Academic Text Features and Reading
In English as a Second Language

Richard P. Durán, Susan R. Goldman, and Michaele Smith
University of California, Santa Barbara

Technical Report
August, 1989

This project was supported by the Office of Naval Research Cognitive Science Program, under contract N00014-85-K-0562, authorization number NR442c015. The contributions to this work of Anne Fay are gratefully acknowledged. Reproduction in whole or part is permitted for any purpose of the United States Government. Approved for public release; distribution unlimited.
Several general text characteristics can have significant impact on reasoning and comprehension. In our efforts to examine the strategies ESL students employ when learning from text, it became necessary to carefully examine such text characteristics. We first review the literature on ESL students' study strategies and how they might interact with formatting and linguistic conventions in text. Three classes of discourse-level phenomena are then described and illustrated with examples from typical college texts: topic development and background knowledge, subordination, and logical connectors. We suggest several ways in which these potentially impact ESL reading strategies. Finally, directions for research and some preliminary empirical findings from work conducted with ESL students are presented.
Academic Text Features and Reading in English as a Second Language

Reading of academic text materials for problem solving purposes involves knowledge and skills which are complex. The development of these skills among adult learners of English as a Second Language (ESL) is interesting on both practical and theoretical grounds. In this paper we discuss some characteristics of texts and naturally occurring academic passages that influence a reader's ability to orient to a text and to extract meaning from passages for the purpose of answering questions, creating summaries, or performing other learning tasks. The text analysis work described here is part of a program of empirical research investigating reasoning and reading comprehension processes among college level, second language learners in fields such as introductory oceanography, psychology, and other academic areas. This paper arises out of issues we had to consider in attempting to investigate the reasoning and text comprehension of ESL students. Our purpose in the paper is to identify some important kinds of text features that might help steer ESL and non-ESL readers through the distribution and organization of ideas in a text. Accordingly, we are here most interested in text features that serve high-level semantic functions. That is, we are interested in units of language and other printed cues that convey key concepts, and in addition, complete ideas or thoughts at the sentence-level and beyond.

Our approach to text description is informed by three theoretical perspectives that are complementary. First, congruent
with cognitive research on reading comprehension and metacognition, we hypothesize that a student's reading performance and reading strategies for the purpose of answering questions need to be understood as an interaction among learner, task, and text characteristics (Goldman & Durán, 1988; Brown, Armbruster, and Baker, 1986). Central to this perspective is the idea that a good reader monitors his or her comprehension and that when comprehension difficulties arise, the reader enacts reading strategies to compensate for these difficulties. Second, in agreement with emerging research on assessment of second language proficiency, we find it helpful to consider the full range of language recognition and comprehension skills needed by readers (Canale and Swain, 1980; Durán, Enright & Rock, 1985). These skills include an ability to recognize and understand how meaning is cued by graphemic codes (e.g. punctuation,), lexical and grammatical structures, and by discourse features signalling introduction, organization, and development of information. We also consider the skill of good readers to recognize and understand additional semantic cueing devices of a text which augment or go beyond the literal language of a text. In this light, we consider, e.g. a reader's ability to recognize the purpose and function of tables, graphs, text boxes, margin notes, etc. and the information that they convey about an academic subject.

A third theoretical view we find informative stems from anthropological and ethnographic studies of literacy. Ethnographic studies (e.g. Heath, 1983 and Scribner & Cole, 1981) indicate that people's in situ reading of a text involves strategic behaviors which are highly context-sensitive to text features and to the social,
everyday demands of tasks involving reading. Thus, in portions of our research we are interested in learning how an individual actually interacts with a text as they perform or prepare for academic tasks. We are especially interested in discovering strategic behaviors that embody a parsimonious but powerful set of cognitive operations accounting for reading behavior during problem-solving tasks such as answering questions (Goldman and Durán, 1988).

We believe that an approach building on the areas cited can contribute in an important fashion to a more realistic and comprehensive understanding of what readers do as they actually perform academic learning tasks using textual materials. The approach appears especially useful for studying second language learners' reading skill development because it can prove sensitive to a wide range of compensatory strategies applied by readers as they encounter comprehension problems. We note in passing, however, that our approach applies just as much to native readers of a language as to second language learners.

We will discuss several general text characteristics which we believe can have a significant impact on second language students' comprehension and inferential operations drawing on the perspectives cited above. First, we will discuss ESL students' strategies for studying texts in everyday activities. We then go on to discuss text organization, formatting and language characteristics of texts.

ESL Students' Study Strategies

ESL readers need to judge how their overall capacity to comprehend English texts and prior knowledge of a content or skill area affect their strategies for studying from a text. Evidence exists that
students from non-English backgrounds are sensitive to the impact of limited verbal skills on their ability to perform academically. Duran, Enright, and Rock (1985), for example, found that Hispanic college candidates' self-judgments of ability to read, write, orally comprehend, and speak English were significantly correlated with students' SAT verbal test scores. However, the impact of English proficiency on the reading strategies employed by adult ESL college students has not been investigated intensively. Anecdotal evidence suggests that ESL students rely on a number of compensatory reading strategies. Commonly cited strategies include reading assisted by an English dictionary, asking peers for help with English vocabulary terms, rereading materials several times, and deliberate slow reading to insure through comprehension.

We lack research, however, on how specific compensatory reading strategies of ESL students interact with the characteristics of texts themselves. Anderson and Armbruster (1985), while concerned with monolingual students, offer informative suggestions that can be extended to breach this gap. They outline characteristics of "good" as opposed to "poor" texts that can help learners acquire knowledge. According to Anderson and Armbruster good texts have the advantages outlined below:

1. Criteria for studying will be clearer to students because
 a. The titles, headings and topic sentences help
 the student identify the questions that the text
 is answering.

2. Focusing attention will be easier because
b. Each idea unit in the regular text is important, in that it contributes to an answer and/or a question.

c. The idea units that have a high probability of being nonessential are clearly marked by being in a box.

d. The hierarchical structure of the text and high degree of unity make it easy and efficient for students to locate a specific text unit. Entire chunks of irrelevant text can be easily identified and skipped over.

3. e. The high degree of coherence, structure, and unity will enable the students to select and rapidly engage in a variety of activities to promote encoding such an outlining, mapping, underlining, and notetaking. Even the more time-consuming activities proceed very smoothly when using text with these characteristics.

f. The hierarchical structure of the text encourages students to use a top-down, higher-level perspective when reading and organizing ideas from the text. This perspective is contrasted with a bottom-up one in which the students are not sure where the author is going, and must put the puzzle together in an inefficient, piecemeal fashion (p. 175).

The qualities of a good academic text suggested by Anderson and Armbruster allude to some of the learning demands that may be faced by students in learning tasks. For example, these demands may include understanding implicit or explicit questions answered by a text, and comprehending the immediate usefulness and function of individual idea units as they occur. They also cite metacognitive learning
strategies used by students as they interact with a text, e.g., outlining, mapping, and notetaking, and the recognition and acquisition of high-level organizers for text information.

Text characteristics and text processing strategies such as those cited by Anderson and Armbruster are embedded within specific learning activities and they point to the importance of an ESL student's ability to interpret the nature of a learning activity effectively. While there is only a limited empirical research base on the strategies ESL students use in reading a text given its characteristics, further research can be motivated by discussing some of the most salient characteristics that ought to affect reading.

These characteristics include the organizational formatting of a text, the use of printing and type-font conventions as signalling devices for meaning, and the use of discourse and other linguistic conventions to encode text information. The range and variety of signaling devices occurring in texts is evident in the following list developed by Lorch (in press).

Titles

Headings and Sub-headings

Repetition of content, including

- Exact repetition of a statement for emphasis
- Certain types of preview statements
- Certain types of summary statements

Function indicators, including:

- Pointer words (e.g., "thus")
- Pointer phrases (e.g., "in summary")
Pointer sentences (e.g., "Let me summarize what has been said")
Relevance indicators, including:
Pointer statements or phrases emphasizing particular content (e.g., "Let me stress that...")
Enumeration devices (e.g., numbering points in an argument)
Typographical cues, including:
 Underlining
 Change of appearance in print (e.g., boldface, color)
 Distinguishing content spatially (e.g., indentation, centering)

Lorch also summarizes the findings of psychological studies of the effects of these signaling devices on reading and meaning processes. The general findings of research indicate that memory of and attention to text information is positively affected by signaling devices among monolingual subjects. Goldman (1988) has reported that ESL college students are also subject to the positive effects of signals. As well, ESL students are sensitive to the usage conditions of logical relation indicators, i.e. connectors. (Goldman & Murray, 1989; MacLean & d'Anglejan, 1986).

We now turn to a more specific discussion of these and other signalling devices that ought to be expected to affect the reading processes of ESL students.

Text Organization and Formats

Textbooks have parts and follow formatting and layout conventions that aid readers in getting at text meaning (Duffy and
Waller, 1985). While we are readily aware that the principal ideas in a text are presented in language, we are also aware of additional ways in which meaning is conveyed in a text. For example, we notice that a text can have parts such as a title page, table of contents, preface, introduction, chapters, glossaries, appendices, and an index. These parts of a text serve as organizers for the overall meaning available in a text and good readers would be expected to recognize these formats and their functions. The table of contents, for example, provides a conveniently accessible outline of the overall organization of a text into chapters, sections and subsections, and the pages corresponding to these text segments. The importance of the table of contents as an organizer of text information and, as well, as an organizer of a field of knowledge is underestimated by the novice studying a text for the first time. The apprentice learner is unable to grasp the significance of the table of contents as a high-level framework depicting organization of knowledge in a field compiled by an expert teaching this knowledge. But, perhaps, this makes sense. The practical function of a table of contents is to assist the learner in locating pages in a text corresponding to various sections of information. Some text formats are of special importance to ESL readers. For example, we know that ESL students are more likely to encounter vocabulary recognition difficulties than other students (Durán et al., 1985), hence, knowing how to locate and use an index and glossary for such students could be extremely helpful.

Within text chapters there are other forms of text organization that can guide readers' access to meaning. Such organizers include, e.g., sections and subsections within a chapter, sideheaders, text boxes,
graphs, tables, and figures. Sections and subsections of chapters are structured around the main topics to be covered in a chapter.

It is common—but not universal—that students' reading and classroom assignments focus on material found within specific sections and subsections of a text chapter. It is at this level of text organization that we become most interested in the cognitive and linguistic strategies applied by students as they work academic assignments such as answering questions. The notion that chapters, sections and subsections of a text are organized around key material to be learned would appear equally salient to students regardless of their language background. Ability to find portions of text pertinent to academic assignments, however, may differ for ESL and native-English speaking students and may interact with a student's prior knowledge of subject matter when active searching for text information is required in order to answer questions (Goldman and Duran, 1988). According to the model developed by Goldman & Durán (1988), the question answering task involves several processes. Students must interpret the linguistic statement of a question in terms of a question topic; they must identify relevant information provided by the text as a function of knowledge they already possess; further, they must identify what is the nature of the unknown information required in a response to a question.

Text boxes are typically used to present supplementary information that cannot be adequately covered in the main body of a chapter section. Graphs, tables, and figures and their labels serve a number of functions that are often central, rather than supplementary to text comprehension. Perceptually they serve as visual aids to
comprehension and they may illustrate or expand upon information conveyed linguistically in the main body of a text. In technical texts these aids are often used to visually exemplify the operations of principles or to display relationships of a quantitative nature among variables in some system under discussion in a text section. Labels accompanying these learning adjuncts are themselves informative. Students need to recognize the ways in which labels summarize the key concepts and relationships depicted in these learning adjuncts.

Type-Font Conventions

Occurrence of the foregoing formats and structures in a text is accompanied by variations in type font conventions that provide information. Each academic text establishes its own conventions for the way in which type is manipulated to encode information. Examples of conventions might include use of italics, quotation marks, or bold-face type when new terms or concepts are first introduced and defined. Still another set of conventions is the use of larger size, bold face type and capital letters in the statement of chapter titles, section headers, and sideheaders. Recognition of these graphemic conventions to assist access to text information appears to rely on perceptual recognition strategies that are distinguishable from strategies in the decoding of natural language. Type-font conventions serve a different semiotic function. They signal through physical appearance information about text organization that can help a learner in orienting to text meaning and value to learning. We know little of how these conventions affect learning, though much knowledge about how to design and manipulate typing conventions is exercised in the production of textbooks (Duffy and Waller, 1985).
The ability of ESL as opposed to non-ESL readers to recognize the functions of type-font conventions is more related to the academic, cultural experiences of learners than to their ability to understand a second language. And the same can be said for the ability to understand other formatting conventions for organizing text information. Nonetheless, these features of a text must be considered in developing an adequate understanding of ESL students' reading strategies. Because of cultural and social experience differences, there is always the possibility that ESL readers may not be familiar with the utility of these conventions as aids to learning.

It is interesting to note that the semantic significance of text formatting conventions and type font conventions to text understanding is not typically considered worthy of systematic attention in ESL courses. Indeed it was not until the early 1970's that such concerns were considered relevant for a comprehensive description of language processing skills. In recent years concerns for skill in processing graphemic conventions in general has emerged in descriptive frameworks for describing the communicative competence skills that ESL students must acquire (Canale & Swain, 1980).

We next consider some of the discourse and natural language characteristics of texts that are important for ESL readers to recognize.

Discourse and Linguistic Conventions

There is no unified and comprehensive theory for the structure of English discourse, or the structure of discourse in any language, for that matter. There is a trend in recent years, however, to focus attention on the centrality of the communicative functions served by
discourse and for how these functions are signalled in natural language. Brown and Yule (1983), for example, adopt this perspective and suggest two major functions: transactional and interactional. The transactional function best depicts the function of textbook language, namely the expression and transmission of content knowledge. The interactional function of discourse, on the other hand, has as its primary purpose the negotiation of interpersonal social relationships among interlocutors.

Transactional discourse is characterized by assumptions or maxims about the intentions of a writer relative to a reader, and in this sense, it has a social kernel, though it is not intended to dynamically regulate on-going social relations among active interlocutors. We do not have a clear and unambiguous model for these assumptions and conventions in the case of academic texts, but they appear to include certain beliefs. A first assumption is that text discourse is topic-centered and that the text of a chapter, its sections and subsections are intended to elaborate knowledge about a topic. Two additional assumptions are the belief on the part of the reader that texts present veridical information, and the belief that as text material is presented it consists of coherent and logically consistent elaborations of knowledge about a topic.

The extent to which these assumptions vary across languages and how different languages realize discourse conventions is the subject of study of the field known as contrastive linguistics (Kaplan 1966). While we are unable to explore this area here, it is worthwhile noting that there is evidence suggesting that there are culturally-based tendencies and preferences in the way expository discourse can be
organized. This has implications for better understanding the reading strategies of ESL students. Research is needed on how the language background of such students affects students' ability to sense the discourse structure of English-language texts.

Given the foregoing caveat, we will proceed to mention three classes of English discourse-level phenomena that need to be recognized by ESL readers and that merit further research regarding their affects on comprehension processes. These phenomena include: recognition of topic development and background knowledge, subordination, and the occurrence and use of logical connectors. All of these phenomena are interrelated and occur in discourse. Nonetheless, each merits separate attention in light of the academic reading comprehension skills that ESL students are expected to develop.

Topic Development and Background Knowledge

Cognitive psychologists have used the term "macrostructure of a text" to refer to the underlying semantic representation of the main ideas or topics and the way they are globally elaborated by a text (Kintsch & van Dijk, 1978). The macrostructure of a text is distinguished from its microstructure. The latter term refers to the way in which each separate idea in a text is sequentially connected to preceding ideas.

Academic texts in English at the college level are characterized, typically, by a macrostructure resembling a linear outline. A chapter focuses on a central topic and the separate sections and subsections of the chapter go on to develop information about the topic. This development proceeds sequentially and in a cumulative manner. Comprehension of a given section or subsection of text presupposes
comprehension of previously occurring sections and subsections, and often previous chapters of text.

The fact that academic texts introduce and elaborate topics in a linear-outline manner does not imply that the underlying knowledge acquired by the learner is structured in memory in this manner. Cognitive psychologists investigating discourse comprehension, for example, suppose that memory for text is better represented as a network of interconnected propositions derived from a text and stored in long-term memory (e.g., Beaugrand, 1980; Kintsch & van Dijk, 1978; Rumelhart, 1977).

The ultimate goal of learning from a textbook is to assist the reader in acquiring a mental representation in long-term memory for the knowledge conveyed by a text. The relevant background knowledge stored in long-term memory that a learner brings to the task of reading a text and to completion of text assignments is critical. In essence, the learner must activate this knowledge and use it in the act of comprehension to build a representation of new information conveyed by a text. Further, the representation that is built must be made useful by the development of procedural knowledge aiding the learner in applying new knowledge toward the solution of problems and assignments drawing on this knowledge.

One of the most important issues in research on ESL students' academic reading skills concerns the extent to which their background knowledge--especially previous study of an academic topic--affects their reading strategies and sensitivity to topic development in a text. Hypothetically, an ESL reader with a strong command of a topic will be able to recognize the macrostructure of text and will be able to
activate corresponding content knowledge accordingly. The processing of text by such a reader in light of his or her limited English proficiency may be very different from the processing of text by another reader with limited English proficiency, but with a lack of familiarity with an academic topic. The ESL student with a strong topic familiarity should be able to process text better in a top-down manner than the ESL student with a weak topic familiarity. Both types of students will be able to process text in a bottom-up manner subject to their command of English, but the student with a weak topic familiarity may need to expend more effort and have more difficulty integrating text information into an underlying knowledge representation maintained in long-term memory (Goldman & Durán, 1988).

There are certain language mechanisms that can make more apparent the microstructure, and in some cases the macrostructure. Lorch (in press) referred to these as function indicators; Meyers' (1975) rhetorical devices are function indicators. Furthermore, the sentence-level organization of information carries meaning regarding the meaning relations among the informational elements. That is, one idea may be subordinated to a second. The subordination per se communicates information about appropriate topic-elaboration. Subordination and logical connectors are discussed in the next section. **Subordination**

Subordination relates to how language is used to introduce and develop topics and how topics are connected across stretches of text. This issue pertains to the semantic microstructure of a text and to how sentence and clause units are structured and connected syntactically to
express the microstructure. As a reader encounters text sequentially, he or she must recognize the topic under discussion and must recognize elaborations of the topic. In this process readers must distinguish previously given or foreground information from new information and the relationships between the two (Perfetti & Goldman, 1974).

Discourse level text involves multiple sentences. Individual sentences may involve a simple clause consisting minimally of a subject and a main verb. Complex sentences consist of a main clause and accompanying dependent clauses. The latter are not typically independent sentences. Clauses and sentences have either a coordinate or subordinate relationship to each other. Coordinate clauses and sentences are of equal semantic rank in that they express independent information about a topic. As an example of two coordinate clauses, one an independent clause and the other a dependent clause, consider:

This is due to the abundance of surface water [indep. cl.] and its remarkable thermal properties [dep. cl.].

These two clauses have a coordinate relationship to each other because they present independent information about a topic: mildness of the earth's climate.

Two clauses have a superordinate-subordinate relation when one clause, the superordinate clause can stand alone as complete sentence, but is accompanied by another dependent clause to form a compound sentence. The dependent clause cannot stand alone as a sentence and it provides semantic information about a topic that can be understood only in relation to the semantic information provided in the
superordinate clause. Subordinate clauses often take the form of an
adverbial clause connected semantically to a superordinate clause by
means of a logical connector. Consider for example the compound
sentence:

*Although roughly equal in thickness, the oceans are 90
times more massive than the atmosphere.*

In this example, the adverbial clause "*Although roughly equal in
thickness*" has a subordinate relationship to the main independent
clause which follows. That is, it does not make sense on its own, but
must be interpreted as semantically dependent on another clause. The
adverbial clause references the specific topic of the sentence (equality
in thickness of the oceans and atmosphere) and the subsequent
independent clause contributes new information about the topic. The
logical connector "*although*" at the outset of the adverbial clause
signals that a semantic contrast or oppositional relationship is being
presented between two ideas.

To understand an academic text, readers must recognize the
occurrence of subordinate relationships among clauses. Further,
readers must be able to recognize adverbial clauses and the use of
logical connectors to establish explicit semantic relationships among
the ideas expressed in clauses. The ability to comprehend written
language in this manner requires a high-level of English language
proficiency. It requires extensive knowledge of English sentence-level
syntax and also a knowledge of how the syntactic structure of English
operates to signal semantic relationships across clausal units. It also
requires extensive knowledge of how logical connectors establish relationships among ideas expressed by clauses.

Before turning to a more detailed discussion of functions of logical connectors, it should be noted in passing that subordination can encompass additional purposes in sentence syntax, co-occurring with their functions to mark given-new, topic-comment, and logical functions at the discourse level (Greenbaum, 1989). For example, subordinate clauses may operate as noun phrases as in

Saving energy will help our balance of payments

or as modifiers and complement clauses, as in

Drugs that are used in chemotherapy change a patient's healthy cells as well.

To comprehend a text, students must recognize the occurrence of these subordination functions, noting their within sentence syntactic function, as well as their function in developing a text topic and in showing logical relations to other text information.

Logical Connectors

Logical connectors are words or terms that semantically connect ideas conveyed in separate phrases, clauses, or sentences. As mentioned in the previous section their use is intimately related to the way given and new or topic and comment information are marked in superordinate and subordinate relationships to each other. These functional units of language are an important subclass of cohesive devices in English. Halliday and Hasan (1979), under the rubric of conjunctive cohesion, distinguish four types of transitional expressions: additive, adversative, causal, and temporal.
Additive transitional expressions signal that ideas across clauses add to information about a topic. They are used to signal addition of information, introduction of new information, relationships of similarity, etc. Additive transitional expressions are underlined in the following sentences taken from an oceanography text:

For instance, if air at 25°C were 3.1% water vapor, then the absolute humidity would be 3.1% whereas the relative humidity would be 100%.

If air at 100% relative humidity is cooled, then it becomes super saturated *and* the excess moisture precipitates.

Furthermore, in spite of our sentiments during the rainy season, the atmosphere holds only a thousandth of a percent of the hydrosphere's water.

Adversative logical connectors signal conflict, contradiction, concession, etc. among ideas. Examples of these connectors are underlined below in sample sentences occurring in the oceanography text.

In spite of its low water content, the atmosphere serves as an important agent in the transfer of water from one reservoir to another.

The ocean loses water to the atmosphere via evaporation, *but* gains it back through precipitation, run-off from the land, and melting of ice.
Although the required amount of sensible heat does not depend on the initial temperature of the air, the amount of latent heat does.

Causal logical connectors are used to signal cause/effect, reason/result, and similar causal or logically contingent relationships. Examples of these expressions are underlined below.

Due to collisions between molecules, their motions are quite chaotic.

We call air "saturated" if it is holding a much water as it can.

Over the continents, the precipitation exceeds evaporation, and so some of the water must be returned to the oceans via the rivers and underground flow.

Sequential logical connectors are used to signal an explicit chronological or logical order among ideas and expressions of summation of ideas. Below are examples:

In addition to low rates of evaporation, the land has two special talents for coaxing moisture out of the air. First it is higher.

Next, a special talent that the land has to coax water from the air is its large daily and seasonal temperature fluctuations.
As the above example shows, at higher temperature, relatively larger fractions of the added heat can go into evaporating water.

Celce-Murcia and Larsen-Freeman (1983) suggest that ESL students' command of logical connectors is a good indicator of students' syntactic maturity. They discuss the difficulty of ESL students in learning how to use these connectors correctly and in understanding how to properly position connectors at the start of a first clause, between two clauses, and at the end of a second clause.

Directions for Research and Preliminary Findings

The explicit semantic functions of logical connectors make such connectors amenable to research. Goldman and Murray (1989) investigated ESL and native English speaking students' ability to discriminate the appropriateness of alternative connectors in the text. In one of these studies (Goldman & Murray, 1989, Experiment 1) students were presented paragraph-length texts with deleted terms corresponding to a logical connector. Students were asked to pick a correct connector for each slot given four choices representing an additive, adversative, causal, or sequential connector. The results of the study showed that native English speakers were more frequently correct than ESL students, but that both groups of students showed similar patterns of correct and incorrect responses. Students were most often correct when additive or causal connectors were required. Students also showed a propensity when they were wrong to more frequently choose causal alternatives than other incorrect connector types.
However, there was a notable difference between native English and ESL students' confidence ratings in their responses. Native English students were more confident of their adversative and sequential correct choices than of their correct additive and causal choices. ESL students, on the other hand, did not show such differentiation. All students were more confident of correct than of incorrect responses. An accompanying analysis of verbal protocol response justifications suggested that incorrect responses stemmed from failure of students to understand the required semantic relation appropriate to a text slot and failure to select a connector fitting the inferred but incorrect relation from among the alternatives for that slot. In summary, ESL students had greater difficulty in understanding how connectors functioned when embedded in a text than did native English students; further, the ESL students were not as good as the native English in distinguishing when they were correct versus incorrect.

The familiarity of ESL students with English can affect students' sensitivity to the organization of text normally signaled by logical connectors. Goldman (unpublished) found that failure to mark the occurrence of a second point in a text by a sequential connector such as "second" led to poorer recall of the second point by both native English and ESL students. However, the ESL students represented two levels of English proficiency. The ESL students who were least proficient in English were most prone to show the discrepancy between marked and unmarked points.

Results of the studies cited suggest that native English and ESL students may encounter many similar difficulties in processing academic texts, though the weaker English proficiency of ESL students
further undermines their effective comprehension of texts. There is a clear need for further research and it seems likely that such research will contribute to a more precise understanding of the English language and reading comprehension of ESL students.
REFERENCES

Chair, Dept. of Psych
George Mason University
Fairfax, VA 22030

Dr. Fred Chang
Navy Personnel R&D Center
Code 51
San Diego, CA 92152-6800

Dr. Joanne Capper
Center for Research into Practice
1718 Connecticut Ave., N.W.
Washington, DC 20009

Chair, Dept. of Psych
Georgetown University
Washington, DC 20057

Dr. Charles Clifton
Dept. of Psych, Tobin Hall
University of Massachusetts
Amherst, MA 01003

Dr. Jaime Carbonell
Carnegie-Mellon University
Department of Psychology
Pittsburgh, PA 15213

Chair, Dept. of Psych
George Mason University
Fairfax, VA 22030

Dr. Allan M. Collins
Boi Baranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02138

Dr. Susan Carey
Harvard Grad, School of Ed.
337 Gutman Library, Appian Way
Cambridge, MA 02138

Dr. Pat Carpenter
Carnegie-Mellon University
Department of Psychology
Pittsburgh, PA 15213

Chair, Dept. of Psych
Annapolis, Chair.

Dr. Stanley Callier
Office of Naval Cuyer
Code 222
800 North Quincy Street
Arlington, VA 22217-5000

LCDR Robert Carter
Office of the Chief of Naval
Operations, OP-01B, Pentagon
Washington, DC 20350-2000

Dr. David A. Charnley
English Department
Penn State University
University Park, PA 16802

Dr. William Cran
Department of Psychology
Texas A&M University
College Station, TX 77843

Chair
Department of Computer Sciences
U.S. Naval Academy
Annapolis, MD 21402

Mr. Paul R. Chatelier
NOSCRE
Pentagon
Washington, DC 20350-2000

Dr. Laura Davis
NRL/NCARAI Code 7510
4555 Overlook Ave., S.W.
Washington, DC 20375-5000

Dr. Michaline Chi
University of Pittsburgh, L.R.D.C.
3939 O'Hara Street
Pittsburgh, PA 15213

Defense Technical
Information Center (ATM. T. C.)
Cameron Station, Bldg. 5
Alexandria, VA 22314 (12 copies)

Dr. L. J. Chmura
Comp. Sci. and Syst. Branch
Naval Research Lab.
Washington, DC 20375-5000

Mr. Raymond E. Christal
APHL/AMOE
Brooks AFB
San Antonio, TX 78225

Dr. Natalie Denn
Dept. of Comp. and Info. Science
University of Oregon
Eugene, OR 97403

Chair
Department of Psychology
Towson State University
Towson, MD 21204

Chair, Department of
Computer Science
Towson State University
Towson, MD 21204

Chair, Department of
Computer Science
Towson State University
Towson, MD 21204

Chair, Dept. of Psych
The Johns Hopkins University
Baltimore, MD 21218

Chair, Dept. of Psych
College of Arts and Sciences
Catholic University of America
Washington, DC 20064

Dr. Yee-Yen Chu
Perceptronics, Inc.
2111 Ewth Street
Woodland Hills, CA 91367-3713

Dr. Gerald F. DeJong
A.I. Gr., Coordinated Sci. Lab.
University of Illinois
Urbana, IL 61801

Dr. William Clancey
Knowledge Syst. Lab., Stanford U.
701 Welch Rd., Bldg. C
Palo Alto, CA 94304

Dr. Natalie Denn
Dept. of Comp. and Info. Science
University of Oregon
Eugene, OR 97403

Geoff Delacoste
Dir. de U/Info. Sci. et Techn., CNRS
15, Quai Anatole France
75700 Paris FRANCE
Dr. Ed Hutchins
Intelligent Systems Group
Inst for Cog Sci (C-015), UCSD
La Jolla, CA 92037

Dr. Douglas A. Jones
Thatcher Jones Assoc.
P.O. Box 8640, 10 Tradegar Ct.
Lawrenceville, NJ 08646

Dr. Peter Kincade
Training Analysis & Eval Group
Department of the Navy
Orlando, FL 32813

Dr. Barbara Hutson
Virginia Tech Graduate Center
2950 Telesar CL
Falls Church, VA 22042

Dr. Marcel Just
Carnegie-Mellon University
Dept of Psych. Schenley Park
Pittsburgh, PA 15213

Dr. Walter Kintisch
Dept of Psych, Campus Box 3--5
University of Colorado
Boulder, CO 80303

Dr. Bartel Hinder
University of Geneva
Geneva SWITZERLAND 12U-4

Dr. Daniel Kahneman
The U of BC, Dept of Psych
134-2053 Main Mall
Vancouver, BC CANADA V6T 1Y7

Dr. David Klahr
Carnegie-Mellon University
Dept of Psych. Schenley Park
Pittsburgh, PA 15213

Dr. Dillon Inouye
WICAT Education Institute
Provo, UT 84057

Dr. Ruth Kanfer
Dept of Psych, Elliot Hall
75 E River Rd, U of Minnesota
Minneapolis, MN 55455

Dr. Mazzie Knerr
Training Research Div, HumRRC
1100 S. Washington
Alexandria, VA 22314

Dr. Alice Isern
Department of Psychology
University of Maryland
Catherine, MD 21228

Dr. Mary Grace Kantsowski
University of Florida, Math Ed
359 Norman Hall
Gainesville, FL 32611

Dr. Janet L. Kolodner
Georgia Institute of Technology
School of Info & Comp Sci
Atlanta. GA 30332

Dr. Robert Jannarone
Department of Psychology
University of South Carolina
Columbia, SC 29208

Dr. Milton S. Katz
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Stephen Kosslyn
Harvard U, 1238 William James Hall
33 Kirkland St.
Cambridge, MA 02138

Dr. Claude Jamier, Directeur, CIRAI
Université du Quebec a Montreal
Montreal, Quebec H3C 3P8
CANADA

Dr. Frank Keil
Department of Psychology
Cornell University
Ithaca, NY 14853

Dr. Kenneth Kotovsky, Dept of Psyc:
Comm Coll of Allegheny Co
800 Allegheny Avenue
Pittsburgh, PA 15233

Dr. Robin Jeffries
Hewlett-Packard Laboratories
P.O. Box 10490
Palo Alto, CA 94303-0971

Dr. Wendy Kellogg
IBM T. J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

Dr. David H. Krantz
2 Washington Square Village
Ast. #15J
New York, NY 10012

Dr. Robert Jermaine
Decision Resource Systems
5595 Vantage Point Road
Columbia, MO 21044

Dr. Dennis Kidder
Dept of Info and Comp Sci
University of California
Irvine, CA 92717

Dr. Benjamin Kubers
U of TX at Austin, Dept of Comp Sci
T.S. Painter Hall 3.25
Austin, TX 78712

Margaret Jerome
33-Dr. Peter Chandler
33, The Drive
Hove. Sussex UNITED KINGDOM

Dr. David Kieras
Tech Comm. Coll of Engineering
1223 E. Engineering Bldg. U of MI
Ann Arbor, MI 48109

Dr. David R. Lambert
Naval Ocean Syst Ctr. Code 4117
271 Catalina Boulevard
San Diego, CA 92152-5800
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Pat Langley</td>
<td>Dept of Info & Comp Sci</td>
<td>University of California</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Irvine, CA 92717</td>
</tr>
<tr>
<td>Dr. Clayton Lewis</td>
<td>Dept of Comp Sci, Campus Box 430</td>
<td>University of Colorado</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Boulder, CO 80309</td>
</tr>
<tr>
<td>Dr. Barbara Means</td>
<td>Human Resources Research Org</td>
<td>1100 South Washington</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alexandria, VA 22314</td>
</tr>
<tr>
<td>Dr. Marcy Lamsman</td>
<td>U of NC, Davie Hall 013A</td>
<td>The L.L. Thurstone Lab.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chapel Hill, NC 27514</td>
</tr>
<tr>
<td>Dr. Douglas L. Medin</td>
<td>Dept of Psych, U of Illinois</td>
<td>603 E. Daniel Street</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Champaign, IL 61820</td>
</tr>
<tr>
<td>Dr. Jill Larkin</td>
<td>Carnegie-Mellon University</td>
<td>Library, NPRDC Code P201L</td>
</tr>
<tr>
<td></td>
<td>Department of Psychology</td>
<td>San Diego, CA 92152-6800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Military Asst for Training & Personnel Tech.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OUSD (R & S) Room 3D129, The Pentagon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington, DC 20301-3080</td>
</tr>
<tr>
<td>Dr. Robert Lawler</td>
<td>Information Sciences, FRL</td>
<td>Mail Code SR 111</td>
</tr>
<tr>
<td></td>
<td>GTE Labs, Inc., 40 Sylvan Road</td>
<td>NASA Johnson Space Center</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Houston, TX 77058</td>
</tr>
<tr>
<td>Dr. Robert Lawler</td>
<td>Information Sciences, FRL</td>
<td>Chief of Naval Education and Training, Naval</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Air Station Pensacola, FL 32503</td>
</tr>
<tr>
<td>Dr. Alan M. Lesgold</td>
<td>University of Pittsburgh, LRDC</td>
<td>Department of Psychology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Diego State University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Diego, CA 92182</td>
</tr>
<tr>
<td>Dr. William Montague</td>
<td>NPRDC Code 13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Diego, CA 92152</td>
</tr>
<tr>
<td>Dr. Alan Manoff</td>
<td>Behavioral Tech Labs - USC</td>
<td>1845 S. Elena Avenue, 4th Floor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Redondo Beach, CA 90277</td>
</tr>
<tr>
<td>Dr. Jim Levin</td>
<td>Dept of Ed Psych, 210 Ed Bldg</td>
<td>Department of Psychology</td>
</tr>
<tr>
<td></td>
<td>1310 So Sixth St</td>
<td>San Diego State University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Diego, CA 92182</td>
</tr>
<tr>
<td>Dr. Allen Newell</td>
<td>Carnegie-Mellon University</td>
<td>Department of Psychol.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schenley Park Pittsburgh, PA 15213</td>
</tr>
<tr>
<td>Dr. John Levine</td>
<td>University of Pittsburgh, LRDC</td>
<td>Department of Psychology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of California</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Santa Barbara, CA 93106</td>
</tr>
<tr>
<td>Dr. Richard E. Mayer</td>
<td>University of Michigan</td>
<td>Inst for Social Research, Rm. 525</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ann Arbor, MI 48109</td>
</tr>
<tr>
<td>Dr. Michael Levine</td>
<td>Ed Psych, 210 Education Bldg</td>
<td>Navy Personnel R&D Center</td>
</tr>
<tr>
<td></td>
<td>University of Illinois</td>
<td>San Diego, CA 92152-6800</td>
</tr>
<tr>
<td>Dr. Mary Jo Nissen</td>
<td>University of Minnesota</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N218 Elliott Hall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minneapolis, MN 55455</td>
</tr>
<tr>
<td>Matt Lewis</td>
<td>Department of Psychology</td>
<td>Assistant for MPT Research, Dev, and Studies</td>
</tr>
<tr>
<td></td>
<td>Carnegie-Mellon University</td>
<td>OP-01B7</td>
</tr>
<tr>
<td></td>
<td>Pittsburgh, PA 15213</td>
<td>Washington, DC 20370</td>
</tr>
<tr>
<td>Dr. Harold F. O'Neil,</td>
<td>School of Ed, WPH 801</td>
<td></td>
</tr>
<tr>
<td>Jr.</td>
<td>Dept of Ed Psych & Tech - USC</td>
<td>Los Angeles, CA 90089-6031</td>
</tr>
<tr>
<td>Name</td>
<td>Position</td>
<td>Address</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Dr. Michael Oberlin</td>
<td>Naval Training Systems Center Code 711</td>
<td>Orlando, FL 32813-7100</td>
</tr>
<tr>
<td>Dr. Virginia E. Pendergrass</td>
<td>Naval Training Systems Center</td>
<td>Orlando, FL 32813-7100</td>
</tr>
<tr>
<td>Dr. Joseph Pascale</td>
<td>PERNLIC</td>
<td>Naval Research Institute 5001 Eisenhower Avenue</td>
</tr>
<tr>
<td>Office of Naval Research Code 711</td>
<td>800 North Quincy Street</td>
<td>Arlington, VA 22217-5000</td>
</tr>
<tr>
<td>Dr. David N. Perkins</td>
<td>Educational Technology Center</td>
<td>337 Guertin Library, Appian Way Cambridge, MA 02138</td>
</tr>
<tr>
<td>Dr. Lynne Reder</td>
<td>Department of Psychology Carnegie-Mellon University Schenley Park</td>
<td></td>
</tr>
<tr>
<td>Dr. Steven Pinker</td>
<td>Department of Psychology</td>
<td>E10-018, MIT Cambridge, MA 02139</td>
</tr>
<tr>
<td>Dr. James A. Reggia</td>
<td>Sch of Med, Dept of Neurology 22 So Greene St U of Maryland Baltimore, MD 21201</td>
<td></td>
</tr>
<tr>
<td>Dr. Nancy Perry, Chief</td>
<td>Naval Ed. and Training, Code 00A2A</td>
<td>Naval Station Pensacola Pensacola, FL 32508</td>
</tr>
<tr>
<td>Dr. Lynda Reeder</td>
<td>Department of Psychology Carnegie-Mellon University Schenley Park</td>
<td></td>
</tr>
<tr>
<td>Dr. Judith Orasanu</td>
<td>Army Research Institute 5001 Eisenhower Avenue Alexandria, VA 22333</td>
<td></td>
</tr>
<tr>
<td>Dr. Steven Pinker</td>
<td>Department of Psychology</td>
<td>E10-018, MIT Cambridge, MA 02139</td>
</tr>
<tr>
<td>Dr. James A. Reggia</td>
<td>Sch of Med, Dept of Neurology 22 So Greene St U of Maryland Baltimore, MD 21201</td>
<td></td>
</tr>
<tr>
<td>Dr. Tjeerd Piamp</td>
<td>Twente U of Tech, Dept of Ed</td>
<td>P.O. Box 217, 7500 AE Enschede The Netherlands</td>
</tr>
<tr>
<td>Dr. Frederic Reif</td>
<td>Physics Department</td>
<td>University of California Berkeley, CA 94720</td>
</tr>
<tr>
<td>Dr. Martha Poitson</td>
<td>Dept of Psych, Campus Box 346</td>
<td>University of Colorado Boulder, CO 80309</td>
</tr>
<tr>
<td>Dr. Lauren Resnick</td>
<td>University of Pittsburgh, LRDC 3939 O'Hara Street Pittsburgh, PA 15213</td>
<td></td>
</tr>
<tr>
<td>Dr. Peter Poitson</td>
<td>University of Colorado Department of Psychology</td>
<td>Boulder, CO 80309</td>
</tr>
<tr>
<td>Dr. Roy Pea</td>
<td>Bank Street College of Education 510 West 112th Street New York, NY 10027</td>
<td></td>
</tr>
<tr>
<td>Dr. Steven E. Poltrick</td>
<td>MCC, Echelon Bldg E1</td>
<td>9430 Research Blvd Austin, TX 78759-6509</td>
</tr>
<tr>
<td>Dr. James W. Pellegrino</td>
<td>Department of Psychology</td>
<td>University of California Santa Barbara, CA 93106</td>
</tr>
<tr>
<td>Dr. Harry E. Polte</td>
<td>U of Pittsburgh, Decision Syst Lab 13305 Scaife Hall</td>
<td>Pittsburgh, PA 15261</td>
</tr>
<tr>
<td>Dr. Douglas Pearse</td>
<td>DC:EM</td>
<td>Box 2000 Downsvill, Ontario Canada</td>
</tr>
<tr>
<td>Dr. Jane W. Pollitt</td>
<td>Department of Psychology</td>
<td>MIT (E-10-032) Cambridge, MA 02139</td>
</tr>
<tr>
<td>Dr. Mary S. Riley</td>
<td>Program in Cognitive Science</td>
<td>Ctr for Human Info Processing, USC La Jolla, CA 92039</td>
</tr>
<tr>
<td>Dr. James W. Pellegrino</td>
<td>Department of Psychology</td>
<td>University of California Santa Barbara, CA 93106</td>
</tr>
<tr>
<td>Dr. Mary C. Potter</td>
<td>Department of Psychology</td>
<td>MIT (E-10-032) Cambridge, MA 02139</td>
</tr>
<tr>
<td>Dr. Mary S. Riley</td>
<td>Program in Cognitive Science</td>
<td>Ctr for Human Info Processing, USC La Jolla, CA 92039</td>
</tr>
<tr>
<td>Name</td>
<td>Department</td>
<td>Institution</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Dr. Linda G. Roberts</td>
<td>Sci, Ed. & Trans Prog, Tech Assessment</td>
<td>Congress of the United States</td>
</tr>
<tr>
<td>Dr. Judith Segal</td>
<td>Special Asst for Marine Corps Matters</td>
<td>Carnegie-Mellon University</td>
</tr>
<tr>
<td>Dr. Sydney A. S. Shafra</td>
<td>Department of Computer Science</td>
<td>Towson State University</td>
</tr>
<tr>
<td>Dr. Ben Shneiderman</td>
<td>Department of Computer Science</td>
<td>College Park, MD 20742</td>
</tr>
<tr>
<td>Dr. Walter Schneider</td>
<td>University of Pittsburgh, LRDC</td>
<td>Pittsburgh, PA 15260</td>
</tr>
<tr>
<td>Dr. Alan H. Schoenfeld</td>
<td>Department of Education, EMST</td>
<td>University of California</td>
</tr>
</tbody>
</table>
Dr. Douglas Towne
Behavioral Technology Labs
1842 S. Elena Avenue
Recondo Beach, CA 90277

Dr. Robert A. Wisher
Army Inst. for the Beh. and Soc. Sci.
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Kurt Van Lehn
Carnegie-Mellon University
Dept of Psych, Schenley Park
Pittsburgh, PA 15213

Mr. John H. Wolfe
Navy Personnel R & D Center
San Diego, CA 92152

Dr. Beth Warren
Boit Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02138

Dr. Wallace Wulfeck, III
Navy Personnel R & D Center
San Diego, CA 92152-6800

Dr. Donald Weitzman
MITRE
1820 Dolley Madison Blvd.
McLean, VA 22102

Dr. Joe Yasatuke
AFHRL/LRT
Lowry AFB, CO 80230

Dr. Keith T. Wescourt
FMC Corp, Central Engineering Labs
1185 Coleman Ave. Box 580
Santa Clara, CA 95052

Dr. Masoud Yazdani
Department of Computer Science
University of Exeter
Exeter EX4 4QL Devon, ENGLAND

Dr. Douglas Wetzel
Code 12
Navy Personnel R&D Center
San Diego, CA 92152-6800

Mr. Carl York
System Development Foundation
181 Lytton Avenue, Suite 210
Palo Alto, CA 94301

Dr. Barbara White
Boit Beranek & Newman, Inc.
10 Moulton Street
Cambridge, MA 02138

Dr. Joseph L. Young
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550

Dr. Christopher Wickens
Department of Psychology
University of Illinois
Champaign, IL 61820

Dr. Michael Williams
IntelliCorp
1975 El Camino Real West
Mountain View, CA 94040-2216

Dr. Heather Wild
Naval Air Development Center
Code 6C21
Warminster, PA 18974-5000