OFFICE OF NAVAL RESEARCH
Contract N00014-86-K-0043
TECHNICAL REPORT No. 109

Gap States of Charged Solitons in Polyacetylene
by
Xin Sun, Dingwei Lu, Rouli Fu, D. L. Lin and Thomas F. George

Prepared for Publication
in
Physical Review B

Departments of Chemistry and Physics
State University of New York at Buffalo
Buffalo, New York 14260

August 1989

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
UNCLASSIFIED

REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1a.</td>
<td>Unclassified</td>
<td></td>
<td>Approved for public release; distribution unlimited</td>
<td></td>
</tr>
<tr>
<td>1b.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Performing Organization Report Number(s)

UBUFFALO/DC/89/TR-109

Name of Performing Organization

Depts. Chemistry & Physics
State University of New York
Fronczak Hall, Amherst Campus
Buffalo, New York 14260

Name of Monitoring Organization

Chemistry Program
800 N. Quincy Street
Arlington, Virginia 22217

Name of Sponsoring/Financing Organization

Office of Naval Research

Address of Filling Organization

Chemistry Program
800 N. Quincy Street
Arlington, Virginia 22217

Title

Gap States of Charged Solitons in Polyacetylene

Personal Author(s)

Xin Sun, Dingwei Lu, Rouli Fu, D. L. Lin and Thomas F. George

Type of Report

13a. From August 1989 to

13b. Time Covered

14. Date of Report (Year, Month, Day)

15. Page Count

17. Prepared for publication in Physical Review B

Supplementary Notation

19. Abstract (Continue on reverse if necessary and identify by block number)

By considering the electron interactions in polyacetylene, it is found that there exist two gap states in charged solitons of trans-polyacetylene: one is deep level, and the other is shallow level. The deep one shifts 0.23 eV down (for a positive soliton) or up (for a negative soliton) from the center of the gap, while the shallow one is 0.06 eV under the bottom edge of the conduction band (positive soliton) or above the top edge of the valence band (negative soliton). These results agree with the absorption spectra of trans-polyacetylene. Other shallow states outside the energy bands are also predicted.

DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED

ABSTRACT SECURITY CLASSIFICATION

Unclassified

Name of Responsible Individual

Dr. David L. Nelson

Telephone

(202) 696-4410

Previous editions are obsolete.

UNCLASSIFIED
Gap states of charged solitons in polyacetylene

Xin Sun and Dingwei Lu
Center of Theoretical Physics
Chinese Center of Advanced Science and Technology (World Laboratory)
Beijing 100080

and

Laboratory of Solid State Microstructures
Nanjing University
Nanjing

and

Department of Physics
Fudan University
Shanghai 100433, People's Republic of China *

Rouli Fu
Laboratory of Infrared Physics
Shanghai Institute of Technical Physics
Academia Sinica
Shanghai, People's Republic of China

D. L. Lin and Thomas F. George †
Department of Physics and Astronomy
State University of New York at Buffalo
Buffalo, New York 14260

Abstract

By considering the electron interactions in polyacetylene, it is found that there exist two gap states in charged solitons of trans-polyacetylene: one is deep level, and the other is shallow level. The deep one shifts 0.23 eV down (for a positive soliton) or up (for a negative soliton) from the center of the gap, while the shallow one is 0.06 eV under the bottom edge of the conduction band (positive soliton) or above the top edge of the valence band (negative soliton). These results agree with the absorption spectra of trans-polyacetylene. Other shallow states outside the energy bands are also predicted.
Mailing address

* Also affiliated with the Department of Chemistry and the Center for Electronic and Electro-optic Materials, State University of New York at Buffalo.
I. Introduction

The most novel concept in conducting polymers is perhaps the soliton carrier with reversed relation between charge and spin, that is, the charged soliton does not have spin, but the neutral soliton has spin 1/2. Studying various properties of the soliton is important for understanding many peculiar traits of conducting polymers. One topic is the electron states of the soliton, especially the bound states trapped by the soliton. Trans-polyacetylene possesses two-fold degenerate dimerized ground states, phase A and phase B. When a chain of tran-polyacetylene contains phase A in some part of the chain and phase B in the rest, a domain wall appears between phases A and B, which is the soliton. Within phase A or phase B, atoms are arranged in a periodically dimerized lattice in which electrons move in extended states. In the region of the domain wall, however, the atomic distribution deviates from the periodic structure of the dimerization and produces a distortion potential on electrons. Then the electron can be trapped by this distortion potential to form bound states around the soliton. The levels of these bound states are located in the gap, which is the skeleton picture for the origin of gap states. The problem is to determine how many bound states can exist around the soliton and where are the locations of their levels. A simple Hamiltonian to show the soliton is the Su, Schrieffer and Heeger (SSH) model, in which the electron-electron interaction is neglected. Based on the electron-lattice interaction alone (the SSH model), it is well known that there exists a mid-gap state in the electron spectrum of the soliton. The level of this bound state sits at the center of the gap. The question is whether there are any other gap states. We attempt to answer this question in the present paper.
The difficulty with the SSH model is that it cannot be solved analytically. In order to get a rigorous solution of the soliton, Takayama, Lin-Liu and Maki (TLM) have introduced the continuum model which can be solved analytically. For the TLM model it has been rigorously proven that the soliton has one and only one electron bound state, which sits at the middle of the gap. Since then, people have tended to think that the soliton has only one gap state. Experimentally, both the dopant-induced absorption and the photo-induced absorption in trans-polyacetylene have shown a second absorption peak whose energy is about half of that of the main peak. It provides the evidence for the gap state of a soliton produced by the dopants or the incident photons. Absorption spectra actually indicate that the energy of the second peak is not exactly equal to one half of the gap, but is about 0.25 eV smaller than half of the gap. It means that the level of the gap state is shifted from the center of the gap. Such a shift is caused by the electron-electron repulsion, which has to be considered before a reliable answer can be obtained about the number and locations of bound states of the soliton.

It should also be pointed out that the TLM model is a continuum model in which the molecular structure of the polymer chain has been smeared out. However, the real polymer chain consists of discrete atoms. The continuum approximation made in the TLM model may have lost some bound states existing in the chain with discrete structure. In fact, an earlier work using the SSH model has revealed that the discrete structure can possess some shallow electron bound states if the electron-lattice coupling is strong enough. On the other hand, the photo-induced absorption spectrum demonstrates that there is a cusp sitting on the left-hand side of the main absorption peak. The separation between the cusp and the top of the main peak is about 0.06 eV.
Such structure in the absorption spectrum also indicates that there is a level near the band edge. Therefore, both the theory and the experiment suggest that there are some other bound states in the gap. In order to find a definite answer, we must include both the electron-lattice and electron-electron interactions in our investigations of the electron spectrum of the soliton and consider the discrete structure of the chain.

II. Theoretical formulation

As usual, the electron-lattice and electron-electron interactions are described by the SSH model H_0 and Hubbard model H'.

$$H_0 = t_0 \sum_{n,s} \left(1 + (-1)^n \phi_n \right) (C_{n+1,s}^\dagger C_{n,s} + C_{n,s}^\dagger C_{n+1,s}) + \frac{1}{\lambda} \sum_n \phi_n^2 \right) , \quad (1)$$

$$H' = (U/2) \sum_{n,s} C_{n,s}^\dagger C_{n,-s} C_{n,s}^\dagger C_{n,-s} , \quad (2)$$

and the total Hamiltonian is

$$H = H_0 + H' \quad , \quad (3)$$

where t_0 is the hopping constant, λ is the electron-lattice coupling constant, ϕ_n is the dimensionless displacement of lattice, $C_{n,s}^\dagger$ and $C_{n,s}$ are creation and annihilation operators, respectively, of an electron on site n with spin s, and U is the strength of the electron interactions. In the case of polyacetylene,

$$t_0 = 2.5 \text{ eV} , \quad \lambda = 0.2 , \quad U = 5 \text{ eV} \quad . \quad (4)$$
In the Hartree-Fock approximation, the eigenvalue equation of Hamiltonian (3) is
\[
\varepsilon_{n,\mu}^s = -t_0[1 + (-1)^n(\phi_n + \phi_{n+1})]Z_{n+1,\mu}^s
- t_0[1 + (-1)^{n+1}(\phi_n + \phi_{n-1})]Z_{n-1,\mu}^s + U_{n,s}Z_{n,\mu}^s
\]
where \(\varepsilon_{n,\mu}^s \) and \(Z_{n,\mu}^s \) are the eigenenergy and wave function of the electron in the eigenstate \(\mu \) with spin \(s \), and
\[
X_{n,s} = \langle c_{n,-s}^+ \rangle_{n,-s}
\]
is the self-consistent ground-state average of the electron occupation at site \(n \) with spin \(-s \). The lattice displacement \(\phi_n \) is determined by minimizing the total energy,
\[
\phi_n + \phi_{n+1} = \pi\lambda(-1)^n \left[\sum_{\mu,s} Z_{n,\mu}^s Z_{n+1,\mu}^s - \frac{1}{N} \sum_{\mu,s} \sum_{\text{occ.}} Z_{n,\mu}^s Z_{n+1,\mu}^s \right]
\]
Combining Eqs. (5), (6) and (7), and the energy spectrum \(\varepsilon_{n,\mu}^s \) and wave function \(Z_{n,\mu}^s \) of the electron can be obtained by solving these closed equations numerically. In our calculation, we take a chain with 201 atoms. For charged solitons, each level is either doubly occupied (negative soliton) or empty (positive soliton). In this case, the electron states are spin independent:
\[Z^S_{n,\mu} = Z^{-S}_{n,\mu} \quad \text{and} \quad \epsilon^S_{\mu} = \epsilon^{-S}_{\mu} \quad (8) \]

III. Results and discussion

The energy spectra of positive and negative solitons are shown in Figs. 1 and 2, respectively. There are two gap states: deep level \(\epsilon_d \) and shallow level \(\epsilon_s \). The deep level does not sit at the center of the gap, but shifts 0.23 eV down (positive soliton) or up (negative soliton) from the center of the gap. The shallow level is 0.06 eV beneath the bottom edge of conduction band (positive soliton) or above the top edge of valence band (negative soliton).

For the case of a positive soliton (Fig. 1), both deep and shallow levels are empty, and the electrons in the valence band can be excited into higher levels. There are three ways to make a transition: (1) going to the conduction band, which corresponds to the main absorption peak; (2) going to the deep level \(\epsilon_d \), which is the second absorption peak, whose energy is 0.23 eV smaller than half of the gap, and which agrees with the dopant and photo-induced absorption; and (3) going to the shallow level \(\epsilon_s \), forming a cusp which is separated by 0.06 eV from the top of the main peak. The photo-induced absorption \(^3\) has shown evidence of such a cusp.

For the case of a negative soliton (Fig. 2), both deep and shallow levels are occupied. There are also three transitions: (1) from the valence band to the conduction band, which is the main absorption peak; (2) from a deep level \(\epsilon_d \) to the conduction band, which is the second absorption peak; and (3) from a shallow level \(\epsilon_s \) to the conduction band, which is the cusp. The frequencies of these three transitions are exactly the same as those of a positive soliton.
The wave functions $Z_{n,s}$ and $Z_{n,d}$ of the shallow and deep levels are shown in Fig. 3. As expected, the width of the wave function $Z_{n,d}$ of the deep level is smaller than that of the wave function $Z_{n,s}$ of the shallow level.

Based on the above results, we can theoretically give a schematic absorption spectrum for the charged solitons shown in Fig. 4, where three features appear: (1) the main peaks, (2) the second peak and (3) the shoulder. These features correspond to three absorption lines with some uncertain broadenings. The strength and broadening of these absorption lines depend on the density of solitons and the interaction between the solitons and the surroundings. Further study is needed in order to obtain more details. Apparently, the skeleton features of our theoretical absorption spectrum are in accord with the photo-induced absorption. In the dopant absorption, besides the main peak and the second peak, there also appears a shoulder near the main peak.

It should be mentioned that there are two more shallow levels ϵ'_s and ϵ''_s sitting outside the bands. For a positive soliton, these two shallow levels are underneath the bottom edge of the valence band (see Fig. 1). For a negative soliton, they are above the top edge of the conduction band (see Fig. 2). The wave functions of these two shallow levels are shown in Fig. 5. These two shallow levels will give more features of the absorption spectrum in the energy region of 5-6 eV. It is therefore of great interest to carry out experiments to observe the absorption spectrum in that energy region.

Acknowledgments

One of the authors (XS) would like to thank Professor Abdus Salam, the International Atomic Energy Agency and UNESCO for their hospitality at the International Centre for Theoretical Physics, Trieste, Italy. This work was
partially supported by the Natural Science Foundation of China, Grant 863-715-22, the U. S. Office of Naval Research and the Air Force Offices of Scientific Research (AFSC), United States Air Force, under Contract F49620-86-C-0009.
References

Figure Captions

1. Energy spectrum of an electron in a positive soliton.
2. Energy spectrum of an electron in a negative soliton.
3. Electron wave functions of a deep gap state $Z_{n,d}$ and shallow gap state $Z_{n,s}$.
4. Schematic absorption spectrum for the charged solitons.
5. Electron wave functions of two outside shallow states $Z_{n,s}'$ and $Z_{n,s}''$.
Fig. 1
Fig. 2
Fig. 3
Fig. 5
<table>
<thead>
<tr>
<th>No. Copies</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td>2</td>
</tr>
<tr>
<td>Attn: Dr. David Young</td>
<td>1</td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22217-5000</td>
<td></td>
</tr>
<tr>
<td>Code 1113</td>
<td></td>
</tr>
<tr>
<td>Code 334</td>
<td></td>
</tr>
<tr>
<td>NORDA</td>
<td></td>
</tr>
<tr>
<td>Naval Weapons Center</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. Ron Atkins</td>
<td></td>
</tr>
<tr>
<td>Orlan Weapons Support Center</td>
<td></td>
</tr>
<tr>
<td>Code 50C</td>
<td></td>
</tr>
<tr>
<td>Crane, Indiana 47522-5050</td>
<td></td>
</tr>
<tr>
<td>Dr. Bernard Cuda</td>
<td></td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko, Code L52</td>
<td>1</td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
</tr>
<tr>
<td>Naval Weapons Center</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. Ron Atkins</td>
<td></td>
</tr>
<tr>
<td>Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>China Lake, California 93555</td>
<td></td>
</tr>
<tr>
<td>Scientific Advisor</td>
<td></td>
</tr>
<tr>
<td>Commandant of the Marine Corps</td>
<td></td>
</tr>
<tr>
<td>Code RD-1</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20380</td>
<td></td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
</tr>
<tr>
<td>Attn: Mr. John Boyle</td>
<td></td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td>1</td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
</tr>
<tr>
<td>U.S. Army Research Office</td>
<td>1</td>
</tr>
<tr>
<td>Attn: CRD-AA-IP</td>
<td></td>
</tr>
<tr>
<td>P.O. Box 12211</td>
<td></td>
</tr>
<tr>
<td>Research Triangle Park, NC 27709</td>
<td></td>
</tr>
<tr>
<td>DTNSRDC</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. H. Singerman</td>
<td>1</td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
</tr>
<tr>
<td>Naval Ship Engineering Center</td>
<td></td>
</tr>
<tr>
<td>Philadelphia, Pennsylvania 19112</td>
<td></td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td></td>
</tr>
<tr>
<td>Superintendent</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375-5000</td>
<td></td>
</tr>
<tr>
<td>Naval Ocean Systems Center</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. S. Yamamoto</td>
<td></td>
</tr>
<tr>
<td>Marine Sciences Division</td>
<td></td>
</tr>
<tr>
<td>San Diego, California 91232</td>
<td></td>
</tr>
<tr>
<td>Dr. David L. Nelson</td>
<td></td>
</tr>
<tr>
<td>Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. S. Yamamoto</td>
<td></td>
</tr>
<tr>
<td>Code RD-i</td>
<td></td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
</tr>
<tr>
<td>Commandant of the Marine Corps</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko, Code L2</td>
<td></td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko, Code L52</td>
<td></td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. David Young</td>
<td></td>
</tr>
<tr>
<td>Code 334</td>
<td></td>
</tr>
<tr>
<td>NORDA</td>
<td></td>
</tr>
<tr>
<td>NSTL, Mississippi 39529</td>
<td></td>
</tr>
<tr>
<td>Naval Weapons Center</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. Ron Atkins</td>
<td></td>
</tr>
<tr>
<td>Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>China Lake, California 93555</td>
<td></td>
</tr>
<tr>
<td>Scientific Advisor</td>
<td></td>
</tr>
<tr>
<td>Commandant of the Marine Corps</td>
<td></td>
</tr>
<tr>
<td>Code RD-1</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20380</td>
<td></td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. J. E. Jensen
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. C. B. Harris
Department of Chemistry
University of California
Berkeley, California 94720

Dr. J. H. Weaver
Department of Chemical Engineering
and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. F. Kutzler
Department of Chemistry
Box 5055
Tennessee Technological University
 Cookeville, Tennessee 38501

Dr. A. Reisman
Microelectronics Center of North Carolina
Research Triangle Park, North Carolina 27709

Dr. D. DiElla
Chemistry Department
George Washington University
Washington D.C. 20052

Dr. M. Grunze
Laboratory for Surface Science and Technology
University of Maine
Orono, Maine 04469

Dr. R. Reeves
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. J. Butler
Naval Research Laboratory
Code 6115
Washington D.C. 20375-5000

Dr. Steven M. George
Stanford University
Department of Chemistry
Stanford, CA 94305

Dr. L. Interante
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Mark Johnson
Yale University
Department of Chemistry
New Haven, CT 06511-8118

Dr. Irvin Heard
Chemistry and Physics Department
Lincoln University
Lincoln University, Pennsylvania 19352

Dr. W. Knauer
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. K.J. Klaubunde
Department of Chemistry
Kansas State University
Manhattan, Kansas 66506

This Document Contains Missing Page/s That Are Unavailable In The Original Document
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. R. L. Park
Director, Center of Materials
Research
University of Maryland
College Park, Maryland 20742

Dr. J. Murday
Naval Research Laboratory
Code 6170
Washington, D.C. 20375-5000

Dr. W. T. Peria
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. J. R. Hudson
Materials Division
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Keith H. Johnson
Department of Metallurgy and
Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. Theodore E. Madey
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. Arnold Green
Quantum Surface Dynamics Branch
Code 3817
Naval Weapons Center
China Lake, California 93555

Dr. M. G. Lagally
Department of Metallurgical
and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60637

Dr. S. L. Bernasek
Department of Chemistry
Princeton University
Princeton, New Jersey 08544

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. W. Kohn
Department of Physics
University of California, San Diego
La Jolla, California 92037

Dr. D. E. Harrison
Department of Physics
Naval Postgraduate School
Monterey, California 93940
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. F. Carter
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Richard Colton
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Dan Pierce
National Bureau of Standards
Optical Physics Division
Washington, D.C. 20234

Dr. R. Stanley Williams
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. R. P. Messmer
Materials Characterization Lab.
General Electric Company
Schenectady, New York 22217

Dr. Robert Gomer
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Ronald Lee
R301
Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910

Dr. Paul Schoen
Code 6190
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. John T. Yates
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Dr. Richard Greene
Code 5230
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. L. Kesmodel
Department of Physics
Indiana University
Bloomington, Indiana 47403

Dr. K. C. Janda
University of Pittsburgh
Chemistry Building
Pittsburgh, PA 15260

Dr. E. A. Irene
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton 509 5N4
UNITED KINGDOM

Dr. H. Tachikawa
Chemistry Department
Jackson State University
Jackson, Mississippi 39217

Dr. John W. Wilkins
Cornell University
Laboratory of Atomic and
Solid State Physics
Ithaca, New York 14853
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. R. G. Wallis
Department of Physics
University of California
Irvine, California 92664

Dr. J. T. Keiser
Department of Chemistry
University of Richmond
Richmond, Virginia 23173

Dr. D. Ramaker
Chemistry Department
George Washington University
Washington, D.C. 20052

Dr. R. W. Plummer
Department of Physics
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 41106

Dr. T. F. George
Chemistry Department
University of Rochester
Rochester, New York 14627

Dr. N. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. G. Rubloff
IBM
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. R. Hoffmann
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. A. Metiu
Chemistry Department
University of California
Santa Barbara, California 93106

Dr. A. Steckl
Department of Electrical and
Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. W. Goddard
Department of Chemistry and Chemical
Engineering
California Institute of Technology
Pasadena, California 91125

Dr. G. Hansma
Department of Physics
University of California
Santa Barbara, California 93106

Dr. J. A. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. J. Baldeschwieler
Department of Chemistry and
Chemical Engineering
California Institute of Technology
Pasadena, California 91125