A COHERENT VLSI DESIGN ENVIRONMENT

Final Technical Report for the period May 12, 1980 to December 31, 1987

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Principal Investigators:

Paul Penfield, Jr. (617) 253-2506
Harold Abelson
Dimitri A. Antoniadis
William J. Dally
Clifton G. Fonstad
Lance A. Glasser
Thomas F. Knight, Jr.
F. Thomson Leighton
Charles E. Leiserson
Ronald L. Rivest
Michael F. Sipser
Gerald J. Sussman
Jacob K. White
John L. Wyatt, Jr.
Richard E. Zippel

This research was sponsored by Defense Advanced Research Projects Agency (DoD), through the Office of Naval Research under ARPA Order No. 3872, Contract No. N00014-80-C-0622.
TABLE OF CONTENTS

I. Introduction ... 1

II. Three-Dimensional Devices and Interconnections ... 2

III. Heterostructure Logic Technology.. 3

IV. VLSI Technology ... 4

V. Timing Analysis of VLSI Interconnect ... 5

VI. VLSI Architecture .. 6

VII. SCHEME Chip ... 7

VIII. VLSI Design Tools and Systems .. 8

IX. PI: VLSI Placement and Routing ... 9

X. The SCHEMA Design Environment ... 10

XI. Integrated-Circuit Complexity Theory .. 11

XII. VLSI Research Coordination ... 14

XIII. Publications ... 16

Appendix A. VLSI Seminars, through December 1987

Appendix B. Seminar Speaker Information Form

Appendix C. Agendas, VLSI Research Reviews

Appendix D. MIT VLSI Tools Release Information Letter and Form

Appendix E. VLSI Memo Series, through December 1987
I. INTRODUCTION

The Microsystems Research Center of the Massachusetts Institute of Technology is pleased to submit this final report for contract N00014-80-C-0622, awarded by the Information Processing Technology Office (subsequently the Information Sciences Technology Office) of the Defense Advanced Research Project Agency, as monitored by the Office of Naval Research. The contract has been in force between May 12, 1980 and December 31, 1987. It was awarded to support research in several aspects of Very Large Scale Integrated (VLSI) systems.

The contract in question was a response to three successive, related proposals, as follows:

- Advanced Research in VLSI, 12 May 1980 - 11 May 1982,
- Theory and Practice for Large-Scale Systems, 12 May 1982 - 30 June 1984,

During each of these three time periods a different underlying theme was emphasized, but the detailed technical work was carried out in several areas that continued throughout the life of the contract. This final report is organized according to those areas. In each case, the description below consists of a brief statement of the objectives of the work, a list of the major accomplishments, and some conclusions. A narrative style is not used, because of the scope of the contract and the large number of results. At the end of this report is a list of all publications that arose from work supported in part by this contract. The interested reader is referred to these publications for further information about any of the results listed below.

The following MIT faculty members helped perform the work done under this contract. The Principal Investigator for the entire time was Professor Paul Penfield, Jr.

Harold Abelson
Dimitri A. Antoniadis
William J. Dally
Clifton G. Fonstad
Lance A. Glasser
Thomas F. Knight, Jr.
F. Thomson Leighton
Charles E. Leiserson
Ronald L. Rivest
Michael F. Sipser
Gerald J. Sussman
Jacob K. White
John L. Wyatt, Jr.
Richard E. Zippel
II. THREE-DIMENSIONAL DEVICES AND INTERCONNECTIONS

This activity was carried out between 1980 and 1984. Contributions were made by Prof. Antoniadis and, to a small degree, Prof. Glasser.

Objective:
- To develop techniques for fabricating integrated circuits with more than one layer. It was thought that the circuits would provide increased density and, therefore, improved performance in integrated systems due to shorter average wire length.

Results:
- Partially self-aligned joint-gate CMOS transistor pair.
- Upside-down FET.
- Processes for recrystallization of amorphous silicon on an insulating substrate.
- Thermal analysis of recrystallization.
- Stacked CMOS latch.
- Silicon-on-insulator bipolar transistors.
- Design rules for stacked CMOS.
- Theoretical study of performance of stacked CMOS.
- Economic yield analysis of planar vs. two-layer circuits.

Conclusions:
- Two-layer MOS structures can be made and understood. Advances in our understanding of recrystallization are necessary. Apart for performance advantages, the economic motivation for two-layer processes is unclear, because the yield for an equivalent function is generally better if a one-layer process is used, even if this means partitioning the system into two chips.
III. HETEROSTRUCTURE LOGIC TECHNOLOGY

This activity was carried out between 1980 and 1984, but the work continues under other sponsorship. Professor Fonstad was responsible for this work.

Objective:
- To produce high-performance heterostructure transistors for logic applications. The speed advantage arises from the fact that high emitter efficiency can be maintained even with low-resistivity base material, through wider emitter bandgap. Quaternary compounds are used so that the band gap can be varied without changing the lattice spacing.

Results:
- Device simulator for heterojunction structures.
- Techniques for profiling of Be and Si ion implants into InGaAs.
- MBE-grown heterojunctions.
- Lateral pnp heterojunction transistors.
- Vertical npn heterojunction transistors.
- Argon arc lamp demonstrated for rapid thermal annealing of implanted III-Vs.
- Grown-junction npn transistors.
- Measurements of contact resistance on p-type (In,Ga)As.
- Triply implanted heterojunction npn bipolar transistors.
- Demonstration of polyimide passivation layer.

Conclusions:
- Grown-junction devices have better performance than triply implanted devices.
- Molecular beam epitaxy is a potentially superior growth technique for heterostructure devices.
IV. VLSI TECHNOLOGY

This activity was carried out through the entire length of the contract, from 1980 through 1987. Some related work continues under alternate sponsorship. The principal faculty contributors were Professors Glasser, and Knight.

Objective:
• To develop new circuit technology for high-performance digital systems.

Results:
• Transistor sizing program for optimizing size and speed.
• Generic CMOS pads, both 5 micron and 3 micron.
• High-speed digital CMOS FIR filter.
• High performance 32-word 24-bit content addressable memory.
• Chip with optical sensor array integrated with first stage of visual processing.
• Formal theory of tradeoff between noise margin and delay in digital circuits.
• Calibrated digital delay line implemented in VLSI.
• Continuous theoretical model of communication and computation in very massive, very fine grained computers.
• Spreadsheet for on-chip wire planning.
• Novel nonvolatile write-enabled UV PROM cell.
• Theory of fault-speed tradeoff in A/D converters.
• RELIC, circuit reliability simulators.
• Theory of fundamental limits of circuit high-frequency behavior (maximum frequency of oscillation).
• Zero-pin chip with magnetostatic power, clock, and signal coupling.

Conclusions:
• A variety of novel devices, circuits, and circuit simulation programs were developed. This activity provided a context in which the other work done under this contract could be done more imaginatively.
• Novel basic circuits can be invented, designed, and developed only in the context of associated with in devices and architectures.
V. TIMING ANALYSIS OF VLSI INTERCONNECT

This activity was carried out between 1981 and 1987. The faculty members involved were Professors Wyatt, Penfield, and Glasser.

Objective:
- To develop models, approaches, and CAD tools to analyze delay performance of VLSI chips and systems.

Results:
- RSIM, a program to estimate delay using switch-level models.
- Incorporation of capacitance and line delay into communication-cognizant gate-level simulators.
- Retiming technique for optimizing sequential circuits at the register level.
- RC tree model for on-chip MOS interconnect.
- Waveform bounding of signal propagation through RC trees.
- Extension of waveform bounding to RC meshes.
- Incorporation of slew rate limits into waveform bounding results.
- Extension of waveform bounding to ECL bipolar circuits.
- Extension to results to a large class of dynamic systems.
- Limited success in incorporation of distributed inductance in interchip PC-board interconnects.
- Analysis tool incorporating waveform relation along with waveform bounding.
- Transfer of waveform bounding tools to industry (Tangent Systems).
- Extension of waveform bounding to include leaky capacitors.
- Transfer of ECL timing analyzer to industry (Digital Equipment Corporation).

Conclusions:
- Waveform bounding is a useful tool in the VLSI CAD arena.
- Most designers prefer approximation, rather than bounding tools.
VI. VLSI ARCHITECTURE

This activity was carried out through the length of the contract, from 1980 through 1987. The faculty members concerned with VLSI architecture were Professors Sussman, Knight, Dally, Leiserson, and Zippel.

Objective:
• To develop parallel architectures that take advantage of the capabilities of VLSI.

Results:
• The connection machine, a massively parallel architecture with small grain size and hypercube interconnection network.
• Transfer of the connection machine to industry (Thinking Machines, Inc.).
• Fat-trees, an interconnection network that is area-universal.
• Message-Driven Processor, a fine-grain, message-passing concurrent computer.
• Theory of performance of k-ary n-cube interconnection networks.
• Bidirectional Torus Router, a self-timed multicomputer communication chip.
• JOSS, an operating system for a large-scale message-passing multicomputer.
• Network Design Frame, a high-performance router incorporated into a chip pad frame.
• Reconfigurable Arithmetic Processor architecture, for nibble-serial arithmetic.
• Chip incorporating the reconfigurable arithmetic processor.

Conclusions:
• Many different highly parallel architectures are possible.
• To be useful, a parallel architecture must simultaneously address issues of communication topology, communication circuits, processor performance, operating system, and appropriate message or communication semantics.
VII. SCHEME CHIP

This activity took place between 1980 and 1984, under the supervision of Professor Sussman. Contributions were made by Professors Knight, Leiserson, Rivest, and Zippel.

Objective:
- To design and fabricate an integrated system that directly implements the Lisp dialect SCHEME.

Results:
- SCHEME-79 Microprocessor chip designed, fabricated, and tested.
- Concurrent efficient garbage collections algorithm.
- SCHEME-81 Microprocessor chip designed, fabricated, and tested.
- Prototype SCHEME single-board processor designed, fabricated, and tested.

Conclusions:
- The SCHEME-81 chip was designed using Lisp-based design tools and the project forced advances in all tool areas. The final chip was functional.
- Microcode design and generation was a significant part of the design, and new design tools were necessary.
- The philosophy behind the SCHEME chips is to embed much of the language supported in hardware. This is opposed to the RISC computer architecture strategy, in which the processor is made "lean and mean," and the language support is in compilers.
VIII. VLSI DESIGN TOOLS AND SYSTEMS

This activity occurred during the entire length of the contract, from 1980 through 1987. Faculty members involved are Professors Sussman, Abelson, Glasser, Knight, Rivest, Wyatt, White, and Penfield.

Objective:
- To produce tools to support design of VLSI systems.

Results:
- LISPIIC, Lisp-based data base for IC design data.
- DAEDALUS, interactive graphics editor for IC layouts.
- DPL, Design Procedure Language, tool to create and manage a representation of an IC design.
- PI, system for placement and interconnect (see section below).
- SCHEMA, IC design environment (see section below).
- DRC, design-rule check program.
- ESIM, switch-level simulator.
- AIDS, APL-based layout capture and editing system.
- RSIM, switch-level timing simulator.
- CMTPG, connection-machine based test pattern generator.
- RELIC, reliability simulator.

Conclusions:
- Many useful VLSI design tools have come out of this contract. Most have been installed and used elsewhere.
- Two of the design systems have been extensive and involved significant research as well as development. These are the PI and SCHEMA systems described in later sections of this report.
IX. PI: VLSI PLACEMENT AND ROUTING

This activity was performed between 1980 and 1984, under the supervision of Professor Rivest. Help came from Professors Knight, Leighton, Leiserson, Sipser, and Zippel. It culminated in the release of a tape incorporating the PI system, suitable for use on a Symbolics Lisp machine.

Objective:
- To develop new algorithms for placement and interconnect routing of VLSI chips.
- To incorporate the best algorithms available, including new ones, into a working placement and routing system.

Results:
- Implementation of existing routing algorithms in one framework.
- Heuristic approach to chip partitioning and module placement.
- Power and ground routing algorithm.
- A random circuit generator for testing PI algorithms.
- Pad placement algorithm.
- Polynomial-time algorithms for certain channel routing problems.
- Interfaces to other VLSI design and layout tools.
- Theory of efficient, optimal crossing placement.
- Technique for estimating routing channel densities.
- Efficient river-routing algorithm.
- Transfer of the PI system to industry.
- Tape made for PI system distribution to North American companies and universities.

Conclusions:
- A practical design system can motivate fundamental research in algorithms.
- Lisp is a fine language, and Lisp Machines are a fine environment, for research projects, but technology transfer of the tools themselves is difficult because not many potential target sites use Lisp machines for design of VLSI chips.
X. THE SCHEMA DESIGN ENVIRONMENT

The SCHEMA system was under development between 1982 and 1986. The principal faculty member behind this system was Professor Zippel. He was helped by Professor Glasser. An industrial visitor from Harris Corporation, George Clark, participated in the research and directed complementary developments in his company.

Objective:
- Design and develop an environment for VLSI CAD tools with extraordinarily ambitious capabilities for consistency maintenance in the face of design changes in any level.
- Demonstrate effectiveness of industrial partnerships in CAD software.

Results:
- Low-level databases designed and implemented, supporting hierarchical and semi-hierarchical design specifications and multiple views.
- Waveform language defined.
- Capsule system designed and implemented.
- Schematic capture tools integrated.
- Wirewrap/PC-board development tool designed at Harris.
- Temporal constraint tools incorporated into SCHEMA.
- Simulation interface installed in SCHEMA.
- CIF output module written.
- SCHEMA successfully used to design chips.
- Multiport circuit analysis package incorporated.
- Transfer to industry completed.

Conclusions:
- The system was, as originally planned, too complex and too ambitious for a university project.
- The basic structure and concepts were successfully transferred to Harris Corporation and subsequently to MCC.
XI. VLSI THEORY

A large portion of the contract dealt with VLSI theory in many forms — VLSI complexity theory, routing theory and algorithms, the theoretical basis for CAD tools, parallel algorithms, etc. The faculty involved in the theoretical studies were Professors Abelson, Glasser, Leighton, Leiserson, Rivest, and Sipser.

Objective:
- To determine fundamental limits of operation of VLSI systems.
- To determine theoretical bounds for VLSI CAD tools.
- To devise improved routing algorithms and parallel algorithms for multiprocessor VLSI systems.

Results:
- Study of the capabilities of a dynamically reconfigurable tree structure.
- Area-time tradeoff limit for any circuit that computes a quadratic form.
- Information-transfer limits to distributed data bases, for both one-way and two-way communication.
- Incorporation of parasitic electrical parameters into Thompson's VLSI model.
- Minimum length of the longest edge in a VLSI layout.
- General transformation for improving performance of synchronous circuits by removing combinational rippling.
- Asymptotically optimal layout for the shuffle-exchange graph.
- Optimal layouts for small shuffle-exchange graphs.
- Register-minimization procedure.
- Limits on multilevel wiring complexity for interconnect.
- Algorithm for contact minimization in VLSI layouts.
- Fundamental limits of channel routing.
- Optimal organization of raster-graphics memory.
- Efficient algorithms for optimal clock phase assignment.
- One-dimensional systolic array wiring in wafer-scale integration with finite yield.
- Two-dimensional systolic array wiring in wafer-scale integration with finite yield.
- Fast algorithms for river routing.
- Fast algorithms for channel routing.
- Articulation of many high-level architectural transformations.
- Algorithm for estimating routing channel densities.
- Layout compactor with automatic jog insertion.
- Polynomial-time algorithm for orienting rectangles in slicing VLSI floorplans.
- Demonstration that ability to place transistors (as opposed to only wires) on multiple layers does not decrease the volume needed to embed a circuit in a chip.
- Linear-time approximation algorithm for Manhattan routing.
- Algorithm for determining routability from a sketch of the layer and fixed module placements.
- Compact layouts for complex arithmetic functions.
• Fast algorithms for data routing and sorting in large-scale networks.
• Efficient algorithm for single-layer routing of a VLSI chip.
• Space-efficient optimal time scanning algorithm for finding the connected components of rectangles in the plane.
• High-average-efficiency graph bisection algorithm.
• Class of universal networks that can simulate all other networks of the same size with logarithmically longer delay.
• Techniques for converting 2-dimensional layouts into 3-dimensional layouts with substantially less material volume.
• Analysis techniques for packing heuristics.
• Proof that any planar graph can be represented on 9 stacks.
• Fat-trees, a new class of universal routing networks for parallel processing.
• Algorithms designed specifically for execution on a fat-tree.
• Fat-tree software simulator.
• Systolic array simulator.
• Efficient algorithms for representing useful networks as a small number of stacks of wires.
• Efficient circuits for parallel division.
• Improved algorithms for two-layer channel routing.
• Probabilistic algorithm for on-line routing of messages on a fat-tree.
• Provably fast algorithm for solving constraint systems in VLSI layout compaction.
• Timing scheme for transmitting messages between processors in a fat-tree.
• Implementation of nMOS VLSI fat-tree network interface.
• Implementation of a hyperconcentrator switch for routing bit-serial messages in highly parallel routing networks.
• Good message-routing algorithms for various universal networks.
• Distributed Random-Access Machine (DRAM) model for routing networks for parallel computation.
• Compact barrel shifter.
• Efficient parallel algorithm for maximum flow on a network.
• Improved methods for graph bisection.
• Improved algorithm for routing 2-point nets on a channel, with vertical overlaps and knock-knees in two layers.
• Efficient embedding of arbitrary binary trees in a hypercube.
• Nearly optimal algorithms and bounds for multilayer channel routing.
• Methods to configure a functioning network from a larger network of the same kind that contains random faults.
• Efficient algorithm for verifying the correct operation of a computation on a level-clocked synchronous circuit.
• Modular layouts for area- and volume-universal fat-trees with constant size switches.
• Intelligent backtracking algorithms for pure Prolog.
• Parallel algorithms for graph coloring problems and maximal independent set problems.
• Efficient algorithms for creating systolic arrays from wafer-scale circuits with faults, useful for small to moderate size systems.
• Efficient hash functions for many-one routing on a hypercube.
• Embedding of a mesh-of-trees network in a hypercube.
• Parallel algorithm for contraction of n-node bounded-degree planar graphs.
• Algorithm for determining the minimum-cost flow in a network, based on a new successive-approximation technique.
• Simulation of a hypercube by a shuffle-exchange graph or butterfly network.
• Efficient parallel algorithms for symmetry-breaking in sparse graphs of processors.
• Efficient parallel algorithm for planarity.
• Technique to implement scan operations in hardware.
• Methods to analyze circuits with periodic clocking waveforms.
• Deterministic, on-line message-routing algorithm for a butterfly fat-tree network.
• Concurrent-read, concurrent-write DRAM algorithms that are faster than exclusive-read, exclusive-write DRAM algorithms.
• Improved algorithms for contraction of n-node bounded-degree planar graphs.
• Correspondence between bussed permutation architectures and difference covers for permutation sets.
• Rigorous treatment of general river routing problems, including necessary and sufficient conditions for routability, and efficient methods for constructing optimal routings.
• Improved algorithms for coloring and matching sparse graphs.
• Fast local deterministic algorithms for reconfiguration of the working nodes in a partially faulty hypercube where both nodes and edges may be faulty.
• Space-efficient techniques for queue management in very large scale networks.
• Algorithm to determine the pagename of a graph.
• Polynomial-time approximation algorithm for finding optimal separators in planar graphs.

Conclusions:
• Many advances in theory related to VLSI have been made.
• A theoretical basis for understanding message passing in a complex large parallel computer is beginning to exist.
• Models which account for the cost of communication as well as the cost of computation have been introduced and used.
• VLSI theory is best done in the context of an active effort in the theory of computation and an active effort in VLSI architecture and technology.
XII. VLSI RESEARCH COORDINATION AND OUTREACH

For the entire length of the contract, from 1980 through 1987, an explicit task was to coordinate the VLSI research on campus, promote new VLSI research, and generate technology transfer through outreach programs. This activity has been carried out by Professor Penfield with assistance from all the other faculty. During the length of this contract the total research volume in VLSI rose from an estimated $3,000,000 to over $10,000,000, and a state-of-the-art VLSI fabrication facility costing in excess of $23,000,000 was established.

Objective:
- To foster VLSI research at MIT in a number of areas.
- To broaden the perspective of those doing VLSI research so they can seek connections to other research activities and applications.
- To instill a sense of community in those doing VLSI research on campus.
- To inform other universities and companies in North America about our research program and results.

Results:
- Weekly VLSI Seminar series. Appendix A gives a list of seminar speakers from the beginning of the series (just prior to the start of this contract) through the end of the contract. This series has attracted an outstanding set of speakers and an outstanding audience, and has an international reputation. The audience comes from MIT, local industry, local universities, and even from a distance. The latest version of the information sheet for authors is reproduced as Appendix B.
- Semiannual VLSI Research Review. This all-day affair covers all technical areas in VLSI, and is an excellent experience for the students who speak. A collection of agendas is reproduced as Appendix C.
- VLSI Tools tape. This Unix-based tape includes miscellaneous VLSI tools, many of which were developed under this contract. It is available to other universities and industry within North America. A description appears as Appendix D.
- VLSI Memo series. This series started in 1980 and, as of the termination date of this contract, included 96 memos from all areas of VLSI research. Support by this contract has permitted the distribution of single copies, for personal use, to people in North America, without charge. This series has been very effective in aiding technology transfer. A list of titles through the end of this contract appears as Appendix E.
- VLSI Conference. The university-oriented VLSI conference has been held at MIT in even-numbered years starting in 1980. Although the conference is financially self-sustaining and benefits from a small NSF grant, it is administered by the MIT Microsystems Research Center (MRC), which is the organization that carries out the rest of the outreach activities described in this section. The existence and stability of MRC has helped MIT serve a leadership and continuity role for this conference.
Conclusions:
- The presence of an organization charged with explicitly fostering VLSI research has helped the overall MIT research program in all areas of VLSI immensely.
- The outreach activities supported in part by this contract have been effective in acquainting people outside MIT with our overall research program.
XIII. PUBLICATIONS

F. M. Rose, *Models for VLSI Circuits*, M.S. Thesis, MIT, Department of Electrical Engineering and Computer Science; also MIT VLSI Memo No. 82-114, July 1982.

N. J. Slater, Ion Implantation of Be and Si for GaAs/AlAs/InP, Thesis, MIT, Department of Electrical Engineering and Computer Science; also MIT VLSI Memo No. 82-122, November 1982.

B. C. Williams, “Qualitative Analysis of MOS Circuits,” to appear in Artificial Intelligence; also MIT VLSI Memo No. 84-165, April 1984.

Anne H. Park, *CMOS LSI Design of a High-Throughput Digital Filter*, M. S. Thesis, Department of Electrical Engineering and Computer Science, MIT, August 31, 1984; also MIT VLSI Memo No. 84-204.

INTERNAL MEMORANDA

P. S. Whitney and C. G. Fonstad, "Manganese as a p-type Dopant for Liquid Phase Epitaxial In0.53Ga0.47As," MIT VLSI Memo No. 84-206, October 1984.

APPENDIX A. VLSI SEMINARS (through December 1987)

September 18, 1979
The MIT HI Lab/Xerox PARC SCHEME Chip or What I Did This Summer, Gerald J. Sussman, MIT.

September 25, 1979
Restructurable Logic Implementations, Jack I. Rafael, MIT, Lincoln Laboratory

October 2, 1979
Submicron DOS Technology, Dennis D. Buss, Texas Instruments

October 16, 1979
Theoretical Aspects of a VLSI Design, Ronald L. Rivest, Harold Abelson, and Andrea Laugh, MIT

October 23, 1979
Towards Structured Chip Design, J. Craig Mudge, DEC

November 6, 1979
The MU Design Automation System - Preliminary Results of Logic Synthesis from Behavioral Descriptions, Gary Live, Carnegie-Mellon University

November 13, 1979
The Design of the 8086, Peter Toll, Intel Corporation

November 20, 1979
The Impact of Integrated Circuits, Jack S. Kirby, Texas Instruments

November 27, 1979
Monolithic Power-Spectrum Centroid Detector: An Example for a Vertical Integration Approach, Levy Gerzberg, Stanford University

December 11, 1979
Introduction to the DAEDALUS Graphics Layout Editor, Howard E. Shrobe, MIT

February 12, 1980
VLSI: Models, Circuits, and Performance Limits, Clark Thompson, University of California, Berkeley

February 26, 1980
Current VLSI Designs for Real-Time Systems, David C. Barr, Simon Ullman, and John Batali, MIT

March 4, 1980
The SCHEME Chip Design Experience and Associated Design Tools, Jack Holloway, MIT

March 11, 1980
Integrated Sensing Devices using the Charge-Flow Transistor, Stephen D. Senturia, MIT

March 18, 1980
Cost-Effective Tradeoffs in Pipelined Function Units, Edward S. Davidson, University of Illinois

April 1, 1980
A Multiplexed Switched-Capacitor Filter Bank, Patrick Bosshart, MIT

April 8, 1980
Analog Circuits in DOS PSI, Yannis Tsividis, Columbia University

April 15, 1980
Computer Aids for the Logic Design of Microprocessors, Harold Shichman, Bell Laboratories

April 22, 1980
Unrestricted Clocks Considered Harmful... , Charles L. Spitz, California Institute of Technology

April 29, 1980
Scaling Limits of NMOS VLSI Circuits, K. Nirmal Ratnakumar, Stanford University
VLSI SEMINARS (continued)

May 6, 1980
A Single Supply DAC and Future Linear Design Constraints, Peter R. Holloway, Analog Devices

May 13, 1980
Symbolic Layout of MOS LSI Building-Blocks, Min-Yu Haueh, IBM

September 16, 1980
The Apiary Network for Knowledgeable Systems, Carl E. Hewitt, MIT

September 23, 1980
Tessellation Architectures for VLSI, Charles L. Seitz, California Institute of Technology

September 30, 1980
GaAs Integrated Circuits for Ultra High Speed LSI/VLSI, Richard C. Eden, Rockwell International

October 7, 1980
Direct-Write Laser Processing for Microelectronics, R. Osgood, D. Ehrlich, and T. Deutsch,
MIT Lincoln Laboratory

October 21, 1980
The Role of Device Physics in MOS IC Development, Laurence G. Walker, Hewlett-Packard Laboratories

October 28, 1980
Fast Algorithms for Design Checking (Based on Statistics on VLSI Design), Jon L. Bentley,
Carnegie-Mellon University

November 4, 1980
Limits of Improvement of Silicon Integrated Circuits, V. Leo Rideout, IBM

November 18, 1980
VLSI Device Phenomena in Dynamic Memory Devices, Ronald R. Troutman, IBM

November 25, 1980
The Solution of a Restricted Routing Problem and Its Applications, Andrea LaPaugh, Brown University

December 2, 1980
Signal Processing with VLSI, Richard F. Lyon, Xerox PARC

February 10, 1981
Bubbles and VLSI, Hsu Chang, IBM

February 24, 1981
1 Micron nMOS Technology for VLSI Circuit Design, Dana Seccombe, Hewlett-Packard

March 3, 1981
VLSI—Fundamental Factors, James M. Early, Fairchild

March 10, 1981
The Layout and Wiring of a VLSI Microprocessor, M. Feuer, K. H. Khokhani, and D. A. Mekta, IBM

March 17, 1981
Design Automation at RCA: The Present and the Future, Lawrence M. Rosenberg, RCA

March 31, 1981
An Algorithm for Optimal PLA Folding, Gary D. Hatchel, IBM

April 7, 1981
High Performance Graphics for Personal Computers, James Clark and Marc Hannah, Stanford University

April 14, 1981
Custom CMOS LSI Circuit Design Using Computer Aids, Charles W. Gwyn, Sandia Laboratories

April 28, 1981
Techniques for Improving Engineering Productivity of VLSI Designs, Joseph C. Logue, IBM
May 5, 1981
Systolic Systems, Charles E. Leiserson, MIT

May 12, 1981
SLIM: A Language for Microcode Specification and Simulation in VLSI, John Hennessy, Stanford University

September 15, 1981
Virtual Grid Symbolic Layout, Neil Weste, Bell Laboratories

September 22, 1981
Randomness and Complexity, Charles Bennett, IBM

September 29, 1981
New Concepts for Processing Ceramic Chip Carriers, H. Kent Bowen, MIT

October 6, 1981
Scalability Issues for Submicron MOS Integrated Circuits, Pallab Chatterjee, Texas Instruments

October 20, 1981

October 27, 1981
BELLMAC-32: A Single-Chip, 32 Bit, CMOS Processor; Part II: Technology, Circuit & Chip-Design Methods, B. T. Murphy and L. C. Parrillo, Bell Laboratories

November 3, 1981
Direct Computer Modelling, Donald Greenspan, University of Texas

November 10, 1981
Research at the National Submicron Facility, Edward D. Wolf, Cornell University

November 17, 1981
Hierarchical Logic Simulation - or - Simulating Simulating, W. H. Sherwood, DEC

November 24, 1981
IDL (Interactive Design Language), H. Fleisher, L. Maissel, and R. Phoenix, IBM

December 1, 1981
A Businessman’s Look at VLSI, James F. Riley, Dataquest

December 8, 1981
Routing for VLSI Layout Design, Ernest S. Kuh, University of California, Berkeley

February 9, 1982

February 23, 1982
CMOS Technology for VLSI Design, K. Kokkonen, Intel Corporation

March 2, 1982
Topics in VLSI Testing, Sheldon Akers, General Electric

March 9, 1982
288K Bit Dynamic RAM, E. Thoma and B. Fitzgerald, IBM

March 16, 1982
The Role of Semiconductor Device Modeling in VLSI Design, L. W. Nagel, Bell Laboratories

March 30, 1982
Electronic Properties and Device Applications of Beam Crystallized Silicon-On-Insulators, J. F. Gibbons, Stanford University
VLSI SEMINARS (continued)

April 13, 1982

April 27, 1982
Nial - Its Role as a Design Aid and as a Target in VLSI Design, M. A. Jenkins, Queen's University

May 4, 1982
The IBM Micro/370 Design, N. Tredennick, IBM

May 11, 1982
VLSI Tester and CAT Architecture, R. C. Albrow, GenRad Semiconductor Test Inc.

September 14, 1982
Design of High Voltage (Over 500V) Integrated Circuits, Peter W. Shackele, Harris Semiconductor

September 21, 1982
Switch-Level Simulation and the Verification of MOS Digital Systems, Randal E. Bryant, Caltech

September 28, 1982
Relaxation-Based Simulation of VLSI Circuits, Alberto Sangiovanni-Vincentelli, University of California, Berkeley, Joint with LIDS

October 5, 1982

October 19, 1982
Modeling in Latchup Triggering in CMOS Circuits, Donald Nelsen, Digital Equipment Corporation

October 26, 1982
Automatic Logic Implementation Based on Fast Boolean Function Manipulation, Robert Brayton, IBM T. J. Watson Research Center, and Curt McMullen, Harvard University, Joint with LIDS

November 2, 1982
High Performance Heat Sinking for VLSI, Fabian Pease, Stanford University

November 9, 1982
Designing Efficient Parallel Algorithms, S. Rao Kosaraju, John Hopkins University

November 16, 1982
Statistical Mechanics for Optimal Design, Scott K Kirkpatrick and Dan Gelatt, IBM T. J. Watson Research Center

November 23, 1982
The LTC Integrated Circuit Facility - Its Design and Capabilities, Stuart M. Spitzer, ITT Advanced Technology Center

November 30, 1982
River Routing: Methodology and Analysis, Ron Pinter, Bell Laboratories, Murray Hill, NJ

December 7, 1982
Crystal: A Timing Analyzer for nMOS VLSI Circuits, John Ousterhout, University of California, Berkeley

February 8, 1983
A 32-Bit VLSI System, John Spencer and Mark Forsythe, Hewlett-Packard, Fort Collins, CO

February 15, 1983
RSIM: A Logic-Level Timing Simulator, Christopher J. Terman, MIT

March 1, 1983
Technology Issues in VLSI, Arnold Reisman, Microelectronics Center of North Carolina and North Carolina State University
VLSI SEMINARS (continued)

March 8, 1983
Multilevel MOSFET Circuit and Logic Analysis/Simulation, Albert E. Reuhli, IBM T. J. Watson Research Center, Yorktown Heights, NY

March 15, 1983
The CHIP Computer, Lawrence Snyder, Purdue University, W. Lafayette, IN

March 29, 1983
Size, Power, and Speed, Maurice V. Wilkes, Digital Equipment Corp. and MIT

April 5, 1983
Device Technology Comparison in the Context of Large Scale Digital Applications, Paul Solomon, IBM T. J. Watson Research Center, Yorktown Heights, NY

April 12, 1983
Total Fault Coverage by Digital Circuit Transformation, Richard J. Lipton, Princeton University

April 26, 1983
The Yorktown Simulation Engine: A Supercomputer for Logic Simulation, Greg Pfister, IBM T. J. Watson Research Center

May 3, 1983
Survey of Design for Testability, Thomas W. Williams, IBM, Boulder, CO

May 10, 1983
A CAD Design Framework and Interated Timing Analysis, A. Richard Newton, University of California, Berkeley

September 20, 1983
A High Performance Microprocessor Chip to be Used in Groups of Hundreds of More, H. T. Kung, Carnegie-Mellon University, Pittsburgh, PA

September 27, 1983
Managing the Chip Design Database, Randy Katz, University of California, Berkeley

October 4, 1983
Focused Ion Beam Technology and Applications, Robert L. Seliger, Hughes Research Laboratory, Malibu, CA

October 18, 1983
Strategic Computing and Survivability, Robert Kahn, Defense Advanced Research Projects Agency

October 25, 1983
Considerations in VLSI Graphics and Display Processor Design, Stephen L. Domenik, Intel Corporation, Santa Cruz, CA

November 1, 1983
A Methodology for the Design of Testable VLSI Circuits, Melvin A. Breuer, University of Southern California, Los Angeles, CA

November 8, 1983
CAPRI, Silicon Compiling for VLSI Circuits Specified by Algorithm, Francois Anceau and J. P. Schoellkopf, IMAG Computer Architecture Group, Grenoble, France

November 15, 1983
An Ada Program Talks to an Ada Chip, Elliott I. Organick, University of Utah, Salt Lake City, UT

November 22, 1983

November 29, 1983
A Monolithic Tactile Sensor Array, Bruce E. Wooley, Bell Laboratories, Holmdel, NJ
VLSI SEMINARS (continued)

December 6, 1983
Single Layer Routing Representations and Searches in TWIGY, a Production Router, Michel Foreau, Digital Equipment Corp., Andover, MA

December 13, 1983
Interconnections for CMOS Technology: Design and Process Considerations, Rick Davies, Texas Instruments, Dallas, TX

February 14, 1984
CMOS VLSI Two-Dimensional Array Processors, Dr. Paul Sullivan, NCR Corporation

February 28, 1984
A 32b Microprocessor with On-Chip Virtual Memory Management, Daniel Dobberpuhl, Digital Equipment Corporation, Hudson, MA

March 6, 1984
Wafer-Scale Design Using Restructurable VLSI, Jack I. Raffel, MIT, Lincoln Laboratory

March 13, 1984
An Overview of the PI System for Placement and Interconnect of Custom VLSI Design, Ronald L. Rivest, MIT

March 20, 1984
CAM for VLSI: An Industrial Perspective, Nicholas E. English, Jr., Harris Semiconductor, Melbourne, FL

April 2, 1984
Testability in VLSI, Constantin C. Timoc, Jet Propulsion Laboratory, Pasadena, CA

April 10, 1984
Physical Technology for Future VLSI Systems, Dr. Robert Hannemann, Digital Equipment Corp., Andover, MA

April 24, 1984
Compound Semiconductors, Sorab K. Ghandi, Rensselaer Polytechnic Institute, Troy, NY

May 1, 1984
Knowledge-Based Aids for VLSI Design, Tom Mitchell, Rutgers University, New Brunswick, NJ

May 8, 1984
Mosaic's WHIP Wafer-Scale Packaging Technology, R. R. Johnson, Mosaic Systems Inc., Troy, MI

May 15, 1984
The HITEST Generation System, Gordon D. Robinson, Cirrus Computers Ltd., Visiting MIT

September 18, 1984
Numerical Simulation of Complex VLSI Device Structures, Wolfgang Fichtner, AT&T Bell Laboratories, Murray Hill, NJ

September 25, 1984
An Electronic Design Interchange Format, A. Richard Newton, University of California, Berkeley

October 2, 1984

October 16, 1984
Trends in VLSI Testing, J. Lawrence Carter, IBM T. J. Watson Research Center, Yorktown Heights, NY

October 23, 1984
Technologies for High-Performance Computing, Neil Lincoln, ETA Systems, St. Paul, MN

October 30, 1984
VLSI SEMINARS (continued)

November 6, 1984
The Interaction of Physics and CAD in VLSI CMOS Design, Kim Kokkosen, Intel Corporation, Santa Clara, CA

November 13, 1984
The Magic IC Layout System, John K. Ousterhout, University of California, Berkeley, CA

November 20, 1984
Health and Safety in Microelectronics, Joseph LaDou, University of California, San Francisco, CA

November 27, 1984
A Systolic VLSI Engine for Real-Time Raster Graphics, Christopher Pottle, Cornell University, Ithaca, NY

December 4, 1984
MOSFET Miniaturization - From One Micron to the Limits, R. H. Dennard, IBM T. J. Watson Research Center, Yorktown Heights, NY

December 11, 1984
STAFAN: An Alternative to Fault Simulation, Sunil K. Jain, AT&T Bell Laboratories, Murray Hill, NJ

February 12, 1985
Design Aspects of Monolithic A/D and D/A Converters, Rudy van de Plassche, Phillips Research Laboratories Sunnyvale, Signetics Corporation, Sunnyvale, CA

February 26, 1985
The Implications of Scaling on VLSI Reliability, Murray H. Woods, Intel Corporation, Santa Clara, CA

March 5, 1985
How the New Mask Protection Law Fits Within the Legal Protection Methods for VLSI, Roger S. Borovoy, Sevin Rosen Management Co., Sunnyvale, CA

March 12, 1985
Submicron and Quantum Transport in Extremely Small MOSFETs, William J. Skocpol, AT&T Bell Laboratories, Holmdel NJ

March 19, 1985
Circuitry Used in the Design of a Fast NMOS Dynamic RAM, Robert Proebsting, United Technologies, Mostek Corp., Carrollton, TX

April 2, 1985
The Impact of VLSI on Telecommunication Architectures, Jeff Fried, GTE Laboratories, Watham MA

April 9, 1985
Three Dimensional Integrated Circuits, Hon Wai Lam, Texas Instruments, Dallas, TX

April 23, 1985
MIPS-X: A New High Performance Microprocessor, Mark Horowitz, Stanford University, Stanford, CA

April 30, 1985
Metal-Silicon Reaction, King-Ning Tu, IBM T. J. Watson Research Center, Yorktown Heights, NY

May 7, 1985
The YORKTOWN Silicon Compiler, Robert K. Brayton, IBM T. J. Watson Research Center, Yorktown Heights, NY

May 14, 1985

September 17, 1985
Design of a LISP Processor Chip, Patrick Bossard, Texas Instruments, Dallas, TX

September 24, 1985
Flowing and Circuit Extraction in Magic, Walter S. Scott, University of California, Berkeley, CA
VLSI SEMINARS (continued)

October 1, 1985

October 8, 1985
Rapid Thermal Processing—Where is it Going?, Carl Russo, Varian Associates, Extron Division, Gloucester, MA

October 22, 1985
Symbolic Verification of MOS Circuits, Randy Bryant, Carnegie-Mellon University, Pittsburgh, PA

October 29, 1985
Trends in Commercial VLSI Microprocessor Design, Nick Tredennick, IBM T.J. Watson Research Center, Yorktown Heights, NY

November 5, 1985
An Integrated Approach to Modeling, E. J. Prendergast, AT&T Bell Laboratories, Allentown, PA

November 12, 1985
Symbolic Verification of Hardware Design, Harry G. Barrow, Schlumberger Palo Alto Research, CAS, Palo Alto, CA

November 1985
JAPAN: A Culture Optimized for VLSI Engineering, Jeffrey Frey, National Science Foundation and Cornell University

November 26, 1985
R & D Project of 3-D Integrated Circuits in Japan, Shoie Kataoka, Sharp Corporation, Tenri, Japan

December 3, 1985
VLSI Layout Programming, Ed Lien, Microelectronics and Computer Technology Corporation (MCC), Austin, TX

December 10, 1985

A Short Guide to High-Speed IC Technology Comparisons, Stuart H. Wemple, AT&T Bell Laboratories, Murray Hill, NJ

February 25, 1986
A 4Mbit Dram with Cross-Point Trench-Transistor Cell, Ashwin Shah, Texas Instruments, Dallas, TX

March 4, 1986
The Rise and Fall of American Microelectronics, Charles H. Ferguson, MIT

March 11, 1986
Integrated Solid-State Sensors: Interfacing Electronics to a Non-Electronic World, Ken Wise, University of Michigan, Ann Arbor, MI

March 18, 1986
New Material Technologies for Integrated Circuits: Silicon on Insulator and Monolithic GaAs/Si, B. Y. Tsaur, Lincoln Laboratory, MIT

April 1, 1986
Nanostructures: A New Dimension in Electronic Research, Richard Howard, AT&T Bell Laboratories, Holmdel, NJ

April 15, 1986
Instruction Sets and Beyond: Computers, Complexity, and Controversy, E. Douglas Jensen, Carnegie-Mellon University, Pittsburgh, PA
April 29, 1986
Simulated Annealing: Theory and Application to the Placement of Integrated Circuits, Alberto L. Sangiovanni-Vincentelli, University of California, Berkeley, CA

May 6, 1986
High Reliability CMOS Gate Array Design and Production, Charles W. Gwym, United Technologies Corp., Colorado Springs, CO

May 13, 1986
Custom Wafer-Scale Interconnect and Packaging Technologies Being Developed at Lawrence Livermore National Laboratory, David E. Tuckerman, Lawrence Livermore National Laboratories, Livermore, CA

September 16, 1986
The VHSIC Hardware Description Language, Hal Carter, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH

September 23, 1986
Scan Line Access Memories for High Speed Image Rasterization, Stefan Demetrescu, Stanford University, Stanford, CA

September 30, 1986
Structured Process Flow for Integrated Design, Manufacturing, and Test, Paul Losleben, Stanford University, Stanford, CA

October 7, 1986
Ballistic Transport and Electron Spectroscopy in Tunnelling Hot Electron Transfer Amplifiers (THETA), Marty Heiblum, IBM T.J. Watson Research Center, Yorktown Heights, NY

October 21, 1986
Graph Embeddings, Hypercubes, and Linear Algebra, Lennart Johnsson, Yale University

November 4, 1986
CEMU-MOS Timing Simulation on a Message Based Multiprocessor, Bryan Ack: nd, AT&T Bell Laboratories, Holmdel, NJ

November 18, 1986

November 25, 1986
A.I. (Analog Intelligence), Yanni Tsividis, Columbia University, New York, NY

December 2, 1986

December 9, 1986

February 10, 1987
Scanning Tunneling Microscopy – The Ultimate VLSI Tool?, Joseph E. Demuth, IBM Thomas J. Watson Research Center

February 24, 1987
Circuit Design Tools, Simulation and Verification, Shawn Hailey, Meta-Software, Inc.

March 3, 1987
Automatic Transistor Sizing and Layout for High Performance Chips, Alfred Dunlop, AT&T Murray Hill, NJ.

March 10, 1987
Yield Planning for VLSI Chip Manufacturing, Charles Stapper, IBM, Essex Junction, VT.
VLSI SEMINARS (continued)

March 17, 1987
Algorithm-Based Fault Tolerance, Jacob Abraham, University of Illinois.

April 7, 1987
Integrated Microsensors: Critical Issues in Design and Fabrication, Rosemary Smith, MIT

April 14, 1987
ADAM Advanced Design Automation System, Alice Parker, University of Southern California

April 28, 1987
The U. S. Semiconductor Industry: A Formula for Success, Sandy Kane, IBM, White Plains, NY

May 5, 1987
World Class Technologies Mean World Class Manufacturing Challenges, Billy Crowder, IBM, T.J. Watson, Yorktown Heights, NY

September 15, 1987
So Who Needs Lattice-Matched Heterojunctions Anyway?, Jerry Woodall, IBM, T.J. Watson Research Center

September 22, 1987
Preliminary Design and Development of a Corporate-Level Production Planning System for the Semiconductor Industry, Robert Leachman, University of California, Berkeley

September 29, 1987
A 40-bit Tagged Architecture Lisp Microprocessor, Greg Efland and Bruce Edwards, Symbolics, Inc., Cambridge, MA

October 6, 1987
Chemical Beam Epitaxy, Won Tien Tsang, AT&T Bell Laboratories, Murray Hill, NJ

October 20, 1987
Performance-Directed Synthesis of Digital VLSI Circuits, Jonathan Allen, MIT

October 27, 1987
Pixel Planes: An Example of VLSI Technology for Raster Graphics, Henry Fuchs, University of North Carolina

November 3, 1987
The Berkeley Synthesis System, Alberto Sangiovanni-Vincentelli, University of California, Berkeley, Visiting MIT Fall, 1987

November 10, 1987
The Aquarius Project, Al Despain, University of California, Berkeley

November 17, 1987
Inductive Fault Analysis of VLSI Circuits, John Shen, Carnegie-Mellon University

November 24, 1987
System Level Limits on VLSI: Interconnections and Packaging, Brian Bakoglu, IBM, Austin, TX

December 1, 1987
X-Ray v. Optical and E-Beam Lithography: A Comparative Study, Alan Wilson, IBM, T.J. Watson Research Center
APPENDIX B

Massachusetts Institute of Technology

VLSI SEMINAR

Information for VLSI Seminar Speakers

Since 1979 the MIT VLSI Seminar Series has formed an important part of the MIT microsystems program. We have been fortunate in attracting first-rate speakers, and as a result we have a loyal and enthusiastic audience. We are looking forward to your talk, which will continue this tradition, and trust that your visit to MIT will be beneficial both to us and to you. This letter provides general information about the series and specific instructions for you as a speaker.

The seminars are held Tuesday afternoons at 4:00 during the MIT academic year, normally in the Edgerton Lecture Hall, Room 34-101, at 50 Vassar Street, on the MIT campus. Simple refreshments are served at 3:30. The seminars are free and open to the public. Single-page notices on colorful paper, with an abstract of the announced talk, are sent to our mailing list one or two weeks before each seminar.

You should plan to speak for approximately 50 to 60 minutes, and then to answer questions for the next 10 to 20 minutes. The setting is informal, and you may entertain questions during your talk if you wish.

Typical attendance, between 30 and 70, includes MIT faculty, staff, and students, and people from other universities and local companies. Sometimes people in the audience travel hundreds of miles just to attend, or arrange a trip to the Boston area to coincide with a particular seminar.

Our audience normally includes people from many technical areas, such as electronic materials, devices, processing, submicron structures, CAD, parallel architecture, and VLSI theory. We realize you will not be able to address all these topics in depth. The bulk of your talk may be directed toward one group of specialists. However, we hope you can explain the context of your work and its importance, so that listeners in other areas can appreciate the significance of your work, even if not the details.

Your seminar will be videotaped and also transmitted live to MIT Lincoln Laboratory. The tapes are distributed to a group of companies that support our VLSI program, and we will make an extra tape for your personal use, as an expression of our appreciation. Experience shows that the cameras are not intrusive and the TV pickup does not alter the informal nature of the seminars. Aside from wearing a wireless mike, you will not have to do anything special; no extra effort is necessary in preparing slides, overhead foils, lecture demonstrations, etc. We will ask for a paper copy of your visuals to distribute with the tapes (if you use overhead foils, we can make the copies ourselves on the day of your talk).

Arrangements for the seminar series are handled by Ms. Susan Peterson, Room 39-321, MIT. She will call you or you may call her at (617) 253-7308 regarding the following:

- We will need an exact title and your name and affiliation as you wish them to appear, approximately eight weeks before your talk. This much time is necessary because each talk is mentioned in the previous three notices.

- We will need your abstract, between 80 and 120 words, no later than four weeks before your talk, either in a letter, by electronic mail (to penfield@caf.mit.edu), or by facsimile, (617) 253-9622.

A series of seminars devoted to all aspects of integrated circuits. For more information, contact Microsystems Research Center MIT, Room 39-321, Cambridge, MA 02139 (617) 253-8138.
• As soon as convenient, please sign and return one copy of the attached VLSI Seminar Speaker Release Form (the other copy is for your records).

• We hope you can spend the entire day of your talk on campus, meeting faculty and students with related interests. If there are particular people you would like to see, please let Ms. Peterson know. As soon as we know your travel plans, we will arrange your appointments. On the day of your visit, come first to Room 39-321 to pick up your schedule. The street address is 60 Vassar Street.

• For audio-visual equipment, we routinely provide an overhead projector and a 35-mm slide projector. Also, with advance notice, we will do our best to accommodate any other needs, e.g., multiple screens, motion picture projector, TV monitors, or demonstration apparatus. When you send your abstract, please tell us your AV needs.

• Our budget permits us to reimburse travel costs of speakers from universities (but not companies). If you are from a university, please keep track of your expenses and send receipts to my office.

Some local companies like to invite speakers who come from a distance to visit the day before or the day after the MIT talk. Unless you advise us to the contrary, we will share information about future speakers with these companies, and you may hear directly from them.

If you have any questions about the series or about arrangements for your talk, please contact either me or Ms. Peterson.

Paul Penfield, Jr.
Professor of Electrical Engineering and Director,
Microsystems Research Center

PP/srp
1/23/89
AGENDA

Session I. Chairman: Gary L. Miller, Dept. of Mathematics
9:00 Welcome and Introduction. Paul Penfield, Jr.
9:20 Harold Abelson, "Communication Constraints in Parallel Computation".
10:00 Edward Fredkin, A. Ressler, T. Toffoli, and N. Margolus, "Interaction Logic".
10:20 Coffee Break

Session II. Chairman: Rafael Reif, Dept. of Elec. Eng. & Comp. Sci.
11:00 Ronald L. Rivest, "The RSA Encryption Chip".
11:45 Steven L. Garverick, "MOS Integrated Sensors".
12:05 David C. Shaver, "Novel Applications of Submicrometer Lithography".
12:30 Buffet Lunch in the Sala de Puerto Rico, second floor of the Stratton Student Center

2:00 Jonathan Allen, "Introduction and Overview of Modern Digital IC Design".
2:30 Howard Shrobe, "Constraint Propagation in VLSI Design: DAEDALUS and Beyond".
2:50 Lance A. Glasser and P. Penfield, Jr., "PLA Generation as a Case Study in Structured VLSI Design".
3:10 Randal Bryant, "Logic Simulation of MOS LSI".
3:30 Snack Break

4:00 Clark Baker, "Network Topology Via Node Extraction".
4:20 Arvind, V. Kathail, and K. Pingali, "Multiple Processor Dataflow Architecture".
4:40 Clement Leung, "An Architecture Description Language".
5:00 Patrick Bosshart, "Computer Aided Design of NMOS Opamps".

5/13/80
AGENDA

9:00 Welcome and Introduction. Paul Penfield, Jr.

9:20 Gary E. Kopec, "LSIAA: LSI Artwork Analysis Program"

9:40 Thomas Knight, "A VLSI Approach to Image Sensing and Processing"

10:00 Randal E. Bryant, "Theoretical Basis of Switch-Level Simulation"

10:20 Coffee Break

11:05 August F. Witt, "Electronic Materials Processing in the Context of Solid-State Device Research"

11:30 John Melngailis, "Submicron Structures Research at M.I.T."

11:55 Dimitri A. Antoniadis, "Status of the M.I.T. LSI Fabrication Facility"

12:20 Buffet Lunch in the Sala de Puerto Rico, second floor of the Stratton Student Center

SESSION III. Chairman: Herbert H. Sawin, Dept. of Chemical Engineering

2:00 John Batali, "The Design Procedure Language"

2:30 Lance A. Glasser, "The Analog Behavior of Digital Integrated Circuits"

2:50 Thomas Leighton, Margaret Lepley, and Gary Miller, "Laying Out the Shuffle-Exchange Graph"

3:10 Snack Break

3:50 Yannis Tsividis and Dimitri A. Antoniadis, "A Multilproject Chip Approach to the Teaching of Analog MOS LSI and VLSI"

4:20 Douglas D. Williams, "Compilation and Optimization of VLSI Finite-State Machines"

4:40 Danny Hillis, "An Application of VLSI to Artificial Intelligence (Computer Architecture for the New Wave)"
AGENDA

9:00 Welcome and Introduction. Paul Penfield, Jr.

9:15 "SPECIAL PURPOSE HARDWARE FOR DESIGN RULE CHECKING," Larry Seiler.

10:35 COFFEE BREAK

SESSION II. THE DESIGNER'S ASSISTANT SYSTEM

11:20 "PROCESSOR DESIGN IS A SOFTWARE ENGINEERING PROBLEM," Gerald Jay Sussman.

12:00 "THE DATA PATH GENERATOR," Howard E. Shrobe.

12:25 Lunch in the Sala de Puerto Rico, Stratton Student Center

2:00 "TECHNIQUES FOR ELECTRON BEAM TESTING AND RESTRUCTURING OF INTEGRATED CIRCUITS," David C. Shaver.

3:00 "SIMULATION TOOLS FOR LSI DESIGN," Christopher J. Terman.

3:25 Snack Break

4:00 "USE OF TWO-DIMENSIONAL DEVICE MODELING IN THE SIMULATION OF SHORT-CHANNEL EFFECTS IN MOSFETS," C. Lombardi, V. Kwong, P. Antognetti, and D. Antoniadis.

4:20 "A STATIC ANALYZER FOR nMOS CIRCUITS," Clark M. Baker.

4:40 "AN INTEGRATED-CIRCUIT APPROACH TO THE MEASUREMENT OF THE INTRINSIC CAPACITANCES IN MOS TRANSISTORS," John Paulos, Dimitri Antoniadis, and Yannis Tsividis.
AGENDA

SESSION I. Chairman: Gary Miller, Department of Mathematics
9:00 Welcome and Introduction. Paul Penfield, Jr.
10:00 David F. Day and Stephen D. Senturia, "High Contact Resistance in Polyimide Vias—An Auger Analysis."
10:20 COFFEE BREAK

10:55 Chairman's Introduction. Ronald L. Rivest
11:30 Charles E. Leiserson and Ron Y. Pinter, "Optimal Placement for River Routing."
11:50 Ron Y. Pinter, "Routing Two-Point Nets Across a Channel."
12:10 Tom Leighton, "New Bounds for Channel Routing."
12:30 Buffet Lunch in the Sala de Puerto Rico, second floor of the Stratton Student Center

2:15 R. Reif and J. E. Knott, "A Low-Temperature Process to Increase the Grain Size of Thin Polysilicon Films"

2:55 Chris M. Horwitz, "Reactive Sputter-Etch Process Control and the Fabrication of Fine Structures."

3:15 SNACK BREAK

4:00 K. Tabatabaie-Alavi, N. Slater, A. N. M. M. Choudhury, and C. J. Fonstad, "InGaAs/InP Heterojunction Bipolar Logic Technology."

4:20 Steven McCormick, "Automated Circuit Extraction from Mask Descriptions."

4:40 E. W. Maby and D. A. Antoniadis, "Device Structures for Three Dimensional Integration."
SESSION I. Chairman: Professor Clifton G. Fonstad, Department of Electrical Engineering and Computer Science

9:00 Welcome and Introduction. Paul Penfield, Jr.

9:15 Daniel Weise, "Interactive Analysis Tools"

9:35 R. F. Kwasnick, M. A. Kastner, J. Melngailis, and H. I. Smith, "Quantum Size Effect in the Conductance of Sub-100nm Wide FETs"

9:55 Arvind, "A Dataflow Architecture with Tagged Tokens"

10:25 COFFEE BREAK

SESSION II Chairman: Professor Jonathan Allen, Department of Electrical Engineering and Computer Science

11:10 Henry I. Smith, "Education in Submicrometer Structures"

11:30 Richard E. Zippel, "An Undergraduate Subject in MOS Digital Circuits"

11:50 Herbert H. Sawin, "10.615 - An IC Processing Subject for Chemical Engineers"

12:10 Lance A. Glasser, "A New Graduate Subject on the Design and Analysis of VLSI Circuits"
12:30 LUNCH - Sala de Puerto Rico

SESSION III Chairman: Professor Gerald J. Sussman, Department of Electrical Engineering and Computer Science

2:00 Danny Hillis, "The Connection Machine Message Routing Chip, Or How to Connect a Million Things"

2:40 Mark Sherred, "A Multi-Project Chip Tester"

3:00 Mark Johnson, "An NMOS Content-Addressable Memory Chip for Virtual Address Translation"

3:20 SNACK BREAK

SESSION IV Chairman: Professor Gary Miller, Department of Mathematics

4:00 Charles E. Leiserson, "Digital Circuit Optimization"

4:20 Edward W. Maby and Dimitri A. Antoniadis, "Thin Zone-Recrystallized Silicon Films on Silicon Dioxide"

4:40 William H. Evans, "A Digital Signal Processor for Speech Synthesis Applications"

5:00 ADJOURN
Fall 1982 VLSI Research Review
Friday, December 10, 1982
9:00 a.m. to 5:00 p.m.
Kresge Auditorium

AGENDA

9:00 Welcome and Introduction, Paul Penfield, Jr., Department of Electrical Engineering and Computer Science

SESSION I. Chairman: Henry I Smith, Department of Electrical Engineering and Computer Science
9:20 "The Advantages and Limits of 3-Dimensional VLSI," Thomson Leighton and Arnold L. Rosenberg
9:40 "Silicon-on-Insulator Orientation Selection by Zone Melting Through Constrictions," Harry Atwater.
10:00 "A Board Level Interface for the Scheme-81 Chip," Jonathan D. Taft.

10:20 COFFEE BREAK

SESSION II. Chairman: Lance A. Glasser, Department of Electrical Engineering and Computer Science
11:50 "Designing a High-Level Silicon Compiler," Philip E. Agre.

12:10 BUFFET LUNCH, Sala de Puerto Rico, Stratton Student Center

SESSION III. Chairman: Marc Kastner, Physics Department
3:20 SNACK BREAK

SESSION IV. Chairman: Michael F. Sipser, Department of Mathematics.

4:00 "New Data-Path and Control Structures for the MacPitts Silicon Compiler," Jeffrey K. Fox.

Spring 1983 VLSI Research Review
Monday, May 16, 1983
9:00 a.m. to 5:00 p.m.
Kresge Auditorium

AGENDA

9:00 Welcome and Introduction, Paul Penfield, Jr., Department of Electrical Engineering and Computer Science

SESSION I. Chairman: Lance A. Glasser, Department of Electrical Engineering and Computer Science
9:20 "An Approximation Algorithm for Manhattan Routing" Brenda S. Baker, Sandeep N. Bhatt, and F. Thomson Leighton
10:00 "Computer-Aided Process Design (CAPD) - Methodology and Logics," Paul J. Tsang, Dimitri A. Antoniadis, and Nick English

10:20 COFFEE BREAK

SESSION II. Chairman: Charles Leiserson, Department of Electrical Engineering and Computer Science
11:30 "A Digital Delay Line Implemented in VLSI," Jonathan Taft
11:50 "Silicon-on-Insulator Bipolar Transistors," Mark Rodder and Dimitri A. Antoniadis

12:10 BUFFET LUNCH, Sala de Puerto Rico, Stratton Student Center

SESSION III. Chairman: Richard E. Zippel, Department of Electrical Engineering and Computer Science
2:00 "Linear Approximations of MOS Transistor Networks," Christopher J. Terman
2:20 "The Effect of High Fields on MOS Device Performance," Charles G. Sodini
2:40 "Routing Power and Ground Wires," Andrew S. Moulton

3:00 SNACK BREAK

SESSION IV. Chairman: John L. Wyatt, Jr., Department of Electrical Engineering and Computer Science
3:40 "Progress Toward the Development of a Novel Three-dimensional CMOS Technology," Edward W. Maby and Dimitri Antoniadis
4:00 "Silicon-on-Insulator by Low Temperature Solid-State Recrystallization," Carl Thompson and Eric Anderson
AGENDA

9:00 Welcome and Introduction, Paul Penfield, Jr., Department of Electrical Engineering and Computer Science

SESSION I. Chairman: James K. Roberge, Department of Electrical Engineering and Computer Science

9:10 "Qualitative Analysis of MOS Circuits," Brian C. Williams
9:30 "A Circuit Grammar for Operational Amplifier Design," Andrew Ressler
9:50 "Methodology Verification of Hierarchically Described VLSI Circuits," Isaac Bain

10:10 "HPLA: A Design-by-Example PLA Generator," Cyrus Bamji

10:30 COFFEE BREAK

SESSION II. Chairman: Charles G. Sodini, Department of Electrical Engineering and Computer Science

11:00 "A Fully Self-Aligned Joint-Gate CMOS Technology," A. L. Robinson, D. A. Antoniadis, and E. W. Maby
11:20 "Fabrication of Periodic Submicron Structures," Erik H. Anderson
11:40 "Low-Temperature Silicon Epitaxy Using Low-Pressure Chemical Vapor Deposition with and without Plasma Enhancement," Thomas J. Donahue, W. R. Burger, and R. Reif

12:00 "Heterojunction Bipolar Transistors," James Vlcek, Hiroshi Kanbe, A. N. M. Masum Choudhury, Kamal Tabatabaie-Alavi, and Clifton G. Fonstad

12:20 BUFFET LUNCH, Sala de Puerto Rico, Stratton Student Center

SESSION III. Chairman: Jonathan Allen, Department of Electrical Engineering and Computer Science

1:45 "A Hardware-Assisted Methodology for VLSI Design Rule Checking," Larry D. Seiler
2:05 "Using Parallelism and Hierarchy in Automatic Test Pattern Generation," Glenn A. Kramer
2:25 "Phaselocking for Fun and Profit," Robert A. Iannucci
2:45 "The PI System's Algorithms for Placing Modules on Custom VLSI Chips," Alan T. Sherman

3:05 SNACK BREAK

SESSION IV. Chairman: Carl V. Thompson, II, Department of Materials Science and Engineering

3:50 "Zone-Melting Recrystallization of InSb on Oxidized Silicon Wafers, C. C. Wong, C. J. Keavney, H. A. Atwater, C. V. Thompson, and H. I. Smith

4:10 "Modifying Polycrystalline Films through Ion Channeling," Ralph Iverson and Rafael Reif

MICROSYSTEMS PROGRAM OFFICE. Room 36-575 Telephone (617) 253-8138
Spring 1984 VLSI Research Review

Agenda

9:00 Welcome and Introduction, Paul Penfield, Jr.

SESSION I. Chairman: Thomas F. Knight, Jr.

9:10 N. T. Quach, R. Reif and B-Y. Tsaur, "Solid-Phase Epitaxial Growth of Amorphized Low-Pressure Chemically Vapor-Deposited Polycrystalline Silicon Films."

9:30 Herbert H. Sawin, Albert D. Richards, and Brian E. Thompson, "Kinetics of the Plasma Etching of Polysilicon in Cl₂ Discharges."

10:10 Jeff Arnold, "Parallel Simulation of Digital LSI Circuits."

10:30 COFFEE BREAK

SESSION II. Chairman: John L. Wyatt

11:00 George C. Clark, Jeff Eisen, and Richard E. Zippel, "Circuit Analysis in Schema."

12:00 John J. Paulos and Dimitri Antoniadis, "Measurement of Minimum-Geometry NOS Transistor Capacitances."

12:20 BAG LUNCH, Lobby 34-101. Seating and tables for lunch are available on the fourth floor of this building, Room 34-101.

SESSION III. Chairman: Ramesh S. Patil

1:45 Charles E. Leiserson and F. Miller Maley, "VLSI Routing of Planar Interconnections."

2:45 Mark Shirley and Randall Davis, "Generating Distinguishing Tests Based on Hierarchical Models and Symptom Information."

3:05 SNACK BREAK

SESSION IV. Chairman: Lance A. Glasser

3:30 Ramin Khorram, "Functional Test-Pattern Generation for Integrated Circuits."

9:00 Welcome and Introduction, Paul Penfield, Jr.

SESSION I. Chairman: Carl V. Thompson

9:50 Thye-Lai Tung and D. A. Antoniadis, "Modeling Nonuniform Oxidation of Silicon."
10:10 Charles E. Leiserson, "FAT TREES: Universal Networks for Hardware-Efficient Supercomputing."
10:40 COFFEE BREAK

SESSION II: Chairman: Christopher J. Terman

11:10 Mark Matson and Lance A. Glasser, "Macromodeling and Optimization of Digital MOS VLSI Circuits."
11:50 Thang Bui, Soma Chaudhuri, Tom Leighton, and Mike Sipser, "Graph Bisection Algorithms with Good Average Case Behavior."
12:10 Mark S. Wrighton, "Electrochemical Microelectronic Devices: 'Transistors' Based on Redox Active Polymers."
12:30 BAG LUNCH

SESSION III. Chairman: Hae-Seung Lee

1:45 Prabha K. Tedrow, Vida Ildem, and R. Reif, "Low Pressure Chemical Vapor Deposition of Titanium Silicide."
2:05 Cyrus S. Bamji, Charles E. Hauck, and Jonathan Allen, "Design-by-Example Regular Structure Generator."
2:25 Steven L. Garverick and Charles G. Sodini, "Large Signal Linearity of Scaled MOS Transistors."
2:45 John L. Wyatt, Jr., "Improved Bounds on Signal Delay in MOS Interconnect."
3:05 SNACK BREAK

SESSION IV. Chairman: Thomas F. Knight, Jr.

3:50 John S. Haggerty, John Flint and David Adler, "Laser Induced Chemical Vapor Deposition."
4:10 Daniel Weise, "Automatic Formal Verification of Synchronous MOS Designs."
4:30 Adjourn
AGENDA

9:00 Welcome and Introduction, Paul Penfield, Jr.

SESSION I. Chairman: Charles G. Sodini
9:10 W. R. Burger, T. J. Donahue, and R. Reif, "Electrical Characterization of Epitaxial Silicon Films Deposited at Low Temperatures by the Plasma-Enhanced Chemical Vapor Deposition (PECVD) Technique."
9:30 Robert C. Armstrong, "Procedural Design of a Floating-Point Arithmetic Unit."
9:50 M. Rodder, D. A. Antoniadis, and S. Madan, "Comparison of Different Techniques for Passivation of Small-Grain Poly-Si MOSFETs."
10:10 Andrew A. Berlin, "A Digital Convolver for Visual Images."
10:30 COFFEE BREAK

SESSION II. Chairman: Christopher J. Terman
11:00 Rosemary Cartwright, Nagy El-Kaddah, and Julian Szekely, "The Effect of an Axial Magnetic Field on Fluid Flow and on Heat and Mass Transfer Close to the Interface of a Rotating Crystal During Czochralski Growth."
11:40 Andrew Tangborn and Anthony T. Patera, "Numerical Simulation of Czochralski System Bulk Flows."
12:00 Greg Waters, "A High-Performance Crossbar Switch for Multicomputers."
12:20 BAG LUNCH

SESSION III. Chairman: Donald E. Troxel
1:30 Paul D. Bassett and Lance A. Glasser, "A High-Speed Asynchronous Communication Technique for MOS VLSI Systems."
1:50 S. Y. Chou, D. A. Antoniadis, H. I. Smith, and J. Melngailis, "Sub-100 nm MOSFETs Fabricated Using X-Ray Lithography."
2:10 Charles A. Zukowski, Lance A. Glasser and John L. Wyatt, Jr., "Bounding Enhancements for VLSI Circuit Simulation."
2:50 SNACK BREAK

SESSION IV. Chairman: Carl V. Thompson
3:20 M. A. Schmidt, F. L. Terry, B. P. Mathur, and S. D. Senturia, "Inversion-Layer Mobility of MOSFETs with Nitrided Oxide Gate Dielectrics."
4:00 Shahryar Motakef, "Factors Controlling the Generation of Thermally Induced Dislocations During Growth of III-V Compounds from Melt."
9:00 Welcome and Introduction. Paul Penfield, Jr.

SESSION I. Chairman: Professor Roger T. Rowe
9:10 J. P. Wade and C. G. Sodini, "Dynamic Cross-Coupled Bitline Content Addressable Memory Cell for High Density Arrays"
9:30 H. A. Atwater, Henry I. Smith, and C. V. Thompson, "Enhancement of Grain Growth in Ultra-Thin Germanium Films by Ion Bombardment"
9:50 Margaret St. Pierre, "A Simulation Environment for Schemata"
10:10 T. J. Garino, R. W. Adams, and H. K. Bowen, "New Ceramic Processes for Microelectronic Packaging"
10:30 COFFEE BREAK

SESSION II. Chairman: Professor Martin Schlecht
11:00 Jeffrey W. Scott, Wai Lee, Charles Giancarlo, and Charles G. Sodini, "A CMOS Slope Adaptive Delta Modulator"
11:20 Stephen Y. Chou, D. A. Antoniadis, and Henry I. Smith, "Application of the Shubnikov-de Haas Effect in Characterization of Sub-100-nm Channel Si MOSFETs"
11:40 Kenneth T-Y. Kung and Rafael Reif, "Implant-Dose Dependence of Seed Selection Through Ion Channeling to Enhance the (110) Texture of Low-Pressure Chemical-Vapor Deposited Polycrystalline Si Films on SiO2"
12:00 Christian R. Musil, John Melngailis, and John L. Bartelt, "Focused Ion Beam Microsurgery for Electronics"
12:20 BAG LUNCH. Tables are set up in Room 34-401.

SESSION III. Chairman: Dr. John Melngailis
1:30 Duane Boning and Dimitri A. Antoniadis, "MASTIF—A Workstation Approach to Fabrication Process Design"
2:10 Bonnie A. Berger and Tom Leighton, "New Bounds and Algorithms for Channel Routing"
2:30 S. Motakef, A. Patera, J. Szekely, G. Stephanopoulos, and A. Witt, "Growth and Characterization of Large-Diameter Semiconductor Single Crystals"

SESSION IV. Chairman: Professor David J. Edell
3:20 Sching L. Lin, and Jonathan Allen, "MINPLEX—A Compactor that Minimizes the Bounding Rectangle and Individual Rectangles in a Layout"
3:40 Kenneth D. Allen and Herbert H. Sawin, "Polysilicon Plasma Etching in a Freon(R)-13 Discharge: Modeling of Etching Rate and Directionality"
4:00 Joshua D. Marantz, "Exploiting Parallelism in VLSI CAD"
4:20 Wai Lee, Christine Lam, Tow Chong, and Clifton Fonstad, "Molecular-Beam Epitaxy of III-V Heterostructure Electronic Devices"
4:40 ADJOURN
Agenda
Spring 1986 VLSI Research Review
May 19, 1986

9:00 Welcome and Introduction, Paul Penfield, Jr.

SESSION I. Chairman: Professor Charles G. Sodini
9:10 Darius Crenshaw and Rafael Reif, "Modeling and Simulation of Autodoping in CVD Silicon Epitaxy"
9:30 M. Rodder and D. A. Antoniades, "Characteristics of Thin Film Poly-Si MOSFETs as a Function of Process Conditions and High Field Stress"
9:50 David J. Edell, "Biomedical Applications of Microfabrication Technology"
10:10 Jerome C. Licini, Marc A. Kastner, John Melngailis, and David J. Bishop, "Conductance Fluctuations in Narrow MOSFETs"
10:30 COFFEE BREAK

SESSION II. Chairman: Professor H. Kent Bowen
11:00 T. S. Hohol and L. A. Glasser, "RELIC: A Reliability Simulator for Integrated Circuits"
11:20 Gabriel R. Bitran and Venath Tirupati, "Planning and Scheduling for Epitaxial Wafer Production Facilities"
11:40 Charles F. Ferguson, "Strategic Risk in the American Microelectronics and Computer Systems Industries"
12:20 BAG LUNCH. Tables are set up in Room 34-401

SESSION III. Chairman: Dr. Lenwood Heath
1:30 David Standley, and John L. Wyatt, Jr., "Improved Signal Delay Bounds for RC networks"
1:50 M. Mehregany, R. T. Howe, and S. D. Senturia, "Novel Microstructures for the Study of Residual Stress in Polyimide Films"
2:10 F. Thomson Leighton and Peter Shor, "Improved Algorithms for Wafer-Scale Integration of 2-D Systolic Arrays"
2:30 H.-J. Kim and Carl V. Thompson, "Effects of Dopants on Grain Growth in Thin Polycrystalline Silicon Films"
2:50 SNACK BREAK

SESSION IV. Chairman: Professor Christopher J. Terman
3:20 Charles E. Leiserson and Bruce M. Maggs, "Communication-Efficient Parallel Graph Algorithms"
3:40 Scott Chang and Roger T. Howe, "Resonant Microbridge Accelerometer"
4:00 Alan Sherman, "Algorithms for Placing Modules on a Custom VLSI Chip"
4:20 Thye-Lai Tung, Dimitri A. Antoniades, and Jerome Connor, "Silicon Dioxide Flow during Oxidation: Boundary Value Formulation of an Incompletely Understood Physical Effect"
4:40 ADJOURN
9:00 Welcome and Introduction, Paul Penfield, Jr.

SESSION I. Chairman: Donald E. Troxel
9:10 G. M. Shedd, A. D. Dubner, H. Lezec, and J. Melngailis, "Focused Ion Beam Induced Deposition of Gold"
9:30 Johan Hastad, Tom Leighton, and Mark Newman, "Fault Tolerance in Hypercubes"
9:50 Martin A. Schmidt, Joseph H. Haritonidis, Roger T. Howe, and Stephen D. Senturia, "A Micromachined Floating-Element Shear Sensor"
10:10 A. D. Huelsman, E. Yoon, P. Parris, and R. Reif, "Epitaxial Growth of GaAs by Plasma-Enhanced Metal–Organic Chemical Vapor Deposition"
10:30 COFFEE BREAK

SESSION II. Chairman: Rosemary L. Smith
11:00 Mark W. Reichelt, Wayne H. Volf, and Jonathan Allen, "An Improved Cell Model for Hierarchical Constraint Graph Compaction"
11:20 Charles Selvidge, and Adam Malamy, "Magnetostatic I/O Techniques for Integrated Circuits"
11:40 Brian E. Thompson, Albert D. Richards, and Herbert H. Savin, "Continuum Modeling of Radio-Frequency Discharges for Plasma Etc.,ng"
12:00 Joe Kliian, Shlomo Kipnis, and Charles E. Leiserson, "The Organization of Permutation Architectures with Multiple-Pin Interconnections"
12:20 BAG LUNCH. Tables are set up in Room 34-401

SESSION III. Chairman: Emanuel Sachs
1:40 R. Jayaraman, W. Yang, and C. G. Sodini, "MOS Electrical Characteristics of Low Pressure Re-oxidized Nitrated-oxide"
2:00 Stanley B. Gershvin, "A Hierarchical Framework for VLSI Manufacturing Systems Scheduling"
2:20 Gahvam Shahidi, Dimitri Antoniadis, and Hank Smith, "Velocity Overshoot at Room Temperature Using Si Short Channel MOSFET's"
2:40 Andrew Goldberg, "A New Approach to the Maximum Flow Problem"
3:00 SNACK BREAK

SESSION IV. Chairman: William J. Dally
3:30 Tow C. Chong, and Clifton G. Fonstad, "Growth of High Quality GaAs Layers on Si Substrates by Molecular Beam Epitaxy"
3:50 Silvano A. Brewster, and Jeffrey H. Lang, "Probabilistic Analysis of Soft Errors in VLSI with Applications to Digital Control Systems"
4:10 Mark Shirley, "Generating Tests by Exploiting Designed Behavior"
4:30 Khalid Ismail, "Modeling of Compound Semiconductor Devices"
4:50 ADJOURN
8:55 Welcome and Introduction, Paul Penfield, Jr.

SESSION I. Chairman: Roger T. Howe
9:00 Thomas H. Cormen, "Efficient Multichip Partial Concentrator Switches"
9:20 Donald G. Baltus, "Generating Efficient Layouts from Optimized Circuit Schematics"
10:00 Donald E. Troxel, "Computer-aided Fabrication of Integrated Circuits"
10:20 Michael B. McIlrath, "Representation of IC Manufacturing Process Flows"
10:40 COFFEE BREAK

SESSION II. Chairman: Jeffrey H. Lang
11:00 Christine S. Lam and Clifton G. Fonstad, "Improved MODFET Performance through Ion Implantation in the Gate Region"
11:20 Serge A. Plotkin, "Parallel Symmetry-breaking in Sparse Graphs"
11:40 Lynne Brocco, "Timing Simulation of VLSI Circuits Using Macromodels"
12:00 Tom Knight, "A Self Terminating Low Voltage Swing CMOS Output Driver"
12:20 BAG LUNCH. Tables are set up in Room 34-401

SESSION III. Chairman: Emanuel Sachs
1:30 Erik H. Anderson and Henry I. Smith, "Fabrication by Electron-Beam Lithography of X-Ray Masks with 50 nm Linewidths and Replication by X-ray Nanolithography"
1:50 Tam-Anh Chu, "Synthesis of Self-timed VLSI Circuits from Graph-Theoretic Specifications"
2:10 Joseph T. Kung, "A Digital Technique for Precise Measurement of Capacitor Differences, with Application to Capacitive Integrated Sensors"
2:30 Peter O'Brien, John L. Wyatt, Jr., Thomas Savarino, and James Pierce, "Fast On-Chip Delay Estimation for Cell-based Emitter Coupled Logic"
2:50 Mark G. Allen and Stephen D. Senturia, "Microfabricated Test Structures for Adhesion Measurement"
3:10 SNACK BREAK

SESSION IV. Chairman: Martin F. Schlecht
3:30 Vincent M. McNeil, Lloyd D. Clark, Jr., and David J. Edell, "Optimization of the Noise Performance of Active Neural Transducers"
3:50 William J. Dally, Linda Chao, Andrew Chien, Soha Hassoun, Waldemar Horvat, Jon Kaplan, Paul Song, Brian Totty, and Scott Wills, "Architecture of a Message-Driven Processor"
4:10 Roger C. Perkins, "Copper-Polyimide Interconnects for Ceramic Chip Carriers"
4:30 Lance A. Glasser and John L. Wyatt, Jr., "Frequency Limitations in Circuits Composed of Linear Devices"
4:50 ADJOURN
8:45 Welcome and Introduction, Paul Penfield, Jr.

SESSION I. Chairman: Martin F. Schlecht

8:50 Tom Leighton and Eric Schwabe, "Space-Efficient Queue Management Using Fixed-Connection Networks"
9:10 Guy E. Blelloch, "Scans as Primitive Parallel Operations"
9:30 William J. Dally and Paul Song, "Design of a Self-Timed VLSI Multicomputer Communication Controller"
9:50 Robert A. Iannucci, "von Neumann / Dataflow Processor"
10:10 Gregory M. Papadopoulos, "Monsoon Dataflow Processor"

10:30 COFFEE BREAK

SESSION II. Chairman: Charles G. Sodini

10:50 George Prueger, Emanuel Sachs, and Roberto Guerrieri, "Equipment Model for the Low Pressure Chemical Vapor Deposition of Polysilicon"
11:10 Silvano A. Brewster and Jeffrey H. Lang, "Probabilistic Analysis of Soft Errors in VLSI With Applications to Digital Control Systems"
11:30 Jon P. Wade and Charles G. Sodini, "The MIT Database Accelerator: 2K-trit Circuit Design"
11:50 Curtis Tsai, Kathleen Early, and Rafael Reif, "The MIT Database Accelerator: Process Integration"
12:10 Frederick P. Herrmann and Charles G. Sodini, "The MIT Database Accelerator: Teriy Logic and Algorithms"

12:30 BAG LUNCH. Tables are set up in Room 34-401

SESSION III. Chairman: Jacob K. White

1:50 Henri J. Lezec, Leonard J. Mahoney, Mark I. Shepard, and John Melngailis, "Focused Ion Beam Implantation"
2:10 G. G. Shahidi, D. A. Antoniadis, and Henry I. Smith, "Reduction of Channel-Hot-Electron-Generated Substrate Current in Sub-150 nm Channel Length Si MOSFETs"
2:30 M. L. Schattenburg, I. Tanaka, and Henry I. Smith, "Microgap X-Ray Nanolithography"
2:50 Erik H. Anderson and Henry I. Smith, "Progress in X-Ray Nanolithography Pattern Generation"

3:10 SNACK BREAK

SESSION IV. Chairman: Herbert H. Sawin

3:30 Keith E. Crowe and Rosemary L. Smith, "Investigation of Mechanical Properties of Stoichiometric LPCVD Silicon Nitride Films"
3:50 A. D. Huelsman and R. Reif, "Remote Plasma Deposition of GaAs and GaAsP by Metal-Organic Chemical Vapor Deposition"
4:10 Shih-Fang Chuang, Xiao-Ge Zhang, and Rosemary L. Smith, "Porous Silicon Layer Morphologies: Formation Parameters and Their Influences"
4:30 P. C. Searson, "Corrosion in Electronic Materials"

5:10 ADJOURN
Dear Colleague:

This letter is in response to your inquiry about the 1986 MIT VLSI Tools Release. The tools are available to the public within the United States and Canada and are designed or coerced to run on Berkeley VAX UNIX, version 4.2. The tape is written in tar format at 1600 bpi and requires about eight megabytes of disk space.

We require prepayment of the handling fee of $500 and a letter stating that the tools will not be redistributed outside your organization or to foreign components of your organization, that the tools will not be used as the basis of a commercial software or hardware product, and that you understand that the tools are supplied "as is," without any warranty. You may sign the form letter enclosed or you may use similar wording on your own letterhead. The handling fee is waived for universities, government agencies, and members of the MIT Microsystems Industrial Group (as of October 1987: Analog Devices, AT&T, DEC, Eaton Ion Beam, GCA, GE, GM, GenRad, Sipex Corp., IBM, Keithley Instruments, NCR, Polaroid, Raytheon, and Teradyne). You will receive one tape and two copies of the manual. Additional manuals are available for $15 each. Make your check payable to MIT-VLSI and send it and the agreement letter to:

VLSI Tools Release
Microsystems Research Center
Room 39-321
Massachusetts Institute of Technology
Cambridge, MA 02139
Telephone (617) 253-8138

The following MIT VLSI tools are included in the release:

Circuit Description and Simulation: NET, CNET, PRESIM, RSIM, RNL by Chris Terman
HPEDIT, An LSI Artwork Editor, by Robert Armstrong
XDRG Programmer's Guide, by Robert Armstrong
RSG: Design-by-Example Regular Structure Generator, by Cyrus S. Bamji
The EXCL Circuit Extractor, by Stephen P. McCormick
The CNODE Transistor Network Extractor, by Stephen P. McCormick
NMOS and CMOS Models, by Lance A. Glasser

Most of the programs in the present software release are written either in C or CLU. A CLU compiler is not necessary to use these VLSI tools on an as-is basis, but is necessary if you want to change them. The Manual describes how to obtain more information on CLU.

If you have any questions, feel free to call the above number for information.

Sincerely,

Barbara Tilson
Assistant to the Director
Subject: 1986 MIT VLSI Tools Tape

I hereby request, on behalf of my organization ____________________________, a copy of the 1986 MIT VLSI Tools tape. I agree that:

The tools are supplied without the normal license fee, and that my organization will not incorporate any of them into a commercial product, or sell access to them, without prior written agreement from MIT.

Since some of the tools were developed under sponsorship that restricts worldwide distribution, my organization will not distribute the tools to other organizations, or to any other locations of my organization, and in no case to anywhere outside the United States and Canada.

The tools are supplied "as is," without any kind of warranty, and MIT does not promise to support them in any way.

Accepted:

Signature

Printed Name

Title

Date

Organization/Company Name

Address

City, State, Zip

Telephone No.
<table>
<thead>
<tr>
<th>Memo Number</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
</table>
VLSI MEMO SERIES (continued)

81-41 "Special Purpose Hardware for Design Rule Checking," Larry Seiler, February 1981. (20 pp.)
81-46 "New Layouts for the Shuffle-Exchange Graph," Daniel Kleitman, Frank Thomson Leighton, Margaret Lepely and Gary L. Miller, March 1981. (15 pp.)
81-47 "MOSSIM: A Switch-Level Simulator for MOS LSI,” Randal Bryant, April 1981. (15 pp.)
81-48 "Signal Delay in MOS Interconnections," Paul Penfield, Jr. and Jorge Rubinstein, April 1981. (15 pp.)
81-50 "A Switch-Level Simulation Model for Integrated Logic Circuits,” Randal E. Bryant, June 1981. (219 pp)
81-51 "A Hardware Compiler for Boolean Logic Functions," Douglas D. Williams, June 1981. (53 pp.)
81-52 "A Switch-Level Model of MOS Logic Circuits,” Randal E. Bryant, June 1981. (10 pp.)
81-55 "Principal Values and Branch Cuts in Complex APL,” Paul Penfield, Jr., July 1981. (9 pp.)
81-59 "A Low Temperature Process to Increase the Grain Size in Polysilicon Films," Rafael Reif and Jonathan E. Knott, August 1981. (12 pp.)
81-60 "A Low Temperature Process to Produce Large-Grain Uniformly-Oriented Polycrystalline Silicon Films on Amorphous Substrates," Jonathan E. Knott, August 1981. (50 pp.)
81-65 "An Introduction to DPL," John Batali, October 1981. (24 pp.)
81-67 "Oxidation Induced Point Defects in Silicon," Dimitri A. Antoniadis, October 1981. (24 pp.)
81-70 "Dynamics of Oxygen Incorporation During Czochralski Silicon Growth," David Francis Bliss, November 1981. (69 pp.)
82-71 "New Lower Bounds for Channel Routing," Frank Thomson Leighton, January 1982. (9 pp.)
82-73 "A Placement/Interconnect Channel Router: Cutting Your PI into Slices," James Joseph Koschella, February 1982. (45 pp.)
82-74 "The PI (Placement and Interconnect) System," Ronald L. Rivest, February 1981. (12 pp.)
82-75 "A 'Greedy' Channel Router," Ronald L. Rivest and Charles M. Fiduccia, February 1982. (11 pp.)
82-77 "Benchmark Channel-Routing Problems," Ronald L. Rivest, February 1982. (8 pp.)
82-79 "A Canary Straw Bird," Lance A. Glasser, February 1982. (8 pp.)
82-80 "SPICE," Lance A. Glasser, March 1982. (113 pp.)
82-81 "Ion Implantation of Si in Be-Implanted In_{0.53}Ga_{0.47}As," A.N.M.M. Choudhury, N. J. Slater, K. Tabatabaie-Alavi, and C. G. Fonstad, March 1982. (10 pp.)
82-82 "Ion Implantation of Be in In_{0.53}Ga_{0.47}As," K. Tabatabaie-Alavi, A.N.M.M. Choudhury, N. J. Slater, and C. G. Fonstad, March 1982. (14 pp.)
82-84 "An Iterative Solution to Poisson's Equation for Doped Heterostructure Devices," James Cheming Ong, March 1982. (46 pp.)
82-86 “Minimizing the Longest Edge in a VLSI Layout,” Sandeep N. Bhatt and Charles E. Leiserson, March 1982. (9 pp.)
82-87 “How to Assemble Tree Machines,” Sandeep N. Bhatt and Charles E. Leiserson, March 1982. (8 pp.)
82-88 “A Layout Strategy for VLSI Which is Provably Good,” Frank Thomson Leighton, March 1982. (14 pp.)
82-89 “New Lower Bound Techniques for VLSI,” Frank Thomson Leighton, March 1982. (30 pp.)
82-91 “A Hardware Assisted Design Rule Check Architecture,” Larry Seiler, April 1982. (7 pp.)
82-92 “Plasma-Assisted Chemical Vapor Deposition of Crystalline Silicon,” T. J. Donahue, R. Reif and W. R. Burger, April 1982. (3 pp.)
82-93 “Phosphorus Incorporation During Silicon Epitaxial Growth in a CVD Reactor,” R. Reif, April 1982. (34 pp.)
82-94 “Small is Big: The Microelectronic Challenge,” Paul Penfield, Jr., April 1982. (15 pp.)
82-95 “Orientation Selection by Zone Melting Silicon Films through Planar Constrictions,” Henry I. Smith, H. A. Atwater and M. W. Geis, April 1982. (2 pp.)
82-98 “Optimal Layer Assignment for Interconnect,” Ron Y. Pinter, April 1982. (9 pp.)
82-99 “On Routing Two-Point Nets Across a Channel,” Ron Y. Pinter, April 1982. (9 pp.)
82-100 “Digital Circuit Optimization,” Charles E. Leiserson, Flavio M. Rose, and James B. Saxe, April 1982. (17 pp.)
82-101 “Wafer-Scale Integration of Systolic Arrays,” Frank Thomson Leighton and Charles E. Leiserson, April 1982. (29 pp.)
82-103 “Layouts for the Shuffle-Exchange Graph and Lower Bound Techniques for VLSI,” Frank Thomson Leighton, June 1982. (105 pp.)
82-104 “Exploiting Hierarchy in the Analysis of VLSI Systems,” Daniel Wayne Weise, June 1982. (65 pp.)
82-105 “Implementation of a Displacement Processor Data Path,” Brian C. Williams, June 1982. (38 pp.)
82-110 “Layouts for the Shuffle-Exchange Graph Based on the Complex Plane Diagram,” Frank Thomson Leighton, Margaret Lepley and Gary L. Miller, July 1982. (21 pp.)
82-111 “A Functional Tester Design for the University Environment,” Mark Sherred, July 1982. (36 pp.)
82-112 “User’s Guide to NET, PRESIM, and RNL/NL,” Christopher J. Terman, July 1982. (45 pp.)
I

VLSI MEMO SERIES (continued)

82-114 “Models for VLSI Circuits,” F. M. Rose, July 1982. (47 pp.)

82-115 “VLSI Circuit Theory,” L. A. Glasser, and P. Penfield, Jr., August 1982. (3 pp.)

82-117 “Introductory CMOS Techniques,” Lance A. Glasser, and William S. Song, September 1982. (28 pp.)

82-118 “Optimal Tile Salvage,” Francine Berman, Frank Thomson Leighton, and Lawrence Snyder, September 1982. (21 pp.)

82-120 “Electrical Parameter Extraction of MOSFETs Fabricated on Silicon-on-Insulator Films Using a Numerical Solution of Poisson’s Equation,” Yannick L. Le Coz, November 1982. (88 pp.)

82-121 “Ion Implantation of Be and Si for GaInAs/AlInAs/InP Bipolar Heterojunction Transistors,” Nancy Jean Slater, November 1982. (142 pp.)

82-123 “Ion-Implanted In0.53Ga0.47As/In0.52Al0.48As Lateral PNP Transistors,” K. Tabata-Singh, A. N. M. Choudhury, K. Alavi, J. Vlcek, N. J. Slater, C. G. Fonstad, and A. Y. Cho, November 1982. (10 pp.)

83-138 “A 4K x 1 Static Random Access Memory,” Glenn A. Kramer, April 1983. (44 pp.)

VLSI MEMO SERIES (continued)

84-141 “Size, Power and Speed,” Maurice V. Wilkes, April 1983. (4 pp.)

83-143 “Zone-Melting Recrystallization of InSb on Oxidized Silicon Substrates,” Christopher James Keavney, June 1983. (74 pp.)

83-144 “High Performance NMOS Operational Amplifier Design,” Jason Redgrave, June 1983. (30 pp.)

83-149 “Control of Silicon Film Recrystallization Using Lithography with Application to Photovoltaics,” Harry Albert Atwater, Jr., July 1983. (124 pp.)

83-152 “Parallel Computation Using Meshes of Trees,” Tom Leighton, October 1983. (19 pp.)

83-155 “Sensitivity of Nonlinear 1-Port Resistor Networks,” Charles A. Zukowski and John L. Wyatt, Jr., October 1983. (5 pp.)

84-159 “Circuit Simulation with Iterating Bounds,” Charles A. Zukowski, January 1984. (4 pp.)

84-161 “Plasma Enhanced Chemical Vapor Deposition of Silicon Epitaxial Layers,” Rafael Reif, February 1984. (14 pp.)

84-164 “HPLA: A Design by Example PLA Generator,” Cyrus Bamji, March 1984. (19 pp.)

84-165 “Qualitative Analysis of MOS Circuits,” Brian C. Williams, April 1984. (90 pp.)

84-166 “Relaxing Bounds on Linear RC Mesh Circuits,” Charles A. Zukowski, April 1984. (15 pp.)
84-168 "The Hitachi 27162K x8 EPROM," Kevin D. Ball, April 1984. (37 pp.)
84-176 "Bounding the Response of One-Way MOS Logic Gate Models," Charles A. Zukowski and Lance A. Glasser, May 1984. (22 pp.)
84-180 "Solid-Phase Epitaxial Regrowth of Ion-Implanted Low-Pressure Chemically Vapor Deposited Polycrystalline Silicon Films," Nhon Toai Quach, June 1984. (84 pp.)
84-184 "Routing the Power and Ground Wires on a VLSI Chip," Andrew Strout Moulton, June 1984. (65 pp.)
84-186 "Contact Resistance and Interface Kinetics of RF Sputter Cleaned AlSi/TiW/Si Contacts in VLSI," Edward Ronald Equi, June 1984. (72 pp.)
84-188 "Studies of Residual Stress in Amorphous Silicon," Peter Li-Ming Cheng, June 1984. (103 pp.)
84-190 "Electrical Properties of Hydrogenated Amorphous Silicon Produced by Laser-Induced CVD," Christopher John Petti, June 1984. (61 pp.)
84-192 "Polymerizable Monomers for Tape Casting of Ceramics," P. D. Calvert, July 1984. (17 pp.)
84-195 "Methodology Verification of Hierarchically Described VLSI Circuits," Isaac Leo Bain, July 1984. (77 pp.)
84-198 "Signal Delay in RC Meshes, Trees and Lines," John L. Wyatt, Jr., and Qingjian Yu, August 1984. (8 pp.)
84-201 "Low Pressure Chemical Vapor Deposition of Titanium Silicide," P. Tedrow, V. Ilderem, and R. Reif, October 1984. (114 pp.)
84-202 "Silicon Epitaxy at 650-800°C Using Low Pressure Chemical Vapor Deposition Both With and Without Plasma Enhancement," T. J. Donahue and R. Reif, October 1984. (37 pp.)
84-203 "Low Temperature Silicon Epitaxy by Low Pressure Chemical Vapor Deposition With and Without Plasma Enhancement," Wayne R. Burger, October 1984. (119 pp.)
84-204 "CMOS LSI Design of a High-Throughput Digital Filter," Anne H. Park, October 1984. (88 pp.)
84-205 "Time Optimal Trajectories Associated with Voltage Bounds in RC Tree Networks," Han-Ngee Tan and John L. Wyatt, Jr., October 1984. (18 pp.)
84-206 "Manganese as a p-type Dopant for Liquid Phase Epitaxial In_{0.53}Ga_{0.47}As," Peter S. Whitney and Clifton G. Fonstad, October 1984. (22 pp.)
84-207 "Amorphous Silicon Produced by Laser Induced Chemical Vapor Deposition," Michel Meunier, October 1984. (114 pp.)
84-216 "A Mixed-Integer Linear Programming Problem Which is Efficiently Solvable," Charles E. Leiserson and James B. Saxe, December 1984. (11 pp.)
84-217 "Solid Phase Processes for Semiconductor-on-Insulator," Carl V. Thompson, December 1984. (9 pp.)
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>85-224</td>
<td>“Identification of Leakage Current Mechanisms in Thin Film Poly-Si SOI MOSFETs,”</td>
<td>Sudhir K. Madan and Dimitri A. Antoniadis</td>
<td>January 1985</td>
<td>47</td>
</tr>
<tr>
<td>85-228</td>
<td>“Steady Solute Fields Induced by Differential Rotation in a Small Floating Zone,”</td>
<td>George M. Harriott and Robert A. Brown</td>
<td>February 1985</td>
<td>16</td>
</tr>
<tr>
<td>85-230</td>
<td>“A Hardware Assisted Methodology for VLSI Design Rule Checking,”</td>
<td>Larry Dean Seiler</td>
<td>February 1985</td>
<td>294</td>
</tr>
<tr>
<td>85-232</td>
<td>“Low Temperature Silicon Epitaxy by Plasma Enhanced CVD,”</td>
<td>Rafael Reif</td>
<td>March 1985</td>
<td>7</td>
</tr>
<tr>
<td>85-233</td>
<td>“A Design by Example Regular Structure Generator,”</td>
<td>Cyrus S. Bamji</td>
<td>March 1985</td>
<td>111</td>
</tr>
<tr>
<td>85-238</td>
<td>“Bounding Techniques and Applications for VLSI Circuit Simulation,”</td>
<td>Charles A. Zukowski, John L. Wyatt, Jr., and Lance A. Glasser</td>
<td>March 1985</td>
<td>9</td>
</tr>
<tr>
<td>85-239</td>
<td>“A UV Write-Enabled PROM,”</td>
<td>Lance A. Glasser</td>
<td>March 1985</td>
<td>5</td>
</tr>
<tr>
<td>85-242</td>
<td>“Communication Density Considerations in Multiprocessors,”</td>
<td>Lance A. Glasser and Charles A. Zukowski</td>
<td>April 1985</td>
<td>10</td>
</tr>
</tbody>
</table>
85-247 “Comparison of Different Techniques for Passivation of Small Grain Polycrystalline-Si MOSFETs,” M. Rodder and D. A. Antoniadis, June 1985. (14 pp.)
85-251 “Surface Gratings with Sub-100nm Linewidths,” Erik Hyde Anderson, June 1985. (99 pp.)
85-254 “Plasma Enhanced Chemical Vapor Deposition for Microelectronics,” Rafael Reif, August 1985. (14 pp.)
85-268 “Interprocessor Communication Issues in Fat-Tree Architutes,” Alexander Toichi Ishii, October 1985. (41 pp.)
85-278 "Signal Delay in Leaky RC Mesh Models for Bipolar Interconnect," Peter O'Brien and John L. Wyatt, Jr., November 1985. (64 pp.)
85-286 "Hot Carrier Effects in Hydrogen Passivated P-channel Polycrystalline-Si MOSFETs," M. Rodder and D. A. Antoniadis, December 1985. (11 pp.)
85-290 "Low-Temperature Silicon Epitaxy Deposited by Plasma Enhanced Chemical Vapor Deposition I: Kinetics," T. J. Donahue and R. Reif, December 1985. (40 pp.)
85-292 "Low-Temperature Silicon Epitaxy Deposited by Plasma Enhanced Chemical Vapor Deposition III: Pattern Transfer," T. J. Donahue and R. Reif, December 1985. (33 pp.)
86-320 "Tight Bounds for Minimax Grid Matching, with Applications to the Average Case Analysis of Algorithms," Tom Leighton and Peter Shor, June 1986. (27 pp.)
86-321 "Logic Simulation using a Content-Addressable Memory System," Beng-Hong Lim, June 1986. (52 pp.)
86-327 "Methodology Verification of Hierarchically Described VLSI Circuits," Isaac L. Bain and Lance A. Glasser, June 1986. (16 pp.)
86-328 "MOS Hot Electron Resistance of Rapid Thermal Nitrided (RTN) and Reoxidized RTN Oxides," Patrice Parris, July 1986. (91 pp.)
86-330 "Characterization of Errors in Circuit Simulation Programs," Andrew E. Stevens, July 1986. (57 pp.)
86-333 "Laser-Induced Chemical Vapor Deposition of Silicon Nitride Films," Eric Ting-Shan Pan, July 1986. (61 pp.)

86-344 "A High-Performance VLSI Quaternary Serial Multiplier," William J. Dally, October 1986. (6 pp.)

86-345 "Wire-Efficient VLSI Multiprocessor Communication Networks," William J. Dally, October 1986. (19 pp.)

86-346 "Lazy Event-Driven Simulation," William J. Dally, October 1986. (6 pp.)

86-348 "Frequency Limitations in Circuits Composed of Linear Devices," Lance A. Glasser, November 1986. (24 pp.)

86-349 "Communication-Efficient Parallel Graph Algorithms," Bruce MacDowell Maggs, December 1986. (33 pp.)

86-350 "A Survey of Problems and Results for Channel Routing," Tom Leighton, December 1986. (9 pp.)

86-354 "Optimal Simulations of Tree Machines," Sandeep Bhatt, Fan Chung, Tom Leighton, and Arnold Rosenberg, December 1986. (9 pp.)

86-355 "Parallel (Delta + 1) Coloring of Constant-Degree Graphs," Andrew V. Goldberg and Serge A. Plotkin, December 1986. (7 pp.)

87-358 "Focused Ion Beam Assisted Deposition of Gold," G. M. Shedd, January 1987. (76 pp.)

87-364 "Low Pressure Nitrided Oxide in MOS Capacitors," Woodward Yang, January 1987. (80 pp.)

87-367 "Bulk-Quality Bipolar Transistors Fabricated in Low-Temperature (T_{sep} = 800°C) Epitaxial Silicon," W. R. Burger and R. Reif, March 1987. (13 pp.)
VLSI MEMO SERIES (continued)

87-377 "In-Situ Doping for Low Temperature Silicon Epitaxy by PECVD," James H. Comfort and Rafael Reif, May 1987. (10 pp.)
87-380 "KOH:H2O Etching of (110)Si, (111)Si, SiO2, and Ta: An Experimental Study," Lloyd D. Clark and David J. Edell, May 1987. (8 pp.)
87-382 "An Optimized In-Situ Argon Sputter Clean For Device Quality Low Temperature (T < 800° C) Epitaxial Silicon: Bipolar Transistor and PN Junction Characterization," W. R. Burger and R. Reif, May 1987. (44 pp.)

87-392 "Electrical Quality of Low-Temperature (T_{dep} < 800° C) Epitaxial Silicon: The Effect of Deposition Temperature," W. R. Burger and R. Reif, July 1987. (46 pp.)

87-393 "Quantum Conductance Fluctuations in Extremely Narrow Inversion Layers in Silicon," Jerome Carl Licini, July 1987. (89 pp.)

87-394 "Focused Ion Beam Induced Deposition," J. Melagalis, A. D. Dubner, J. S. Ro, G. M. Shedd, H. Lezec, and C. V. Thompson, July 1987. (9 pp.)

87-395 "Modeling the Effects of Si/SiO₂ Interface Proximity and Transverse Field on Carrier Mobility in MOSFETs," Jarvis Benjamin Jacobs, July 1987. (45 pp.)

87-402 "A Titanium Disilicide/n⁺-Polysilicon Gate Electrode for Existing VLSI MOS Processes," Curtis Tsai, September 1987. (64 pp.)

87-403 "Microelectrochemical Transistors Based on Electrostatic Binding of Electroactive Metal Complexes in Protonated Poly(4-Vinylpyridine): Devices that Respond to Two Chemical Stimuli," Daniel Belanger and Mark S. Wrighton, September 1987. (7 pp.)

87-407 "Solid State Microelectrochemistry: Electrical Characteristics of a Solid State Microelectrochemical Transistor Based on Poly(3-Methylthiophene)," Shuchi Chao and Mark S. Wrighton, September 1987. (3 pp.)

87-410 "Synthesis of Self-timed VLSI Circuits from Graph-Theoretic Specifications," Tam-Anh Chu, July 1987. (189 pp.)