The International Conference series on Numerical Grid Generation in Computational Fluid Dynamics was started in July 1986 to recognize grid generation as an essential subject of Computational Fluid Dynamics (CFD) which needs individual attention. The conference is held bi-annually with the purpose of disseminating new ideas, recent advances and difficulties encountered by researchers around the world while solving...
2nd International Conference on
Numerical Grid Generation in Computational
Fluid Dynamics

Miami Beach, December 5-9, 1988

Final Report

Submitted to

Air Force Office of Scientific Research,
Washington D.C.

and

National Aeronautics and Space Administration,
Washington D.C.

by

Dr. Subrata Sengupta
Chairman, Organizing Committee
Department of Mechanical Engineering
University of Miami
Coral Gables, FLORIDA 33124.
CONTENTS

1. INTRODUCTION 1
2. ORGANIZATION 1
3. PROGRAM ... 2
 3.1 Keynote Lectures 2
 3.2 List of Presentation Sessions 3
 3.3 Special Sessions 5
 3.4 Computer Vendor Displays 5
4. PROCEEDINGS 6
5. ATTENDEES ... 6
6. FUTURE PLANS 7
7. APPENDICES
 Appendix 1 : Conference Program Brochure 8
 Appendix 2 : List of Attendees 9
 Appendix 3 : Table of Contents of proceedings .. 18
1. INTRODUCTION

The International Conference series on Numerical Grid Generation in Computational Fluid Dynamics was started in July 1986 to recognize grid generation as an essential subject of Computational Fluid Dynamics (CFD) which needs individual attention. The conference is held bi-annually with the purpose of disseminating new ideas, recent advances and difficulties encountered by researchers around the world while solving practical Computational Fluid Dynamics problems. The second conference in the series was held in Miami, Florida, USA, during the week of December 5-9, 1988. The main theme of the conference was 2-D and 3-D adaptive grid methods. Nevertheless, papers were invited from all relevant conventional areas such as algebraic, boundary fit, and conformal mapping methods and other areas including applications in computational mechanics.

2. ORGANIZATION

The Mechanical Engineering Department at the University of Miami with the help from National Aeronautics & Space Administration (NASA) and Air Force Office of Scientific Research (AFOSR) organized the conference. Dr. Subrata Sengupta was the Chairman of the organizing committee. Dr. Wilson of AFOSR and Dr. Randolph Graves of NASA Head Quarters were the prime movers in arranging support for the meeting. Members of the papers review committee
were Drs. Peter R. Eiseman of Columbia University, NY., Joe F. Thompson of Mississippi State University, MS., and Jochem Hauser of European Space Agency, Netherlands. The conference advisory panel consisted of Dr. Dale R. Satran of NASA Headquarters, Mr. David Nelson of AFOSR., Prof. Cedric Taylor of University College of Swansea, U.K., Dr. Leslie J. Chow of NASA, Ames Research Center and Dr. W. Schmidt of Dornier GmBH, FRG.

3. PROGRAM

3.1 Keynote Lectures :

The program for the conference was highlighted by five keynote speakers. They were :

1. "Current Status in CFD"
 - Dr. Paul Kutler, NASA Ames Research Center, CA.,USA

2. "Applications of Grid Generation in Air Force"
 - Dr. Larry Lijieweski, USAFB, Eglin, FL., USA

3. "Parallel Mesh Generation"
 - Dr. Gentzsch, University of Landshut, FRG.

4. "Parallel Computing"
 - Lt. Col. Oliver, USAF Weapons Laboratory, USA.
3.2 List of Presentation Sessions:

In all 38 paper presentation sessions were held. They are as follows:

1. General Session
2. Application of Grids
3. Element Based Methods
4. Geometric Modelling
5. Surface Grid Generation
6. Algebraic Methods I
7. Algebraic Methods II
8. Algebraic Methods III
9. Elliptic and Hyperbolic Methods
10. Zonal Methods
11. Orthogonal Methods
12. Conformal and Orthogonal Mapping Methods
13. Interactive Multi-block Methods
14. 3D Multi-block Adaptive Methods
15. Multi-block and Multi-grid Methods
16. Adaptive Methods
17. Adaptive Grid Generation I
18. Adaptive Grid Generation II
19. Adaptive Grid Generation III
20. Unstructured Grid Generation
21. Unstructured Grid Generation I
22. Unstructured Grid Generation II
23. Unstructured Grid Generation III

Applications

24. Adaptive Applications
25. Grid over Aircraft - Multi-block Methods I
26. Grid over Aircraft - Multi-block Methods II
27. 3D and Surface Grids
28. Unstructured Grid Adaptation - Delaunay Triangulation
29. Unstructured Grid Adaptation - Other Techniques
30. Variational Adaptive Methods
31. Heat Transfer
32. Computational Hydraulics I
33. Computational Hydraulics II
34. Navier-Stokes Equations I
35. Navier-Stokes Equations II
36. Turbo Machinery I
37. Turbo Machinery II
38. Miscellaneous
3.3 Special Sessions

The program also included a special invited lecture on the use of the parallel computer manufactured by Thinking Machines, Inc., for CFD applications on Monday, December 5, 1988. The lecture was given by a representative of United Technologies Research Center, CT. Conference banquet was held on Tuesday, December 6, 1988. Dr. Randolph Graves of NASA Head Quarters delivered the banquet speech.

3.4 Computer Vendor Displays

A demonstration of the current computer hardware advances in the form of a Computer Show on Wednesday, December 7, 1988. The manufactures included Silicon Graphics, Mountain View, CA., Convex Computer Corporation., Dallas, TX., Stellar Computers, Boston, MA., and Sun Microsystems Inc., FL. Computers displayed include the new Personal IRIS and Sun 4/260 workstations. A video illustrating the capabilities of Convex C-1 supercomputer was also shown.
4. PROCEEDINGS

The proceedings of the conference was published in the form of reference text and was made available to all participants. It was published by Pineridge Press, Swansea, U.K. and was titled "Numerical Grid Generation in Computational Fluid Mechanics". The papers were grouped according to basic methods and applications in the text. The table of contents of the proceedings is attached to this report as Appendix 3. The volume consisted of 1069 printed pages of text and diagrams.

5. ATTENDEES

The total number of attendees were 186. The number of delegates participating from outside United States were 54. Foreign participants belonged to one of the following countries: UK, FRG, France, Italy, Netherlands, Denmark, Finland, India, China, Israel, Brazil, Canada, Norway, Sweden, Austria, Switzerland, Japan and USSR. The list of attendees is attached to this report as Appendix 2.
6. FUTURE PLANS

The overwhelming response for the second conference prompted the organizing committee to plan to continue the conference series. The 3rd International Conference has been planned to be held at Barcelona, Spain in 1991.
APPENDIX 1

Conference Program Brochure
APPENDIX 2

List of Attendees
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jamshid Abolhassami</td>
<td>Old Dominion University</td>
<td>Dept. of Mech. Engr. Norfolk VA 23665</td>
</tr>
<tr>
<td>Eiju Aoki</td>
<td>Ohio State University</td>
<td>Dept. of Mechanical Engineering 206 West 18th Avenue Columbus OH 43210</td>
</tr>
<tr>
<td>Mary R. Albert</td>
<td>Applied Research Branch</td>
<td>U.S. Army Cold Regions Research and 72 Lyme Road Hannover NH 03755-1290</td>
</tr>
<tr>
<td>Ruth Appleby</td>
<td>Boeing Computer Services</td>
<td>H/S 7C-35 P.O. Box 24346 Seattle WA 98124-0346</td>
</tr>
<tr>
<td>S.E. Allwright</td>
<td>British Aerospace Plc</td>
<td>Civil Aircraft Divn. Hatfield Hertfordshire AL10 9TL England</td>
</tr>
<tr>
<td>T. Arkawa</td>
<td>Mathematical Systems Institute Inc.</td>
<td>6F AM Building 2-5-3 Shinjuku Shinjuku-ku Tokyo JAPAN</td>
</tr>
<tr>
<td>Mary Aly</td>
<td>Applied Research Branch</td>
<td>TRW PO Box 1310 SB2/1012 San Bernardino CA 92402</td>
</tr>
<tr>
<td>Essar H. Atta</td>
<td>Lockheed Aeronautical Systems Co.</td>
<td>Unit 503 Plant 2 P.O. Box 551 Burbanks CA 91520</td>
</tr>
<tr>
<td>Hany Aly</td>
<td>TRW</td>
<td></td>
</tr>
<tr>
<td>Ruth Appleby</td>
<td>Boeing Computer Services</td>
<td>H/S 7C-35 P.O. Box 24346 Seattle WA 98124-0346</td>
</tr>
<tr>
<td>Hany Aly</td>
<td>TRW</td>
<td></td>
</tr>
<tr>
<td>Eiju Aoki</td>
<td>Ohio State University</td>
<td>Dept. of Mechanical Engineering 206 West 18th Avenue Columbus OH 43210</td>
</tr>
<tr>
<td>S.E. Allwright</td>
<td>British Aerospace Plc</td>
<td>Civil Aircraft Divn. Hatfield Hertfordshire AL10 9TL England</td>
</tr>
<tr>
<td>T. Arkawa</td>
<td>Mathematical Systems Institute Inc.</td>
<td>6F AM Building 2-5-3 Shinjuku Shinjuku-ku Tokyo JAPAN</td>
</tr>
<tr>
<td>Mary Aly</td>
<td>TRW</td>
<td></td>
</tr>
<tr>
<td>S.E. Allwright</td>
<td>British Aerospace Plc</td>
<td>Civil Aircraft Divn. Hatfield Hertfordshire AL10 9TL England</td>
</tr>
<tr>
<td>T. Arkawa</td>
<td>Mathematical Systems Institute Inc.</td>
<td>6F AM Building 2-5-3 Shinjuku Shinjuku-ku Tokyo JAPAN</td>
</tr>
<tr>
<td>Mary Aly</td>
<td>TRW</td>
<td></td>
</tr>
<tr>
<td>S.E. Allwright</td>
<td>British Aerospace Plc</td>
<td>Civil Aircraft Divn. Hatfield Hertfordshire AL10 9TL England</td>
</tr>
<tr>
<td>T. Arkawa</td>
<td>Mathematical Systems Institute Inc.</td>
<td>6F AM Building 2-5-3 Shinjuku Shinjuku-ku Tokyo JAPAN</td>
</tr>
<tr>
<td>T. J. Baker</td>
<td>School of Engr and Applied Science</td>
<td>Dept. of Aerospace Engr. Engineering Quadrangle Princeton New Jersey 08544</td>
</tr>
<tr>
<td>Edward Bauer</td>
<td>General Dynamics</td>
<td>Long Point Rd. Groton CT</td>
</tr>
<tr>
<td>T. J. Baker</td>
<td>School of Engr and Applied Science</td>
<td>Dept. of Aerospace Engr. Engineering Quadrangle Princeton New Jersey 08544</td>
</tr>
<tr>
<td>Edward Bauer</td>
<td>General Dynamics</td>
<td>Long Point Rd. Groton CT</td>
</tr>
<tr>
<td>T. J. Baker</td>
<td>School of Engr and Applied Science</td>
<td>Dept. of Aerospace Engr. Engineering Quadrangle Princeton New Jersey 08544</td>
</tr>
<tr>
<td>Joseph D. Baum</td>
<td>Computational Physics</td>
<td>Naval Research Lab - 4410 Washington, D.C. 20375</td>
</tr>
<tr>
<td>Wladimir Andreenko</td>
<td>STO Saturn</td>
<td>Moscow, Centre USSR</td>
</tr>
<tr>
<td>Kenneth J. Baumeister</td>
<td>NASA Lewis Research Center</td>
<td>Cleveland Ohio 44135</td>
</tr>
<tr>
<td>Wladimir Andreenko</td>
<td>STO Saturn</td>
<td>Moscow, Centre USSR</td>
</tr>
<tr>
<td>J.A. Benek</td>
<td>Calspan AEBC</td>
<td>Arnold Air Force Base Tennessee 37389</td>
</tr>
<tr>
<td>Wladimir Andreenko</td>
<td>STO Saturn</td>
<td>Moscow, Centre USSR</td>
</tr>
<tr>
<td>J.A. Benek</td>
<td>Calspan AEBC</td>
<td>Arnold Air Force Base Tennessee 37389</td>
</tr>
<tr>
<td>Alison Andrews</td>
<td>NASA Ames Research Center</td>
<td>RFA: 285-1 Moffett Field CA 94035</td>
</tr>
<tr>
<td>Alison Andrews</td>
<td>NASA Ames Research Center</td>
<td>RFA: 285-1 Moffett Field CA 94035</td>
</tr>
<tr>
<td>Alison Andrews</td>
<td>NASA Ames Research Center</td>
<td>RFA: 285-1 Moffett Field CA 94035</td>
</tr>
<tr>
<td>Alison Andrews</td>
<td>NASA Ames Research Center</td>
<td>RFA: 285-1 Moffett Field CA 94035</td>
</tr>
<tr>
<td>Lee A. Ankeny</td>
<td>Applications Programmer</td>
<td></td>
</tr>
<tr>
<td>Lee A. Ankeny</td>
<td>Applications Programmer</td>
<td></td>
</tr>
<tr>
<td>Brad Bergman</td>
<td>Northrop</td>
<td></td>
</tr>
</tbody>
</table>
J.F. Dannenhoffer III
Computational Fluid Dyn. Research
United Technologies Research Center
East Hartford
CT 06108

L. De Biase
Università Di Milano
Dipartimento Di Matematica
20133 Milano Via CC Saldinai
50 ITALY

J. Diet
Aerospatiale
Chatillon/Bagneux
France

M. Dimeglio
Silicon Graphics
281 Park Place, #300
Altamonte Springs, FL 32701

M.J. Djomehri
National Aero. & Space Admin.
Mail Stop 230-2 Ames Research Center
Hoffett Field
CA 94035

T. L. Donegan
Calspan AEDC
Arnold Air Force Base
Tennessee 37389

Geovan TDos Santos
Dept. of Mathematics
Catholic University
R.M.Harques de Sao Vicente 225
22453 Rio de Janerio-- RJ BRA

A.S. Dvinsky
Creare Inc.
Etna Road P.O. Box 71
Hanover
NH 03755

James E. Edwards
AIAA
GE Kapl
P.O.Box 1072
Schenectady NY 12301

Shmuel Eldelman
SAIC
McLean VA

Peter R. Eiseman
Dept. of Appl. Physics and Nuc. Eng
Columbia University

Nabil Esmail
University of Saskatchewan
Dept. of Chemical Engineering
Saskatoon S7N 0W0
CANADA

L.L. Eyler
Battelle Pacific Northwest Labs
P.O.Box 999
Richland, WA 99352

G. Fokkema
Delft Hydraulics Lab.
Postbus 177
2600 MH Delft
THE NETHERLANDS

W. Fritz
Dornier GmbH
Postfach 1420 7990
Friedrichshafn 1
P.R. GERMANY

Gentzsch
FH Regensburg
Roentgenstr. 13
8402 Neutraubling
GERMANY (West)

Paul Louis George
INRIA Domaine de Voluceau Rocquenc
B.P. 105
78153 Le Chesnay CEDEX
FRANCE

Emmanuel K.Glapke
Howard University
Dept. of Mechanical Engineering
Washington, D.C. 20059

Haiqing Gong
University of Delaware
Center for Composite Materials
Newark, DE

Randolph Graves
NASA Headquarters
Code RF
Washington DC

J.B. Greenberg
Technion - Israeli Institute of Tech
32000 Haifa
ISRAEL

M. Greppi
University of Milan
Istituto di Idraulica Applicata
Norbert Grun
Ing. Buvo Grun
Brunnenstr. 17
8049 Bachenhausen
Germany

Chunyuan Gu
Dept. of Gas Dynamics
The Royal Institute of Technology
Stockholm
SWEDEN

Selchuk IGuceri
University of Delaware
Center for Composite Materials Rese
Newark, DE

Douglas Halsey
Aerodynamics Research and Technolog
Douglas Aircraft Co.
3855 Lakewood Blvd. Long Beach
CA 90846

Dean Hammond
GM Research Labs.
FM / 57
30500 Hound Road
Warren MI 48090-905_

Mr. Hathaway
General Electric Corp.
R & D
PO Box 8, Bldg. K1 Rm. 3A 32
Schenectady, NY 12301

J. Hauser
Head - Aerothermodynamics Section
ESA-ESTEC P.O.Box 299
2200 AG Noordwijk
The Netherlands

I. Hawkins
Harwell Labs.
United Kingdom Atomic Energy Author
Oxfordshire OXII 0RA
United Kingdom

Fredric Hecht
INRIA
BP 105 - 78153
Le Chesnay
Cedex FRANCE

A. Hilgenstock
DFVLR SH-TS
Bunzenstr-10
D-3400 Gottingen
F R Germany

Klaus A. Hoffmann
Dept. of Aerospace Engr.

Bill Hogan
Convex Computer Corporation
701 Plano Road
Richardson
TX 75081

J. E.Holcomb
Boeing Aerospace
P.O.Box 3999
H/S 82-83
Seattle WA 98124

D. Graham Holmes
G.E. Corp. Research & Development
P.O. Box 8
Schenectady
NY 12301

Chen-Chi Hsu
Univ. of Florida Dept. of Engr. Sci
231 Aerospace Engr. Bldg.
Gainesville
FL 32611

Michael J. Ivanov
Central Institute of Aviation Motor
2, Avaniotoruaja
Moscow
USSR

National Aerospace Labs. NLR
Anthony Fokkerweg 2
Amsterdam
THE NETHERLANDS

O. P.Jacquotte
ONERA
Aerodynamics Dept.
B.P.72 92322 Chatillon
FRANCE

Gerald A.Jones
Dept. of Chemistry and Physics
11935 Abercorn St.
Savannah
GA 31419

Stephen A. Jordan
Naval Underwater Systems Center
Code 8322, Bldg. 1246
Newport RI 02882

Joseph M. Juarez
The Aerospace Corp.
PO Box 92957 M5/559
Los Angeles CA 90009

Takeshi Kaiden
Mitsubishi Heavy Industries LTD
Anutosh Hoitra
Principal Scientist
High Technology Corp
20 Research Drive
Hampton VA 23666

Joan Moore
Mechanical Engineering Dept.
Virginia Polytechnic Institute & S. Blacksburg
VA 24061

Richard Moore
5334 Hule Deer Dr.
USAF/DFAN
Colorado Springs CO 80919

A. E. Mynett
Delft Hydraulics Lab
Post Bus 177
2600 MH Delft
THE NETHERLANDS

N. Nagaraj
Mail Stop 230-2
NASA Ames Research Center
Hofett Field
CA 94035

Gerd Nanz
Technical University Vienna
Gaussasstrasse 27-29
A-1040 Vienna
AUSTRIA

R. Narasimhan
Department of Mechanical Engineerin
University of Miami
Coral Gables
FL 33124.

David Nelson
USAF
ASOSR/NH Bowling Air Force Base
Washington, D.C. 20332

Per Nielsen
Graduate Student
Laboratory for Applied Math. Physic
University of Denmark -- Bldg 303
DK-2800 Lyngby DENMARK

Dale E. Nielsen
Lawrence Livermore National Lab
L-95, PO Box 808
Livermore, CA 94550

Bernadette Palmerio
Universite de Nice /IMRIA

A. Pardhanani
University of Texas

I.H. Parpia
University of Texas at Arlington
Dept. of Aerospace Engr.
Box 19018
Arlington TX 76019

V. N. Parthasarathy
Department of Mechanical Engineerin
University of Miami
Coral Gables
FL 33124.

Nisheeth Patel
Ballistic Research Labs
Launch and Flight Division
Aberdeen Proving Ground
MD 21005 - 5066

W. Payne
Ministry of Defense
Acs Admin 4B3, Room 301
Hersey House Drury Lane
Liverpool L2 7FX

Vincenzo Pennati
ENEL -- CRIS
Via Ortno 90/14
20162 Milano
ITALY

A. Perronnet
Laboratoire d'ANALYSE NUMERIQUE
Tour 55-65 5eme etage
4 Place Jussieu
75252 Paris Cedex 05 FRANCE

Michael Podowski
Rensselaer Polytechnic Institute
Dept. of Nuclear Engineering
Troy, NY 12180

R. Raghunath
Research Fellow
NOAA / AOML
4301 Rickenbacker Causeway
Miami, FL 33149

C.W. Reed
System Dynamics Inc.
1211 N.W. 10th Avenue
Gainesville FL 32601

Bernadette Palmerio
Universite de Nice /IMRIA

Azine Renzo
Dipartimento di Ingegneria, Trento
Zsolt Revesz
Associate Consulting Engineers
PO Box 1126
CH-5401 Baden
Switzerland

William Romer
McDonnell Douglas
PO Box 516
Mail: 0341260
St. Louis MO 63166

R. K. Rout
GE Aircraft Engines
P.O.Box 156301
One Neumann Way
Cincinnati OH 45215

Walter H. Rutledge
Dept. of Aero.Sp.E & AM
University of Texas
Austin TX 78712

Sohrab Saeidi
General Dynamics
Groton, CT

Dale R. Satran
NASA Headquarters
Program Manager Aerodynamics Div
Code RF
Washington DC 20546

Chuck Schiebe
Stellar Computers
1117 Perimeter Ctr. W.
E116 Atlanta, GA 30338

Harald Schutz
Hermann Fastenger Institute
Technische Universitat Berlin
Strasse des 17 Juni 135
D-1000 Berlin 12 WEST GERMANY

W. Seibert
Dornier GmbH
7990 Friedrichshafen 1
Postfach 1420
P. R. GERMANY

S. Sengupta
Dept. of ME
Univ. of Miami
Coral Gables
FL 33124

Richard Shapiro
Thinking Machines Inc.
245 First Street

Howard Sharpe
P.O. Box 4587
Room 2433
Standard Oil Inc.
Houston TX 77210

Jonathon A. Shaw
Aircraft Research Association
Manton Lane
Bedford ENGLAND

Gregory Smith
Sverdulp Technology
P.O.Box 30650
Middleburg Heights
OH 44130

R.E. Smith
Mail Stop 125
NASA Langley Research Center
Hampton VA 23665

Thomas Sonar
DPVLUR
Postfach 3267
3300 Braunschweig
F.R.Germany

Bharat K. Soni
Dept. of Aerospace Engineering
Mississippi State University
Mississippi State MS 39672

Reese L. Sorenson
Applied Computational Fluids Branch
NASA Ames Research Center
Moffett Field CA 94035

John Spyropoulos
Purdue University
Research Associate
1201 E. 38th Street
Indianapolis IN 46223

Ewald Steck
Institut fur Stromungslehre
und Stromungsmaschinen
Universitat Karlsruhe
F.R.Germany

John Steinbrenner
General Dynamics/FW Division
PO Box 748
Fort Worth TX 76101

William Strang
Aerospace Engineer
US Air Force
S. Subbiah
University of Delaware
Rm 126 Spencer Lab
Newark, DE 19716

H. M. Sussman
Battis Atomic Power Labs.
H/S 37-U
P.O.Box 79
W. Mishlin PA 15122 -0079

Takeo Taniguchi
Engineering Sci. Dept.
Okayama University
Okayama
JAPAN

W. C. Thacker
NOAA / AOML
4301 Rickenbacker Causeway
Miami FL 33149

F. Thiele
Technische Universitat Berlin
Serk HF1 Strabe des 17
Juni 1350-1000 Berlin 12
P.R. Germany

J. W. Thomas
Colorado State University
Dept. of Mathematics
Fort Collins CO 80524

J. F. Thompson
Mississippi State University
Dept of Aerospace Engr.
Drawer A
Mississippi State MS 39762

Jan M. Thomsen
Thermal Insulation Laboratory
Technical University of Denmark
Building 118
DK-2800 Lngby DENMARK

Phuong Tian
The Aerospace Corporation
P. O. Box 92957
M-4-964
Los Angeles CA 90009-2957

Weihnurng Tiarn
Applied Technology
652 Hummingbird Lane
Orlando
Florida

Ting-Kuei Tsay
Battis Atomic Power Labs.
APPENDIX 3

Table of Contents of the Conference Proceedings
PREFACE

PART I NUMERICAL GRID GENERATION TECHNIQUES

SECTION I GENERAL TECHNIQUES

<table>
<thead>
<tr>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation of FAC Patched Grids</td>
<td>1</td>
</tr>
<tr>
<td>J.W. Thomas and S.M. McKay</td>
<td></td>
</tr>
<tr>
<td>Knowledge-Based Flow Field Zoning</td>
<td>13</td>
</tr>
<tr>
<td>A. E. Andrews</td>
<td></td>
</tr>
<tr>
<td>Grid Generation by Using Boundary Integral Element Method</td>
<td>23</td>
</tr>
<tr>
<td>Ting-Kuei Tsay</td>
<td></td>
</tr>
<tr>
<td>Algebraic Boundary-Conforming Grid Generation Around Wing/Tail-Body Configurations</td>
<td>31</td>
</tr>
<tr>
<td>M.M. Alisahi and M. Farid</td>
<td></td>
</tr>
<tr>
<td>Quasi-Three-Dimensional Grid Generation by an Algebraic Homotopy Procedure</td>
<td>41</td>
</tr>
<tr>
<td>A. Moitra</td>
<td></td>
</tr>
<tr>
<td>An Algebraic Procedure to Generate 3D Grids for Complex Arterial Flow Geometries</td>
<td>51</td>
</tr>
<tr>
<td>A.H. MazHer</td>
<td></td>
</tr>
<tr>
<td>Fast Interpolation Schemes for Moving Grids</td>
<td>63</td>
</tr>
<tr>
<td>C.W. Mastin</td>
<td></td>
</tr>
<tr>
<td>Three-Dimensional Zonal Grids About Arbitrary Shapes by Poisson's Equation</td>
<td>75</td>
</tr>
<tr>
<td>R.L. Sorenson</td>
<td></td>
</tr>
<tr>
<td>Surface Grid Generation for Complex Three-Dimensional Geometries</td>
<td>85</td>
</tr>
<tr>
<td>R.C.C. Luh</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Grid Generation Software Engineering at Los Alamos</td>
<td>95</td>
</tr>
<tr>
<td>G.L. Clark and L.A. Ankeny</td>
<td></td>
</tr>
<tr>
<td>Parallel Element-by-Element Grid Generation</td>
<td>105</td>
</tr>
<tr>
<td>E. Barragy and G.F. Carey</td>
<td></td>
</tr>
<tr>
<td>Mesh Generation on Parallel Computers</td>
<td>113</td>
</tr>
<tr>
<td>W. Gontzsch and J. Häuser</td>
<td></td>
</tr>
<tr>
<td>Surface Constrained Grid Generation with Lagrange Multipliers</td>
<td>125</td>
</tr>
<tr>
<td>L.L. Eyler and M.D. White</td>
<td></td>
</tr>
<tr>
<td>A Fast Method for the Elliptic Generation of Three-Dimensional Grids with Full Boundary Control</td>
<td>137</td>
</tr>
<tr>
<td>A. Hilgenstock</td>
<td></td>
</tr>
<tr>
<td>Hyperbolic Grid Generation Techniques for Blunt Body Configurations</td>
<td>147</td>
</tr>
<tr>
<td>A New Approach to Grid Generation Using Finite Element Technique</td>
<td>157</td>
</tr>
<tr>
<td>V.C.V. Rao, T. Sundararajan and P.C. Das</td>
<td></td>
</tr>
<tr>
<td>Surface Grid Generation for Composite Block Grids</td>
<td>167</td>
</tr>
<tr>
<td>G.A. Jones, J.F. Thompson and Z.U.A. Warsi</td>
<td></td>
</tr>
<tr>
<td>A New Approach to Grid Generation Based on Local Optimisation</td>
<td>177</td>
</tr>
<tr>
<td>A. Kumar and N.S. Kumar</td>
<td></td>
</tr>
<tr>
<td>Effect of the Grid System on the Solution of Euler Equations</td>
<td>185</td>
</tr>
<tr>
<td>K.A. Hoffman, T.-L. Chiang and J.J. Bertin</td>
<td></td>
</tr>
<tr>
<td>Patch Structured Surface Grid With Dynamic Curvature Clustering</td>
<td>195</td>
</tr>
<tr>
<td>Y. Wang and P.R. Eiseman</td>
<td></td>
</tr>
<tr>
<td>Surface Grid Generation Through Elliptic PDE's</td>
<td>207</td>
</tr>
<tr>
<td>Z.U.A. Warsi and W.N. Tiarn</td>
<td></td>
</tr>
<tr>
<td>Algebraic Generation of Smooth Grids</td>
<td>217</td>
</tr>
<tr>
<td>J. Zhu, W. Rodi and B. Schoenung</td>
<td></td>
</tr>
</tbody>
</table>
SECTION 2 ADAPTIVE, ORTHOGONAL AND MAPPING METHODS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Semi-Analytical Procedure for the Conformal Mapping of Arbitrary Airfoil Contours H. Schutz and F. Thiele</td>
<td>227</td>
</tr>
<tr>
<td>A Transient Automated Mapping Procedure for Complex Geometries P.E. Read and J.W. White</td>
<td>237</td>
</tr>
<tr>
<td>A Direct Variational Grid Generation Method: Orthogonality Control J.E. Castillo</td>
<td>247</td>
</tr>
<tr>
<td>Grid Adaptivity with Evolutionary Control M. Bockele and P.R. Eiseman</td>
<td>257</td>
</tr>
<tr>
<td>Three-Dimensional Self-Adaptive Grid Method for Complex Flows M.J. Djomehri and G.S. Deiwert</td>
<td>277</td>
</tr>
<tr>
<td>Adaptive Grid Generation from Harmonic Maps A.S. Dvinsky</td>
<td>299</td>
</tr>
<tr>
<td>Three-Dimensional Adaptive Grid Generation for Body-Fitted Coordinate System S.C. Chen</td>
<td>309</td>
</tr>
<tr>
<td>A Comparison of Two Adaptive Grid Techniques J.F. Dannenhoffer III</td>
<td>319</td>
</tr>
<tr>
<td>Solution-Adaptive Grids for Transonic Flows D. Catherall</td>
<td>329</td>
</tr>
<tr>
<td>Adaptive Techniques for Boundary Grid Generation R.M. Coleman</td>
<td>339</td>
</tr>
<tr>
<td>Title</td>
<td>Page No.</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>Adaptive Orthogonal Surface Coordinates</td>
<td>351</td>
</tr>
<tr>
<td>R. Arina</td>
<td></td>
</tr>
<tr>
<td>Adaptive Grid Technique Applied to Stagnation Point Hypersonic Low</td>
<td>361</td>
</tr>
<tr>
<td>Density Flow</td>
<td></td>
</tr>
<tr>
<td>A.C. Jain and B. Murall</td>
<td></td>
</tr>
<tr>
<td>Algebraic Generation of 3-D Partially Orthogonal and Surface</td>
<td>373</td>
</tr>
<tr>
<td>Oriented Coordinate Grids</td>
<td></td>
</tr>
<tr>
<td>E. Steck, L. Kullmann and K.O. Felsch</td>
<td></td>
</tr>
<tr>
<td>The Construction of Component-Adaptive Grids for Aerodynamic Geometries</td>
<td>383</td>
</tr>
<tr>
<td>J.A. Shaw, J.M. Georgala and N.P. Weatherill</td>
<td></td>
</tr>
<tr>
<td>A Novel Adaptive Finite Element Technique Based on Poisson Grid</td>
<td>395</td>
</tr>
<tr>
<td>Generation Equations</td>
<td></td>
</tr>
<tr>
<td>M.S.M. Krishna and T. Sundararajan</td>
<td></td>
</tr>
<tr>
<td>A Variational Method for the Optimization and Adaptation of Grids in</td>
<td>405</td>
</tr>
<tr>
<td>Computational Fluid Dynamics</td>
<td></td>
</tr>
<tr>
<td>O.P. Jacquotte and J. Cabello</td>
<td></td>
</tr>
<tr>
<td>On An Adaptive Grid Generation Technique for Transonic Turbulent</td>
<td>415</td>
</tr>
<tr>
<td>Projectile Aerodynamics Computation</td>
<td></td>
</tr>
<tr>
<td>C-C. Hsu and S-C. Yang</td>
<td></td>
</tr>
<tr>
<td>Orthogonal Curvilinear Coordinary Generation for Internal Flows</td>
<td>425</td>
</tr>
<tr>
<td>M.R. Albert</td>
<td></td>
</tr>
<tr>
<td>A Depth-Adaptive Grid Using a Control-Function Approach</td>
<td>435</td>
</tr>
<tr>
<td>P. Nielsen and O. Skovgaard</td>
<td></td>
</tr>
<tr>
<td>Solution Adaptive Meshes with A Hyperbolic Grid Generator</td>
<td>443</td>
</tr>
<tr>
<td>G.H. Klopfer</td>
<td></td>
</tr>
<tr>
<td>Solution-Adaptive Grid Generation Using a Parametric Mapping</td>
<td>455</td>
</tr>
<tr>
<td>K.D. Lee, J.M. Loellback and T.R. Pierce</td>
<td></td>
</tr>
<tr>
<td>Zonal Grid Applications to Computations of Transonic Flows</td>
<td>465</td>
</tr>
<tr>
<td>C-Y. Gu and L. Fuchs</td>
<td></td>
</tr>
<tr>
<td>Solution Adaptive Parabolic Grid Generation in Two and Three</td>
<td>475</td>
</tr>
<tr>
<td>Dimensions</td>
<td></td>
</tr>
<tr>
<td>I.H. Parpia and R.W. Noack</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Self-Adaptive Grids in Arbitrarily Shaped Regions</td>
<td>485</td>
</tr>
<tr>
<td>J.B. Greenberg</td>
<td></td>
</tr>
<tr>
<td>Requirements For The Adaptive Grid Navier-Stokes</td>
<td>495</td>
</tr>
<tr>
<td>Analysis of Complex 3-D Configurations and Flowfields</td>
<td></td>
</tr>
<tr>
<td>J.E. Holcomb</td>
<td></td>
</tr>
<tr>
<td>SECTION 3 MULTI-BLOCK AND MULTI-GRID METHODS</td>
<td></td>
</tr>
<tr>
<td>Three-Dimensional Grid Generation About a Submarine</td>
<td>505</td>
</tr>
<tr>
<td>J.S. Abolhassani and R.E. Smith</td>
<td></td>
</tr>
<tr>
<td>A Graphic-Iterative Program-System to Generate Composite Grids</td>
<td>517</td>
</tr>
<tr>
<td>for General Configurations</td>
<td></td>
</tr>
<tr>
<td>W. Selbert</td>
<td></td>
</tr>
<tr>
<td>Multiblock Grid Generation for Afterbody Problems</td>
<td>529</td>
</tr>
<tr>
<td>G.B. Deng, Y. Lecointe, J. Piquet and M. Visonneau</td>
<td></td>
</tr>
<tr>
<td>Three-Dimensional Parametric Block Grid Regeneration</td>
<td>539</td>
</tr>
<tr>
<td>With Localized Solution Adaption</td>
<td></td>
</tr>
<tr>
<td>J.P. Steinbrenner and D.A. Anderson</td>
<td></td>
</tr>
<tr>
<td>Three-Dimensional Composite Grid Generation by</td>
<td>549</td>
</tr>
<tr>
<td>Domain Decomposition and Overlapping Technique</td>
<td></td>
</tr>
<tr>
<td>K. Miki and K. Tago</td>
<td></td>
</tr>
<tr>
<td>Techniques in Multiblock Domain Decomposition and Surface Grid Generation</td>
<td>559</td>
</tr>
<tr>
<td>S.E. Allwright</td>
<td></td>
</tr>
<tr>
<td>Application of Multiblock Grid Generation Approach to Aircraft</td>
<td>559</td>
</tr>
<tr>
<td>Configurations</td>
<td></td>
</tr>
<tr>
<td>A. Klunover, T.J. Kao and N.J. Yu</td>
<td></td>
</tr>
<tr>
<td>Interactive Multi-Block Grid Generation</td>
<td>579</td>
</tr>
<tr>
<td>D.J. Amdahl</td>
<td></td>
</tr>
<tr>
<td>SECTION 4 UNSTRUCTURED GRID GENERATION</td>
<td></td>
</tr>
<tr>
<td>(ADAPTIVE AND NON ADAPTIVE)</td>
<td></td>
</tr>
<tr>
<td>Constraint of the Boundary and Automatic Mesh Generation</td>
<td>589</td>
</tr>
<tr>
<td>P.L. George, F. Hecht and E. Saltel</td>
<td></td>
</tr>
</tbody>
</table>
Unstructured Grid Adaption for Non-Convex Domains
S.R. Kennon and D.A. Anderson

Adaptive Mesh Generation for Viscous Flows Using
Delaunay Triangulation
D.J. Mavriplis

A Three-Dimensional Unstructured Mesh Generator
for Arbitrary Internal Boundaries
E.K. Buratynski

Quadtree/Octree Meshing with Adaptive Analysis
J.H. Cheng, P.M. Finnigan, A.F. Hathaway,
A. Kela and W.J. Schroeder

The Generation of Unstructured Triangular Meshes
Using Delaunay Triangulation
D.G. Holmes and D.D. Snyder

2-D and 3-D Unstructured Mesh Adaption Relying on
on Physical Analogy
P. Palmerio and A. Dervieux

Discretization Formulas For Unstructured Grids
K.J. Baumeister

Generation of Tetrahedral Meshes Around Complete
Aircraft
T.J. Baker

Interactive Generation of Unstructured Grids for
Three Dimensional Problems
R. Löhner, P. Parikh and C. Gumbert

Numerical Simulation of Shock-Box Interaction Using
An Adaptive Shock Capturing Scheme
J.D. Baum and R. Löhner

Finite Octree Mesh Generation for Automated Adaptive
Three-Dimensional Flow Analysis
M.S. Shephard, F. Guerinoni, J.E. Flaherty,
R.A. Ludwig and P.L. Baehmann

A Generator of Tetrahedral Finite Elements for
Multi-Material Objects or Fluids
A. Perronnet

On The Combination of Structured-Unstructured Meshes
N.P. Weatherill
PART II APPLICATIONS

SECTION 1 GRIDS OVER AIRCRAFT

<table>
<thead>
<tr>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application of a Three-Dimensional Finite Element Grid Generation Scheme for an F-16 Aircraft</td>
<td>741</td>
</tr>
<tr>
<td>A. Ecer, J.T. Spyropoulos and E. Bulbul</td>
<td></td>
</tr>
<tr>
<td>Surface Grid Generation for Advanced Transport Configurations</td>
<td>751</td>
</tr>
<tr>
<td>J.E. Melton and R.G. Langhi</td>
<td></td>
</tr>
<tr>
<td>Application of 1-DEAS Grid Generator for Three-Dimensional Transonic Flow Analysis</td>
<td>761</td>
</tr>
<tr>
<td>R.K. Rout</td>
<td></td>
</tr>
<tr>
<td>Grid Generation for an Aft-Fuselage-Mounted Nacelle/Pylon Configuration</td>
<td>775</td>
</tr>
<tr>
<td>N.D. Halsey</td>
<td></td>
</tr>
<tr>
<td>Zonal Grid Generation for Fighter Aircraft</td>
<td>785</td>
</tr>
<tr>
<td>E.H. Atta</td>
<td></td>
</tr>
<tr>
<td>Geometric Modelling of Complex Aerodynamic Surfaces and Three-Dimensional Grid Generation</td>
<td>795</td>
</tr>
<tr>
<td>T. Sonar and R. Radespiel</td>
<td></td>
</tr>
<tr>
<td>Interactive Grid Generation for Fighter Aircraft Geometries</td>
<td>805</td>
</tr>
<tr>
<td>R.E. Smith and E.L. Everton</td>
<td></td>
</tr>
<tr>
<td>Multiple-Block Grid Adaption for an Airplane Geometry</td>
<td>815</td>
</tr>
<tr>
<td>J.S. Abolhassani and R.E. Smith</td>
<td></td>
</tr>
<tr>
<td>SECTION 2 NAVIER-STOKES EQUATIONS</td>
<td></td>
</tr>
<tr>
<td>Numerical Study of Cavity Flow for a Second Grade Fluid</td>
<td>825</td>
</tr>
<tr>
<td>G. Grossman and B. Wheatley</td>
<td></td>
</tr>
<tr>
<td>Hybrid Coordinates for 3-D Boundary Layer Calculations</td>
<td>835</td>
</tr>
<tr>
<td>N. Grün</td>
<td></td>
</tr>
</tbody>
</table>
An Analysis of Severe Grid Distortion Effects on the Accuracy of Some Discretization Schemes for Convection-Diffusion Equations
E. Renard and J.A. Essers

A Zonal Finite Element Grid Generation for 3-D Viscous Flow Analysis
U. Gülçat, E. Gürgey and H.R. Kul

SECTION 3 TURBOMACHINERY

CAGD in Turbomachinery
B. Ozell and R. Camaréro

Interactive Design of 3-D Grids for Propellers
Y. Lauzé, R. Camaréro and D. Pelletier

Grid Generation and Its Application to Turbulent Separated Flows
J.P. Maruszewski and R.S. Amano

Interactive Grid Generation for Turbomachinery Flow Field Simulations
Y.K. Choo, P.R. Eiseman and C. Reno

C-Grid Generation for Turbomachinery Cascades
R.M. Moore and J.D. Hoffman

GENIE: Generation of Computational Geometry-Grids for Internal-External Flow Configurations
B.K. Soni

Numerical Interactive Grid Generation for 3D-Flow Calculations

SECTION 4 COMPUTATIONAL HYDRAULICS

The Interaction of Waves with Large Submerged Structures via Boundary-Fitted Coordinates
R.R. Hwang and H-C. Fan

Grid-Induced Computational Flow Separation
R.S. Bernard

Numerical Modelling of Water-Wave Refraction/Diffraction in Regional Coastal Area
T-K. Tsay, B.A. Ebersole and P.L-F. Liu
SECTION 5 HEAT TRANSFER AND FLUID FLOW

Dynamic Mesh Adaption for Unsteady Nonlinear Phenomena - Application to Flame Propagation 977
F. Benkhaldoun, P. Leyland and B. Larroueturou

Grid Generation for the Analysis of Dispersed Phase Motion in Two Phase Flows 987
N. Kurul and M.Z. Podowski

A Solution Method for Natural Convection in Enclosures with Inner Bodies of Arbitrary Shapes 997
E.K. Giakpe

Application of Self-Adaptive Grid Method in Thermophoretic Flow Past a Circular Cylinder 1009
S. Jayaraj and V.K. Garg

SECTION 6 MISCELLANEOUS

Study of Flow in Single Rock Fractures 1019
K. Muralidhar

Numerical Grid Generation Used for Remeshing Finite Element Analyses of Metal Forming 1029
A.M. Lush

Automatic Grid Control in Device Simulation 1039
G. Nanz, W. Kausel and S. Selberherr

Automatic Mesh Generation for Two Dimensional Crack Propagation Analysis 1049
T. Taniguchi

Application of Biharmonic Grid Generation to Thermal Stress Analysis 1059
D.C. DeHeer, N.R. Sottos and S.I. Güceri