An Investigation of Long Term Orbits About the Planet Mars Using a Dynamic Atmosphere Model

THESIS

Zoltan L. Farago, B.S., B.S.A.E.
Captain, USAF

AFIT/GA/ENY/89D-01

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY
AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio
An Investigation of Long Term Orbits About the Planet Mars Using a Dynamic Atmosphere Model

THESIS

Zoltan L. Farago, B.S., B.S.A.E.
Captain, USAF

AFIT/GA/ENY/89D-01

Approved for public release; distribution unlimited
Preface

The purpose of this study was to examine the effects of atmospheric drag on the long term orbit of artificial satellites about the planet Mars using a dynamic atmosphere model in place of a static atmosphere model.

Existing literature on the Martian atmosphere and orbital equation models were examined and then incorporated into theoretical and computational models. However, the resulting models are only the starting point for the development of more sophisticated theoretical and computational models. This thesis establishes the fundamental differences, if any, in satellite motion due to the use of a dynamic atmosphere model instead of a static atmosphere model.

I am indebted to my thesis advisor, Capt Rodney Bain, for his suggestions and ready assistance. He has increased my understanding of both the mathematical and orbital theory, as well as providing a 'relief valve' for all the frustrations associated with the completion of this thesis. I would especially like to thank Richard P. Oseidacz for his help and moral support.

Zoltan L. Farago
Table of Contents

Preface ... ii
List of Figures iv
List of Tables vii
Notation ... ix
Abstract ... xiii
I. Introduction 1
II. The Martian Atmosphere 3
III. Atmosphere Models 21
 Dynamic Model 22
 Static Model 37
IV. Orbital Equation Model 41
 Lagrange's Orbital Equations 41
 Central Body Disturbing Potential (Martian Gravity) 45
 Solar Radiation Pressure 50
 Atmospheric Drag 58
 Third Body Disturbing Potential (Solar Gravity) 65
V. Approach and Results 69
 Approach .. 69
 Results .. 73
VI. Conclusions and Recommendations 87
 Conclusions 87
 Recommendations 88
Appendix A: 90
Appendix B: 102
Bibliography 155
Vita .. 160
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The Effect of Dust Storms on Atmospheric Temperature and Pressure</td>
<td>8</td>
</tr>
<tr>
<td>1.2</td>
<td>Ionosphere Density as a Function of Altitude</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>Ionosphere Constituent Density as a Function of Altitude</td>
<td>11</td>
</tr>
<tr>
<td>1.4</td>
<td>Atmospheric Temperature as a Function of Time and Latitude</td>
<td>14</td>
</tr>
<tr>
<td>1.5</td>
<td>Atmospheric Temperature as a Function of Time, Latitude, and Dust Storm</td>
<td>15</td>
</tr>
<tr>
<td>1.6</td>
<td>Average Atmospheric Temperature Gradients</td>
<td>16</td>
</tr>
<tr>
<td>1.7</td>
<td>Rossby Circulation Regime in Three Dimensions</td>
<td>20</td>
</tr>
<tr>
<td>4.1</td>
<td>Occultation Geometry</td>
<td>55</td>
</tr>
<tr>
<td>5.1</td>
<td>Periapsis Altitude vs. Time (Case 1)</td>
<td>79</td>
</tr>
<tr>
<td>5.2</td>
<td>Semimajor Axis vs. Time (Case 1)</td>
<td>80</td>
</tr>
<tr>
<td>5.3</td>
<td>Eccentricity vs. Time (Case 1)</td>
<td>81</td>
</tr>
<tr>
<td>5.4</td>
<td>Argument of Periapsis vs. Time (Case 1)</td>
<td>82</td>
</tr>
<tr>
<td>5.5</td>
<td>Periapsis Altitude vs. Time (Case 2)</td>
<td>83</td>
</tr>
<tr>
<td>5.6</td>
<td>Semimajor Axis vs. Time (Case 2)</td>
<td>84</td>
</tr>
<tr>
<td>5.7</td>
<td>Eccentricity vs. Time (Case 2)</td>
<td>85</td>
</tr>
<tr>
<td>5.8</td>
<td>Argument of Periapsis vs. Time (Case 2)</td>
<td>86</td>
</tr>
<tr>
<td>B.1</td>
<td>Periapsis Altitude vs. Time (Case 3)</td>
<td>103</td>
</tr>
<tr>
<td>B.2</td>
<td>Semimajor Axis vs. Time (Case 3)</td>
<td>104</td>
</tr>
<tr>
<td>B.3</td>
<td>Eccentricity vs. Time (Case 3)</td>
<td>105</td>
</tr>
<tr>
<td>B.4</td>
<td>Argument of Periapsis vs. Time (Case 3)</td>
<td>106</td>
</tr>
</tbody>
</table>
B.5 Periapsis Altitude vs. Time (Case 4) 107
B.6 Semimajor Axis vs. Time (Case 4) 108
B.7 Eccentricity vs. Time (Case 4) 109
B.8 Argument of Periapsis vs. Time (Case 4) 110
B.9 Periapsis Altitude vs. Time (Case 5) 111
B.10 Semimajor Axis vs. Time (Case 5) 112
B.11 Eccentricity vs. Time (Case 5) 113
B.12 Periapsis Altitude vs. Time (Case 6) 114
B.13 Semimajor Axis vs. Time (Case 6) 115
B.14 Eccentricity vs. Time (Case 6) 116
B.15 Periapsis Altitude vs. Time (Case 7) 117
B.16 Semimajor Axis vs. Time (Case 7) 118
B.17 Eccentricity vs. Time (Case 7) 119
B.18 Periapsis Altitude vs. Time (Case 8) 120
B.19 Semimajor Axis vs. Time (Case 8) 121
B.20 Eccentricity vs. Time (Case 8) 122
B.21 Periapsis Altitude vs. Time (Case 9) 123
B.22 Semimajor Axis vs. Time (Case 9) 124
B.23 Eccentricity vs. Time (Case 9) 125
B.24 Periapsis Altitude vs. Time (Case 10) 126
B.25 Semimajor Axis vs. Time (Case 10) 127
B.26 Eccentricity vs. Time (Case 10) 128
B.27 Periapsis Altitude vs. Time (Case 11) 129
B.28 Semimajor Axis vs. Time (Case 11) 130
B.29 Eccentricity vs. Time (Case 11) 131
B.30 Periapsis Altitude vs. Time (Case 12) 132
B.31 Semimajor Axis vs. Time (Case 12) 133
B.32 Eccentricity vs. Time (Case 12) 134
B.33 Periapsis Altitude vs. Time (Case 13) 135
B.34 Semimajor Axis vs. Time (Case 13) 136
B.35 Eccentricity vs. Time (Case 13) 137
B.36 Periapsis Altitude vs. Time (Case 14) 138
B.37 Semimajor Axis vs. Time (Case 14) 139
B.36 Eccentricity vs. Time (Case 14) 140
B.39 Periapsis Altitude vs. Time (Case 15) 141
B.40 Semimajor Axis vs. Time (Case 15) 142
B.41 Eccentricity vs. Time (Case 15) 143
B.42 Periapsis Altitude vs. Time (Case 16) 144
B.43 Semimajor Axis vs. Time (Case 16) 145
B.44 Eccentricity vs. Time (Case 16) 146
B.45 Periapsis Altitude vs. Time (Case 17) 147
B.46 Semimajor Axis vs. Time (Case 17) 148
B.47 Eccentricity vs. Time (Case 17) 149
B.48 Atmospheric Density vs. Time 150
B.49 Periapsis Altitude vs. Time (Check Case) 151
B.50 Semimajor Axis vs. Time (Check Case) 152
B.51 Eccentricity vs. Time (Check Case) 153
B.52 Atmospheric Density vs. Time (Check) 154
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Earth and Mars Data</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Composition of the Martian Atmosphere</td>
<td>10</td>
</tr>
<tr>
<td>1.3</td>
<td>Some Ionosphere Reactions</td>
<td>17</td>
</tr>
<tr>
<td>1.4</td>
<td>Some Ionosphere Constituents</td>
<td>17</td>
</tr>
<tr>
<td>3.1</td>
<td>Piecewise Linear Temperature Function of the Martian Thermosphere</td>
<td>31</td>
</tr>
<tr>
<td>3.2</td>
<td>Atmosphere Model Ionosphere Constituents</td>
<td>35</td>
</tr>
<tr>
<td>5.1</td>
<td>Martian Geopotential Coefficients for J_2 and J_3</td>
<td>71</td>
</tr>
<tr>
<td>5.2</td>
<td>Spacecraft Data Input Values</td>
<td>72</td>
</tr>
<tr>
<td>5.3</td>
<td>Other Necessary Input Data</td>
<td>72</td>
</tr>
<tr>
<td>5.4</td>
<td>Case 1 Data</td>
<td>77</td>
</tr>
<tr>
<td>5.5</td>
<td>Case 2 Data</td>
<td>78</td>
</tr>
<tr>
<td>A.1</td>
<td>Case 3 Data</td>
<td>91</td>
</tr>
<tr>
<td>A.2</td>
<td>Case 4 Data</td>
<td>91</td>
</tr>
<tr>
<td>A.3</td>
<td>Case 5 Data</td>
<td>92</td>
</tr>
<tr>
<td>A.4</td>
<td>Case 6 Data</td>
<td>92</td>
</tr>
<tr>
<td>A.5</td>
<td>Case 7 Data</td>
<td>93</td>
</tr>
<tr>
<td>A.6</td>
<td>Case 8 Data</td>
<td>94</td>
</tr>
<tr>
<td>A.7</td>
<td>Case 9 Data</td>
<td>94</td>
</tr>
<tr>
<td>A.8</td>
<td>Case 10 Data</td>
<td>95</td>
</tr>
<tr>
<td>A.9</td>
<td>Case 11 Data</td>
<td>96</td>
</tr>
<tr>
<td>A.10</td>
<td>Case 12 Data</td>
<td>97</td>
</tr>
<tr>
<td>A.11</td>
<td>Case 13 Data</td>
<td>97</td>
</tr>
<tr>
<td>Case</td>
<td>Data</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Case 14 Data</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Case 15 Data</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Case 16 Data</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Case 17 Data</td>
<td></td>
</tr>
</tbody>
</table>

viii
Notation

Roman:

\begin{itemize}
 \item \textbf{A} Satellite cross-sectional area
 \item \textbf{a} Semi-major axis
 \item \textbf{a} mean solar distance
 \item \textbf{a} function of temperature
 \item \textbf{a}_e semi-major axis of Earth
 \item \textbf{a}_p semi-major axis of Mars
 \item \textbf{C}_d atmospheric drag coefficient
 \item \textbf{D} atmospheric drag
 \item \textbf{e} eccentricity
 \item \textbf{F}_\text{Imp} inclination function
 \item \textbf{F}_{10.7} solar radiation intensity
 \item \textbf{f} true anomaly
 \item \textbf{f}_0 mixing ratio for monatomic oxygen
 \item \textbf{g} gravity
 \item \textbf{G}_{lpq} eccentricity function
 \item \textbf{H} scale height for density calculation
 \item \textbf{h} satellite altitude
 \item \textbf{h}_0 Modified or equinoctial set orbital element
 \item \textbf{h}_0 reference altitude for density calculation
 \item \textbf{h}_p periapsis altitude
 \item \textbf{i} inclination
 \item \textbf{k} Modified or equinoctial set orbital element
 \item \textbf{k} universal gas constant
 \item \textbf{L}_s areocentric solar longitude
\end{itemize}
L_1, function of areocentric solar longitude

L_2, function of areocentric solar longitude

M, mean anomaly

m, mass of satellite

m, mean molecular weight

n, mean motion

P, prime integer

P, atmospheric pressure

P_0, maximum amplitude of atmospheric pressure

P_I, $3.141592654...$

Q, prime integer

R', R^*, R, perturbation

R, current solar distance

R_p, Mars' radius plus atmospheric blockage

$R_{6.1}$, correction to reference 6.1 mbar ellipsoid

r, radius vector of satellite relative to Mars

r_s, radius vector of sun relative to Mars

r_{sun}, distance of sun at 1 A.U.

S, angle between sun and satellite

$SCLAT$, areocentric latitude of spacecraft

$SCLONG$, areocentric longitude of spacecraft

$SNLAT$, areocentric latitude of sun

$SNLONG$, areocentric longitude of sun

S_0, ratio of P/Q

S_1, S_2, S_3, Mars centered coordinate system

T, atmospheric temperature

x
\[T' \quad dT/dz \]

TIME
time function for diurnal effect

\[T_{\text{lm}} \quad \text{coefficient of Associated Legendre Polynomial} \]

\[t \quad \text{time} \]

\[T_e \quad \text{Exosphere temperature} \]

\[V \quad \text{gravitational potential energy} \]

\[v \quad \text{satellite velocity} \]

\[x \quad \text{geopotential altitude} \]

\[z \quad \text{altitude} \]

\[\Delta Z_{DS} \quad \text{dust storm correction to turbopause altitude} \]

\[Z_f \quad \text{turbopause altitude} \]

\[\Delta Z_f \quad \text{seasonal correction to turbopause altitude} \]

\[\Delta Z_{SN} \quad \text{seasonal and diurnal correction} \]

Greek:

\[\alpha \quad \text{right ascension} \]

\[\beta \quad \text{inverse of scale height} \]

\[\beta' \quad \text{function of eccentricity} \]

\[\varepsilon_S \quad \text{amplitude of seasonal variation} \]

\[\varepsilon_D \quad \text{amplitude of diurnal variation} \]

\[\tau \quad \text{black body radiation constant} \]

\[\delta \quad \text{declination} \]

\[\theta \quad \text{latitude} \]

\[\theta_g \quad \text{pr.ue meridian} \]

\[\phi \quad \text{longitude} \]
\(L_N \)
stroboscopic mean node

\(\mu \)
gravitational parameter

\(\rho \)
atmospheric density

\(n_0 \)
reference atmospheric density

\(\Omega \)
longitude of the ascending node

\(\omega \)
argument of periapsis

Miscellaneous:

\(\Phi \)
function of density variables

\(\nabla \)
gradient
This study examines the effects of atmospheric drag on the long term orbital motion of an artificial satellite about the planet Mars using a dynamic Martian atmosphere model instead of a static atmosphere model.

Present studies of motion through the Martian atmosphere use a non-rotating (static) atmosphere model which has a simple exponential drop-off with altitude. However, Mars, like other planets, is known to have a turbulent, complex atmosphere. As a result, a new dynamic model of the Martian atmosphere uses data from recent space probes of Mars to simulate an atmosphere that is both position dependent, through latitude and longitude effects, and time dependent, through a variety of effects. These include diurnal and seasonal effects, annual motion effects, solar activity effects, and dust storm effects. Nine constituent gases are included in the above model. The model determines atmospheric mass density for the calculation of atmospheric drag. The existing static model is also used to calculate atmospheric drag to provide a comparison in conjunction with other effects.
In addition to atmospheric drag, perturbations due to the attraction of the sun, the aspherical gravity field of Mars, and the effects of the solar wind are also modeled.

The resulting orbital data are then compared to determine the differences between the two models, thus showing the effects on long term motion of using a dynamic model of the Martian atmosphere.
AN INVESTIGATION OF LONG TERM ORBITS
ABOUT THE PLANET MARS USING A DYNAMIC
ATMOSPHERE MODEL

I. Introduction

Current studies of orbital motion about Mars use a simple non-rotating (static) exponential model for the Martian atmosphere. However, the Martian atmosphere is far from static; the entire surface of Mars has been obscured by dust storms (37:206). Recent data indicate the mass density of the Martian atmosphere is heavily time and position dependent (dynamic) due to a variety of perturbing effects. As a result, no accurate prediction of atmospheric mass density at a particular position and time in the future is possible (8:1). However, using a time and position dependent model of the atmosphere over a sufficiently long time, mass density can be predicted with acceptable accuracy since long time intervals average out short term fluctuations that cannot be modeled (9:1).

Current literature on the Martian atmosphere is examined and then a model for satellite motion through a
"realistic" dynamic Martian atmosphere is formulated. To assess the effect of using a dynamic atmosphere model, the resulting orbital data from the more realistic dynamic atmosphere model was compared to the orbital data from the current static atmosphere model. Two advantages of using a more realistic model would be a better guaranteed lifetime for the satellite, required for various NASA guidelines (9:1), and a more effective use of the limited spacecraft mass and internal space in the tradeoff between fuel and scientific payloads.

The trajectory propagation model includes perturbation models for the aspherical Martian gravity field, the gravitational attraction of the sun, solar radiation pressure, and atmospheric drag at altitudes below 1000 km.
II. The Martian Atmosphere

In order to develop the dynamic atmosphere model, literature on the Martian atmosphere was surveyed and then used to formulate the model. This section briefly reviews the literature.

Similarities of Mars to Earth

The key to understanding the development of models of the Martian atmosphere is to examine the similarities of Mars to Earth and the limitations of viewing Mars through the Earth's atmosphere. Table 1.1 presents Earth and Mars information.

Several similarities exist: 1) the rotation rates are nearly the same, 2) both have seasons although planetary tilt causes longer seasons on Mars, and 3) both planets have polar caps and clouds. On the other hand, 1) Mars receives less radiation from the Sun since it is farther away, 2) it has no oceans, 3) its atmosphere is only about 0.01 that of Earth, and 4) its polar caps are not made from water.
<table>
<thead>
<tr>
<th>Planet:</th>
<th>Earth</th>
<th>Mars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Distance from sun:</td>
<td>1.496E8 km</td>
<td>227,941,963 km</td>
</tr>
<tr>
<td>Eccentricity:</td>
<td>0.017</td>
<td>0.093387</td>
</tr>
<tr>
<td>Inclination to ecliptic:</td>
<td>0°</td>
<td>1.86641°</td>
</tr>
<tr>
<td>Sidereal Period:</td>
<td>365.256 days</td>
<td>686.9804 days</td>
</tr>
<tr>
<td>Equatorial Radius:</td>
<td>6378.2 km</td>
<td>3396.9 km</td>
</tr>
<tr>
<td>Polar Radius:</td>
<td>6356.2 km</td>
<td>3376.1 km</td>
</tr>
<tr>
<td>Mean Surface Gravity:</td>
<td>978 cm/s²</td>
<td>372 cm/s²</td>
</tr>
<tr>
<td>Mean Escape Velocity:</td>
<td>11.2 km/s</td>
<td>5.022 km/s</td>
</tr>
<tr>
<td>Sidereal Day:</td>
<td>23 h 56 m 4 s</td>
<td>24 h 37 m 22.663 s</td>
</tr>
<tr>
<td>Inclination of Equator to Orbit:</td>
<td>23.5°</td>
<td>24.936°</td>
</tr>
<tr>
<td>Visual Albedo:</td>
<td>0.36</td>
<td>0.159</td>
</tr>
</tbody>
</table>

(Various Sources) (Various Sources)

Furthermore, due to the orientation and eccentricity of the orbit, the Martian seasons are not the same length. The southern summer is short and hot, while the northern summer is long and cool, thus strongly affecting the polar caps and the atmosphere.

Brief History of Observations/Theories

A wide variety of seasonal and meteorological data have been observed since Sir William Herschel first noted Mars' thin atmosphere. Until recently, most observations of Mars
were taken from the surface of the Earth (21). However, Earth's atmosphere affects the data. Similar molecules contaminate data, resolution is limited, and signal strength is weakened. Although various means have been used to reduce the amount of atmosphere the signal travels through, these also affected the data, leaving one solution: space probes. A stronger signal and no filtering atmosphere mean the space probes receive data too weak to reach Earth, such as ultraviolet, and have greater resolution and accuracy. They overturned many theories.

Early theories on the Martian atmosphere reveal some good deductions and some bad assumptions. For example, predictions of large diurnal temperature fluctuations were correct. However, the use of terrestrial assumptions and atmosphere-filtered data led to errors. For example, the atmosphere, thought to be mainly N₂ as on Earth, is actually composed almost entirely of CO₂ (5:148). Also, the mean surface pressure, which polarimetric data indicated to be about 85 mbars (21:23), is now accepted as about 6 mbars (15:4321). Further differences will be mentioned in later sections.

Most Recent Information/Beliefs about the Martian Atmosphere

Major seasonal changes occur and are closely associated with changes in the polar caps. In early spring the
southern polar cap has its greatest size. As spring proceeds, the cap sublimates and begins to recede at about 1 of latitude every five days. One-third of the Martian year later the cap has receded to its smallest extent, leaving small remnant ice caps behind (22:4219). The behavior of the northern cap is similar, but not all the details are the same due to the difference in season length and variation in distance from the sun; the planet is at a greater distance from the sun during the northern summer and so receives less heat. Both caps advance and retreat by about 35 latitude each season. Mariners 7 and 9 infrared radiometer and spectrometer measurements showed that the main polar caps are \(\text{CO}_2 \) (3:404). Viking 2 showed the north polar remnant to be water ice, probably the largest collection of water on the planet. The south polar remnant composition is still in some doubt. The polar caps affect atmospheric density by causing the carbon dioxide to "snow out" of the atmosphere or \(\text{CO}_2 \) sublime, causing a seasonal variation of about 25-30% (42:3969). At the cap edge there exist strong winds driven by mass outflow and large temperature gradients during sublimation as well as traveling waves (weather systems) generated equatorward (49:298). As a result, changes in polar temperature have profound effects on atmospheric dynamics (5:124). Dust storms affect the polar caps by filtering the sunlight and
by contributing dust particles to the polar deposits, lowering their albedo (38:270).

Dust is always being injected into the Martian atmosphere (38:259). However, it is greatest at times close to orbital perihelion and summer solstice in the southern hemisphere. There are about 100 local dust storms each year, mostly during the southern hemisphere spring (38:262). Once or twice a year these develop into global dust storms, usually starting in certain preferred locations. These storms are never quite the same, so a long term average must be used to quantify their effects (49:294). Viking showed that measured amplitudes of thermally driven, planetary-scale atmospheric tides were closely coupled to the dust content of the atmosphere, especially during great storms (49:293). The Mariner 9 IRIS (infrared spectroscopy) experiment showed the dust is about $60\pm10\% \text{SiO}_2$ (18:430). Mariner 9 pictures also showed dust thrown into the atmosphere as high as 40-60 km (49:302). Dust storms tend to reduce vertical temperature gradients but increase horizontal temperature gradients (17:334), to warm the upper atmosphere since solar radiation is absorbed by dust suspended in the atmosphere, to increase the depth and intensity of circulation (17:335), to affect the polar ice deposit albedo, and to vary temperature dependence on latitude (32:411). The following figure taken from (18:434) shows some of these effects:
During dust storms, temperature distribution is roughly constant (29:389). Furthermore, during the decay phase, the atmosphere is more isothermal and thus more stable (49:302).

The lack of oceans also affects the atmosphere in ways not originally foreseen. The absence of seasonal heat storage by oceans makes seasonal temperature change very large. Furthermore, outgoing infrared radiation is not constant with latitude but decreases from equator to poles. Finally, atmospheric wave character is changed, resulting in varying circulation regimes (21:130).

The atmosphere is very thin. Average surface pressure is less than 0.01 that of earth. However, because of large variations in surface topography altitude, some locations
have almost five times the surface pressure of others. This fact plus meteorological processes make the surface pressure highly variable. The total mass of the atmosphere, unlike Earth's, undergoes major seasonal variations of as much as 25-30% as CO₂ "snows out" at the winter pole and is released from the receding summer polar cap. Yet, in spite of its thinness, the atmosphere still supports three different kinds of clouds as well as dust storms (22:4280). Furthermore, the presence of dust plays an important role in establishing atmosphere structure.

The Martian atmosphere is usually divided into two layers, a lower neutral layer and an ionosphere (21:228). The lower atmosphere consists mainly of carbon dioxide. The characteristic temperature is about 200 K (21:28), which is generally colder than the average surface temperature which is about 250 K in the daytime (21:25). This difference is due to the presence of temperature gradients which have an average value of about 1.6 K per vertical kilometer (39:4363). Higher up in the atmosphere, large daily waves of temperature and density have been found, indicating a confused and variable structure (39:4364). Below 125 km in altitude, where the atmosphere is well mixed by turbulence, Viking mass spectrometers have discovered that 96.5% of the atmosphere by weight is CO₂ (34:4341). The composition of the lower Martian atmosphere is as follows (37:4637):
Trace amounts of other gases also appear due to photochemical reactions. The lower atmosphere supports the ionosphere.

The topmost layer, or ionosphere, is that part of the atmosphere where constituent densities are low enough for the components to separate diffusively according to mass. Unlike the Earth's ionosphere, its peak density of about 10^5 ions/cm3 occurs near 130 km and is formed primarily of O_2^+ ions (approximately 90% O_2^+ and 10% CO_2^+) that have been produced in local chemical reactions (19:4351). Another important constituent of the outer limits of the atmosphere is atomic hydrogen, H, which is detectable over 10,000 km.
above the surface (37:210). The following figures taken from (4:161) provide data on the ionosphere:

Figure 1.2: Ionosphere Density as a Function of Altitude

Figure 1.3: Ionosphere Constituent Density as a Function of Altitude

Mars model atmosphere. This model atmosphere is based on Mariner 6 and 7 ultraviolet spectrometer and radio occultation results as well as ground-based telescope observations.
Water is a minor constituent of the atmosphere due to low atmospheric pressure and low surface temperatures. Nevertheless, it seems to play an important role in atmospheric chemistry and meteorology. The atmosphere is effectively saturated with water vapor, yet water exists only in vapor or solid form. Viking also found water vapor is uniformly mixed up to altitudes of 10-15 km and shows strong latitudinal gradients that depend on season and location (13:4225). A strong diurnal variation was also detected (13:4242). The total amount of free water in the atmosphere is estimated to be equivalent to 1.3 km³ of ice (13:4246).

The vertical structure of the Martian atmosphere, i.e. the relation of pressure and temperature to altitude, is determined by a complicated interplay among several processes: radiative, convective (natural and forced), and advective energy transport and the way energy from the sun is at first absorbed into the atmosphere and then lost by radiation into space (5:161). Because of the wide range of density in the atmosphere, different processes are dominant at different height ranges. Before 1965, essentially all knowledge of atmospheric structure was based on extrapolations of indirect data with the help of theoretical models (21:25). As mentioned previously, many of these models made assumptions that proved to be incorrect and so invalidated the extrapolated data. Space probe data has
given us the first real knowledge of the structure of the Martian atmosphere.

Two factors control the vertical structure of the lower atmosphere: its composition of almost pure carbon dioxide and its content of large quantities of suspended dust. Carbon dioxide, which has a strong infrared spectrum, radiates energy with great efficiency at Martian temperatures and causes the atmosphere to respond rapidly to changes in the amount of solar radiation received. The suspended dust is a strong absorber of heat directly from the Sun's radiation and provides a distributed energy source throughout the lower atmosphere (29:386).

Surface temperatures depend on latitude, season, and time of day (39:4364). (See Fig. 1.4 Soviet Mars 3 photometer data (32:411)). Viking 1 observed a wide temperature fluctuation from day to night. The usual temperature variation was from about 150 K just before sunrise to a high of 240 K in the early afternoon (42:3969). This diurnal variation is greatest near the ground and occurs because of the surface's ability to radiate its heat to space quickly during the night. During dust storms, this ability is impaired and the daily temperature swing is reduced (26:484). The effect of dust storms on pressure and temperature is shown in the Mariner 9 infrared spectroscopy data of Fig. 1.5 (18:434).
Mariner 9 infrared spectroscopy data also showed large diurnal variations (15-30 K) in atmospheric temperature up to about 30 km and winds with a strong tidal component (18:423). However, other oscillations appear throughout the atmosphere as a result of the direct input of energy from the Sun. These oscillations, which are wavelike in nature and are akin to tides, have been measured as pressure and temperature variations and lead to a very complex wave-
like rather than smooth, vertical structure (39:4375). The mean temperature in the lower atmosphere falls off with altitude at a lapse rate of about 1.4 K per vertical kilometer to a height of about 40 km and is roughly constant at 140 K above that level. This low lapse rate was unexpected and is due to the large amount of suspended dust.

Figure 1.5: Atmospheric Temperature as a Function of Time, Latitude, and Dust Storm

Mariner 9 radio occultation data provided sample temperature gradients (26:504):
Above about 100 km, the structure of the atmosphere is determined by the onset of diffusive separation of the various atmospheric molecules. The tendency of heavier molecules to lie below the lighter overcomes the tendency of turbulence to mix the atmospheric gases. Absorption of ultraviolet light from the sun then dissociates and ionizes the constituents and leads to complex sequences of chemical reactions (5:27). The net result is the embedding of an ionized layer near 130 km and an increase in temperature, particularly of the ionic component, at higher altitudes (19:4351). The top of the atmosphere, or exosphere, is characterized by a temperature of about 325 K averaged over the Martian year (44:469). A good summary of the ion reactions is provided in the following tables (5:255 and 5:275):
Table 1.3: Some Ionosphere Reactions

SOME IMPORTANT CHARGE REARRANGEMENT REACTIONS

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Stoichiometry</th>
<th>Threshold</th>
<th>Energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) O^- + CO_2 → CO + O_2^-</td>
<td>+1.22 eV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) O^- + O_2 → O + O_2^-</td>
<td>+1.54 eV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) O^+ + N_2 → NO^+ + N</td>
<td>+1.12 eV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) N_2^+ + CO_2 → N_2 + CO_2^-</td>
<td>+1.79 eV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) N_2^+ + O_2 → N_2 + O_2^-</td>
<td>+3.50 eV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6) N_2^+ + O → NO^+ + N</td>
<td>+3.08 eV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7) CO^+ + CO_2 → CO + CO_2^-</td>
<td>+0.22 eV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8) CO^+ + O_2 → CO + O_2^-</td>
<td>+1.93 eV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(9) CO_2^+ + O_2 → CO_2 + O_2^-</td>
<td>+1.71 eV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(10) A^- + CO_2 → A + CO_2^-</td>
<td>+1.97 eV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(11) A^- + CO → A + CO^+</td>
<td>+1.75 eV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(12) A^+ + N_2 → A + N_2^+</td>
<td>+0.18 eV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(13) A^+ + O_2 → A + O_2^+</td>
<td>+3.68 eV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(14) O_2^+ + e^- → O + O^-</td>
<td>+6.96 eV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(15) CO^+ + e^- → C + O^-</td>
<td>+2.90 eV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(16) N_2^+ + e^- → N + N^-</td>
<td>+5.42 eV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(17) NO^+ + e^- → N + O^-</td>
<td>+2.74 eV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(18) CO_2^+ + e^- → CO + O^-</td>
<td>+8.13 eV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.4: Some Ionosphere Constituents

SOME ION STATES AND ASSOCIATED THRESHOLDS FOR PHOTOIONIZATION

<table>
<thead>
<tr>
<th>Parent Neutral</th>
<th>Product Ion</th>
<th>Electron Removed</th>
<th>Threshold in eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>O (^3P)</td>
<td>O^+(^3S)</td>
<td>3p</td>
<td>13.6</td>
</tr>
<tr>
<td></td>
<td>O^+(^3D)</td>
<td>3p</td>
<td>16.9</td>
</tr>
<tr>
<td></td>
<td>O^+(^1P)</td>
<td>3p</td>
<td>18.6</td>
</tr>
<tr>
<td></td>
<td>O^+(^2P)</td>
<td>3s</td>
<td>28.5</td>
</tr>
<tr>
<td></td>
<td>O^+(^3P)</td>
<td>2s</td>
<td>40.0</td>
</tr>
<tr>
<td>A (^3S)</td>
<td>A^+(^3P)</td>
<td>3p</td>
<td>15.8</td>
</tr>
<tr>
<td></td>
<td>A^+(^3S)</td>
<td>3s</td>
<td>39.2</td>
</tr>
<tr>
<td>O_2 (^3Σ^-)</td>
<td>O_2(^1I_c)</td>
<td>π_2p</td>
<td>12.1</td>
</tr>
<tr>
<td></td>
<td>O_2(^1T_g)</td>
<td>π_2p</td>
<td>16.1</td>
</tr>
<tr>
<td></td>
<td>O_2(^1T_u)</td>
<td>π_2p</td>
<td>17.0</td>
</tr>
<tr>
<td></td>
<td>O_2(^1Σ^-)</td>
<td>σ_2p</td>
<td>18.2</td>
</tr>
<tr>
<td></td>
<td>O_2(^3Ι_c)</td>
<td>σ_2s</td>
<td>~28</td>
</tr>
<tr>
<td></td>
<td>O_2(^3T_u)</td>
<td>σ_2s</td>
<td>~40</td>
</tr>
<tr>
<td>N_2 (^1Σ_g)</td>
<td>N_2(^3Σ_u)</td>
<td>σ_2p</td>
<td>15.6</td>
</tr>
<tr>
<td></td>
<td>N_2(^1Σ_g)</td>
<td>π_2p</td>
<td>15.7</td>
</tr>
<tr>
<td></td>
<td>N_2(^3Σ_u)</td>
<td>σ_2s</td>
<td>18.8</td>
</tr>
<tr>
<td></td>
<td>N_2(^1Σ_g)</td>
<td>σ_2s</td>
<td>~35</td>
</tr>
<tr>
<td>CO (^1Σ^-)</td>
<td>CO^+(^1Σ^+)</td>
<td>σ_2p</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td>CO^+(^3Π_u)</td>
<td>π_2p</td>
<td>16.6</td>
</tr>
<tr>
<td></td>
<td>CO^+(^3Π_g)</td>
<td>σ_2s</td>
<td>19.7</td>
</tr>
<tr>
<td>CO_2 (^1Σ^-)</td>
<td>CO_2(^1Π_u)</td>
<td>1τ_u</td>
<td>13.8</td>
</tr>
<tr>
<td></td>
<td>CO_2(^1Π_g)</td>
<td>1τ_u</td>
<td>17.3</td>
</tr>
<tr>
<td></td>
<td>CO_2(^3Σ^-)</td>
<td>3σ_u</td>
<td>18.1</td>
</tr>
</tbody>
</table>
All atmospheric motions are ultimately driven by pressure forces induced by thermal gradients and supported by complex feedback mechanisms (5:110). Hence, atmospheric circulation is driven by heating due to absorption of solar and infrared radiation by dust and CO$_2$ as well as sensible heat exchange with the ground (17:322). Furthermore, the global pattern of the atmospheric circulation of Mars shows many superficial similarities to the Earth, although the causes of motion arise from different circumstances.

The most important of these are the ability of the Martian air to adjust rapidly to local conditions of solar heat input, the lack of oceans which have a large thermal inertia, the great range in altitude on the surface, the strong internal heating of the atmosphere due to suspended dust, and, finally, the seasonal deposition and release of a large fraction of the atmosphere by the polar caps (49:298). Knowledge of winds is based on inferences from a global series of measurements made by Mariner 9. These data can be related to the zonal wind field if we assume terrestrial conditions (18:423). The predicted wind fields show a strong dependence on the Martian season since large horizontal temperature gradients build up across the edge of the newly forming polar cap in autumn and winter (49:298). The result is the formation at high latitudes of strong jet streams with eastward velocities in excess of 100 m/s (37:234). On Mars, unlike the Earth, there is also a
relatively strong meridional circulation that transports the atmosphere to and from the winter and summer poles (5:121).

The general circulation pattern is occasionally unstable and exhibits large-scale wave motions and instabilities (5:121). A wave pattern such as this is called a Rossby regime and is characterized by baroclinic instability, which has been observed with Mariner 9 TV observations (29:373). The three dimensional wave pattern is shown in Fig. 1.7 (5:116). Smaller scale wave motions and tides, driven by the Sun and surface topography, include a strong diurnal component and are present everywhere in the atmosphere, resulting in the complex vertical structure (18:439). This turbulence is probably why the atmosphere maintains a uniform composition to extremely low pressure levels and is presumably also an important factor in maintaining the large quantity of dust supported in the atmosphere. Occasionally, for reasons not fully understood, the atmospheric dust develops into planet-wide global dust storms that obscure the planet and reduce atmospheric transmission (49:297).

In summary, the recent space probe data indicate that the atmosphere of Mars is both position dependent, through latitude and longitude effects, and time dependent through such effects as these: diurnal and seasonal, annual motion, solar activity, and dust storm effects.
Vertically exploded view of a wave of short length. The lower portion shows a single streamline of the wave while the upper portion shows (1) the distribution of potential temperature in two vertical, north-south cross sections through the inflection points of the wave and (2) the displacements of air produced by the wave (double arrows). In a short wave the slope of the displacements is greater than the slope of the potential isotherms.

Figure 1.7: Rossby Circulation Regime in Three Dimensions
III. Atmosphere Models

To study the effects of aerodynamic forces on trajectories at orbital speeds, it is necessary to model the planetary atmosphere in which the flights take place. The overriding feature of the atmosphere, as far as the spacecraft is concerned, is the density (47:1). Therefore, the concern in modeling the atmosphere is to conveniently and accurately represent the density.

This study will not model all the atmospheric effects present in the Martian atmosphere which contribute to its density. It is meant to be an initial attempt at modeling the Martian atmosphere dynamically. Only long term effects are kept; short term fluctuations are averaged out or an average value is assigned for the effect. There is some doubt in much of the work on Mars due to assumptions that are not proven to be completely accurate as yet (5:184). As a result, empirical data will be used to provide typical or reasonable values whenever possible. Both dynamic and static models use 1000 km for the limit of atmospheric drag effects; while the ionosphere has hydrogen ions as high above the surface as 10,000 km the first ions that cause significant loss of momentum upon impact are located at about 1000 km (37:210). Finally, both models contain some error in their calculation of pressure due to the fact that
pressure is supposed to be calculated with respect to altitude from the local Martian surface, not with respect to distance from the mass center. However, more detailed knowledge of topography would be necessary and the complexity is beyond the intended scope of this thesis. Instead, the dynamic model uses a reference pressure spheroid, and the static model essentially uses the Martian center of mass.

Dynamic Model

Because the mass density of the Martian atmosphere is heavily time dependent, an accurate calculation of the atmospheric forces on low altitude Martian satellites requires a time dependent atmospheric model. This highly variable nature of the Martian atmosphere means predictions of mass density at a specific time at a specific position are likely to be greatly in error (9:1). However, over a long term period, mass density can be predicted with acceptable accuracy.

This atmosphere model includes seasonal and diurnal variation, dust storm effects, solar activity effects, and the effect of the orbital position of Mars. The change in surface pressure due to polar cap sublimation/condensation is viewed as averaged out over the long term of these orbits. Furthermore, near surface variations and variations due to such effects as topography are viewed as short term
effects only. Finally, the complex wave perturbation motion in the atmosphere and related latitude and longitude gradient representations are left for follow-on work.

Reference Surface

All altitudes are measured with respect to a 6.1 millibar pressure spheroid (15:4321). Since Mars has no oceans it has no sea level to use as a reference. Instead, a reference pressure spheroid is determined by picking the spheroid which in a least squares sense best fits Mariner occultation data for a 6.1 mbar isobar surface. This spheroid nearly coincides with the average surface, ignoring topography, and is specified by these ellipsoidal semiaxes:

\[
\begin{align*}
A &= 3394.67 \text{ km} \\
B &= 3393.21 \text{ km} \\
C &= 3376.78 \text{ km}
\end{align*}
\]

where \(A, B \) are in the equatorial plane, \(C \) is polar, and the \(A \) axis is oriented to the longitudinal angle 108.5' (19:324 and 6:4353). The areocentric coordinate system is the Mars-centered coordinate system; it is equivalent to the Earth-based longitude and latitude system. The fundamental plane is the Martian equatorial plane, and the principal axis is taken as pointing towards the Martian vernal equinox (14:148). The Prime Meridian for Mars is set at a small crater named Airey-0. The celestial longitude of the Sun,
Lₜ₈, in areocentric coordinates is an angular measure of the planet's orbital position.

Solar Activity Variation Effects

The Martian atmosphere is extremely sensitive to solar radiation and responds quickly to any changes in radiation intensity (32:420). Both temperature and density are affected (16:214). The two largest effects, the 11.04 year sunspot cycle and the 26.35 day period of the Sun's rotation (the synodic period with respect to Mars), can be modeled for an average intensity over a long term period (9:3 and 17:2).

A common measure of solar radiation intensity used in the literature is the solar F₁₀.₇ centimeter radio flux, usually given in units of 10⁻²² W/m² Hz (19:4362). Following the method in reference (10), F₁₀.₇ can be modeled using empirical data to create an average amplitude function:

\[
F_{10.7} = \left[75 + 60 \left[1 - \cos \left(\frac{2 \pi \cdot \text{Y} + \pi}{11.04} \right) \right] \left[1 - \cos \left(\frac{2 \pi \cdot \text{Y}}{11.04} \right) \right] \right] \\
\times \left[1 + B \sin \left(\frac{2 \pi \cdot \text{d}}{26.35} \right) \right],
\]

(3.2)

where \(\pi = 3.141592654 \), \(\text{Y} \) is the time interval in years from April 1, 1976, \(\text{d} \) is the time interval in days measured from a reference date chosen to match available Viking 1,2 Lander
data, and B is 0.0011 times the value of F_{10.7} with the short-term variation averaged out, i.e., B is the first bracketed term times 0.0011. This equation is suitable for long term orbits and will be used in various other equations.

Effect on Temperature

The F_{10.7} solar radiation intensity is used to calculate the exosphere temperature, T_e. The exosphere begins where the mean free path of atmosphere constituents equals their scale height (21:28). This calculation is modeled using empirical data for amplitudes and modeling the distance of the planet from the sun (8:3). The equation representation is

\[T_e = 205K \left[\frac{a}{R} \right]^2 \left[\frac{F_{10.7} + 75}{150} \right], \quad (3.3) \]

where \((a/R)\) is the ratio of the mean solar distance to the current solar distance, and the radiation intensity's decay with the square of the distance is included through \((a/R)^2\).

Effect on Density

Compared to the Earth, the van atmosphere is transparent to energy radiation and without oceans does not store heat as readily. As a result, the local effect
differs from that on Earth. The response of the Martian atmosphere to solar radiation is a function of time and can be broken down into two effects: seasonal variations and diurnal variations. Furthermore, time can be treated as a function of the local angle of the Sun.

Seasonal Variation

A simple way to relate this effect to time is to express it as a function of the difference in latitude of the Sun, SNLAT, and the latitude of the spacecraft, SCLAT. This can be modeled as a correction to the turbopause altitude, Zf, where Zf is defined as the upper limit of the thermosphere or lower atmosphere. The amplitude of this effect is very small, and in the absence of better information has been set to $\epsilon_s = 0.1 \text{ km}$. The empirical equation in terms of turbopause altitude is

$$\Delta Z_f = \epsilon_s \cos(SNLAT - SCLAT).$$

Diurnal Variation

The diurnal effect is expressed as a function of local time in radians by relating time to the difference in longitude of the Sun, SNLONG, and the longitude of the spacecraft, SCLONG. In addition, (8:3) adds a two hour lag, set equal to $\pi=3.14...$, similar to that seen in the Earth's atmosphere. Thus, the resulting equation for time is
\[
\text{TIME} = (\text{SCLONG} - \text{SNLONG}) + \pi. \tag{3.5}
\]

However, this effect falls off with latitude until it becomes negligible in the region of the poles since less sunlight reaches there, i.e., temperature is latitude dependent \((21:25)\). As a result, the final equation will include a latitude effect, \(\cos(\text{SCLAT})\), chosen to make this effect vanish at the poles.

Viking lander data showed the diurnal effect decreasing with decreasing altitude, being only a minor variation at the surface \((39:4367 \text{ and } 47:2)\). As a result, this effect is deemed negligible in the lower atmosphere and is treated only as a variation in the upper atmosphere. There, the effect is separated into two components:

1) A correction to turbopause altitude, \(Z_f\):

As with the seasonal effect, the amplitude of this correction is small \((18:439)\) and, in the absence of better information, is set to \(\varepsilon_D = 0.1 \text{ km}\). According to \((10:331)\), the best empirical fit, including latitude drop off, is

\[
\Delta Z_f = \varepsilon_D \cos(TIME - 3.6651914)\cos(\text{SCLAT}). \tag{3.6}
\]

2) A variation in the mixing ratio of monatomic oxygen above the thermosphere:
From empirical data, monatomic oxygen is the dominant constituent at this altitude (34:4348). This variation is accepted in (10:331 and 31:4384) as being represented by the following equation for the mixing ratio at the turbopause:

\[f_0 = 0.02 \left(1 - 0.5 \sin(TIME)\sin(SCLAT)\right). \] (3.7)

Dust Storm Effects

While dust is always present in the Martian atmosphere, the primary turbidity effects are those of the global dust storms which occur annually as Mars passes perihelion (38:262). Global dust storms are those dust storms that grow out of local dust storms at certain preferred locations and seasons to obscure the entire planet and throw dust into the atmosphere as high as 60 km (49:302). They cause both density and temperature changes. However, observed variation from year to year has been great and can be expected to remain so (49:296). Therefore, the only way to model this effect is to choose a typical year global dust storm as the "average" effect. For this purpose, Viking data on the 1977 storms is chosen. These storms showed a double peak with maximum thicknesses of 7.5 km with onset at solar longitude of \(L_s = 210' \) and 13.5 km at solar longitude of \(L_s = 270' \) in the areocentric system (49:290). Note, the perihelion of Mars corresponds to an areocentric solar...
longitude of about \(L_s = 250' \). The onset of all global dust storms was within 60' of this longitude (49:299).

The dust storm effect appears as an isothermal layer inserted at the bottom of the Martian atmosphere, with the higher thermal layers pushed upward by this amount (26:493). Therefore, using Viking data the turbidity layer is modeled as (10:332)

\[
\Delta Z_{DS} = 1.2 \text{ km} + \sum_{i=1,2} \left[\frac{\Delta Z_i}{0.65} \right] \left[1 - e^{-(\Delta L_i/5)} \right] \left[e^{-(\Delta L_i/35)} \right] \]

(3.8)

where \(\Delta Z_1 = 7.5 \text{ km}, \) \(\Delta Z_2 = 13.5 \text{ km}, \) \(\Delta L_1 = L_s - 210', \) \(\Delta L_2 = L_s - 270'. \) (3.9a) (3.9b) (3.9c) (3.9d)

The equation uses 1.2 km as an average impact on the turbopause, and the right term fits the empirical data for the additional overlapping effects of the two peaks at 210' and 270' (49:290).

Annual Motion Effects

The annual motion of Mars about the Sun changes the distance between the two bodies as well as the orientation of the planet to the Sun's radiation. These changes result in variation in the temperature profile of the atmosphere in addition to changes in the "size" (and so pressure) of the
atmosphere -- the atmosphere alternately swells and shrinks. However, the pressure variation is less important than the other effects. Annual motion is basically a time effect which can be expressed as a function of both the longitude of the Sun in areocentric coordinates, \(L_s \), (measured from the Martian autuminal equinox, which corresponds to a heliocentric longitude for Mars of 85'), and the Mars-Sun distance \(R \) expressed nondimensionally as \((a/R) \) (8:4). The dust storm effect in the last section is basically an annual motion effect.

Empirical data show a good approximation for the annual motion effect on pressure is (9:5)

\[
P = P_0 (1 - 0.24 \sin(L_s - 59')).
\]
(3.10)

This pressure effect can be included by correcting the 6.1 mbar ellipsoid used as the reference level in this model atmosphere by (10:332)

\[
\Delta R_{6.1} = -11.3 \ln[1 - 0.24 \sin(L_s-59')] \text{ km.}
\]
(3.11a)

In recognition of the uncertainty in this term, and to avoid repeated evaluation of the log term, this is approximated to the first order of the logarithmic series for \(\ln(1-x) = -(x + x^2/2 + ...) = -(-11.3)(-0.24\sin()) \) by

\[
\Delta R_{6.1} = -2.8 \sin(L_s - 59') \text{ km.}
\]
(3.11b)

30
This is based on an average temperature over the entire day at the reference ellipsoid of 220 K (21:25).

The two most important effects, the temperature profile variation and the change in size of the atmosphere are modeled using empirical data. Basically, accepted usage is to form a temperature function which is piecewise linear between specified data points. One such function is given in the following table (39:4364 and 9:5):

<table>
<thead>
<tr>
<th>Altitude (km)</th>
<th>Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference, R61MB, Z=0</td>
<td>220'(a/R)</td>
</tr>
<tr>
<td>ZL = ΔZDS(2.75)</td>
<td>220'(a/R)</td>
</tr>
<tr>
<td>ZA = ZL + 32(a/R)</td>
<td>140'(a/R)</td>
</tr>
<tr>
<td>ZB = ΔZDS + 100(a/R)</td>
<td>140'(a/R)</td>
</tr>
<tr>
<td>ZF = ΔZDS + 125(a/R) + ΔZSN</td>
<td>172.5'(a/R)</td>
</tr>
</tbody>
</table>

where ΔZDS is the dust storm correction and ΔZSN is the seasonal and diurnal correction. The table represents two isothermal layers and two layers of constant temperature lapse rates (24). Furthermore, both the exosphere
temperature and the solar radiation flux, $F_{10.7}$, depend on the annual motion.

Density Calculations

For mass density calculations, the atmosphere can be divided into two regimes: a lower neutral atmosphere, called the thermosphere, and an upper layer, called the ionosphere (21:228). The dividing line between these two layers is called the turbopause and is stated as an altitude, Z_f. This altitude varies between approximately 115 km to 150 km, with an average value of about 130 km (34:4346). This average altitude also represents the region of maximum ion density, i.e., this is where a spacecraft would "enter" the atmosphere. Consequently, satellites are placed in orbit above this level and most of the satellite atmospheric drag is in the upper atmosphere regime. The two regions do not behave the same (18:435).

The lower atmosphere or thermosphere can be treated as a neutral gas with an ideal gas molecular weight of $m = 43.3$ gm/mole based on Viking 2 data (39:4368). The thermal layers of this lower atmosphere vary with annual motion and a temperature-altitude model is given in Table 3.1. Mass density is calculated using pressure and temperature information in the ideal gas law. The pressure in this regime is known to follow an exponential law (5:232), and
the pressure is found by solving the barometric law analytically. In the two isothermal layers, the pressure is calculated using the equation (21.27)

\[P = P_i e^{\left(-\frac{z-z_i}{H_i}\right)} \]

where \(P_i \) is the pressure at the lower bound of the layer, \(z_i \), and the scale height for the layer is given by

\[H_i = \frac{kT_i}{mg_i} \]

where\(k \) = Universal gas constant,
\(T_i \) = temperature in the layer (K),
\(m_i \) = mean molecular weight
\(g_i \) = local gravity.

In the two layers of constant temperature lapse rate (linear temperature function), the pressure is calculated differently. The generalized equation for the molecular weight, \(m \), of nonisothermal regimes changes equation (3.13) to (39:4368)

\[m = \left[\frac{kT}{P g} \right] \left[\frac{dP}{dz} \right] \]

where \(P \) is the pressure and \(z \) is the altitude. Rearranging this equation and multiplying by \((dT/dT) \) yields:
\[
\frac{dP}{dT} = \frac{mg}{kT} \quad \frac{dT}{dz} = \frac{mg}{kT} \quad \frac{dT}{dT} = \frac{T}{T'}
\]

\[
= \frac{mg}{kT'} \quad \frac{dT}{T}
\]

where \(T' \) is \((dT/dz)\). Integration yields:

\[
\ln\left(\frac{P_2}{P_1}\right) = \frac{mg}{kT'} \ln\left(\frac{T_2}{T_1}\right)
\]

\[
= \ln\left(\frac{T_2}{T_1}\right).
\]

Taking the antilogarithm produces:

\[
P = P_i \left(\frac{T}{T_i}\right),
\]

where \(i \) refers to the lower bound of the layer \(Z_i \) as before, and \(T' \) is approximated as the temperature lapse rate \((\Delta T/\Delta Z)\). Once the pressure is known, the mass density can be calculated. The standard relation between pressure and the mass density, \(\mu \), is (34:4344):

\[
\frac{dp}{dz} = -\mu g.
\]

Substituting this into equation (3.14) yields the equation:

\[
\beta = \frac{mP}{kT}
\]
The upper atmosphere or ionosphere does not follow a simple exponential, ideal law formulation. This regime is composed of dissociated ions and molecules which are not well mixed \(19:4351\). Therefore, the mass density must be calculated using properties of the constituents of this layer. The most straightforward way to calculate the mass density is to use the number densities of the constituents, modifying the process with a measure of the mixture ratio between them. There are nine constituents included in this model (see Table 3.2).

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Molecular Weight (gm/mole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Dioxide ((\text{CO}_2))</td>
<td>44.01</td>
</tr>
<tr>
<td>Monatomic Oxygen ((\text{O}))</td>
<td>16.0</td>
</tr>
<tr>
<td>Molecular Nitrogen ((\text{N}_2))</td>
<td>28.012</td>
</tr>
<tr>
<td>Argon ((\text{Ar}))</td>
<td>39.948</td>
</tr>
<tr>
<td>Carbon Monoxide ((\text{CO}))</td>
<td>28.01</td>
</tr>
<tr>
<td>Molecular Oxygen ((\text{O}_2))</td>
<td>32.0</td>
</tr>
<tr>
<td>Helium ((\text{He}))</td>
<td>4.0</td>
</tr>
<tr>
<td>Monatomic Hydrogen ((\text{H}))</td>
<td>1.0</td>
</tr>
<tr>
<td>Molecular Hydrogen ((\text{H}_2))</td>
<td>2.0</td>
</tr>
</tbody>
</table>

The mass density is calculated in this region using the methods found in references \(9\) and \(10\). The number
densities are calculated as a function of the geopotential altitude, \(x \). The geopotential altitude is defined as:

\[
N = \left[\frac{(z-z_f)}{1 + \frac{(z-z_f)}{R_f}} \right]^{(z-z_f)}
\]

(3.13)

where \(z \) = altitude of spacecraft above pressure reference surface
\(z_f \) = altitude of turbopause
\(R_f \) = areocentric distance of turbopause.

The temperature is calculated using

\[
T = T_o - (T_o - T_f) e^{-\frac{x}{a}}
\]

(3.20)

where \(a = (T_o - T_f) / (\Delta T/\Delta Z)_f = T_o/18 \),

(3.21)

\(T_f \) = temperature at turbopause,
\((\Delta T/\Delta Z)_f \) = approximation for \(T' \) at turbopause.

The partial pressure for a constituent \(i \) is calculated using

\[
P_i = P_f f_i e^{-\frac{x}{A}} H_i (T_f/T),
\]

(3.22)

where \(f_i \) is the mixing ratio of the constituent at the turbopause, \(Z_f \), (34:4345) and \(H_i \) is the constituent scale height defined by (34:4346)
with \(m_i \) being the molecular weight of the constituent and \(g_f \) being referenced to the turbopause. Now, use the partial pressure to calculate the number density in the rewritten gas law equation:

\[
\frac{p_i}{k T} = n_i \quad (3.24)
\]

Finally, the mass density is found by summing the number densities and converting to mass units:

\[
\mu = \frac{\sum n_i m_i}{N} \quad (3.25)
\]

where \(N = 6.023 \times 10^{26} \) /kg mole, \(k = 8314.39 \) J/kg mol K, and \(i = 1, \ldots, 9 \) for the nine constituents. The mass density, \(\mu \), can now be used in drag equations to determine atmospheric drag on a spacecraft in the orbital equations of motion.

Static Model

The static atmosphere model is a much simpler model of the atmosphere. It is not meant to be a highly accurate representation of the actual Martian atmosphere but rather a
quick means to obtain an upper bound approximation of the mass density. A number of fundamental assumptions are made following the methods introduced in reference (47). These assumptions greatly streamline the necessary calculations, which saves valuable computer time if great precision to real Martian atmospheric conditions is not required.

The static atmosphere is modeled quite differently from the dynamic model. The effect of composition of the atmosphere is assumed to be negligible, although that composition is very important in understanding the ionosphere. Instead, the atmosphere is treated as a uniform gas of unvarying composition. This is a reasonable assumption if the atmosphere is modeled to provide an upper bound on density rather than match varying actual conditions. Also, a simple "spherical symmetry" modified by ellipticity is assumed, i.e., the atmospheric pressure is essentially a function only of radial distance from the center of the planet. As mentioned before, this should be a function of altitude, which is a function of topography. However, this model is meant to be a very convenient way to estimate density. Also, solar radiation effects on the atmosphere are regarded as being negligible. Again, this is acceptable within the framework of the intent of the model. Furthermore, the atmosphere is assumed to be nonrotating. This is a reasonable assumption since the aerodynamic forces generated by the rotation have larger effects only at low
altitudes. One measure of the effect is to examine maximum rotational speed of Mars at the equator. This can be represented as the ratio of the surface rotational speed divided by the circular orbital speed at the surface expressed as a percentage. For Mars, this measure is given as seven percent, which is a maximum (47:3). Therefore, this is a reasonable assumption. The net effect of the above assumptions is that there is time dependence built into the model. Another very important assumption is that the density decreases exponentially with altitude. Combining equations (3.17) and (3.18) and reorganizing after taking the resulting derivative yields

\[
\frac{du}{\mu} = - \left[\frac{\gamma m}{kT} + \frac{1}{T} \frac{dT}{dr} \right] dr \quad (3.26a)
\]

\[
= - \beta \, dr, \quad (3.26b)
\]

where \(\beta \) is defined as the bracketed term above and is the reciprocal of the scale height (1/H). If \(\beta \) is considered to be constant over some small altitude interval, the integrated density function is

\[
\mu = \mu_0 \, e^{-\beta(z-z_0)} \quad (3.27)
\]

or

\[
\mu = \mu_0 \, e^{-(z-z_0)/H}.
\]
As a result, the only elements of the model that must be determined under these assumptions are the input values for the reference density \(p_0 \), the corresponding reference altitude, and the scale height \(H \) for the altitude interval. Unfortunately, there are many models and various data in the literature and they don’t always agree closely. Therefore, a representative set must be chosen from empirical data.

The scale height has been observed to increase with altitude from about 10 km at the surface to a maximum average ionospheric scale height of 38.5 km (26:484). Since the spacecraft will be spending its atmospheric time in the ionosphere, the scale height should be somewhere near this upper number. Reference (5:156) uses Mariner data to give an upper bound value for scale height of about 35 km. Therefore, a reasonable scale height datum in this range is 36 km for the ionosphere. According to Viking 1 empirical data this corresponds to a reference height of about 361 km and reference density of approximately \(6 \times 10^{-13} \) kg/m\(^3\) (39:4373). These values result in a density equation of

\[
\mu = \left(\frac{361 \text{ km} - z}{36 \text{ km}} \right) \left(6 \times 10^{-13} \text{ kg/m}^3 \right) e. \tag{3.28}
\]

This is the equation used in the static atmosphere model to calculate the mass density.
IV. Orbital Equation Model

A model for orbital motion about Mars is developed using Keplerian motion (Lagrange's Planetary Equations) subject to certain perturbations. The perturbations included are the aspherical gravity field of Mars (geopotential or central body disturbing potential), the gravitational attraction of the sun (third body disturbing potential), atmospheric drag (using two different models to generate atmospheric mass density for the calculation), and solar radiation pressure. This section addresses each part of the overall model in order to build the complete thesis model.

Lagrange's Planetary Equations

Lagrange's Planetary Equations are usually written in terms of the classic orbital elements a, e, i, w, and M. However, there are disadvantages to using these elements as the variables in the orbital differential equations. The typical Lagrange's Planetary Equations given in (20:29) are:

\[
\frac{da}{dt} = \frac{2}{na} \frac{\partial R^*}{\partial M} \tag{4.1.1a}
\]

\[
\frac{de}{dt} = \frac{1-e^2}{na^2e} \frac{\partial R^*}{\partial M} - \frac{\sqrt{1-e^2}}{na^2e} \frac{\partial R^*}{\partial e} \tag{4.1.1b}
\]
\[
\frac{\partial \phi}{\partial t} = -\frac{\cos i}{\mu^2 \sin i (1 - e^2)} \frac{\partial R^*}{\partial i} + \frac{1-e^2}{\mu^2 e} \frac{\partial R^*}{\partial e}
\]

\[
\frac{\partial i}{\partial t} = \frac{\cos i}{\mu^2 \sin i (1 - e^2)} \frac{\partial R^*}{\partial \omega} - \frac{1}{\mu^2 \sin i (1 - e^2)} \frac{\partial R^*}{\partial \omega}
\]

\[
\frac{\partial \omega}{\partial t} = \frac{1}{\mu^2 \sin i (1 - e^2)} \frac{\partial R^*}{\partial i}
\]

\[
\frac{\partial M}{\partial t} = n - \frac{1-e^2}{\mu^2 e} \frac{\partial R^*}{\partial e} - \frac{2}{\mu} \frac{\partial R^*}{\partial a}
\]

where \(R^* \) is the disturbing potential, assumed a function of the classical elements, and \(n \) is the mean motion.

As can be seen above, \(i \) and \(e \) are in the denominators of some of these differential equations and will produce singularities if they become vanishingly small. To avoid this problem, two actions are taken. First, to avoid the singularity in inclination, the inclination is never set equal to zero. Second, new orbital elements, designated \(h \) and \(k \), are introduced which will eliminate the singularity due to zero eccentricity (28:3-1):

\[
h = e \sin \omega. \tag{4.1.2a}
\]

\[
k = e \cos \omega. \tag{4.1.2b}
\]

To facilitate the numerical integration, a singly averaged method is used. This method removes the fast
variable terms involving the mean anomaly H in the geopotential and third body potential before numerical integration. However, terms involving the mean anomaly but giving rise to resonant terms with the geopotential tesserals are retained. This is exactly what we want since only long term orbital behavior is of interest. To emphasize resonance, the mean anomaly will be replaced with another new orbital parameter called the stroboscopic mean node, L_N (16:167-189).

While affecting all Keplerian elements, the greatest effect of resonance shows up in the longitude dependent L_N (20:49-56). The stroboscopic mean node is defined as follows:

$$L_N = \left[\frac{\frac{H + \Omega}{S_0}} \right] + (\Omega - \theta_g), \quad (4.1.3)$$

where S_0 is the ratio of two relatively prime integers, P/Q, approximating the number of nodal crossings per planet revolution, and θ_g is the Prime Meridian angle. Reference (20) provides a good description of the physical meaning of the stroboscopic mean node.

Numerical quadrature is used to average the potential due to solar radiation pressure and to drag. The resulting averaged equations of motion are integrated numerically using a multistep, variable order and variable step-size integrator (28). Due to the elimination of the fast
variable in the equations of motion, large step sizes of the
order of days are possible. This suits the long term orbit
studies desired, but eliminates short term information since
that information has been averaged out (28:1-2).

The orbital equation model uses a planet equator of
epoch coordinate system, which is a non-rotating coordinate
system where the X-Y plane is the equator plane, defined at
some epoch, of the planet being orbited by the spacecraft.
Polar motion is ignored. Reference (28) provides a set of
recommended orbital elements for the sun with respect to
Mars' equator and equinox of epoch and the location of the
Prime Meridian for three epochs. The closest epoch to the
mission is chosen; the positional error introduced is less
than 0.1' if the solar ephemeris reference date is very
close to the mission date (28:2-1,2-11).

Lagrange's Planetary Equations must be transformed from
the classical Keplerian orbital element set to the new
orbital parameter set of a, h, i, k, Ω, L_N. Substituting
derivatives of the disturbing potential into Equ. (4.1.1)
and using the chain rule to introduce the new orbital
elements yields (30:3-2):

\[
\frac{da}{dt} = 2 \frac{1}{na} \frac{\partial R}{\partial L_N}
\]

\[
\frac{dh}{dt} = \frac{\partial R}{\partial k} \frac{k \cot i}{na^2} \frac{\partial R}{\partial i} - \frac{h \beta' \partial R}{\partial L_N}
\]
\[
\frac{di}{dt} = \frac{\cot i}{na^2 \sqrt{1-e^2}} \left[k \frac{\partial R}{\partial h} - h \frac{\partial R}{\partial k} + \frac{1}{S_0} \frac{\partial R}{\partial L_N} \right] \\
- \frac{1}{na^2 \sin i \sqrt{1-e^2}} \left[\frac{\partial R}{\partial \Omega} + \frac{\partial R}{\partial L_N} \right] \] (4.1.4c)

\[
\frac{dk}{dt} = -\sqrt{1-e^2} \frac{\partial R}{\partial h} + h \cot i \frac{\partial R}{\partial k} - k B' \sqrt{1-e^2} \frac{\partial R}{naS_0} \frac{\partial L_N}{\partial L_N} \] (4.1.4d)

\[
\frac{d\Omega}{dt} = \frac{1}{na^2 \sin i \sqrt{1-e^2}} \frac{\partial R}{\partial i} \] (4.1.4e)

\[
\frac{dL_N}{dt} = \frac{n - d\theta g + 1}{S_0} \left[\frac{B' \sqrt{1-e^2}}{naS_0} \left[h \frac{\partial R}{\partial h} + k \frac{\partial R}{\partial k} \right] \\
- 2a \frac{\partial R}{\partial a} \frac{S_0 - \cos i}{\sin i \sqrt{1-e^2}} \frac{\partial R}{\partial i} \right] \] (4.1.4f)

where \(e = \sqrt{h^2 + k^2} \), \(n = \sqrt{\mu/a^3} \), and \(B' = \frac{1}{1 + \sqrt{1-e^2}} \).

Central Body Disturbing Potential (Martian Gravity)

This model for the aspherical gravity field perturbation (geopotential) is developed in detail in references (11), (20), and (48). The geopotential is expressed by the following relationship where the equation is made
dimensionless using the gravitational parameter μ and planetary radius R_e:

$$V(r, \theta, \phi) = -\frac{\mu}{r} \sum_{l=0}^{\infty} \sum_{m=0}^{l} \left(-\frac{r}{R_e} \right)^l P_l^m(\sin \theta)(C_l^m \cos \phi + S_l^m \sin \phi).$$

(4.2.1)

This equation is transformed into a Keplerian variable form using two new functions that depend on Keplerian elements: the inclination function $F_{\text{imp}}(i)$ and the eccentricity function $G_{lpq}(e)$. The complete derivation may be found in (11) or (20).

The inclination function is defined as follows:

$$F_{\text{imp}}(i) = \sum_{t=0}^{t_{\text{max}}} \frac{(2l-2t)!}{t!(l-t)!(l-m-2t)!2^{l-2t}} \sin^{l-m-2t}(i)$$

$$\times \left[\sum_{m-s}^{m} \cos^S(i) \sum_{c}^{l-m-2t+s} \left(\begin{array}{c} m-s \\ c \\ p-t-c \end{array} \right) (-1)^{c-k} \right], \quad (4.2.2)$$

where $c = \text{all integers where binomial coefficients are nonzero}$. The restrictions on binomial coefficients result in a lower limit on index c of $c_{l} = \max(0, p-t-m-s)$, and an upper limit of $c_{u} = \min(l-m-2t+s, p-t)$, $c_{u} \geq c_{l}$.

The eccentricity function is defined as follows:

$$G_{lp}(2p-l) =$$

$$\frac{1}{a^{l+1}(1-e^2)^{l-\frac{1}{2}}} \sum_{d=0}^{l+1} \left[\begin{array}{c} l-1 \\ 2d+1-2p \end{array} \right] \left[\begin{array}{c} 2d+l-2p' \\ d \end{array} \right] \left(\begin{array}{c} e \\ 2 \end{array} \right), \quad (4.2.3)$$

46
where \(p' = \begin{cases} p & \text{for } p \leq 1/2 \\ 1-p & \text{for } p \geq 1/2. \end{cases} \)

Now the disturbing function may be expressed as

\[
R = \sum_{l=2}^{\infty} \sum_{m=0}^{l-1} V_{lm},
\]

where

\[
V_{lm} = \frac{\mu R_e^l}{a} J_{lm} \sum_{p=0}^{l-1} F_{lmp}(i) \sum_{q=-m}^{m} \left[G_{lpq}(e) S_{lmq}(\omega, M, \Omega, \theta) \right]
\]

and

\[
S_{lmq} = \begin{cases} C_{lm} \cos \omega + S_{lm} \sin \omega, & l-m \text{ even} \\ -S_{lm} \cos \omega + C_{lm} \sin \omega, & l-m \text{ odd} \end{cases}
\]

with \(\alpha = (l-2p)\omega + (l-2p+q)M + m(\Omega-\theta). \)

Alternately, converting to the modified elements using the equations and definitions in (28:3-4,7), \(V_{lm} \) becomes

\[
V_{lm} = \frac{\mu R_e^l}{a} J_{lm} \sum_{p=0}^{l-1} F_{lmp}(i) \sum_{q=-m}^{m} \left[G'_{lpq}(e) S_{lmq}(h, k, L_N) \right].
\]

Now substitute the derivatives of \(V_{lm} \) with respect to the modified orbital element set into Lagrange's Planetary Equations (4.1.4) to yield:

\[
\frac{da}{dt} = \left[\begin{array}{c} \frac{2}{naS_0} \mu R_e^l \sum_{p=0}^{l-1} F_{lmp} \frac{1}{m} \frac{\partial S_{lmq}}{\partial L_N} \end{array} \right], m \neq 0
\]

\[
= \left[\begin{array}{c} 0, \ m = 0. \end{array} \right]
\]

47
\[
\begin{align*}
\frac{dh}{dt} &= \frac{\sqrt{1-e^2}}{na^2} \left[\frac{\mu R_e^l}{a^{l+1}} J_{l-1}^{l-m} \left(\frac{1}{\partial} \frac{\partial}{\partial x} \right) S_{l-1}^m + S_{l-1}^m \right] \\
&\quad - \frac{k \cot i}{na^2 \sqrt{1-e^2}} \left[\frac{\mu R_e^l}{a^{l+1}} J_{l-1}^{l-m} \left(\frac{1}{\partial} \frac{\partial}{\partial x} \right) G_{l-1}^p(e) S_{l-1}^m \right] \\
&\quad - \frac{h \beta \sqrt{1-e^2}}{na^2 S_0} \left[\frac{\mu R_e^l}{a^{l+1}} J_{l-1}^{l-m} \left(\frac{1}{\partial} \frac{\partial}{\partial x} \right) \frac{G_{l-1}^p}{m} \partial L_N \right], \quad m \neq 0 \\
&\quad = 0 \text{ for } m = 0 \tag{4.2.9b}
\end{align*}
\]

\[
\begin{align*}
\frac{di}{dt} &= \cot i \frac{k \mu R_e^l}{a^{l+1} \sin i} J_{l-1}^{l-m} \left(\frac{1}{\partial} \frac{\partial}{\partial x} \right) S_{l-1}^m + S_{l-1}^m \left(\frac{1}{\partial} \frac{\partial}{\partial x} \right) h \frac{dG}{dF} \\
&\quad - \frac{\cot i}{na^2 \sqrt{1-e^2}} \left[\frac{\mu R_e^l}{a^{l+1}} J_{l-1}^{l-m} \left(\frac{1}{\partial} \frac{\partial}{\partial x} \right) \frac{G_{l-1}^p}{m} \partial L_N \right] \frac{1}{\partial} \frac{\partial}{\partial x} S_{l-1}^m, \quad m \neq 0 \\
&\quad = \cot i \frac{1}{S_0 na^2 \sin i 1-e^2} - \frac{1}{na^2 \sin i 1-e^2} \\
&\quad + \frac{\mu R_e^l}{a^{l+1}} J_{l-1}^{l-m} \left(\frac{1}{\partial} \frac{\partial}{\partial x} \right) S_{l-1}^m, \quad m \neq 0 \tag{4.2.9c}
\end{align*}
\]

\[
\begin{align*}
\frac{dk}{dt} &= \frac{\sqrt{1-e^2}}{na^2} \left[\frac{\mu R_e^l}{a^{l+1}} J_{l-1}^{l-m} \left(\frac{1}{\partial} \frac{\partial}{\partial x} \right) S_{l-1}^m + S_{l-1}^m \right] \\
&\quad - \frac{h \cot i}{na^2 \sqrt{1-e^2}} \left[\frac{\mu R_e^l}{a^{l+1}} J_{l-1}^{l-m} \left(\frac{1}{\partial} \frac{\partial}{\partial x} \right) G_{l-1}^p(e) S_{l-1}^m \right] \\
&\quad + \frac{h \cot i}{na^2 \sqrt{1-e^2}} \left[\frac{\mu R_e^l}{a^{l+1}} J_{l-1}^{l-m} \left(\frac{1}{\partial} \frac{\partial}{\partial x} \right) G_{l-1}^p(e) S_{l-1}^m \right]
\end{align*}
\]
\[
\begin{align*}
- \frac{k \beta_1 e^2}{naS_0} \mu R_e \frac{1}{a^{l+1}} J_{lm} \left. \frac{1}{m} \frac{\partial S_{lmq}}{\partial \ell} \right|_{m=0} &= F_{imp} G'_{lpq} \frac{1}{m} \frac{\partial S_{lmq}}{\partial \ell} \quad \text{m not 0} \\
\frac{d \omega}{dt} &= \frac{1}{n a^2 \sin \dot{\ell}^2 e^2} \mu R_e \frac{1}{a^{l+1}} J_{lm} \left. \frac{1}{m} \frac{\partial F_{imp}}{\partial i} G'_{lpq(e)} S_{lmq} \right|_{m=0} \\
\frac{d \ell_N}{dt} &= \frac{n - d \theta g + 1}{S_0} \left. \beta_1 e^2 \frac{1}{a^{l+1}} J_{lm} \left. \frac{1}{m} \frac{\partial S_{lmq}}{\partial \ell} \right|_{m=0} F_{imp} G'_{lpq} \frac{\partial S_{lmq}}{\partial h} + S_{lmq} \frac{h \, dG'}{e \, de} \right|_{m=0} \\
&+ k \left. \frac{1}{a^{l+1}} J_{lm} \left. \frac{1}{m} \frac{\partial S_{lmq}}{\partial k} \right|_{m=0} F_{imp} G'_{lpq} \frac{\partial S_{lmq}}{\partial k} + S_{lmq} \frac{k \, dG'}{e \, de} \right|_{m=0} \\
&+ 2a \left. \frac{1}{a^{l+2}} J_{lm} \left. \frac{1}{m} \frac{\partial F_{imp}}{\partial i} G'_{lpq(e)} S_{lmq} \right|_{m=0} F_{imp(i)} G'_{lpq(e)} S_{lmq} \right|_{m=0} \\
&+ \frac{S_0 - \cos \theta}{\sin \dot{\ell}^2 e^2} \left. \frac{1}{a^{l+1}} J_{lm} \left. \frac{1}{m} \frac{\partial F_{imp}}{\partial i} G'_{lpq(e)} S_{lmq} \right|_{m=0} \right) \quad \text{(4.2.9f)}
\end{align*}
\]
Solar Radiation Pressure Model

The acceleration of a satellite due to direct solar radiation pressure is given by (28.3-29):

\[\vec{a} = \frac{A'}{m} \left(\frac{\vec{r}_{\text{sun}}}{r_v} \right)^2 \hat{r}_v, \]

(4.3.1)

where \(\vec{r} \) = satellite position vector relative to planet center,
\(r_{\text{sun}} = \) distance of the sun at 1 A.U.,
\(\vec{r}_s \) = position vector of the sun relative to planet center,
\(\vec{r}_v = \vec{r} - \vec{r}_s \)
\(p_s \) = radiation pressure
\(\tau \) = dimensionless black body radiation constant
\(A' \) = effective spacecraft area for radiation pressure
\(m \) = mass of the satellite
\(\hat{r} \) = unit vector

For an orbiting spacecraft, a standard approximation is to take \(\vec{r}_v \approx -\vec{r}_s \). Also, since the orbital eccentricity of Mars is small, 0.093387, assume \(r_s = a_p \), where \(a_p \) is the semimajor axis of Mars' orbit. Further assume \(r_{\text{sun}} = a_e \), where \(a_e \) is the semimajor axis of the Earth's orbit, since its eccentricity is 0.0167. The effect of these assumptions is to change equation (4.3.1) to

\[\vec{a} = -\frac{C_s A'}{m} \hat{r}_s, \]

(4.3.2)
where \(C_S = r P_s (\alpha_e / \alpha_p)^2 \). \hfill (4.3.3)

Equation (4.3.2) may be expressed as a gradient of a potential \(R^* \):

\[
\ddot{r} = \nabla R^* , \tag{4.3.4}
\]

where \(R^* = - \frac{C_S A'}{m} \left[\mathbf{r} \cdot \dot{\mathbf{r}}_S \right] \) (vector form) \hfill (4.3.5a)

or \(R^* = - \frac{C_S A'}{m} r \cos \theta \cos \phi \) (scalar form) \hfill (4.3.5b)

where \(\theta = \) the planet centered angle between the Sun and the satellite. This angle (see occultation subsection) is

\[
\cos \theta = C(\cos \delta \cos \alpha - \cos i \sin \alpha \sin \nu) + A(\sin \delta \cos \alpha + \cos i \cos \delta \sin \nu) + B(\sin i \sin \nu),
\]

where \(A = \cos \delta \sin \alpha \)
\(B = \sin \delta \)
\(C = \cos \delta \cos \alpha \)
\(\delta = \) declination of the sun
\(\alpha = \) right ascension of the sun
\(\nu = \) argument of latitude \((\psi + \omega)\).

For the potential above, \(R^* \), in the classical orbital element set, the following partial derivatives are needed:

\[
\frac{\partial R^*}{\partial a} = - \frac{C_S A'}{m} \cos \theta \tag{4.3.6a}
\]

\[
\frac{\partial R^*}{\partial e} = - \frac{C_S A'}{m} \left[\cos \theta \frac{\partial r}{\partial e} + r \frac{\partial \left(\cos \theta \right)}{\partial u} \frac{\partial u}{\partial e} \right] \tag{4.3.6b}
\]
These further partial derivatives are needed to form the solar radiation equations of motion:

\[
\frac{\partial R^*}{\partial t} = - \frac{C_s A'}{m} r \frac{\partial (\cos \theta)}{\partial t} \quad (4.3.6c)
\]

\[
\frac{\partial R^*}{\partial \Omega} = - \frac{C_s A'}{m} r \frac{\partial (\cos \theta)}{\partial \Omega} \quad (4.3.6d)
\]

\[
\frac{\partial R^*}{\partial \omega} = - \frac{C_s A'}{m} r \frac{\partial (\cos \theta)}{\partial \omega} \quad (4.3.6e)
\]

\[
\frac{\partial R^*}{\partial \mu} = \frac{\partial R^*}{\partial f} \frac{\partial f}{\partial \mu} = - \frac{C_s A'}{m} \left[\frac{a}{r} \right]^2 \cdot 1 - e^2 \quad (4.3.6f)
\]

These further partial derivatives are needed to form the solar radiation equations of motion:

\[
\frac{\partial r}{\partial u} = r \frac{2 \varepsilon \sin f}{a(1-e^2)} \quad (4.4.7a)
\]

\[
\frac{\partial r}{\partial e} = - a \cos f \quad (4.4.7b)
\]

\[
\frac{\partial f}{\partial e} = \frac{\partial u}{\partial e} = \left[\frac{a + \frac{1}{r}}{1 - e^2} \right] \sin f \quad (4.4.7c)
\]

\[
\frac{\partial \cos \theta}{\partial \tilde{I}} = C(\sin \mu \sin \tilde{\omega} \sin u)
\]

\[
A(-\sin \mu \cos \tilde{\omega} \sin u) + B(\cos \mu \sin u) \quad (4.4.7d)
\]
\[
\frac{\ddot{\cos} \Omega}{\dot{\omega}} = C(-\cos \Omega \cos u - \cos i \cos \Omega \sin u) + A(-\cos \Omega \cos u - \cos i \sin \Omega \sin u) \quad (4.4.7e)
\]

\[
\frac{\ddot{\cos} \Omega}{\dot{u}} = C(-\cos \Omega \cos u - \cos i \sin \Omega \cos u) + A(-\sin \Omega \sin u + \cos i \cos \Omega \cos u) + B(\sin i \cos u) \quad (4.4.7f)
\]

where the partial derivatives below have been used interchangeably. (See the atmospheric drag section.)

\[
\frac{\partial}{\partial \psi} = \frac{\partial}{\partial \omega} = \frac{\partial}{\partial u}
\]

The new orbital equations from Eqs. (4.1.6) are

\[
\frac{d \alpha}{dt} = \frac{2 \pi}{na} \left[\frac{a}{r} \right]^2 (1-e^2) \cos S \left[\frac{n}{d} \frac{\partial r}{\partial u} + r \frac{\partial (\cos S)}{\partial u} \right] \quad (4.4.8a)
\]

\[
\frac{dh}{dt} = \frac{\pi}{na^2 \sqrt{1-e^2}} (\sin u(2+\kappa \cos u + h \sin u) + h)r \frac{\partial (\cos S)}{\partial u} - \frac{\pi}{na} \frac{\kappa \cot i}{\sigma^2 \sqrt{1-e^2}} \frac{\partial (\cos S)}{\partial i} \quad (4.4.8b)
\]

\[
\frac{d \phi}{dt} = \frac{\pi}{na^2 \sqrt{1-e^2}} \frac{\partial (\cos S)}{\partial \psi} - \frac{\pi}{na^2 \sin i \sqrt{1-e^2}} \frac{\partial (\cos S)}{\partial \Omega} \quad (4.4.8c)
\]

\[
\frac{dk}{dt} = \frac{\pi}{na^2 \sqrt{1-e^2}} (\cos u(2+\kappa \cos u + h \sin u) + k)r \frac{\partial (\cos S)}{\partial u}
\]

53
\[
\frac{d\Omega}{dt} = \frac{\pi}{na^2 \sqrt{1-e^2}} r \sin i \frac{\partial}{\partial i} (\cos S) \quad (4.4.8e)
\]

\[
\frac{dL}{dt} = \frac{\pi \beta'}{S_0 na^2 \sqrt{1-e^2}} (2+k\cos u+h\sin u)(k\sin u-h\cos u)r \frac{\partial}{\partial u} (\cos S)
\]

\[
- \frac{\pi}{S_0 n a^2} \left[\frac{n \beta' \sqrt{1-e^2} (k\cos u+h\sin u)+2r}{S_0 n a^2} \right] \cos S
\]

\[
+ \frac{\pi}{S_0 n a^2 \sqrt{1-e^2}} \left[\frac{S_0 - \cos i}{\sin i} \right] r \frac{\partial}{\partial i} (\cos S) + \frac{\partial g}{S_0 \partial t} \quad (4.4.8f)
\]

where \(\pi = \frac{c_s A}{m} \).

Occultation

As the satellite orbits Mars, it will periodically swing behind the planet such that the Sun, and thus its radiation, is blocked or occulted. As a result, we must calculate this region of solar occultation, called \(g(u) \).

Consider the right handed coordinate system \((S_1, S_2, S_3)\) whose origin is the center of Mars. The axis \(S_1 \) will point
at the sun, axis \(S_3 \) will be normal to the plane of the equator, and \(S_2 \) will be placed so as to complete the right handed system as in Figure 4.1 below.

Under this system, the conditions for occultation are:

\[
S_1 < 0 \quad \text{and} \quad S_2^2 + S_3^2 \leq R_p^2, \tag{4.4.9}
\]

where \(R_p \) = radius of Mars plus atmospheric altitude blockage. Equation (4.4.9) may be rewritten using

\[
r^2 = S_1^2 + S_2^2 + S_3^2
\]

to become

\[
r^2 - S_1^2 \leq R_p^2 \quad \text{or} \quad S_1 \leq -\sqrt{r^2 - R_p^2}. \tag{4.4.10}
\]

This equation requires that \(S_1 \) always remain more negative as the condition for occultation.

![Figure 4.1: Occultation Geometry](image-url)
Assume the orbital elements of the spacecraft are known and the right ascension (\(\alpha \)) and the declination (\(\delta \)) of the viewed object are known in the same coordinate system. The cartesian position of the spacecraft in standard notation is given by

\[
\begin{align*}
X_1 &= r(\cos\delta \cos\alpha - \cos i \sin\delta \sin\alpha) \\
X_2 &= r(\sin\delta \cos\alpha + \cos i \cos\delta \sin\alpha) \\
X_3 &= r \sin i \sin\alpha,
\end{align*}
\] (4.4.11a, b, c)

where \(u = \omega + f \). In order to express the cartesian coordinates relative to the \(S_i \) - coordinate system, two rotations are performed:

\[
\begin{bmatrix}
S_1 \\
S_2 \\
S_3
\end{bmatrix} =
\begin{bmatrix}
\cos(\delta) & 0 & -\sin(\delta) \\
0 & 1 & 0 \\
\sin(\delta) & 0 & \cos(\delta)
\end{bmatrix}
\begin{bmatrix}
\cos\alpha & \sin\alpha & 0 \\
-\sin\alpha & \cos\alpha & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
X_1 \\
X_2 \\
X_3
\end{bmatrix}
\]

(4.4.12)

This is now used in equation (4.4.11) to obtain

\[
S_1 = (cc \cdot sa)x_1 + (cos\delta sin\alpha)x_2 + (sin\delta)x_3 \leq -\dot{r}^2 - R_p^2 \] \hspace{1cm} (4.4.13)

\[
= A X_1 + B X_2 + C X_3 \leq -\dot{r}^2 - R_p^2,
\]

where the variables \(A, B, C \) were used earlier. Substituting for the cartesian coordinates changes the equation to
\(S_1 = r \odot (\cos \omega \cos u - \cos i \sin \omega \sin u) \)
\(+ rA(\sin \omega \cos u + \cos i \cos \omega \sin u) \)
\(+ rB(\sin i \sin u) \leq -r^2 - R_p^2 \). \hspace{1cm} (4.4.14)

Redefine the coefficients as follows:

\(F = C\cos \omega + A\sin \omega \)
\hspace{1cm} (4.4.15a)

\(G = \cos i(A\cos \omega - C\sin \omega) + B\sin i \)
\hspace{1cm} (4.4.15b)

\(H = v^2 - (R_p/r)^2 \)
\hspace{1cm} (4.4.15c)

Finally, substitution makes the occultation condition

\[g(u) = F\cos u + G\sin u + H(u) \leq 0. \] \hspace{1cm} (4.4.16)

The occultation condition has three restrictions. First, \(g(u) \) depends on \(\cos u \) and \(\sin u \), causing it to be periodic with period \(2\pi = 2 \times 3.14159 \ldots \). Next, \(g(u) \) also depends on \(H(u) \), implying the minimum of \(g(u) \) may not be zero. Finally, when \(g(u) \) is at a minimum with \(u = u_{\text{min}} \) and is negative the satellite's orbit is occulted at least part of the time from the Sun. Therefore, to check occultation, one must find the minimum of \(g(u) \), which could be accomplished by solving for the roots of the derivative of \(g(u) \).
Atmospheric Drag Model

The following model applies to both models of the Martian atmosphere developed earlier. These models calculate the atmospheric mass density, \(\mu \), to be used in conjunction with this drag model.

The force, \(D \), per unit mass due to atmospheric drag is given by (4.5.1):

\[
D = \frac{C_d \mu A v^2}{2m},
\]

where \(D \) = drag
\(m \) = mass
\(C_d \) = drag coefficient
\(\mu \) = atmospheric density
\(A \) = effective spacecraft area for drag
\(v \) = satellite velocity.

Using the notation of (30.81), the drag acts opposite to the velocity of the satellite and may be written in vector notation as

\[
D = - D \hat{u}_r,
\]

where \(\hat{u}_r \) is the unit vector along the tangent in the direction of satellite motion.

The drag force is broken down into two components: radial and transverse components of the satellite's
velocity. These are defined by a radial unit vector, \mathbf{u}_r, along the position vector \mathbf{r} of the satellite, and the transverse unit vector, \mathbf{u}_θ, perpendicular to \mathbf{r} and forming an acute angle with the velocity vector \mathbf{v} in the orbital plane. Writing the drag using these unit vectors yields

$$\mathbf{D} = F_r \mathbf{u}_r + F_\theta \mathbf{u}_\theta.$$ \hspace{1cm} (4.5.3)

To determine these drag components, F_r and F_θ, first define the velocity vector as

$$\mathbf{v} = v \mathbf{u}_r = \dot{r} \mathbf{u}_r + r \dot{\varphi} \mathbf{u}_\theta.$$ \hspace{1cm} (4.5.4)

This makes the drag components

$$F_r = \mathbf{D} \cdot \mathbf{u}_r = - D(\mathbf{u}_r \cdot \mathbf{u}_r) = - \frac{\dot{r}}{v} D$$ \hspace{1cm} (4.5.5)

$$F_\theta = \mathbf{D} \cdot \mathbf{u}_\theta = - D(\mathbf{u}_\theta \cdot \mathbf{u}_\theta) = - \frac{r \dot{\varphi}}{v} D.$$ \hspace{1cm} (4.5.6)

Making use of these standard orbital relationships (12):

$$r = \frac{a(1-e^2)}{1+ecosf}$$ \hspace{1cm} (4.5.7a)

$$\dot{r} = \frac{k esinf \sqrt{M}}{\sqrt{a(1-e^2)}}$$ \hspace{1cm} (4.5.7b)

$$r^2 \dot{f} = h = \sqrt{k^2 Ma(1-e^2)}$$ \hspace{1cm} (4.5.7c)

$$r \dot{\varphi} = \frac{k(1+ecosf) \sqrt{M}}{\sqrt{a(1-e^2)}}$$ \hspace{1cm} (4.5.7d)
\[
\nu = \frac{k_r \lambda \sqrt{1+e^2+2ecosf}}{\sqrt{a(1-e^2)}},
\]

by substitution into equations (4.5.5) and (4.1.6) yields

\[
Fr = \frac{-esinf D}{\sqrt{1+e^2+2ecosf}},
\]

\[
F_\theta = \frac{-(1+ecosf) D}{\sqrt{1+e^2+2ecosf}}.
\]

Now place these magnitudes, \(Fr \) and \(F_\theta \), into the perifocal orbital reference frame specified by a unit vector in the direction of perihelion, \(\hat{P} \), and a unit vector \(f=90' \) in the direction of motion from \(P \), called \(\hat{Q} \), making the drag

\[
D = Fr\hat{P} + F_\theta\hat{Q} = (Fr\cosf - F_\theta\sinf)\hat{P} + (Fr\sinf + F_\theta\cosf)\hat{Q}
\]

and making the position vector

\[
\mathbf{r} = (rcosf)\hat{P} + (rsinf)\hat{Q}
\]

\[
= \frac{a(1-e^2)\cosf}{1+ecosf} \hat{P} + \frac{a(1-e^2)}{(1+ecosf)\sinf} \hat{Q}.
\]

The last step is to calculate the partial derivatives of the perturbation due to atmospheric drag using the following equation:

\[
\frac{\partial \mathbf{r}}{\partial z_i} = \frac{\partial \mathbf{r}}{\partial \mathbf{r}} \frac{\partial \mathbf{r}}{\partial z_i} = \mathbf{F} \cdot \frac{\partial \mathbf{r}}{\partial z_i},
\]

60
where the \(z_i \) represents the six classical orbital elements.

The resulting partial derivatives are:

\[
\frac{\partial R}{\partial a} = F_r \frac{r}{a} \quad (4.5.13a)
\]

\[
\frac{\partial R}{\partial e} = -F_r \cos f + F_\theta \sin f \left[1 + \frac{r}{a(1-e^2)} \right] \quad (4.5.13b)
\]

\[
\frac{\partial R}{\partial \Omega} = F_r e \sin f + F_\theta \frac{a^2}{r} \left(1-e^2 \right) \quad (4.5.13c)
\]

\[
\frac{\partial R}{\partial \omega} = F_\theta \frac{r}{r} \quad (4.5.13d)
\]

\[
\frac{\partial R}{\partial f} = 0 \quad (4.5.13e)
\]

Now insert these into Lagrange's Planetary Equations in order to find the orbital equations of motion in the classical orbital element set that are due to drag:

\[
\frac{\text{da}}{\text{dt}} = -C_d A \frac{\mu a^2}{m} \left[\frac{1+e^2 + 2ecosf}{1-e^2} \right]^{3/2} \quad (4.5.14a)
\]

\[
\frac{\text{de}}{\text{dt}} = -C_d A \frac{\mu a (e+cosf)}{m} \left[\frac{1+e^2 + 2ecosf}{1-e^2} \right]^{1/2} \quad (4.5.14b)
\]

\[
\frac{\text{dw}}{\text{dt}} = -C_d A \frac{\mu a \sin f}{m e} \left[\frac{1+e^2 + 2ecosf}{1-e^2} \right]^{1/2} \quad (4.5.14c)
\]
\[\frac{d\mathbf{i}}{dt} = 0 \quad (4.5.14d) \]
\[\frac{d\mathbf{l}}{dt} = 0 \quad (4.5.14e) \]
\[\frac{d\mathbf{m}}{dt} = -\frac{C_d A \mu a \sin f (1+e^2 + ecosf)}{m} \sqrt{1+e^2 ecosf} \quad (4.5.14f) \]

Convert these equations into the modified orbital element set and substitute to get:

\[\frac{dh}{dt} = \frac{h - \frac{C_d A \mu a (e+cosf)}{m} \left[\frac{1+e^2+2ecosf}{1-e^2} \right]^{1/2}}{e} + k \left[\frac{-C_d A \mu a \sin f}{m} \right] \left[\frac{1+e^2+2ecosf}{1-e^2} \right]^{1/2} \]
\[= \frac{-C_d A \mu a (h+sinu)}{m} \left[\frac{1+e^2+2ecosf}{1-e^2} \right]^{1/2} \quad (4.5.15a) \]

\[\frac{dk}{dt} = k \left[\frac{-C_d A \mu a (e+cosf)}{m} \left[\frac{1+e^2+2ecosf}{1-e^2} \right]^{1/2} \right] \]
\[- h \left[\frac{-C_d A \mu a \sin f}{m} \left[\frac{1+e^2+2ecosf}{1-e^2} \right]^{1/2} \right] \]
\[= \frac{-C_d A \mu a (k+cosu)}{m} \left[\frac{1+e^2+2ecosf}{1-e^2} \right]^{1/2} \quad (4.5.15b) \]
\[
\frac{dL_N}{dt} = \frac{1}{S_0} \left[- \frac{C_d A \mu a \sin f}{m} \frac{\left(1+e^2+2e\cos f\right)}{\left(1+e\cos f\right)} \right]
\]

\[
\frac{1}{m} \frac{C_d A \mu a \sin f}{e} \left[\frac{1+e^2+2e\cos f}{1-e^2} \right]^{1/2}
\]

\[
= - \frac{1}{S_0} \frac{C_d A \mu a \sin f}{m} \left[\beta' - \frac{r}{\alpha'1-e^2} \right]^{1+e^22e\cos f}, \quad (4.5.15c)
\]

where \(e\cos f = k\cos u + h\sin u, \) \(e\sin f = k\sin u - h\cos u, \) \(u = \omega + f. \)

Now that we have the drag equations of motion, we need to apply the Method of Averaging to eliminate fast variables as shown in reference (28:3-26). Retain only the averaged effects of atmospheric drag over one period in order to approximate long term orbits. The averaged rate is given in (28:3-26) as

\[
\frac{d\bar{\Gamma}}{dt} = \frac{1}{p} \int_{0}^{2\pi} \frac{d\Gamma}{dt} \, dt,
\]

\[(4.5.16) \]

where \(\Gamma = a, h, k, L_N. \)

Time is related to the true anomaly, \(f, \) by

\[
\frac{dt}{r^2} = \frac{df}{na^2/\left(1-e^2\right)}.
\]

\[(4.5.17) \]

Substitution into (4.5.16) with a period of \(2\pi \) yields

\[
\frac{d\bar{\Gamma}}{dt} = \frac{n}{2\pi} \int_{0}^{2\pi} \frac{d\Gamma}{\frac{r^2}{dt} \frac{dt}{na^2/\left(1-e^2\right)}}.
\]

\[(4.5.18) \]
Over one period, the Argument of Periapsis, \(\omega \), will have only a small change. As a result, we can write

\[
df = dw + du \approx du \quad \text{or} \quad df = du
\]

(4.5.19)

Substituting the orbital equations derived above into the integral averaging equation yields:

\[
\frac{dA}{dt} = \frac{\Phi}{1-e^2} \int_0^{2\pi} \mu \left(\frac{r}{a} \right)^2 \left[1 + e^2 + 2(k \cos u + h \sin u) \right]^{3/2} du
\]

(4.5.20a)

\[
\frac{dh}{dt} = \Phi \int_0^{2\pi} \mu \left(\frac{r}{a} \right)^2 (h \sin u)
\]

\[
\times \left[1 + e^2 + 2(k \cos u + h \sin u) \right]^{1/2} du
\]

(4.5.20b)

\[
\frac{di}{dt} = 0
\]

(4.5.20c)

\[
\frac{dk}{dt} = \Phi \int_0^{2\pi} \mu \left(\frac{r}{a} \right)^2 (k \cos u)
\]

\[
\times \left[1 + e^2 + 2(k \cos u + h \sin u) \right]^{1/2} du
\]

(4.5.20d)

\[
\frac{d\Omega}{dt} = 0
\]

(4.5.20e)

\[
\frac{d\varpi_N}{dt} = \Phi \int_0^{2\pi} \mu \left(\frac{r}{a} \right)^2 (k \sin u - h \cos u) \left[1 + e^2 + 2(k \cos u + h \sin u) \right]^{1/2}
\]

\[
\times \left[\beta' - \frac{r}{a \sqrt{1-e^2}} \right] du,
\]

(4.5.20f)
where \(\Phi = -C_d A \frac{na^2}{m} \frac{1}{1-e^2} \frac{1}{2\pi} \),

and \(\mu \) is calculated using one of the two Martian atmosphere models that were explained in section III.

Third Body Disturbing Potential (Solar Gravity)

The derivation of these equations is quite extensive. Further information may be found in reference (28) and other works. The following equations are those necessary for this model.

The averaged third body disturbing potential \(R' \) is given as follows:

\[
R' = \frac{\mu'}{a'} \sum_{n=2}^{\infty} \left[\frac{A}{a'} \right]^n \frac{R}{m=0} K_{nm} \frac{R}{p=0} \left[F_{nmp}(i) H_{npq}(e) \right] \times \sum_{h=0}^{\infty} F_{nmh}(i') \sum_{j=-m}^{m} \left[G_{nhj}(e') \cos(\vartheta) \right], \tag{4.6.1}
\]

where \(\sigma = -q \omega - (n-2h)\omega' - (n-2h+j)\Omega' + m(\Omega-\Omega') \), \((4.6.2) \)

\[
K_{nm} = \frac{2(n-m)!}{(n+m)!}, \quad K_{n0} = 1, \quad q = 2p - n,
\]

\(H \) is defined later, and the variables with the superscript ' refer to those of the disturbing body.

Rewriting the disturbing potential \(R' \) using definitions from (28:3-21) obtains:
\[
R' = \frac{\mu'}{a'} \sum_{n=2}^{\infty} \left[\frac{a}{a'} \right]^n \sum_{m=0}^n K_{nm} \sum_{p=0}^n F_{nmp}(i) H_{npq}(e) \\
\times \sum_{h=0}^n F_{nmh}(i') \sum_{j=-\infty}^{\infty} G_{nhj}(e') S_{nmqhj}
\]

(4.6.3)

The function \(H_{np}(2p-n) \) is defined as

\[
H_{np}(2p-n) = \frac{(-\beta)^{n-2p'}}{(1+\beta^2)^{n+1}} \left[\frac{2n+1-2p'}{n-2p'} \right] \sum_k \left[\frac{n+1}{k} \right] \left[\frac{2p'+1}{k} \right] \frac{2k}{n-2p'+k},
\]

(4.6.4)

where \[p' = p, \quad p \leq n/2 \]
\[p' = n-p, \quad p \geq n/2 \]

\[k = \text{all integers where binomial coefficients are nonzero.} \]

Therefore, the partial derivatives of \(R' \) in the modified orbital element set are:

\[
\frac{\partial R'}{\partial a} = \mu' \sum_{a'} \sum_{n=2}^{\infty} \left[\frac{a}{a'} \right]^n \sum_{m=0}^n K_{nm} \sum_{p=0}^n F_{nmp}(i) H_{npq}(e) \\
\times \sum_{h=0}^n F_{nmh}(i') \sum_{j=-\infty}^{\infty} G_{nhj}(e') S_{nmqhj}
\]

(4.6.5a)
\[
\frac{\partial R'}{\partial h} = \mu'n^2 \sum_{n=2}^{\infty} \left[\begin{array}{c} A \\ a' \end{array} \right] \sum_{m=0}^{n} K_{nm} \sum_{p=0}^{n} F_{nm}(i) \left[\begin{array}{c} h \\ \frac{dH'_{npq}(e)}{de} \end{array} \right]
\]

\[
\times \sum_{h=0}^{n} F_{nmh}(i') \sum_{j=-\infty}^{\infty} G_{nhj}(e') \frac{\partial S_{nmqhj}}{\partial h}
\]

\[
+ H'_{npq}(e) \sum_{h=0}^{n} F_{nmh}(i') \sum_{j=-\infty}^{\infty} G_{nhj}(e') \frac{\partial S_{nmqhj}}{\partial h}
\]

\[
\frac{\partial R'}{\partial i} = \mu'n^2 \sum_{n=2}^{\infty} \left[\begin{array}{c} A \\ a' \end{array} \right] \sum_{m=0}^{n} K_{nm} \sum_{p=0}^{n} \frac{dF_{nm}(i)}{di} \left[\begin{array}{c} k \\ \frac{dH'_{npq}(e)}{de} \end{array} \right]
\]

\[
\times \sum_{h=0}^{n} F_{nmh}(i') \sum_{j=-\infty}^{\infty} G_{nhj}(e') \frac{\partial S_{nmqhj}}{\partial h}
\]

\[
+ H'_{npq}(e) \sum_{h=0}^{n} F_{nmh}(i') \sum_{j=-\infty}^{\infty} G_{nhj}(e') \frac{\partial S_{nmqhj}}{\partial k}
\]

\[
\frac{\partial R'}{\partial k} = \mu'n^2 \sum_{n=2}^{\infty} \left[\begin{array}{c} A \\ a' \end{array} \right] \sum_{m=0}^{n} K_{nm} \sum_{p=0}^{n} F_{nm}(i) \left[\begin{array}{c} k \\ \frac{dH'_{npq}(e)}{de} \end{array} \right]
\]

\[
\times \sum_{h=0}^{n} F_{nmh}(i') \sum_{j=-\infty}^{\infty} G_{nhj}(e') \frac{\partial S_{nmqhj}}{\partial k}
\]

\[
+ H'_{npq}(e) \sum_{h=0}^{n} F_{nmh}(i') \sum_{j=-\infty}^{\infty} G_{nhj}(e') \frac{\partial S_{nmqhj}}{\partial k}
\]

\[
\frac{\partial R'}{\partial \Omega} = \mu'n^2 \sum_{n=2}^{\infty} \left[\begin{array}{c} A \\ a' \end{array} \right] \sum_{m=0}^{n} K_{nm} \sum_{p=0}^{n} F_{nm}(i) H'_{npq}(e)
\]

\[
\times \sum_{h=0}^{n} F_{nmh}(i') \sum_{j=-\infty}^{\infty} \left[\begin{array}{c} G_{nhj}(e') \\ \frac{\partial S_{nmqhj}}{\partial \Omega} \end{array} \right]
\]

\[
(4.6.5e)
\]
\[\frac{\delta R'}{\delta L_y} = 0. \] (4.6.5f)

All that remains to be done is to substitute into the Lagrange's Planetary Equations (4.1.4) as we have done with the other disturbing potential functions, replacing \(R \) with \(R' \) to form the differential equations for the third body, the Sun. These substitutions will not be done here.
V. Approach and Results

Approach

A variety of assumptions are made in constructing the dynamic and static atmosphere models. Most of these have already been explained in the theory sections. This section will review the inputs to the computational models based on the theoretical models of the previous sections.

The Martian geopotential was modeled using only J_2 and J_3, the dominant terms representing the strong, first-order equatorial oblateness effect and significant first-order asymmetry of Mars (28:2-35) and (8:1). (See Table 5.1.) In addition, the orbital missions were chosen close to a known solar epoch and Prime Meridian (28:2-10) in order to minimize error due to the coordinate system used, namely the planet equator of epoch coordinate system for Mars. Finally, empirical data was used to choose limits for the atmosphere, both the "outer" limit and the "inner" limit.

The "outer" limit is set to 1000 km since this is where the first "heavy" ions, atomic oxygen, exist in significant concentrations (37:210). Although atomic hydrogen has been observed as high as 10,000 km, these are much "lighter" atoms and so exert far less drag. Hence, the 1000 km limit. The "inner" limit is set to 130 km based on the fact the ionosphere constituent concentration is greatest at this
altitude (21:27). In addition, the turbopause altitude (the dividing line between the denser lower atmosphere and the less dense ionosphere) is very close to this region. It may be expected that any satellite which reaches this altitude is actually beginning to enter the atmosphere proper and will shortly impact Mars due to the much thicker atmosphere.

The mean anomaly M, which is a fast variable (short term effects) is averaged out in the theoretical models. As a result, it can assume any value. For convenience, it has been chosen to be zero and kept constant. The other orbital parameters $(a, e, i, \Omega, \omega)$ could be varied at will. The initial values were based on data from the Viking missions (41:3979-3982), Mariner 9 (26:484), and from scientific missions to Mars (45) and (28). A representative sampling of data for possible real life missions was obtained, covering both close and far orbits as well as both near equatorial and near polar orbits.

The effects on orbital motion of using a dynamic Martian atmosphere model are demonstrated by comparing the resulting orbital element data from the dynamic model to those from the static model. The orbital parameters examined were a, e, ω, and the periapsis altitude, h_p. The periapsis altitude is calculated as follows:

$$h_p = a(1-e^2) - r_m,$$ \hspace{1cm} (5.1)
where \(r_m \) is the reference altitude of the surface of Mars, which is calculated differently by the two atmosphere models. Both sets of data are graphed as a function of time. The Argument of Periapsis is only graphed for the first four cases in order to check for consistency with the other orbital elements and for any trends.

The satellite model requires input values for the satellite mass, the satellite drag coefficient, and the effective satellite area, which is needed for both drag and solar radiation calculations. Typical values were chosen for these variables from references (23), (28), (41), and (45). Table 5.2 lists these values.

The theoretical models were programmed using the FORTRAN programming language and combined programs both self-written and imported from (28) and (8). Each computer integration run used a step size of 5 days, unless otherwise noted, and were typically set for a two year run as that was deemed sufficient to show the desired effects on the orbit. Special attention was paid to low orbits to verify the 130 km altitude limit of the "real" Martian atmosphere.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(m)</th>
<th>(C_{nm})</th>
<th>(S_{nm})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>-0.1960387250000000E-02</td>
<td>0.0000000000000000E+00</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>-0.3063419400000000E-04</td>
<td>0.0000000000000000E+00</td>
</tr>
</tbody>
</table>
Table 5.2: Spacecraft Data Input Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (kg)</td>
<td>1000</td>
</tr>
<tr>
<td>Drag Coefficient</td>
<td>2.0</td>
</tr>
<tr>
<td>Area for Drag (km²)</td>
<td>10.0E-6</td>
</tr>
<tr>
<td>Area for Solar Radiation Pressure (km²)</td>
<td>20.0E-6</td>
</tr>
<tr>
<td>Solar Radiation Pressure Constant (kg/kmsec²)</td>
<td>1.95E-3</td>
</tr>
</tbody>
</table>

Table 5.3: Other Necessary Input Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prime Meridion (')</td>
<td>333.55971</td>
</tr>
<tr>
<td>Solar Epoch</td>
<td>19910524 = 24 May 1991</td>
</tr>
<tr>
<td>Initial Propagation Time:</td>
<td>19911007 = 7 October 1991</td>
</tr>
<tr>
<td>GM_{mars} (km³/sec²)</td>
<td>4.2828287E4</td>
</tr>
<tr>
<td>Radius of Mars (km)</td>
<td>3397.2</td>
</tr>
<tr>
<td>Rotation of Mars ('/sec)</td>
<td>4.061249803E-3</td>
</tr>
<tr>
<td>Radius + Atmospheric Blockage:</td>
<td>Radius + 90 = 3487.2 (km)</td>
</tr>
<tr>
<td>GM_{sun} (km³/sec²)</td>
<td>0.13271244E12</td>
</tr>
</tbody>
</table>

Each data run involved 73 points for each parameter for each year of the data run. Hence, it was not practical to show every point in tabular form. The following data tables show the initial parameters at the time equals zero row and then a data point for each 120 days of the run for as long as the run lasted. The first two cases are shown in this
chapter in both tabular and graphical form; the other fifteen cases are presented in Appendices A and B.

Results

The data indicate there is a difference in the orbital motion of a satellite due to a dynamic Martian atmosphere as compared to motion resulting from a static Martian atmosphere. The dynamic atmosphere provides lesser drag on the spacecraft, implying a lesser atmospheric mass density, i.e., motion through the static atmosphere tends to spiral the satellite into the surface of the planet more quickly than the dynamic atmosphere.

This effect is most evident for low orbits—orbits only a few hundred kilometers above the surface of Mars. As the orbital ellipse increases in size (as measured by the length of the semimajor axis), the amount of differentiation between the two models decreases in magnitude. For large orbits, those on the order of tens of thousands of kilometers in the length of the semimajor axis, the differences are negligible. (See cases 8,10,11,3, for example.) Furthermore, the data indicate the variation between the two models increases with time. (See cases 1,4,14.) The larger the size of the orbit the longer the two models remain essentially the same before beginning to differentiate. (See cases 6,9,10,8.) Nonetheless, once the
differentiation begins, it increases as time goes on. In other words, the amount of variation between the two models depends on both orbital size, as measured by length of the semimajor axis, and on time. This is logical since the larger the orbit the less time the spacecraft spends in the atmosphere, resulting in less change in the orbit due to either model, and hence the lesser degree of variation between the two. Once the two trajectories have begun to vary, the orbit with the greater atmospheric drag, always the static case, will cause the spacecraft to spend a marginally longer amount of time in the atmosphere, thereby increasing the amount of variation.

Varying the inclination produces no apparent effect on the orbits. (See cases 9, 14, 17.) Furthermore, changing the eccentricity while keeping the other orbital elements as they were only has an impact in that higher eccentricities reduce the periapsis altitude and hence the satellite spends a greater amount of time in the atmosphere. (See cases 7, 8.) As has already been mentioned, the amount of time spent in the atmosphere is the crucial determinant in variation between the two models. In addition, the various orbital parameters agree internally with each other. For example, the eccentricity for the static model will become more circular faster than the eccentricity of the dynamic case, thus indicating the greater amount of drag affecting the
satellite in the static case and agreeing with the decrease in periapsis altitude and semimajor axis length.

The expected beginning of the "real" atmosphere, called the lower limit previously, was at about 130 km. This has been verified. For those trajectories that "blow up," the data show that once the periapsis altitude falls below 200 km the slope of the curve increases to nearly vertical. The trajectory then continues until about 130 km ± 15 km where the numerical calculation "blows up," thus indicating that the satellite impacted the surface. (See cases 2, 4.) Both models fall within this range. However, the static model reaches the "blow up" or impact point first. (See case 5, for example.)

In summary, the dynamic model exerts less drag on the spacecraft than the static model. The variation between the two models increases with both time and decreasing orbit size. Also, the orbital parameters agree with each other. Finally, the limit of the "real" atmosphere or lower limit is shown to be in the expected region, about 130 km.

However, a closer look should be taken at the difference in the atmospheric density between the two models. This difference is plotted in Fig. B.48 for a two year Case 1 input. As can be seen, the dynamic density varies in an oscillatory manner, which is expected from the confused and variable state of the Martian atmosphere. The static density varies smoothly, which is expected due to the
exponential function. However, while the dynamic density is sometimes greater than the static density, more often it is less, particularly in the latter half of the run. The static case was modeled using a reference density that was an upper bound, 6×10^{-13} kg/m3. For comparison purposes, choose another typical value from the empirical data for the height region of the orbits; keeping the same order of magnitude but reducing the multiplying factor from 6 to 3.1 modifies the relationship between the two models (Figures B.49 to B.52). As can be seen, the two models are now much closer to each other. Nonetheless, over a long term period, for this case exceeding one year’s run, the basic difference persists: the static case will impact Mars first since the static density is still higher over the longer time period (see Fig. B.52). However, if the static reference density is further decreased, the lifetime of the static satellite will continue to improve relative to the dynamic satellite. But, until empirical data provides a better agreed-upon value for the reference density, the best that can be said is that the dynamic model exerts less drag over long term orbits.
<table>
<thead>
<tr>
<th>t</th>
<th>a(km)</th>
<th>e</th>
<th>w(°)</th>
<th>h<sub>p</sub>(km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3758.31700</td>
<td>0.00704800</td>
<td>270.00000</td>
<td>334.62838</td>
</tr>
<tr>
<td>120</td>
<td>3757.92726</td>
<td>0.00704882</td>
<td>269.90415</td>
<td>334.23831</td>
</tr>
<tr>
<td>240</td>
<td>3756.89135</td>
<td>0.00706625</td>
<td>269.85892</td>
<td>333.14423</td>
</tr>
<tr>
<td>360</td>
<td>3755.90921</td>
<td>0.00707127</td>
<td>269.93376</td>
<td>332.15018</td>
</tr>
<tr>
<td>480</td>
<td>3755.63841</td>
<td>0.00705635</td>
<td>269.99388</td>
<td>331.93731</td>
</tr>
<tr>
<td>600</td>
<td>3755.52698</td>
<td>0.00704709</td>
<td>269.92522</td>
<td>331.86143</td>
</tr>
<tr>
<td>720</td>
<td>3755.42520</td>
<td>0.00705840</td>
<td>269.85957</td>
<td>331.71790</td>
</tr>
<tr>
<td>840</td>
<td>3755.16883</td>
<td>0.00707317</td>
<td>269.93145</td>
<td>331.40790</td>
</tr>
<tr>
<td>960</td>
<td>3754.60034</td>
<td>0.00706864</td>
<td>270.00108</td>
<td>330.86043</td>
</tr>
<tr>
<td>1080</td>
<td>3754.20377</td>
<td>0.00705504</td>
<td>269.93150</td>
<td>330.51773</td>
</tr>
<tr>
<td>1200</td>
<td>3754.12023</td>
<td>0.00705701</td>
<td>269.85583</td>
<td>330.42736</td>
</tr>
<tr>
<td>1380</td>
<td>3754.06216</td>
<td>0.00706860</td>
<td>269.96377</td>
<td>330.32618</td>
</tr>
<tr>
<td>1500</td>
<td>3753.96388</td>
<td>0.00706271</td>
<td>270.01380</td>
<td>330.25074</td>
</tr>
<tr>
<td>1620</td>
<td>3753.66256</td>
<td>0.00706013</td>
<td>269.92361</td>
<td>329.96123</td>
</tr>
<tr>
<td>1740</td>
<td>3753.39308</td>
<td>0.00706717</td>
<td>269.84392</td>
<td>329.66720</td>
</tr>
<tr>
<td>1800</td>
<td>3753.35281</td>
<td>0.00707068</td>
<td>269.86774</td>
<td>329.61405</td>
</tr>
</tbody>
</table>

Case 1 Continued (Static Data)

<table>
<thead>
<tr>
<th>t</th>
<th>a(km)</th>
<th>e</th>
<th>w(°)</th>
<th>h<sub>p</sub>(km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3758.31700</td>
<td>0.00704800</td>
<td>270.00000</td>
<td>334.62838</td>
</tr>
<tr>
<td>120</td>
<td>3756.87252</td>
<td>0.00706130</td>
<td>269.98956</td>
<td>333.14409</td>
</tr>
<tr>
<td>240</td>
<td>3755.36809</td>
<td>0.00707024</td>
<td>270.03615</td>
<td>331.61674</td>
</tr>
<tr>
<td>360</td>
<td>3753.79840</td>
<td>0.00706500</td>
<td>270.04730</td>
<td>330.07780</td>
</tr>
<tr>
<td>480</td>
<td>3752.15764</td>
<td>0.00706019</td>
<td>270.01820</td>
<td>328.46670</td>
</tr>
<tr>
<td>600</td>
<td>3750.43952</td>
<td>0.00706589</td>
<td>270.00703</td>
<td>326.73934</td>
</tr>
</tbody>
</table>
Table 5.5: Case 2 Data

<table>
<thead>
<tr>
<th>s</th>
<th>a(km)</th>
<th>e</th>
<th>(\omega('))</th>
<th>(h_p(km))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3697.20000</td>
<td>.00250000</td>
<td>270.00000</td>
<td>290.75700</td>
</tr>
<tr>
<td>120</td>
<td>3695.72641</td>
<td>.00528445</td>
<td>229.39501</td>
<td>278.99653</td>
</tr>
<tr>
<td>240</td>
<td>3690.66345</td>
<td>.00876479</td>
<td>237.82332</td>
<td>261.11556</td>
</tr>
<tr>
<td>360</td>
<td>3684.48252</td>
<td>.01097531</td>
<td>252.23568</td>
<td>246.84420</td>
</tr>
<tr>
<td>480</td>
<td>3682.96559</td>
<td>.01184056</td>
<td>267.35057</td>
<td>242.15722</td>
</tr>
<tr>
<td>600</td>
<td>3682.27339</td>
<td>.01142396</td>
<td>282.36780</td>
<td>243.00723</td>
</tr>
<tr>
<td>720</td>
<td>3681.66228</td>
<td>.00982776</td>
<td>296.37131</td>
<td>248.27977</td>
</tr>
</tbody>
</table>

Case 2 Continued (Static Data)

<table>
<thead>
<tr>
<th>s</th>
<th>a(km)</th>
<th>e</th>
<th>(\omega('))</th>
<th>(h_p(km))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3697.20000</td>
<td>.00250000</td>
<td>270.00000</td>
<td>290.75700</td>
</tr>
<tr>
<td>120</td>
<td>3687.99932</td>
<td>.00518093</td>
<td>236.25771</td>
<td>271.69205</td>
</tr>
<tr>
<td>240</td>
<td>3675.91680</td>
<td>.00763305</td>
<td>243.72583</td>
<td>250.65834</td>
</tr>
<tr>
<td>360</td>
<td>3658.04837</td>
<td>.00862316</td>
<td>254.07183</td>
<td>229.30444</td>
</tr>
<tr>
<td>480</td>
<td>3622.10189</td>
<td>.00824591</td>
<td>263.24949</td>
<td>195.03439</td>
</tr>
</tbody>
</table>
Fig. 5.1: Periapsis Altitude vs. Time (Case 1)
Fig. 5.2: Semimajor Axis vs. Time (Case 1)
Fig. 5.3: Eccentricity vs. Time (Case 1)
Fig. 5.4: Argument of Periapsis vs. Time (Case 1)
Fig. 5.5: Periapsis Altitude vs. Time (Case 2)
Fig. 5.7: Eccentricity vs. Time (Case 2)
Fig. 5.8: Argument of Periapsis vs. Time (Case 2)
VI. Conclusions and Recommendations

Conclusions

The effect on long term orbital motion about the planet Mars using an initial dynamic model of the Martian atmosphere was studied. The effect is noted through comparing the orbital elements generated by the dynamic model with those generated by a static model of the Martian atmosphere. The following conclusions are evident:

1. The dynamic model exerts less atmospheric drag on the satellite, implying a less dense atmosphere and increasing the lifetime of the satellite.

2. The variation between the models increases with decreasing orbit size, as measured by semimajor axis length for fixed periapsis altitude, and length of time of the trajectory. A further factor is the input data chosen for the static model, particularly the reference density; the smaller the reference density the smaller the amount of variation between the two models.

3. Variation of other orbital parameters than the semimajor axis shows only limited effect on the orbit unless periapsis altitude is decreased as a result of the change.
1. The orbital parameters were internally consistent, which indicated the model worked correctly and supported the conclusions across several parameters.

5. The location of the lower limit of the atmosphere, the beginning of the dense part of the atmosphere, was verified to be at approximately 130 km altitude.

Recommendations

Based on the results of this investigation and on the research that was used to form the models, the following recommendations for further study are proposed:

1. Further data analysis of the space probe data from Mars to develop a better understanding of the Martian atmosphere in order to facilitate model development of the various effects present in the atmosphere as well as to provide standard numbers for such inputs as the reference density in the static model.

2. Development of a model which includes a greater number of the effects existing in the Martian atmosphere; e.g., polar cap sublimation/condensation, atmosphere wave perturbations, and latitude/longitude gradients.
3. Further research generating numerical data using this and subsequent models along with an in depth analysis of the resulting data in order to gain a large data base for the detailed evaluation of dynamic Martian atmosphere effects on long term orbits.

4. Form an atmosphere/trajectory model that includes short term orbits and effects in order to more realistically and accurately represent the Martian atmosphere's effect on orbits.
Appendix A

Supplemental Tables for Sections V and VI

The following pages contain tabulations of the data generated for cases three through seventeen.
Table A.1: Case 3 Data

<table>
<thead>
<tr>
<th>t</th>
<th>$a(km)$</th>
<th>e</th>
<th>$w(V_m)$</th>
<th>$h_p(km)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3725.00000</td>
<td>.00700000</td>
<td>35.00000</td>
<td>301.72500</td>
</tr>
<tr>
<td>120</td>
<td>3721.2788</td>
<td>.01383227</td>
<td>311.92456</td>
<td>275.41472</td>
</tr>
<tr>
<td>240</td>
<td>3721.07098</td>
<td>.01524739</td>
<td>252.85715</td>
<td>267.13436</td>
</tr>
<tr>
<td>360</td>
<td>3717.80320</td>
<td>.01010305</td>
<td>190.60954</td>
<td>283.04203</td>
</tr>
<tr>
<td>480</td>
<td>3716.90853</td>
<td>.00538407</td>
<td>73.53509</td>
<td>299.69644</td>
</tr>
<tr>
<td>600</td>
<td>3716.61497</td>
<td>.01130528</td>
<td>277.39759</td>
<td>264.33127</td>
</tr>
<tr>
<td>720</td>
<td>3716.32255</td>
<td>.01512161</td>
<td>277.59429</td>
<td>262.92579</td>
</tr>
</tbody>
</table>

Case 3 Continued (Static Data)

<table>
<thead>
<tr>
<th>t</th>
<th>$a(km)$</th>
<th>e</th>
<th>$w(V_m)$</th>
<th>$h_p(km)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3725.00000</td>
<td>.00700000</td>
<td>35.00000</td>
<td>301.72500</td>
</tr>
<tr>
<td>120</td>
<td>3719.66732</td>
<td>.01308124</td>
<td>312.33641</td>
<td>273.80945</td>
</tr>
<tr>
<td>240</td>
<td>3713.78845</td>
<td>.01407112</td>
<td>258.51358</td>
<td>264.33127</td>
</tr>
<tr>
<td>360</td>
<td>3706.99647</td>
<td>.00961410</td>
<td>209.89607</td>
<td>274.15703</td>
</tr>
<tr>
<td>480</td>
<td>3698.84002</td>
<td>.00323519</td>
<td>145.66006</td>
<td>289.67357</td>
</tr>
<tr>
<td>600</td>
<td>3688.71651</td>
<td>.00384913</td>
<td>359.54218</td>
<td>277.31814</td>
</tr>
<tr>
<td>720</td>
<td>3675.32101</td>
<td>.00694169</td>
<td>318.15801</td>
<td>252.60807</td>
</tr>
</tbody>
</table>

Table A.2: Case 4 Data

<table>
<thead>
<tr>
<th>t</th>
<th>$a(km)$</th>
<th>e</th>
<th>$w(V_m)$</th>
<th>$h_p(km)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3700.00000</td>
<td>.00700000</td>
<td>35.00000</td>
<td>276.90000</td>
</tr>
<tr>
<td>120</td>
<td>3698.12682</td>
<td>.01223392</td>
<td>330.14531</td>
<td>255.68423</td>
</tr>
<tr>
<td>240</td>
<td>3692.44248</td>
<td>.01532293</td>
<td>286.81561</td>
<td>238.66345</td>
</tr>
</tbody>
</table>
Table A.3: Case 5 Data

<table>
<thead>
<tr>
<th>t</th>
<th>a(km)</th>
<th>e</th>
<th>w(°)</th>
<th>h_p(km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3650.00000</td>
<td>0.00700000</td>
<td>35.00000</td>
<td>227.25000</td>
</tr>
<tr>
<td>120</td>
<td>3639.12449</td>
<td>0.0077013</td>
<td>21.16953</td>
<td>213.90275</td>
</tr>
<tr>
<td>200</td>
<td>3534.94210</td>
<td>0.00583657</td>
<td>49.89566</td>
<td>117.11016</td>
</tr>
</tbody>
</table>

Case 5 Continued (Static Data)

<table>
<thead>
<tr>
<th>t</th>
<th>a(km)</th>
<th>e</th>
<th>w(°)</th>
<th>h_p(km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3650.00000</td>
<td>0.00700000</td>
<td>35.00000</td>
<td>227.25000</td>
</tr>
<tr>
<td>120</td>
<td>3537.30945</td>
<td>0.00219324</td>
<td>251.91097</td>
<td>132.35129</td>
</tr>
</tbody>
</table>

Table A.4: Case 6 Data

<table>
<thead>
<tr>
<th>t</th>
<th>a(km)</th>
<th>e</th>
<th>w(°)</th>
<th>h_p(km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3700.00000</td>
<td>0.00700000</td>
<td>35.00000</td>
<td>276.90000</td>
</tr>
<tr>
<td>15</td>
<td>3699.90603</td>
<td>0.01225080</td>
<td>209.15020</td>
<td>257.37920</td>
</tr>
<tr>
<td>t</td>
<td>a(km)</td>
<td>e</td>
<td>w()</td>
<td>h_p(km)</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>0</td>
<td>40850.00000</td>
<td>89730000</td>
<td>35.00000</td>
<td>798.09500</td>
</tr>
<tr>
<td>120</td>
<td>40850.17025</td>
<td>90239985</td>
<td>33.76714</td>
<td>589.78284</td>
</tr>
<tr>
<td>240</td>
<td>40850.15743</td>
<td>90189507</td>
<td>33.40832</td>
<td>610.40202</td>
</tr>
<tr>
<td>360</td>
<td>40850.08705</td>
<td>90395227</td>
<td>32.37761</td>
<td>526.35814</td>
</tr>
<tr>
<td>480</td>
<td>40849.87620</td>
<td>90793429</td>
<td>31.92682</td>
<td>367.57362</td>
</tr>
<tr>
<td>600</td>
<td>40849.86727</td>
<td>90561511</td>
<td>31.69218</td>
<td>458.41004</td>
</tr>
<tr>
<td>720</td>
<td>40850.04342</td>
<td>90774866</td>
<td>31.05805</td>
<td>371.27116</td>
</tr>
</tbody>
</table>

Table A.5: Case 7 Data

Dynamic Data (continued)

<table>
<thead>
<tr>
<th>t</th>
<th>a(km)</th>
<th>e</th>
<th>w()</th>
<th>h_p(km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>40850.00000</td>
<td>89730000</td>
<td>35.00000</td>
<td>798.09500</td>
</tr>
<tr>
<td>120</td>
<td>40850.17025</td>
<td>90239985</td>
<td>33.76714</td>
<td>589.78284</td>
</tr>
<tr>
<td>240</td>
<td>40850.15485</td>
<td>90189506</td>
<td>33.40832</td>
<td>610.40200</td>
</tr>
<tr>
<td>360</td>
<td>40850.08699</td>
<td>90395230</td>
<td>32.37762</td>
<td>526.35672</td>
</tr>
<tr>
<td>480</td>
<td>40849.66663</td>
<td>90793384</td>
<td>31.92682</td>
<td>363.67195</td>
</tr>
<tr>
<td>600</td>
<td>40849.46672</td>
<td>90561426</td>
<td>31.69216</td>
<td>458.40713</td>
</tr>
<tr>
<td>720</td>
<td>40849.57030</td>
<td>90774763</td>
<td>31.05802</td>
<td>371.26966</td>
</tr>
<tr>
<td>Table A.6: Case 8 Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>$a(km)$</td>
<td>e</td>
<td>$w(\cdot)$</td>
<td>$h_p(km)$</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-----</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>0</td>
<td>.40850</td>
<td>.00000</td>
<td>.88010000</td>
<td>35.00000</td>
</tr>
<tr>
<td>120</td>
<td>.40850</td>
<td>.14119</td>
<td>.88547510</td>
<td>34.06634</td>
</tr>
<tr>
<td>240</td>
<td>.40850</td>
<td>.14505</td>
<td>.88513472</td>
<td>33.97313</td>
</tr>
<tr>
<td>360</td>
<td>.40850</td>
<td>.14171</td>
<td>.88688502</td>
<td>33.11451</td>
</tr>
<tr>
<td>480</td>
<td>.40849</td>
<td>.93049</td>
<td>.89146582</td>
<td>32.82584</td>
</tr>
<tr>
<td>600</td>
<td>.40849</td>
<td>.92690</td>
<td>.88908986</td>
<td>32.69441</td>
</tr>
<tr>
<td>720</td>
<td>.40850</td>
<td>.03299</td>
<td>.89062490</td>
<td>32.09720</td>
</tr>
<tr>
<td>Case 8 Continued (Static Data)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>.40850</td>
<td>.00000</td>
<td>.88010000</td>
<td>35.00000</td>
</tr>
<tr>
<td>120</td>
<td>.40850</td>
<td>.14149</td>
<td>.88547510</td>
<td>34.06634</td>
</tr>
<tr>
<td>240</td>
<td>.40850</td>
<td>.14505</td>
<td>.88513472</td>
<td>33.97313</td>
</tr>
<tr>
<td>360</td>
<td>.40850</td>
<td>.14171</td>
<td>.88688502</td>
<td>33.11451</td>
</tr>
<tr>
<td>480</td>
<td>.40849</td>
<td>.93049</td>
<td>.89146582</td>
<td>32.82584</td>
</tr>
<tr>
<td>600</td>
<td>.40849</td>
<td>.92690</td>
<td>.88908986</td>
<td>32.69441</td>
</tr>
<tr>
<td>720</td>
<td>.40850</td>
<td>.03299</td>
<td>.89062490</td>
<td>32.09720</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table A.7: Case 9 Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Data</td>
</tr>
<tr>
<td>t</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>120</td>
</tr>
<tr>
<td>240</td>
</tr>
</tbody>
</table>
Case 9 Continued (Static Data)

<table>
<thead>
<tr>
<th>t</th>
<th>a(km)</th>
<th>e</th>
<th>w(')</th>
<th>h_p(km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>360</td>
<td>19999.88509</td>
<td>.81900112</td>
<td>22.13464</td>
<td>222.75686</td>
</tr>
<tr>
<td>480</td>
<td>19999.88517</td>
<td>.81914910</td>
<td>18.15247</td>
<td>219.79727</td>
</tr>
<tr>
<td>720</td>
<td>20000.10522</td>
<td>.82134796</td>
<td>10.20674</td>
<td>175.85950</td>
</tr>
</tbody>
</table>

Case 9 Continued (Static Data)

<table>
<thead>
<tr>
<th>t</th>
<th>a(km)</th>
<th>e</th>
<th>w(')</th>
<th>h_p(km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20000.00000</td>
<td>.81500000</td>
<td>35.00000</td>
<td>302.80000</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>19997.16488</td>
<td>.81704281</td>
<td>30.55800</td>
<td>261.42503</td>
</tr>
<tr>
<td>240</td>
<td>19991.53239</td>
<td>.81644413</td>
<td>26.38310</td>
<td>272.36303</td>
</tr>
<tr>
<td>360</td>
<td>19983.11872</td>
<td>.81884697</td>
<td>22.12759</td>
<td>222.80246</td>
</tr>
<tr>
<td>480</td>
<td>19962.07634</td>
<td>.81880413</td>
<td>18.13516</td>
<td>219.84581</td>
</tr>
<tr>
<td>600</td>
<td>19942.69444</td>
<td>.81918958</td>
<td>14.17258</td>
<td>208.64696</td>
</tr>
<tr>
<td>720</td>
<td>19896.59695</td>
<td>.82040012</td>
<td>10.19529</td>
<td>176.22649</td>
</tr>
</tbody>
</table>

Table A.8: Case 10 Data

Dynamic Data

<table>
<thead>
<tr>
<th>t</th>
<th>a(km)</th>
<th>e</th>
<th>w(')</th>
<th>h_p(km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10000.00000</td>
<td>.63530000</td>
<td>35.00000</td>
<td>249.80000</td>
</tr>
<tr>
<td>120</td>
<td>10000.01059</td>
<td>.63637648</td>
<td>19.28367</td>
<td>239.03901</td>
</tr>
<tr>
<td>240</td>
<td>9999.72140</td>
<td>.63753083</td>
<td>3.64970</td>
<td>227.39073</td>
</tr>
<tr>
<td>360</td>
<td>9999.69490</td>
<td>.63849873</td>
<td>348.09572</td>
<td>217.70236</td>
</tr>
<tr>
<td>480</td>
<td>9999.59779</td>
<td>.63887910</td>
<td>332.57364</td>
<td>213.86379</td>
</tr>
<tr>
<td>600</td>
<td>9999.49199</td>
<td>.63926847</td>
<td>317.06785</td>
<td>209.93206</td>
</tr>
<tr>
<td>720</td>
<td>9999.68040</td>
<td>.63922917</td>
<td>301.51692</td>
<td>210.39302</td>
</tr>
</tbody>
</table>

Case 10 Continued (Static Data)

<table>
<thead>
<tr>
<th>t</th>
<th>a(km)</th>
<th>e</th>
<th>w(')</th>
<th>h_p(km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10000.00000</td>
<td>.63530000</td>
<td>35.00000</td>
<td>249.80000</td>
</tr>
<tr>
<td>t</td>
<td>a(km)</td>
<td>e</td>
<td>ω(')</td>
<td>h_p(km)</td>
</tr>
<tr>
<td>----</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>0</td>
<td>5000.00000</td>
<td>.27060000</td>
<td>35.00000</td>
<td>249.80000</td>
</tr>
<tr>
<td>120</td>
<td>-4999.82315</td>
<td>.27639218</td>
<td>321.55416</td>
<td>220.71115</td>
</tr>
<tr>
<td>240</td>
<td>-4999.24985</td>
<td>.27789333</td>
<td>249.28687</td>
<td>212.79168</td>
</tr>
<tr>
<td>360</td>
<td>-4995.78748</td>
<td>.27247961</td>
<td>176.40634</td>
<td>237.33727</td>
</tr>
<tr>
<td>480</td>
<td>-4995.71358</td>
<td>.26798495</td>
<td>101.86486</td>
<td>259.73753</td>
</tr>
<tr>
<td>600</td>
<td>-4995.70813</td>
<td>.27050704</td>
<td>26.99135</td>
<td>247.13392</td>
</tr>
<tr>
<td>720</td>
<td>-4995.70066</td>
<td>.27625108</td>
<td>313.53795</td>
<td>218.43295</td>
</tr>
</tbody>
</table>

Case 11 Continued (Static Data)

<table>
<thead>
<tr>
<th>t</th>
<th>a(km)</th>
<th>e</th>
<th>ω(')</th>
<th>h_p(km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5000.00000</td>
<td>.27060000</td>
<td>35.00000</td>
<td>249.80000</td>
</tr>
<tr>
<td>120</td>
<td>-4993.73020</td>
<td>.27552065</td>
<td>321.45260</td>
<td>220.65443</td>
</tr>
<tr>
<td>240</td>
<td>-4985.17939</td>
<td>.27584452</td>
<td>248.80682</td>
<td>212.84497</td>
</tr>
<tr>
<td>360</td>
<td>-4977.42737</td>
<td>.26963612</td>
<td>175.28874</td>
<td>238.13316</td>
</tr>
<tr>
<td>480</td>
<td>-4973.82942</td>
<td>.26467018</td>
<td>99.90200</td>
<td>260.20509</td>
</tr>
<tr>
<td>600</td>
<td>-4971.05403</td>
<td>.26705131</td>
<td>24.12279</td>
<td>246.32757</td>
</tr>
<tr>
<td>720</td>
<td>-4964.24556</td>
<td>.27183542</td>
<td>309.66514</td>
<td>217.58779</td>
</tr>
<tr>
<td>Table A.10: Case 12 Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t)</td>
<td>(a(km))</td>
<td>(e)</td>
<td>(w())</td>
<td>(h_p(km))</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>5000.00000</td>
<td>.27060000</td>
<td>35.00000</td>
<td>249.80000</td>
</tr>
<tr>
<td>120</td>
<td>1999.60428</td>
<td>.27082420</td>
<td>13.94098</td>
<td>248.39044</td>
</tr>
<tr>
<td>240</td>
<td>1999.07370</td>
<td>.27113772</td>
<td>353.17342</td>
<td>246.43624</td>
</tr>
<tr>
<td>360</td>
<td>1996.34753</td>
<td>.27109197</td>
<td>333.39445</td>
<td>244.67784</td>
</tr>
<tr>
<td>480</td>
<td>1996.14283</td>
<td>.27130026</td>
<td>314.36703</td>
<td>243.48798</td>
</tr>
<tr>
<td>600</td>
<td>1996.10494</td>
<td>.27149866</td>
<td>295.41280</td>
<td>242.71297</td>
</tr>
<tr>
<td>720</td>
<td>1996.03811</td>
<td>.27155605</td>
<td>276.47089</td>
<td>242.13372</td>
</tr>
<tr>
<td>Case 12 Continued (Static Data)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>5000.00000</td>
<td>.27060000</td>
<td>35.00000</td>
<td>249.80000</td>
</tr>
<tr>
<td>120</td>
<td>1995.35223</td>
<td>.27018277</td>
<td>15.18149</td>
<td>248.49412</td>
</tr>
<tr>
<td>240</td>
<td>1990.66638</td>
<td>.26982746</td>
<td>314.36703</td>
<td>246.84755</td>
</tr>
<tr>
<td>360</td>
<td>1985.98804</td>
<td>.26937066</td>
<td>343.36737</td>
<td>245.70918</td>
</tr>
<tr>
<td>480</td>
<td>1981.33806</td>
<td>.26885673</td>
<td>331.41692</td>
<td>244.87178</td>
</tr>
<tr>
<td>600</td>
<td>1976.67017</td>
<td>.26829597</td>
<td>322.13487</td>
<td>244.24964</td>
</tr>
<tr>
<td>720</td>
<td>1971.96437</td>
<td>.26771465</td>
<td>315.53546</td>
<td>243.69665</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table A.11: Case 13 Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Data</td>
</tr>
<tr>
<td>(t)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>120</td>
</tr>
<tr>
<td>240</td>
</tr>
<tr>
<td>t</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>120</td>
</tr>
<tr>
<td>240</td>
</tr>
<tr>
<td>360</td>
</tr>
<tr>
<td>480</td>
</tr>
<tr>
<td>600</td>
</tr>
<tr>
<td>720</td>
</tr>
</tbody>
</table>

Table A.12: Case 14 Data

Dynamic Data

Case 14 Continued (Static Data)

<table>
<thead>
<tr>
<th>t</th>
<th>a(km)</th>
<th>e</th>
<th>w(')</th>
<th>h_p(km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20000.00000</td>
<td>.81500000</td>
<td>35.00000</td>
<td>302.80000</td>
</tr>
</tbody>
</table>
120 19998.77302 0.81477669 96.77658 307.03890
240 19994.79723 0.81777109 159.39778 246.43019
360 19978.02947 0.81892391 225.76558 220.31313
480 19964.35529 0.81721454 357.59101 216.77295
600 19959.31764 0.81533099 388.66735 288.66735
720 19957.00771 0.81437821 60.88218 307.25512

<table>
<thead>
<tr>
<th>t</th>
<th>a(km)</th>
<th>e</th>
<th>w(')</th>
<th>h_p(km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5000.00000</td>
<td>0.2706000</td>
<td>35.00000</td>
<td>249.80000</td>
</tr>
<tr>
<td>120</td>
<td>4999.55755</td>
<td>0.2696683</td>
<td>131.50579</td>
<td>254.13272</td>
</tr>
<tr>
<td>240</td>
<td>4999.17581</td>
<td>0.2773302</td>
<td>226.22172</td>
<td>215.55313</td>
</tr>
<tr>
<td>360</td>
<td>4996.54172</td>
<td>0.2767051</td>
<td>318.84402</td>
<td>216.77295</td>
</tr>
<tr>
<td>480</td>
<td>4996.23941</td>
<td>0.2689453</td>
<td>53.25147</td>
<td>255.32435</td>
</tr>
<tr>
<td>600</td>
<td>4996.18743</td>
<td>0.2704497</td>
<td>149.18642</td>
<td>247.76869</td>
</tr>
<tr>
<td>720</td>
<td>4996.09627</td>
<td>0.2779031</td>
<td>242.90518</td>
<td>210.46549</td>
</tr>
</tbody>
</table>

Table A.13: Case 15 Data

Dynamic Data

<table>
<thead>
<tr>
<th>t</th>
<th>a(km)</th>
<th>e</th>
<th>w(')</th>
<th>h_p(km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5000.00000</td>
<td>0.2706000</td>
<td>35.00000</td>
<td>249.80000</td>
</tr>
<tr>
<td>120</td>
<td>4992.72282</td>
<td>0.2686399</td>
<td>130.99989</td>
<td>254.27807</td>
</tr>
<tr>
<td>240</td>
<td>4986.82938</td>
<td>0.2754292</td>
<td>224.50469</td>
<td>216.11097</td>
</tr>
<tr>
<td>360</td>
<td>4981.82717</td>
<td>0.2747637</td>
<td>315.32094</td>
<td>215.80178</td>
</tr>
<tr>
<td>480</td>
<td>4975.91550</td>
<td>0.2662729</td>
<td>47.01537</td>
<td>253.76373</td>
</tr>
<tr>
<td>600</td>
<td>4968.69449</td>
<td>0.2656665</td>
<td>139.58943</td>
<td>251.47856</td>
</tr>
<tr>
<td>720</td>
<td>4962.87185</td>
<td>0.2723275</td>
<td>229.45923</td>
<td>214.14492</td>
</tr>
</tbody>
</table>

Case 15 Continued (Static Data)

<table>
<thead>
<tr>
<th>t</th>
<th>a(km)</th>
<th>e</th>
<th>w(')</th>
<th>h_p(km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5000.00000</td>
<td>0.2706000</td>
<td>35.00000</td>
<td>249.80000</td>
</tr>
<tr>
<td>120</td>
<td>4992.72282</td>
<td>0.2686399</td>
<td>130.99989</td>
<td>254.27807</td>
</tr>
<tr>
<td>240</td>
<td>4986.82938</td>
<td>0.2754292</td>
<td>224.50469</td>
<td>216.11097</td>
</tr>
<tr>
<td>360</td>
<td>4981.82717</td>
<td>0.2747637</td>
<td>315.32094</td>
<td>215.80178</td>
</tr>
<tr>
<td>480</td>
<td>4975.91550</td>
<td>0.2662729</td>
<td>47.01537</td>
<td>253.76373</td>
</tr>
<tr>
<td>600</td>
<td>4968.69449</td>
<td>0.2656665</td>
<td>139.58943</td>
<td>251.47856</td>
</tr>
<tr>
<td>720</td>
<td>4962.87185</td>
<td>0.2723275</td>
<td>229.45923</td>
<td>214.14492</td>
</tr>
</tbody>
</table>
Table A.14: Case 16 Data

Dynamic Data

<table>
<thead>
<tr>
<th>t</th>
<th>a(km)</th>
<th>e</th>
<th>w(°)</th>
<th>h_p(km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10000.00000</td>
<td>.63530000</td>
<td>35.00000</td>
<td>249.80000</td>
</tr>
<tr>
<td>120</td>
<td>9999.95380</td>
<td>.63788457</td>
<td>338.16373</td>
<td>223.93753</td>
</tr>
<tr>
<td>240</td>
<td>9999.87033</td>
<td>.63925371</td>
<td>281.67942</td>
<td>210.21608</td>
</tr>
<tr>
<td>360</td>
<td>9998.83121</td>
<td>.63836116</td>
<td>225.28241</td>
<td>218.76572</td>
</tr>
<tr>
<td>480</td>
<td>9998.87389</td>
<td>.63625965</td>
<td>168.61203</td>
<td>239.79389</td>
</tr>
<tr>
<td>600</td>
<td>9998.86252</td>
<td>.63437761</td>
<td>11.56627</td>
<td>258.60798</td>
</tr>
<tr>
<td>720</td>
<td>9999.01324</td>
<td>.63428386</td>
<td>54.41548</td>
<td>259.60056</td>
</tr>
</tbody>
</table>

Case 16 Continued (Static Data)

<table>
<thead>
<tr>
<th>t</th>
<th>a(km)</th>
<th>e</th>
<th>w(°)</th>
<th>h_p(km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10000.00000</td>
<td>.63530000</td>
<td>35.00000</td>
<td>249.80000</td>
</tr>
<tr>
<td>120</td>
<td>9991.71527</td>
<td>.63758789</td>
<td>338.12500</td>
<td>223.91864</td>
</tr>
<tr>
<td>240</td>
<td>9980.55809</td>
<td>.63856010</td>
<td>281.48910</td>
<td>210.17196</td>
</tr>
<tr>
<td>360</td>
<td>9969.78988</td>
<td>.63729995</td>
<td>224.82070</td>
<td>218.84329</td>
</tr>
<tr>
<td>480</td>
<td>9959.72721</td>
<td>.63479035</td>
<td>167.76473</td>
<td>240.18852</td>
</tr>
<tr>
<td>600</td>
<td>9954.98099</td>
<td>.63274012</td>
<td>110.24516</td>
<td>258.86516</td>
</tr>
<tr>
<td>720</td>
<td>9952.39850</td>
<td>.63264429</td>
<td>52.58695</td>
<td>258.87037</td>
</tr>
</tbody>
</table>

Table A.15: Case 17 Data

Dynamic Data

<table>
<thead>
<tr>
<th>t</th>
<th>a(km)</th>
<th>e</th>
<th>w(°)</th>
<th>h_p(km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20000.00000</td>
<td>.81500000</td>
<td>35.00000</td>
<td>302.80000</td>
</tr>
<tr>
<td>120</td>
<td>20000.06508</td>
<td>.81675934</td>
<td>19.03105</td>
<td>267.62517</td>
</tr>
<tr>
<td>240</td>
<td>20000.01976</td>
<td>.81658411</td>
<td>3.07461</td>
<td>271.12147</td>
</tr>
<tr>
<td>Case 17 Continued (Static Data)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>360</td>
<td>20000.01611</td>
<td>0.81758658</td>
<td>347.07064</td>
<td>251.07133</td>
</tr>
<tr>
<td>180</td>
<td>20000.12724</td>
<td>0.81638078</td>
<td>331.20081</td>
<td>275.20775</td>
</tr>
<tr>
<td>600</td>
<td>20000.12863</td>
<td>0.81594742</td>
<td>315.40398</td>
<td>283.87521</td>
</tr>
<tr>
<td>720</td>
<td>20000.11430</td>
<td>0.81589036</td>
<td>299.70516</td>
<td>285.01381</td>
</tr>
</tbody>
</table>

| |
|---|---|---|---|
| 0 | 20000.00000 | 0.81500000 | 35.00000 | 302.80000 |
| 120 | 19997.34369 | 0.81673420 | 19.02958 | 267.62926 |
| 240 | 19991.65376 | 0.81650769 | 3.06514 | 271.11450 |
| 360 | 19985.81237 | 0.81745654 | 347.04657 | 251.07940 |
| 480 | 19979.58406 | 0.81619343 | 331.15241 | 275.17885 |
| 600 | 19976.79774 | 0.81573750 | 315.32567 | 283.77468 |
| 720 | 19974.07560 | 0.81565400 | 299.59326 | 284.94085 |
Appendix B

Supplemental Figures for Sections V and VI

The following pages contain two dimensional graphs of the data tabulated in Appendix A.
Fig. B.1: Periapsis Altitude vs. Time (Case 3)
Fig. B.2: Semimajor Axis vs. Time (Case 3)
Fig. B.3: Eccentricity vs. Time (Case 3)
Fig. B.4: Argument of Periapsis vs. Time (Case 3)
Fig. B.6: Semimajor Axis vs. Time (Case 4)
Fig. B.8: Argument of Periapsis vs. Time (Case 4)
Fig. B.9: Periapsis Altitude vs. Time (Case 5)
Fig. B.10: Semimajor Axis vs. Time (Case 5)
Fig. B.11: Eccentricity vs. Time (Case 5)
Fig. B.12: Periapsis Altitude vs. Time (Case 6)
Fig. B.14: Eccentricity vs. Time (Case 6)
Fig. B.17: Eccentricity vs. Time (Case 7)
Fig. B.18: Periapsis Altitude vs. Time (Case 3)
Fig. B.19: Semimajor Axis vs. Time (Case 3)
Fig. B.20: Eccentricity vs. Time (Case S)
Fig. B.21: Periapsis Altitude vs. Time (Case 9)
Fig. B.23: Eccentricity vs. Time (Case 9)
Fig. B.25: Semimajor Axis vs. Time (Case 10)
Fig. B.26: Eccentricity vs. Time (Case 10)
Fig. B.27: Periapsis Altitude vs. Time (Case 11)
Fig. B.29: Eccentricity vs. Time (Case 11)
Fig. B.30: Periapsis Altitude vs. Time (Case 1.2)
Fig. B.33: Periapsis Altitude vs. Time (Case 13)
Fig. B.34: Semimajor Axis vs. Time (Case 13)
Fig. B.35: Eccentricity vs. Time (Case 13)
Fig. B.36: Periapsis Altitude vs. Time (Case 1+1)
Fig. B.37: Semimajor Axis vs. Time (Case 14)
Fig. B.38: Eccentricity vs. Time (Case 14)
Fig. B.39: Periapsis Altitude vs. Time (Case 15)
Fig. B.40: Semimajor Axis vs. Time (Case 15:)
Fig. B.41: Eccentricity vs. Time (Case 15)
Fig. B.42: Periapsis Altitude vs. Time (Case 16)
Fig. B.43: Semimajor Axis vs. Time (Case 16)
Fig. B.44: Eccentricity vs. Time (Case 16)
Fig. B.45: Periapsis Altitude vs. Time (Case 17)
Fig. B.46: Semimajor Axis vs. Time (Case 17)
Fig. B.47: Eccentricity vs. Time (Case 17)
Fig. B.48: Atmospheric Density vs. Time
Fig. B.49: Periapsis Altitude vs. Time (Check Case)
Fig. B.50: Semimajor Axis vs. Time (Check Case)
Bibliography

Satellites About The Planet Venus, School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB, OH, 1988

Vita

Captain Zoltan L. Farago

In 1979 he graduated from Lake Shore High School and began attending Oakland University. He graduated Summa Cum Laude from Oakland University in 1983, earning a B.S. degree in Physics. Following graduation, he attended Officer Training School and accepted a commission in the United States Air Force. His first assignment was to attend Parks College of St. Louis University under the Undergraduate Engineering Conversion Degree Program in order to earn a B.S. in Aerospace Engineering. He graduated Summa Cum Laude in 1985. His next assignment was with the 6595th Shuttle Test Group of the Western Space and Missile Center (WSMC) at Vandenberg AFB, California, where he worked to prepare the Shuttle satellite processing facilities for the launch of Shuttle payloads. While at Vandenberg AFB, he was selected to attend Squadron Officer School, from which he graduated in December, 1987. He stayed at WSMC until selected to attend the School of Engineering, Air Force Institute of Technology, starting in June, 1988.
Title
An Investigation of Long Term Orbits About the Planet Mars Using a Dynamic Atmosphere Model

Thesis Chairman: Rodney D. Bain, Capt, USAF
Instructor of Astronautical Engineering
Abstract

This study examines the effects of atmospheric drag on the long term orbital motion of an artificial satellite about the planet Mars using a dynamic Martian atmosphere model instead of a static atmosphere model.

Present studies of motion through the Martian atmosphere use a non-rotating (static) atmosphere model which has a simple exponential drop-off with altitude. However, Mars, like other planets, is known to have a turbulent, complex atmosphere. As a result, a new dynamic model of the Martian atmosphere uses data from recent space probes of Mars to simulate an atmosphere that is both position dependent, through latitude and longitude effects, and time dependent, through a variety of effects. These include diurnal and seasonal effects, annual motion effects, solar activity effects, and dust storm effects. Nine constituent gases are included in the above model. The model determines atmospheric mass density for the calculation of atmospheric drag. The existing static model is also used to calculate atmospheric drag to provide a comparison in conjunction with other effects.

In addition to atmospheric drag, perturbations due to the attraction of the sun, the aspherical gravity field of Mars, and the effects of the solar wind are also modeled.

The resulting orbital data are then compared to determine the differences between the two models, thus showing the effects on long term motion of using a dynamic model of the Martian atmosphere. Thus (SDW)