNDARY ELEMENT DATA.,/,96H ELEMENT K
1CODE X (CENTER) Y (CENTER) LENGTH ANGLE UB OR SIGMA-N
2 UN OR SIGMA-N,/)
14 FORMAT (I4,4F12.4,14,2E11.4)
15 FORMAT (219,3F12.4,F12.2,2E15.4)
16 FORMAT (1H1,/,66H DISPLACEMENTS AND STRESSES AT MIDPOINTS OF B
1OUNDARY ELEMENTS.,/,40H ELEMENT DB UB(-) UB(+),
2 60H DN UN(-) UN(+) UX(-) UX(+)
3 30H UX(+) SIGMA-N SIGMA-N,/)
17 FORMAT (I10,10F10.6,2F10.1)
18 FORMAT (1H1,/,63H DISPLACEMENTS AND STRESSES AT SPECIFIED POINT
18 IN THE BODY.,/,117H POINT X CO-ORD Y CO-ORD U
2X UX S1GXX SIGYY SIGXY KI
3 KI,/)
19 FORMAT (4F12.4,214)
20 FORMAT (19,2F12.4,2F12.6,5F12.1)
22 FORMAT (1H1,/,63H DISPLACEMENTS AND STRESSES AT SPECIFIED POINT
18 IN THE BODY.,/,93H POINT X CO-ORD Y CO-ORD UX
2 UX S1GXX SIGXY SIGKY,/)
C C C CLOSE (5)
C C C END

D-9
SUBROUTINE INITL
C COMMON/S2/SXXS,SXXN,SYYS,SYYN,SXYS,SXYN,UXS,UQN,UY8,UYN
C
SXXS=0.
SXXN=0.
SYYS=0.
SYYN=0.
SXYS=0.
SXYN=0.
UXS=0.
UQN=0.
UY8=0.
UYN=0.
C RETURN
C END
C SUBROUTINE COEFF(X,Y,CX,CY,A,COSB,SINB,SYM)
C COMMON/S1/Pi,CON1,CON2,G1,G2,C11,C22,C12,C66
C COMMON/S2/SXXS,SXXN,SYYS,SYYN,SXYS,SXYN,UXS,UQN,UY8,UYN
C COMMON/S2/SXXS,SXXN,SYYS,SYYN,SXYS,SXYN,UXS,UQN,UY8,UYN
C COSB2=COSB*COSB-SINB*SINB
C SINB2=2.*SINB*COSB
C COSB2=COSB*COSB
C SINB2=SINB*SINB
C
C XB=(X-CX)*COSB+(Y-CY)*SINB
C YB=(X-CX)*SINB+(Y-CY)*COSB
C
C A1=(G1*G1*COSB2+SINB2)/G1/G1
C A2=(G2*G2*COSB2+SINB2)/G2/G2
C B1=(1.-G1*G1)*SINB2/G1/G1
C B2=(1.-G2*G2)*SINB2/G2/G2
C C1=(G1*G1*SINB2+COSB2)/G1/G1
C C2=(G2*G2*SINB2+COSB2)/G2/G2
C R1=1=1*(XB-A)*(XB-A)+B1*(XB-A)*YB+C1*YB*YB
C R1=1=1=1*(XB-A)*(XB-A)+B2*(XB-A)*YB+C2*YB*YB
C R2=1=1=1=1*(XB-A)*(XB-A)+B1*(XB-A)*YB+C1*YB*YB
C R2=1=1=1=1*(XB-A)*(XB-A)+B2*(XB-A)*YB+C2*YB*YB
C IF (YB.NE.0.) GO TO 10
C FB1=0.
C FB2=0.
C IF (ABS(XB).LT.A) GO TO 20
C FB1=-PI
C FB2=-PI
C GO TO 20
C
C 12.)
C 12.)
C
C D-10
\[\begin{align*}
20 & \quad FB3 = (\text{ALOG}(R181/R281))/2. \\
& \quad FB4 = (\text{ALOG}(R182/R282))/2. \\
& \quad R11 = \text{YB}/G1/R181+\text{YB}/G1/R281 \\
& \quad R12 = \text{YB}/G2/R182+\text{YB}/G2/R282 \\
& \quad R21 = (XB-A)/G1/R181-(XB-A)/G1/R281 \\
& \quad R22 = (XB-A)/G2/R182-(XB-A)/G2/R282 \\
& \quad R31 = (A1*(XB-A)+B1*YB/2.)/R181-(A1*(XB-A)+B1*YB/2.)/R281 \\
& \quad R32 = (A2*(XB-A)+B2*YB/2.)/R182-(A2*(XB-A)+B2*YB/2.)/R282 \\
& \quad R41 = (B1*(XB-A)/2.+C1*YB)/R181-(B1*(XB-A)/2.+C1*YB)/R281 \\
& \quad FB5 = R1.1/CON1/G2-R12/CON1/G1 \\
& \quad FB6 = R2.1/CON1/G2-R22/CON1/G1 \\
& \quad FB7 = R1.1/CON1/G1-R12/CON1/G2 \\
& \quad FB8 = R2.1/CON1/G1-R22/CON1/G2 \\
\end{align*} \]
C COMMON/B3/A(1600,1600),B(1600),X(1600)
C
NB=N-1
DO 20 J=1,NB
L=J+1
DO 20 JJ=L,N
XM=A(JJ,J)/A(J,J)
DO 10 I=J,N
10 A(JJ,I)=A(JJ,I)-A(J,I)*XM
20 B(JJ)=B(JJ)-B(J)*XM
C
X(N)=B(N)/A(N,N)
DO 40 J=1,NB
JJ=N-J
L=JJ+1
SUM=0.
DO 30 I=L,N
30 SUM=SUM+A(JJ,I)*X(I)
40 X(JJ)=(B(JJ)-SUM)/A(JJ,JJ)
C
RETURN
END
Bibliography

Captain Ralph E. Urch

He graduated from Jefferson Area High School in Jefferson, Ohio, in 1980 and attended The Ohio State University, from which he received the degree of Bachelor of Science in Aeronautical and Astronautical Engineering in June 1984. Upon graduation, he received a commission in the USAF through the ROTC program. He was assigned to Sacramento Air Logistics Center as an A-10 aircraft structures engineer from July 1984 until entering the School of Engineering, Air Force Institute of Technology, in June 1988.
Title: Validation of the Boundary Element Method Applied to Complex Fracture Mechanics Conditions

Authors: Ralph E. Urich, M.S., Capt, USAF

Report Type: MS Thesis

Date: December 1989

Page Count: 147

Abstract: This investigation presents analyses of several fracture mechanics problems via the Boundary Element Method. Specifically, an indirect procedure known as the Displacement Discontinuity Method was used to solve problems involving cracks in isotropic or specially orthotropic materials. Infinite as well as finite regions were considered.

A series of configurations were analyzed and compared with either analytic solutions or results from a finite element model. Agreement for the infinite-domain problems was excellent, while solutions to the finite-domain problems ranged from good to excellent.

Advantages and disadvantages of the Displacement Discontinuity Method are briefly discussed. The main advantage of the method is the requirement to model only the boundary of the problem under consideration. The major disadvantage is the time required to solve the resulting fully-populated matrix equation.

Separate FORTRAN codes are provided as appendices for the two material types --

Subject Terms: Displacement Discontinuity Method, Orthotropic, Plane Stress

Supplementary Notation: This report is approved for public release; distribution unlimited.