ASYMPTOTIC ROBUSTNESS IN REGRESSION
AND AUTOREGRESSION BASED ON
LINDEBERG CONDITIONS

T. W. Anderson and Naoto Kunitomo
Stanford University

TECHNICAL REPORT NO. 23
June 1989

U. S. Army Research Office
Contract DAAL03-89-K-0033
Theodore W. Anderson, Project Director

Department of Statistics
Stanford University
Stanford, California

Approved for Public Release; Distribution Unlimited.
ASYMPTOTIC ROBUSTNESS IN REGRESSION
AND AUTOREGRESSION BASED ON
LINDEBERG CONDITIONS

T. W. Anderson and Naoto Kunitomo
Stanford University

TECHNICAL REPORT NO. 23
June 1989

U. S. Army Research Office
Contract DAAL03-89-K-0033
Theodore W. Anderson, Project Director

Department of Statistics
Stanford University
Stanford, California

Approved for Public Release; Distribution Unlimited.
Title: Asymptotic Robustness in Regression and Autoregression Based on Lindeberg Conditions

Authors: T. W. Anderson and Naoto Kunitomo

Performing Organization: Stanford University, Department of Statistics - Sequoia Hall, Stanford, California 94305-4065

Controlled Office: U.S. Army Research Office, Research Triangle Park, NC 27709

Report Date: June 1989

Number of Pages: 31pp.

Abstract:

See reverse side for abstract.
A statistical procedure is asymptotically robust if its large-sample properties hold under conditions more general than the conditions under which the procedure is derived. The justification of such properties is often based directly or indirectly on a central limit theorem. In this paper a form of the Lindeberg condition appropriate for martingale differences is used to obtain consistency and asymptotic normality of statistics for regression and autoregression. The regression model is \(y_t = Bz_t + v_t \). The unobserved error sequence \(\{v_t\} \) is a sequence of martingale differences with conditional covariance matrices \(\{\Sigma_t\} \) and satisfying

\[
\frac{1}{n} \sup_{t=1, \ldots, n} \epsilon \{v'_t I(v'_t > a) | z_t, v_{t-1}, z_{t-1}, \ldots\} \xrightarrow{p} 0
\]

as \(a \to \infty \). The sample covariance of the independent variables, \(z_1, \ldots, z_n \), is assumed to have a probability limit \(M \), constant and nonsingular: \(\max_{t=1, \ldots, n} z'_t z_t / n \xrightarrow{p} 0 \). If \((1/n) \sum_{t=1}^{n} \Sigma_t \xrightarrow{p} \Sigma \), constant, then \(\sqrt{n} \text{vec}(\hat{B}_n - B) \xrightarrow{c} N(0, M^{-1} \otimes \Sigma) \).

The autoregression model is \(x_t = Bx_{t-1} + v_t \) with the above conditions on \(\{v_t\} \) and

\[
\frac{1}{n} \sum_{t=\max(r,s)+1}^{n} (\Sigma_t \otimes v_{t-1-r} v'_{t-1-s}) \xrightarrow{p} \delta_{rs}(\Sigma \otimes \Sigma).
\]

where \(\delta_{rs} \) is the Kronecker delta. Then \(\sqrt{n} \text{vec}(\hat{B}_n - B) \xrightarrow{c} N(0, \Gamma^{-1} \otimes \Sigma) \), where \(\Gamma = \sum_{s=0}^{\infty} B' \Sigma (B')^s \).
1. Introduction.

A statistical procedure is asymptotically robust if its large-sample properties hold under conditions more general than the conditions under which the procedure is derived. The justification of such procedures is often based directly or indirectly on a central limit theorem. In this paper Lindeberg-type conditions are utilized to establish asymptotic normality of sample regression and autoregression coefficients.

The classic central limit theorem for independent identically distributed scalar random variables \(x_1, x_2, \ldots \) states that \(\sqrt{n} \frac{x_n - \mu}{\sigma} \to N(0,1) \) as \(n \to \infty \) if \(\mathbb{E} x_i = 0 \) and \(\mathbb{E} x_i^2 = \sigma^2 \); here \(x_n = \frac{1}{n} \sum_{i=1}^{n} x_i \) is the mean of the first \(n \) observations. The requirement that the variables be identically distributed can be dropped. For \(\mathbb{E} x_i = 0 \) and \(\mathbb{E} x_i^2 = \sigma_i^2 \),

\[
\frac{1}{\tau_n^2} \sum_{i=1}^{n} x_i \xrightarrow{d} N(0,1),
\]

where

\[
\tau_n^2 = \sum_{i=1}^{n} \sigma_i^2,
\]

if for any given \(\varepsilon > 0 \)

\[
\mathbb{P} \left(\sum_{i=1}^{n} \mathbb{E} x_i^2 I(x_i^2 > \varepsilon \tau_n^2) \to 0 \right)
\]

as \(n \to \infty \). Here \(I(\cdot) \) is the indicator function. If \(\sigma_i^2/\tau_i^2 \to 0 \) as \(n \to \infty \), then (1.1) implies (1.3); in this sense the Lindeberg (1922) condition (1.3) is minimal.

The condition of independence can be weakened to a condition of martingale differences. A very general theorem, which we shall use, has been given by Dvoretzky (1972). For justification of later theorems we state this result in terms of a triangular array of random variables (and include a normalization in the definition of the random variables).

Theorem (Dvoretzky). Let \(x_{n1}, \ldots, x_{nn} \) be a set of random variables and \(\mathcal{F}_{n0} \subset \mathcal{F}_{n1} \subset \cdots \subset \mathcal{F}_{nn} \) be a set of \(\sigma \)-fields, \(n = 1, 2, \ldots \), such that \(x_{nj} \) is \(\mathcal{F}_{nj} \)-measurable.

\[
\mathbb{E}(x_{nj} | \mathcal{F}_{nj-1}) = 0 \quad \text{a.s.},
\]

\[
\mathbb{E}(x_{nj}^2 | \mathcal{F}_{nj-1}) = \sigma_{nj}^2 \quad \text{a.s.},
\]
\[(1.6) \quad \sum_{i=1}^{n} \sigma_{n_i}^2 \xrightarrow{p} \sigma^2 \]

as \(n \to 0 \), where \(\sigma^2 \) is constant, and for any given \(\varepsilon > 0 \)

\[(1.7) \quad \sum_{t=1}^{n} \mathcal{E}[x_{nj}^2 I(x_{nj}^2 > \varepsilon) | \mathcal{F}_{n,j-1}] \xrightarrow{p} 0. \]

Then

\[(1.8) \quad \sum_{j=1}^{n} x_{nj} \xrightarrow{d} N(0, \sigma^2). \]

Dvoretzky actually showed that this result holds if \(\mathcal{F}_{n,j-1} \) is replaced by \(\mathcal{B}_{n,j-1} \), the \(\sigma \)-field generated by \(\sum_{i=1}^{j-1} x_{ni} \). Generalizations have been given in Section 3.2 of Hall and Heyde (1980) and Section 9.5 of Chow and Teicher (1988). Further references can be found in these books.

In this paper we consider the estimation of the matrix of regression coefficients \(B \) in the model

\[(1.9) \quad y_t = B z_t + v_t, \quad t = 1, 2, \ldots, \]

where the unobservable vector disturbances \(v_t \) are martingale differences; that is, the conditional expected value of \(v_t \) given earlier observed \(y_t \)'s and \(z_t \)'s is 0. The conditional second-order moments of the \(v_t \)'s are finite, but not necessarily the same for all \(t \). However, the \(v_t \)'s satisfy a kind of Lindeberg condition. The “independent” variables \(z_t \) are assumed to have a sample covariance matrix that converges to a limit in probability, and the \(z_t \)'s satisfy a kind of asymptotic negligibility condition. It is shown that the least squares estimator of \(B \) has an asymptotic distribution that is the same as in the case that the \(v_t \)'s are independent and normal with mean 0 and constant covariance matrix. Thus the disturbances do not need to be homoscedastic nor do they need to be independent. The relaxed conditions are particularly important when the observed \(z_t \)'s and \(y_t \)'s constitute a time series.

In the autoregressive model, which is extensively used in time series analysis,

\[(1.10) \quad x_t = B x_{t-1} + v_t, \quad t = 1, 2, \ldots, \]
the vector \(z_t \) is replaced by \(x_{t-1} \). The conditions on the \(v_t \)'s imply the desired conditions on the \(x_{t-1} \)'s.

In Section 4 the mixed model is considered; the right-hand side may contain both lagged "dependent" variables and independent variables.

If the disturbances in the regression model are normal, independent, and homoscedastic, and the independent variables are nonstochastic, the estimator of \(B \) has a normal distribution with expected value \(B \) and covariances determined by the common covariance matrix of the disturbances: it follows that the asymptotic distribution is normal. The restriction of homoscedasticity was relaxed by Anderson (1971) in Theorems 2.6.1 and 2.6.2 under a Lindeberg-type condition on the disturbances and the condition that the sample covariance matrix of the independent variables have a nonsingular limit.

In the autoregression model the least squares estimator of \(B \) is nonlinear in the disturbances. Mann and Wald (1943) showed that the asymptotic distribution of the estimator of \(B \) is normal under the condition that the disturbances are independently identically distributed and possess moments of all orders. Anderson (1959) showed that in this case only the second-order moments need to be finite.

There are many recent results in this area. Lai and Robbins (1981) proved a theorem for a scalar dependent variable with independent identically distributed disturbances. Lai and Wei (1982) proved a similar theorem under the conditions that the moments of the disturbances of some order greater than 2 are bounded and that the variances of the disturbances converge to a constant a.s. Our approach follows these papers, but the conditions have been relaxed. Chan and Wei (1987) have used a Lindeberg condition for a special case of the autoregressive process; see also Lai and Siegmund (1983).

2. Robustness in Regression.

We consider the regression model in which the observed vector-valued dependent variable \(y_t \) is generated by

\[
y_t = B z_t + v_t, \quad t = 1, 2, \ldots ,
\]

where \(z_t \) is an observed vector-valued independent variable and \(\{v_t\} \) is a sequence of (unobservable) martingale differences satisfying a Lindeberg-type condition.
Theorem 1. Let \(\{z_t, v_t\}, t = 1, 2, \ldots \) be a sequence of pairs of random vectors, and let \(\{\mathcal{F}_t\} \) be an increasing sequence of \(\sigma \)-fields such that \(z_t \) is \(\mathcal{F}_{t-1} \)-measurable and \(v_t \) is \(\mathcal{F}_t \)-measurable. Let the matrix \(D_n \) be \(\mathcal{F}_0 \)-measurable such that

\[
D_n^{-1} \sum_{t=1}^n z_t z_t'(D_n')^{-1} \xrightarrow{p} C,
\]

a constant matrix, as \(n \to \infty \), and

\[
\max_{t=1, \ldots, n} z_t'(D_n D_n')^{-1} z_t \xrightarrow{p} 0.
\]

Suppose further that \(\mathcal{E}(v_t | \mathcal{F}_{t-1}) = 0 \) a.s., \(\mathcal{E}(v_t v_t' | \mathcal{F}_{t-1}) = \Sigma_t \) a.s.,

\[
\sum_{t=1}^n \left[\Sigma_t \otimes (D_n^{-1} z_t z_t'(D_n')^{-1}) \right] \xrightarrow{p} \Sigma \otimes C,
\]

where \(\Sigma \) is a constant positive semidefinite matrix, and

\[
\sup_{t=1,2,\ldots} \mathcal{E} [v_t' v_t I(v_t' v_t > a) | \mathcal{F}_{t-1}] \xrightarrow{p} 0
\]

as \(a \to \infty \). Then

\[
\text{vec} \left(D_n^{-1} \sum_{t=1}^n z_t v_t' \right) \xrightarrow{L} N(0, \Sigma \otimes C).
\]

Proof. The conclusion holds if

\[
\text{tr} \ D_n^{-1} \sum_{t=1}^n z_t v_t' B = \sum_{t=1}^n v_t' B D_n^{-1} z_t
\]

\[
\xrightarrow{L} N(0, \text{tr} \Sigma BCB')
\]

for every \(B \). Let \(u_{nt} = B D_n^{-1} z_t, t = 1, \ldots, n \). Then

\[
\sum_{t=1}^n u_{nt} u_{nt}' \xrightarrow{p} BCB' = D,
\]

say. We want to show that

\[
\sum_{t=1}^n u_t' v_t \xrightarrow{L} N(0, \text{tr} \Sigma D).
\]
Condition (2.3) implies

\[
\max_{t=1, \ldots, n} u_n' u_{nt} \overset{p}{\rightarrow} 0.
\]

Let

\[
w_{nt} = u_{nt} I(\|u_{nt}\| \leq 1), \quad t = 1, \ldots, n, \quad n = 1, 2, \ldots.
\]

Then \(\|w_{nt}\| \leq 1\) and

\[
\Pr \{w_{nt} = u_{nt}, \quad t = 1, \ldots, n\} \rightarrow 1
\]
as \(n \to \infty\).

Now we shall verify that \(x_{nt} = w_{nt}' v_t\) satisfy the conditions of Dvoretzky's theorem.

We have

\[
\mathcal{E}(w_{nt}' v_t | \mathcal{F}_{t-1}) = w_{nt}' \mathcal{E}(v_t | \mathcal{F}_{t-1}) = 0 \quad \text{a.s.}
\]

\[
\sum_{t=1}^{n} \mathcal{E}[(w_{nt}' v_t)^2 | \mathcal{F}_{t-1}] = \sum_{t=1}^{n} w_{nt}' \Sigma_t w_{nt} \overset{p}{\rightarrow} \text{tr} \Sigma D
\]
by (2.4). The third condition for \(\{w_{nt}\}\) to satisfy is

\[
A_n(\delta) = \sum_{t=1}^{n} \mathcal{E}\{(w_{nt}' v_t)^2 I[(w_{nt}' v_t)^2 > \delta] | \mathcal{F}_{t-1}\} \overset{p}{\rightarrow} 0 \forall \delta > 0;
\]
that is, given \(\delta > 0, \epsilon > 0,\) and \(\gamma > 0,\) there exists \(n(\epsilon, \gamma)\) such that for \(n > n(\epsilon, \gamma)\)

\[
\Pr\{A_n(\delta) < \epsilon\} > 1 - \gamma.
\]

We have

\[
A_n(\delta) = \sum_{t=1}^{n} w_{nt}' w_{nt} \mathcal{E}\left\{ \left(\frac{w_{nt}'}{\|w_{nt}\|} v_t \right)^2 I\left[\left(\frac{w_{nt}'}{\|w_{nt}\|} v_t \right)^2 > \frac{\delta}{\|w_{nt}\|^2} \right] | \mathcal{F}_{t-1}\right\}
\]
\[
\leq \sum_{t=1}^{n} w_{nt}' w_{nt} \mathcal{E}\left\{ v_t' v_t I\left[v_t' v_t > \frac{\delta}{\|w_{nt}\|^2} \right] | \mathcal{F}_{t-1}\right\}.
\]
Given \(\varepsilon^* > 0 \) and \(\gamma^* > 0 \) there exists \(n^*(\varepsilon^*, \gamma^*) \) such that for \(n > n^*(\varepsilon^*, \gamma^*) \)

\[
\Pr \{ \| w_{nt} \|^2 \leq \varepsilon^*, t = 1, \ldots, n \} > 1 - \gamma^*.
\]

Hence

\[
\Pr \left\{ A_n(\delta) \leq \sum_{t=1}^{n} w_{nt}' w_{nt} \mathcal{E} \left[v_t' v_t I \left(v_t' v_t > \frac{\delta}{\varepsilon^*} \right) | \mathcal{F}_{t-1} \right] \right\} \geq 1 - \gamma^*.
\]

Since

\[
\sum_{t=1}^{n} w_{nt}' w_{nt} \mathcal{E} \left\{ \left(v_t' v_t > \frac{\delta}{\varepsilon^*} \right) | \mathcal{F}_{t-1} \right\} \\
\leq \sum_{t=1}^{n} x_{nt}' x_{nt} \mathcal{E} \left\{ \left(v_s' v_s > \frac{\delta}{\varepsilon^*} \right) | \mathcal{F}_{s-1} \right\} \\
= B_n \left(\frac{\delta}{\varepsilon^*} \right) \text{ say. That is,}
\]

\[
\Pr \left\{ A_n(\delta) \leq B_n \left(\frac{\delta}{\varepsilon^*} \right) \right\} \geq 1 - \gamma^*
\]

if \(n > n^*(\varepsilon^*, \gamma^*) \). Let

\[
C(d) = \sup_{s=1,2,\ldots} \mathcal{E} \left[v_s' v_s I \left(v_s' v_s > d \right) | \mathcal{F}_{s-1} \right].
\]

Condition (2.5) is that given \(\epsilon > 0, \bar{\gamma} > 0 \) there exists a \(d(\epsilon, \bar{\gamma}) \) such that for \(d > d(\epsilon, \bar{\gamma}) \)

\[
\Pr \left\{ C(d) \leq \epsilon \right\} \geq 1 - \bar{\gamma}.
\]

Condition (2.2) implies that given \(a > 0, \bar{\gamma} > 0 \) there exists \(n(a, \bar{\gamma}) \) such that

\[
\Pr \left\{ \sum_{t=1}^{n} x_{nt}' x_{nt} \leq \text{tr } D + a \right\} \geq 1 - \bar{\gamma}.
\]

Hence

\[
\Pr \left\{ B_n \left(\frac{\delta}{\varepsilon^*} \right) < \varepsilon \right\} \leq 1 - \bar{\gamma} - \bar{\gamma}
\]

6
if \(\text{tr } D + a \leq \varepsilon, \frac{c}{\sqrt{d}} \geq d(\varepsilon, \gamma), \) and \(n \geq n(a, \gamma) \). Then (2.16) holds if \(\gamma^* + \bar{\gamma} + \tilde{\gamma} \leq \gamma \). \(\text{tr } D + a \leq \varepsilon, \frac{c}{\sqrt{d}} \leq d(\varepsilon, \gamma), \) and \(n > \max \left[n^*(\varepsilon^*, \gamma^*), n(a, \gamma) \right] \). The theorem follows from the theorem in the introduction [Dvoretzky (1972)]. [See also, Corollary 3.1 of Hall and Heyde (1970) or Theorem 2, Section 9.5, of Chow and Teicher (1988).]

Theorem 2. Let \(\{v_t\} \) be a sequence of random vectors and let \(\{F_t\} \) be an increasing sequence of \(\sigma \)-fields such that \(v_t \) is \(F_t \)-measurable. \(\mathcal{E}(v_t|F_{t-1}) = 0 \) a.s.. \(\mathcal{E}(v_t|F_{t-1}) = \Sigma \), and

\[
\frac{1}{n} \sum_{t=1}^{n} \Sigma_t \xrightarrow{p} \Sigma.
\]

Then

\[
\frac{1}{n} \sum_{t=1}^{n} v_t v_t' \xrightarrow{p} \Sigma.
\]

Proof. If \(v_t \) is scalar, the proof follows from Theorem 2.23 of Hall and Heyde (1970) as indicated by Chan and Wei (1987). The theorem is then verified by taking arbitrary linear combinations of \(v_t \).

Theorem 3. For \(n \) observations on the model (2.1) define

\[
\hat{B}_n = \sum_{t=1}^{n} y_t z_t' \left(\sum_{t=1}^{n} z_t z_t' \right)^{-1}.
\]

\[
\hat{\Sigma}_n = \frac{1}{n} \sum_{t=1}^{n} (y_t - \hat{B}_n z_t)(y_t - \hat{B}_n z_t)'.
\]

\[
= \frac{1}{n} \sum_{t=1}^{n} v_t v_t' - \frac{1}{n} (\hat{B}_n - B) \sum_{t=1}^{n} z_t z_t' (\hat{B}_n - B)'.
\]
If the conditions of Theorem 1 hold with C nonsingular, then

$$(2.31) \quad \text{vec} \left[(\hat{B}_n - B)D_n \right] \xrightarrow{\text{c}} N(0, C^{-1} \otimes \Sigma).$$

If, further, (2.26) holds, then

$$(2.32) \quad \hat{\Sigma}_n \xrightarrow{\text{p}} \Sigma.$$

Proof. The proof of (2.31) is a straightforward application of Theorem 1. The second term on the right-hand side of (2.30) is

$$(2.33) \quad \frac{1}{n} (\hat{B}_n - B)D_n^{-1} \left[D_n^{-1} \sum_{t=1}^{n} z_t z_t'(D_n')^{-1} \right] [(\hat{B}_n - B)D_n^{-1}]' \xrightarrow{\text{p}} 0$$

by (2.2) and (2.31).

The purpose of condition (2.3) is to assure asymptotic negligibility of $z_t v_t'$. What alternative conditions imply (2.3)?

Lemma 1. Let $\{z_t\}$ be a sequence of random vectors, and let $\{\mathcal{F}_t\}$ be an increasing sequence of σ-fields such that z_t is \mathcal{F}_t-measurable. Let D_n be \mathcal{F}_0-measurable such that $D_n^{-1} \to 0 \ a.s., \ D_nD_{n+1}^{-1} \xrightarrow{\text{p}} I \ a.s.$, and

$$(2.34) \quad D_n^{-1} \sum_{t=1}^{n} z_t z_t'(D_n')^{-1} \to C \ a.s.$$

Then

$$(2.35) \quad \max_{t=1, \ldots, n} z_t'(D_nD_n')^{-1} z_t \to 0 \ a.s.$$

Proof. From (2.34) we have

$$(2.36) \quad D_{n+1}^{-1} \sum_{t=1}^{n+1} z_t z_t'(D_{n+1})^{-1} - D_n^{-1} \sum_{t=1}^{n} z_t z_t'D_n^{-1}$$

$$= D_n^{-1} z_{n+1} z_{n+1}'(D_n')^{-1} + D_{n+1}^{-1} \sum_{t=1}^{n+1} z_t z_t'(D_{n+1}')^{-1}$$

$$- (D_n^{-1} D_{n+1}) D_{n+1}^{-1} \sum_{t=1}^{n+1} z_t z_t'(D_{n+1}')^{-1}(D_{n+1}') D_{n+1}$$

$$\to 0 \ a.s.$$
That is, \(\|D_n^{-1}z_{n+1}\|^2 \to 0 \) a.s. This implies (2.35) by the proof of Lemma 2.6.1 in Anderson (1971).

A special case of \(\{z_t\} \) is that of \(z_t \) nonstochastic; then (2.34) (which is the same as (2.2) when \(\{z_t\} \) is nonstochastic) implies (2.35) with the limits nonstochastic. In particular, if \(D_n \) is diagonal and the \(j \)-th diagonal element of \(D_n \) is the square root of the sum of squares of the \(j \)-th elements of the \(z_t \)'s, then \(D_n^{-1} \sum_{t=1}^{n} z_t z_t'(D_n')^{-1} \) is the correlation matrix of \(z_1, \ldots, z_n \). The theorem in this case is a relaxation of Theorems 2.6.1 and 2.6.2 of Anderson (1971).

Theorem 4. Let \(\{z_t\} \) be a sequence of random vectors, and let \(\{\mathcal{F}_t\} \) be an increasing sequence of \(\sigma \)-fields such that \(z_t \) is \(\mathcal{F}_t \)-measurable and

\[
\sum_{i=1}^{n} \mathbb{E} \left\{ z_t'(D_n D'_n)^{-1} z_t I \left[z_t'(D_n D'_n)^{-1} z_t > \varepsilon \right] \right\}_{\mathcal{F}_{t-1}} \to 0.
\]

Then (2.3) holds.

Proof. We use Lemma 3.5 of Dvoretzky (1972): If \(\{\mathcal{F}_t\} \) is an increasing sequence of \(\sigma \)-fields and \(A_t \in \mathcal{F}_t \), then for every \(\eta > 0 \)

\[
\Pr \left\{ \bigcup_{t=1}^{n} A_t \left| \mathcal{F}_0 \right\} \leq \eta + \Pr \left\{ \sum_{t=1}^{n} P(A_t \left| \mathcal{F}_{t-1} \right) > \eta \left| \mathcal{F}_0 \right) \right\}.
\]

For every \(\varepsilon > 0, \eta > 0 \)

\[
\Pr \left\{ \max_{t=1,\ldots,n} z_t'(D_n D'_n)^{-1} z_t > \varepsilon \left| \mathcal{F}_0 \right) \right\} = \Pr \left\{ \bigcup_{t=1}^{n} z_t'(D_n D'_n)^{-1} z_t > \varepsilon \left| \mathcal{F}_0 \right) \right\}
\leq \eta + \Pr \left\{ \sum_{t=1}^{n} \Pr \left(z_t'(D_n D'_n)^{-1} z_t > \varepsilon \left| \mathcal{F}_{t-1} \right) > \eta \left| \mathcal{F}_0 \right) \right\}
\leq \eta + \Pr \left\{ \frac{1}{n} \sum_{t=1}^{n} \mathbb{E} \left[z_t'(D_n D'_n)^{-1} z_t I \left[z_t'(D_n D'_n)^{-1} z_t > \varepsilon \left| \mathcal{F}_{t-1} \right) \right] > \eta \left| \mathcal{F}_0 \right) \right\}
\]

by a form of Tchebycheff's inequality. By (2.37) the right-hand side of (2.39) converges to 0. Since \(\eta \) is arbitrary, (2.3) holds.
Corollary 1. Let \(\{z_t, v_t\}, t = 1, 2, \ldots, \) be a sequence of pairs of random vectors, and let \(\{\mathcal{F}_t\} \) be an increasing sequence of \(\sigma \)-fields such that \(z_t \) is \(\mathcal{F}_{t-1} \)-measurable and \(v_t \) is \(\mathcal{F}_t \)-measurable. Let \(D_n \) be \(\mathcal{F}_0 \)-measurable such that (2.2) and (2.37) hold. Suppose that
\[
\mathbb{E}(v_t | \mathcal{F}_{t-1}) = 0 \text{ a.s.}, \quad \mathbb{E}(v_t v'_t | \mathcal{F}_{t-1}) = \Sigma_t \text{ a.s.}, \quad \text{and (2.4) and (2.5) hold. Then (2.6) holds.}
\]

The condition (2.4) determines the limiting covariance matrix of \(D_n^{-1} \sum^n_{t=1} z_t v'_t \).

Lemma 2. Let \(\{z_t, v_t\} \) be a sequence of random vectors, and let \(\{\mathcal{F}\} \) be an increasing sequence of \(\sigma \)-fields such that \(z_t \) is \(\mathcal{F}_{t-1} \)-measurable and \(v_t \) is \(\mathcal{F}_t \)-measurable such that
\[
\mathbb{E}(v_t | \mathcal{F}_{t-1}) = 0 \text{ a.s.}, \quad \mathbb{E}(v_t v'_t | \mathcal{F}_{t-1}) = \Sigma_t \text{ a.s.}, \quad \text{and } \Sigma_t \rightarrow \Sigma \text{ a.s., where } \Sigma \text{ is a constant matrix. Suppose } D_n \text{ is } \mathcal{F}_0 \text{-measurable such that (2.2) holds. Then (2.4) and (2.26) hold. If further, (2.3) and (2.5) hold, then (2.6) holds.}
\]

The homoscedastic case, \(\Sigma_t = \Sigma \), is included and also the case of \(\Sigma_t \) nonstochastic.

An important case of \(\{z_t\} \) is that in which \(D_n = \sqrt{n} I \); then \(D_n^{-1} \sum^n_{t=1} z_t z'_t (D_n')^{-1} = (1/n) \sum^n_{t=1} z_t z'_t \); that is, this matrix is simply the sample covariance matrix for known mean 0.

Corollary 2. Let \(\{z_t, v_t\} \) be a sequence of pairs of random vectors and let \(\{\mathcal{F}_t\} \) be an increasing sequence of \(\sigma \)-fields such that \(z_t \) is \(\mathcal{F}_{t-1} \)-measurable and \(v_t \) is \(\mathcal{F}_t \)-measurable. Suppose
\[
\frac{1}{n} \sum^n_{t=1} z_t z'_t \overset{p}{\rightarrow} M.
\]
a constant matrix.

\[
\frac{1}{n} \max_{1 \leq t \leq n} z'_t z_t \overset{p}{\rightarrow} 0.
\]

\(\mathbb{E}(v_t | \mathcal{F}_{t-1}) = 0 \text{ a.s.}, \quad \mathbb{E}(v_t v'_t | \mathcal{F}_{t-1}) = \Sigma_t \text{ a.s.} \)
\[
\frac{1}{n} \sum^n_{t=1} (\Sigma_t \otimes z_t z'_t) \overset{p}{\rightarrow} \Sigma \otimes M,
\]

and (2.5) holds. Then
\[
\frac{1}{\sqrt{n}} \text{vec} \left(\sum^n_{t=1} z_t v'_t \right) \overset{\mathcal{L}}{\rightarrow} N(0, \Sigma \otimes M);
\]
if, further, M is nonsingular, then

$$\sqrt{n} \, \text{vec}(\hat{B}_n - B) \xrightarrow{\mathcal{L}} N(0, M^{-1} \otimes \Sigma);$$

and if, further, (2.26) holds, then (2.32) holds.

Condition (2.40) is equivalently $(1/n) \sum_{i=1}^{n} \text{vec} z_t z_t' \xrightarrow{P} \text{vec} M$; (2.26) is equivalently $(1/n) \text{vec} \Sigma_t \xrightarrow{P} \text{vec} \Sigma$; and (2.42) is equivalently

$$\begin{align*}
(2.45) & \quad \frac{1}{n} \sum_{i=1}^{n} \text{vec} \Sigma_t(\text{vec} z_t z_t')' - \frac{1}{n} \sum_{i=1}^{n} \text{vec} \Sigma_t \left(\frac{1}{n} \sum_{i=1}^{n} \text{vec} z_t z_t' \right)' \xrightarrow{P} 0.
\end{align*}$$

The condition (2.45) is that vec Σ_t and vec $z_t z_t'$ are asymptotically uncorrelated over t. Even if the Σ_t's are nonstochastic and the z_t are exogenous this condition is needed to obtain $\Sigma \otimes M$ as the covariance matrix of $(1/\sqrt{n}) \sum_{t=1}^{n} z_t v_t'$.

3. Robustness in Autoregression.

We now consider the autoregressive model.

$$(3.1) \quad x_t = B x_{t-1} + v_t, \quad t = 1, 2, \ldots.$$

The form of (3.1) is (2.1) with z_t replaced by x_{t-1}. We shall show that the least squares estimator of B based on x_0, \ldots, x_n has the asymptotic normal distribution of the least squares estimator in the regression case. In order to show the analogies to (2.2) and (2.3) we prove the following lemmas.

Lemma 3. If the characteristic roots of B are less than 1 in absolute value and if $\max_{t=1,\ldots,n} v_t' v_t/n \xrightarrow{P} 0$, then for x_1, x_2, \ldots generated by (3.1)

$$\frac{1}{n} \max_{t=1,\ldots,n} x_{t-1}' x_{t-1} \xrightarrow{P} 0.$$

Proof. Since $x_0' x_0/n \xrightarrow{P} 0$ and the roots of B are less than 1 in absolute value, $x_0'(B')^{t-1} B^{t-1} x_0/n \xrightarrow{P} 0$ and we need only consider

$$\begin{align*}
(3.3) & \quad x_{t-1}' = \sum_{s=0}^{t-2} B^s v_{t-1-s}.
\end{align*}$$
Then
\begin{equation}
\begin{aligned}
x_{t-1}^* x_{t-1}^* &= \sum_{r,s=0}^{t-2} v_{t-r-1}^r (B')^r B^s v_{t-s-1} \\
&\leq \sum_{r,s=0}^{t-2} |v_{t-r-1}^r (B')^r B^s v_{t-s-1}|
\end{aligned}
\end{equation}
\begin{equation}
\leq \sum_{r,s=0}^{t-2} \lambda^{r+s} q r^{p-1} s^{p-1} (\|v_{t-r-1}\|^2 + \|v_{t-s-1}\|^2),
\end{equation}

where λ is the largest absolute value of the characteristic roots of B and q is a suitable constant. (See Lemma 7 in the appendix.) Then
\begin{equation}
\frac{1}{n} \max_{t=1,\ldots,n} \|x_{t-1}^*\|^2 \leq \frac{2q}{n} \max_{t=1,\ldots,n} \|v_t\|^2 \left(\sum_{s=0}^{n-2} \lambda^{r+s} q r^{p-1} s^{p-1} \right)^2.
\end{equation}

Since the sum in (3.5) is bounded as $n \to \infty$, (3.2) follows.

Lemma 4. Let x_1, x_2, \ldots be generated by (3.1) with and $\mathcal{E}x_0 = \Sigma_0$. Let $\{\mathcal{F}_t\}$ be an increasing sequence of σ-fields such that x_t and v_t are \mathcal{F}_t-measurable. Suppose the characteristic roots of B are less than 1 in absolute value, $\mathcal{E}(v_t|\mathcal{F}_{t-1}) = 0$ a.s., $\mathcal{E}(v_t v'_t|\mathcal{F}_{t-1}) = \Sigma_t$ a.s., (2.26) holds with Σ constant, and (2.27) holds. Define
\begin{equation}
\Gamma = \sum_{s=0}^{\infty} B^s \Sigma (B')^s.
\end{equation}

Then (2.28) holds,
\begin{equation}
\frac{1}{n} \sum_{t=1}^{n} v_t x_{t-1}^* \overset{p}{\to} 0,
\end{equation}
\begin{equation}
\frac{1}{n} \sum_{t=1}^{n} x_{t-1} x_{t-1}^* \overset{p}{\to} \Gamma.
\end{equation}

Proof. From (3.1) we have
\begin{equation}
x_{t-1} = \sum_{t=0}^{t-2} B^s v_{t-1-s} + B^{t-1} x_0.
\end{equation}
For some $\theta > 0$ define $x_{n0} = x_0$.

\begin{equation}
(3.10) \quad v_{nt} = v_t I \left[\frac{1}{n} \sum_{s=1}^{t} \Sigma_s \leq n(1 + \theta) \Sigma_0 \right].
\end{equation}

\begin{equation}
(3.11) \quad x_{n,t-1} = \sum_{s=0}^{t-1} B^s v_{n,t-1-s} + B^{t-1} x_{n0}.
\end{equation}

Then

\begin{equation}
(3.12) \quad \Pr \left\{ v_{nt} = v_t, t = 1, \ldots, n \right\} \xrightarrow{p} 1.
\end{equation}

\begin{equation}
(3.13) \quad \Pr \left\{ x_{n,t-1} = x_{t-1}, t = 1, \ldots, n \right\} \xrightarrow{p} 1,
\end{equation}

\begin{equation}
(3.14) \quad \Pr \left\{ v_{nt} x_{n,t-1} = v_t x'_{t-1}, t = 1, \ldots, n \right\} \xrightarrow{p} 1.
\end{equation}

By construction $\mathcal{E} \| v_{nt} \|^2 \leq n(1 + \theta) \Sigma$ and $\mathcal{E} \| x_{n,t-1} \|^2 < \infty$. Then

\begin{equation}
(3.15) \quad \text{tr} \left(\frac{1}{n} \sum_{t=1}^{n} v_{nt} x'_{n,t-1} \right) \left(\frac{1}{n} \sum_{s=1}^{n} x_{n,s-1} v'_{ns} \right)
\end{equation}

\begin{equation*}
= \frac{1}{n^2} \mathcal{E} \text{tr} \sum_{s,t=1}^{n} v_{nt} x'_{n,t-1} x_{n,s-1} v'_{ns}
\end{equation*}

\begin{equation*}
= \frac{1}{n^2} \mathcal{E} \sum_{s,t=1}^{n} x'_{n,t-1} x_{n,s-1} v'_{nt} v_{nt}
\end{equation*}

\begin{equation*}
= \frac{1}{n^2} \mathcal{E} \sum_{s,t=1}^{n} x'_{n,t-1} x_{n,s-1} \mathcal{E} \left(v'_{ns} v_{nt} | \mathcal{T}_{\max(s,t)-1} \right)
\end{equation*}

\begin{equation*}
= \frac{1}{n^2} \mathcal{E} \sum_{t=1}^{n} x'_{n,t-1} x_{n,t-1} \mathcal{E} \left(v'_{nt} v_{nt} | \mathcal{T}_{t-1} \right).
\end{equation*}

Since $\max_{t=1,\ldots,n} \| v_t \|^2/n \xrightarrow{p} 0$ by Theorem 4, we have $\max_{t=1,\ldots,n} \mathcal{E}(\| v_{nt} \|^2 | \mathcal{T}_{t-1})/n \xrightarrow{p} 0$ by (3.6). Now consider for $2 \leq t \leq n-1$

\begin{equation}
(3.16) \quad \frac{1}{n} \mathcal{E} \sum_{t=1}^{n} x_{n,t-1} x'_{n,t-1}
\end{equation}

\begin{equation*}
= \frac{1}{n} \mathcal{E} \left[x_0 x'_0 + \sum_{t=2}^{n} \left(\sum_{r=0}^{t-2} B^r v_{n,t-r-1} + B^{t-1} x_0 \right) \left(\sum_{s=0}^{t-2} B^s v_{n,s-t} + B^{t-1} x_0 \right) \right]
\end{equation*}

\begin{equation*}
= \frac{1}{n} \sum_{t=2}^{n} \sum_{s=0}^{t-2} B^s \mathcal{E} v_{n,t-s-1} v'_{n,t-s-1} (B')^s + \frac{1}{n} \sum_{t=1}^{n} B^{t-1} \Sigma_0 (B')^{t-1}
\end{equation*}

\begin{equation*}
= \sum_{s=0}^{n-2} B^s \frac{1}{n} \sum_{t=s+2}^{n} \mathcal{E} v_{n,t-s-1} v'_{n,t-s-1} (B')^s + \frac{1}{n} \sum_{t=1}^{n} B^{t-1} \Sigma_0 (B')^{t-1}.
\end{equation*}
The trace of the first term on the right-hand side of (3.6) is not greater than $(1 + \theta) \text{tr} \, \Gamma$.

Hence, (3.5) → 0, and (3.7) is proved.

From (2.28) and (3.1) we have

\begin{align*}
\left(3.17\right) \quad & \frac{1}{n} \sum_{t=1}^{n} v_t v_t' = \frac{1}{n} \sum_{t=1}^{n} \left(x_t x_t' - x_t x_{t-1}' - B x_t x_{t-1}' + B x_{t-1} x_{t-1}' B' \right) \\
& \overset{p}{\longrightarrow} \Sigma.
\end{align*}

From (3.7) and (3.1) we have

\begin{align*}
\left(3.18\right) \quad & \frac{1}{n} \sum_{t=1}^{n} v_t x_t'_{t-1} = \frac{1}{n} \sum_{t=1}^{n} \left(x_t x_{t-1}' - B x_{t-1} x_{t-1}' \right) \\
& \overset{p}{\longrightarrow} 0.
\end{align*}

If we add to (3.17) the result of multiplying (3.18) on the right by B' and the transpose of that product, we obtain

\begin{align*}
\left(3.19\right) \quad & \frac{1}{n} \sum_{t=1}^{n} v_t v_t' + \frac{1}{n} \sum_{t=1}^{n} v_t x_t'_{t-1} B' + \frac{1}{n} B \sum_{t=1}^{n} x_{t-1} v_t' \\
& = \frac{1}{n} \sum_{t=1}^{n} x_t x_t' - B \frac{1}{n} \sum_{t=1}^{n} x_{t-1} x_{t-1}' B' \\
& \overset{p}{\longrightarrow} \Sigma.
\end{align*}

Furthermore, Lemma 3 implies

\begin{align*}
\left(3.20\right) \quad & \frac{1}{n} \sum_{t=1}^{n} x_t x_t' - \frac{1}{n} \sum_{t=1}^{n} x_{t-1} x_{t-1}' = \frac{1}{n} x_n x_n' - \frac{1}{n} x_0 x_0' \overset{p}{\longrightarrow} 0
\end{align*}

Then (3.19) is equivalent to

\begin{align*}
\left(3.21\right) \quad & \frac{1}{n} \sum_{t=1}^{n} x_t x_t' - B \frac{1}{n} \sum_{t=1}^{n} x_t x_t' B' \overset{p}{\longrightarrow} \Sigma,
\end{align*}

which implies

\begin{align*}
\left(3.22\right) \quad & \Gamma = \text{plim}_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} x_t x_t' = \text{plim}_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} x_{t-1} x_{t-1}'.
\end{align*}
See Problem 27 of Chapter 5 of Anderson (1971). Then (3.4) follows.

Theorem 5. Let \(x_1, x_2, \ldots \) be generated by (3.1), where \(v_1, v_2, \ldots \) is a sequence of random vectors and \(\mathcal{E}x_0x'_0 = \Sigma_0 \). Let \(\{\mathcal{F}_t\} \) be an increasing sequence of \(\sigma \)-fields such that \(x_t \) and \(v_t \) are \(\mathcal{F}_t \)-measurable. Suppose that the characteristic roots of \(B \) are less than 1 in absolute value. \(\mathcal{E}(v_t|\mathcal{F}_{t-1}) = 0 \) a.s. \(\mathcal{E}(v_t'v_t'|\mathcal{F}_{t-1}) = \Sigma_t \) a.s., (2.26) holds with \(\Sigma \) constant, and (2.5) holds. Furthermore, suppose

\[
(3.23) \quad \frac{1}{n} \sum_{t=\max(r,s)+2}^{n} (\Sigma_t \otimes v_{t-1-r}v'_{t-1-s}) \xrightarrow{p} \delta_{rs}(\Sigma \otimes \Sigma),
\]

where \(\delta_{ss} = 1 \) and \(\delta_{rs} = 0 \) for \(r \neq s \). Then

\[
(3.24) \quad \frac{1}{\sqrt{n}} \text{vec} \left(\sum_{t=1}^{n} x_{t-1}v'_t \right) \xrightarrow{c} N(0, \Sigma \otimes \Gamma).
\]

Proof. In Corollary 2 we take \(z_t = x_{t-1} \). We want to verify (2.40), (2.41), and (2.42); (2.5) is assumed. Since (2.5) implies (2.27), Lemma 4 includes (3.8), which is equivalent to (2.40).

We have

\[
(3.25) \quad \frac{1}{n} \sum_{t=1}^{n} (\Sigma_t \otimes x_{t-1}x'_t)
\]

\[
= \frac{1}{n} \sum_{t=1}^{n} \left[\Sigma_t \otimes \left(\sum_{s=0}^{t-2} B^s v_{t-r-1} + B^{t-1} x_0 \right) \left(\sum_{s=0}^{t-2} B^s v_{t-s-1} + B^{t-1} x_0 \right) \right]
\]

If we define \(v_0 = v_{-1} = \cdots = 0 \), we can write

\[
(3.26) \quad \sum_{s=0}^{t-2} B^s v_{t-s-1} + B^{t-1} x_0 = \sum_{s=0}^{\infty} B^s v_{t-s-1} + B^{t-1} x_0
\]

\[
= \sum_{s=0}^{k} B^s v_{t-s-1} + \sum_{s=k+1}^{\infty} B^s v_{t-s-1} + B^{t-1} x_0.
\]

For \(t \geq p + 1 \)

\[
(3.27) \quad \|B^{t-1}x_0\| \leq 2\lambda^2(t-1)q(t-1)^{p-1}\|x_0\|^2.
\]
Hence

\[
\frac{1}{n} \sum_{t=1}^{n} \left[\Sigma_t \otimes B_t^{-1} x_0 x_0' (B')^{t-1} \right] \xrightarrow{p} 0.
\]

(See Lemma 8 in the Appendix.)

Consider the positive semidefinite matrix

\[
\frac{1}{n} \sum_{t=1}^{n} \left[\Sigma_t \otimes \sum_{r,s=k+1}^{\infty} B^r v_{t-r-1} v_{t-s-1}' (B')^s \right]
\]

We shall show that with arbitrarily high probability the trace of (3.28) is arbitrarily small if \(k\) is large enough. That will follow by showing the same property of

\[
\frac{1}{n} \sum_{t=1}^{n} \left[\Sigma_{nt} \otimes \sum_{r,s=k+1}^{\infty} B^r v_{n,t-r-1} v_{n,t-s-1}' (B')^s \right],
\]

where \(\Sigma_{nt} = \mathcal{E}(v_{nt} v_{nt}' | \mathcal{F}_{t-1})\). The expected value of the trace of the second matrix in (3.30) is

\[
\mathcal{E} \sum_{r,s=k+1}^{\infty} \text{tr} B^r v_{n,t-r-1} v_{n,t-s-1}' (B')^s
\]

\[
= \mathcal{E} \sum_{s=k+1}^{\infty} v_{n,t-s-1}' (B')^s B^r v_{n,t-r-1}
\]

\[
\leq \sum_{s=k+1}^{\infty} \lambda^{2s} q^s \lambda^{2p} \mathcal{E} v_{n,t-s-1}' v_{n,t-s-1}
\]

\[
= q^s \sum_{s=k+1}^{\infty} \lambda^{2s} \lambda^{2p} \mathcal{E} \left\{ \mathcal{E} [v_{n,t-s-1}' v_{n,t-s-1} I(v_{n,t-s-1}' v_{n,t-s-1} \leq a)] | \mathcal{F}_{t-s-2} \right\}
\]

\[
+ \mathcal{E} [v_{n,t-s-1}' v_{n,t-s-1} I(v_{n,t-s-1}' v_{n,t-s-1} > a)] | \mathcal{F}_{t-s-2} \}\}
\]

\[
\leq q^s \sum_{s=k+1}^{\infty} \lambda^{2s} \lambda^{2p} \left\{ a + \mathcal{E} \sup_{t=1,2,...} \mathcal{E} [v_{n,t}' v_{n,t} I(v_{n,t}' v_{n,t} > a)] | \mathcal{F}_{t-1} \right\}
\]

Since \(\sum_{s=k+1}^{\infty} \lambda^{2s} \lambda^{2p}\) converges, the second part of the right-hand side of (3.31) can be made arbitrarily small by taking \(a\) large enough; the first term can be made arbitrarily small by making \(k\) sufficiently large. Thus (3.31) is arbitrarily small, and by Tchebycheff's inequality the second matrix in (3.30) is arbitrarily small with arbitrarily high probability.
Now

\begin{equation}
\frac{1}{n} \sum_{t=1}^{n} \left[\Sigma_t \otimes \sum_{s=0}^{k} B^{r} v_{t-r-1} v'_{t-s-1} (B')^s \right] \xrightarrow{p} \Sigma \otimes \sum_{s=0}^{k} B^s \Sigma(B')^s.
\end{equation}

If the right-hand side of (3.26) is written as \(a_t + b_t + c_t \), we have shown above that

\begin{equation}
\frac{1}{n} \sum_{t=1}^{n} \Sigma_t \otimes b_t b'_t \xrightarrow{p} 0
\end{equation}

and that

\begin{equation}
\text{tr} \frac{1}{n} \sum_{t=1}^{n} (\Sigma_t \otimes c_t c'_t)
\end{equation}

can be made to converge in probability as \(n \to \infty \) to an arbitrarily small quantity. It follows from the Cauchy–Schwarz inequality that

\begin{equation}
\frac{1}{n} \sum_{t=1}^{n} (\Sigma_t \otimes a_t c'_t) \xrightarrow{p} 0.
\end{equation}

\begin{equation}
\frac{1}{n} \sum_{t=1}^{n} (\Sigma_t \otimes b_t c'_t) \xrightarrow{p} 0.
\end{equation}

and that

\begin{equation}
\frac{1}{n} \sum_{t=1}^{n} (\Sigma_t \otimes a_t b'_t)
\end{equation}

can be made to converge in probability to an arbitrarily small quantity. Hence,

\begin{equation}
\frac{1}{n} \sum_{t=1}^{n} [\Sigma_t \otimes x_{t-1} x'_{t-1}] \xrightarrow{p} \Sigma \otimes \Gamma.
\end{equation}

Hence, by Corollary 2 (3.24) follows.

The least squares estimator of \(B \) is

\begin{equation}
\hat{B}_n = \sum_{t=1}^{n} x_t x'_{t-1} \left(\sum_{t=1}^{n} x_{t-1} x'_{t-1} \right)^{-1}.
\end{equation}
and the estimator of Σ is

$$
\hat{\Sigma}_n = \frac{1}{n} \sum_{t=1}^{n} (x_t - \hat{B}_n x_{t-1})(x_t - \hat{B}_n x_{t-1})'
$$

$$
= \frac{1}{n} \sum_{t=1}^{n} v_t v_t' - (\hat{B}_n - B) \frac{1}{n} \sum_{t=1}^{n} x_{t-1} x_{t-1}' (\hat{B}_n - B)'.
$$

Corollary 3. Suppose the conditions of Theorem 5 hold and I is nonsingular. Then

$$
\sqrt{n} \text{vec}(\hat{B}_n - B) \overset{D}{\rightarrow} N(0, \Gamma^{-1} \otimes \Sigma),
$$

and (2.32) holds.

The conditions (3.23) in autoregression replace condition (2.4) in regression: they imply (3.38) which is the analog of (2.4). The limit (3.38) is that vec Σ_t and vec $x_{t-1} x_{t-1}'$ are asymptotically uncorrelated. The condition holds identically in B; the conditions (3.23) are independent of B.

Corollary 4. Under the conditions of Theorem 5 with (2.26) and (3.23) replaced by $\Sigma_t \rightarrow \Sigma$ a.s., (3.24) holds. If I is nonsingular, (3.41) and (2.32) hold.

Proof. The condition $\Sigma_t \rightarrow \Sigma$ a.s., where Σ is constant, implies (2.26) and (3.23).

A higher order autoregressive process can be reduced to the first-order process. Suppose X_1, X_2, \ldots satisfy

$$
X_t = B_1 X_{t-1} + \cdots + B_p X_{t-p} + V_t, t = 1, 2, \ldots
$$

Define

$$
x_t = \begin{bmatrix} X_t \\ X_{t-1} \\ \vdots \\ X_{t-p+1} \end{bmatrix}, \quad v_t = \begin{bmatrix} V_t \\ 0 \\ \vdots \\ 0 \end{bmatrix}.
$$
where \(\mathcal{E}(V_t|\mathcal{F}_{t-1}) = 0 \) a.s., \(\mathcal{E}(V_tV'_t|\mathcal{F}_{t-1}) = \Omega_t \) a.s., and \(\{\mathcal{F}_t\} \) is an increasing \(\sigma \)-field such that \(X_t \) and \(V_t \) are \(\mathcal{F}_t \)-measurable. Then \(\{x_t\} \) satisfies (3.1).

Theorem 6. Let

\[
(3.45) \quad \mathcal{E} \left[\begin{bmatrix} X_0 \\ X_{-1} \\ \vdots \\ X_{-p+1} \end{bmatrix} \right] [X_0', X_{-1}', \ldots, X_{-p+1}'] = \Phi,
\]

and let \(X_1, X_2, \ldots \) be generated by (3.42). Let \(\{\mathcal{F}_t\} \) be an increasing sequence of \(\sigma \)-fields such that \(X_t \) and \(V_t \) are \(\mathcal{F}_t \)-measurable. Suppose the roots of

\[
(3.46) \quad |\lambda^p I - \lambda^{p-1} B_1 - \cdots - B_p| = 0
\]

are less than 1 in absolute value, \(\mathcal{E}(V_t|\mathcal{F}_{t-1}) = 0 \) a.s., \(\mathcal{E}(V_tV'_t|\mathcal{F}_{t-1}) = \Omega_t \) a.s.,

\[
(3.47) \quad \frac{1}{n} \sum_{t=1}^{n} \Omega_t \xrightarrow{p} \Omega,
\]

which is nonsingular and constant, and (2.5) holds with \(v_t \) replaced by \(V_t \). Define

\[
(3.48) \quad \hat{B}_{1n}, \hat{B}_{2n}, \ldots, \hat{B}_{pn} = \sum_{t=1}^{n} X_t(X_{t-1}', X_{t-2}', \ldots, X_{t-p}')
\]

\[
\times \left[\begin{array}{c} \sum_{t=1}^{n} X_{t-1}X_{t-1}' \\ \sum_{t=1}^{n} X_{t-2}X_{t-1}' \\ \vdots \\ \sum_{t=1}^{n} X_{t-p}X_{t-1}' \end{array} \right]^{-1} \left[\begin{array}{c} \sum_{t=1}^{n} X_{t-1}X_{t-2}' \\ \sum_{t=1}^{n} X_{t-2}X_{t-2}' \\ \vdots \\ \sum_{t=1}^{n} X_{t-p}X_{t-p}' \end{array} \right],
\]

\[
(3.49) \quad \hat{\Omega}_n = \frac{1}{n} \sum_{t=1}^{n} (X_t - \hat{B}_{1n}X_{t-1} - \cdots - \hat{B}_{pn}X_{t-p})(X_t - \hat{B}_{1n}X_{t-1} - \cdots - \hat{B}_{pn}X_{t-p})'.
\]

Then

\[
(3.50) \quad \hat{\Omega}_n \xrightarrow{p} \Omega.
\]
\[
\frac{1}{n} \sum_{t=1}^{n} \begin{bmatrix} X_{t-1} \\ X_{t-2} \\ \vdots \\ X_{t-p} \end{bmatrix} \xrightarrow{p} \sum_{s=0}^{\infty} B^s \Sigma (B')^s = \Gamma.
\]

say, where

\[
(3.52) \quad \Sigma = \begin{bmatrix} \Omega & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}
\]

and

\[
(3.53) \quad \sqrt{n} \text{vec}(\hat{\beta}_1 - B_1, \ldots, \hat{\beta}_{p_n} - B_p) \overset{c}{\rightarrow} N(0, \Gamma^{-1} \otimes \Omega).
\]

Lemma 5. If \(\Omega\) is nonsingular, \(\Gamma\) is nonsingular.

Proof. The proof is a vector generalization of the proof of Lemma 5.5.5 of Anderson (1971).

4. Robustness in Mixed Regression and Autoregression

Now we consider the model

\[
(4.1) \quad x_t = B x_{t-1} + \Delta z_t + v_t, \quad t = 1, 2, \ldots.
\]

This model is analogous to the regression model (2.1) with \(z_t\) replaced by \((x'_{t-1}, z_t')\). The least squares estimator of \((B, \Delta)\) is

\[
(4.2) \quad (\hat{B}_n, \hat{\Delta}_n) = \left(\sum_{t=1}^{n} x_t x'_{t-1}, \sum_{t=1}^{n} x_t z_t' \right) \left[\sum_{t=1}^{n} x'_{t-1} x_{t-1} \quad \sum_{t=1}^{n} x'_{t-1} z_t' \right]^{-1}.
\]

and the estimator of \(\Sigma\) is

\[
(4.3) \quad \hat{\Sigma}_n = \frac{1}{n} \sum_{t=1}^{n} (x_t - \hat{B}_n x_{t-1} - \hat{\Delta}_n z_t)(x_t - \hat{B}_n x_{t-1} - \hat{\Delta}_n z_t)'.
\]
Theorem 7. Let $x_0x'_0 = \Sigma_0$: let x_1, x_2, \ldots be generated by (4.1), and let z_1, z_2, \ldots be a sequence of random variables (possibly degenerate). Let $\{\mathcal{F}_t\}$ be a sequence of increasing σ-fields such that v_t is \mathcal{F}_t-measurable and z_t is \mathcal{F}_{t-1}-measurable. Suppose the characteristic roots of B are less than 1 in absolute value, $\mathcal{E}(v_t | \mathcal{F}_{t-1}) = 0$ a.s., $\mathcal{E}(v'_t | \mathcal{F}_{t-1}) = \Sigma_t$ a.s., and (2.5), (2.26), and (2.41) hold. Suppose

\[
\frac{1}{n} \sum_{t=1}^{n-h} z_{t+h} z'_t \xrightarrow{p} M_h = M'_{-h}, \quad h = 0, 1, 2, \ldots.
\]

\[
\frac{1}{n} \sum_{t=1}^{n-h} z_{t+h} v'_t \xrightarrow{p} 0, \quad h = 1, 2, \ldots.
\]

Define

\[
L = \sum_{s=0}^{\infty} B^s \Delta M_{-(s+1)}.
\]

Then

\[
\frac{1}{n} \sum_{t=1}^{n} x_{t-1} z'_t \xrightarrow{p} L.
\]

\[
\frac{1}{n} \sum_{t=1}^{n} x_{t-1} x'_{t-1} \xrightarrow{p} Q.
\]

where Q is the unique solution to

\[
Q - BQB' = \Sigma + BL\Delta' + \Delta L' B' + \Delta M_0 \Delta'.
\]

Furthermore, if (2.42) and (3.23) hold and

\[
\frac{1}{n} \sum_{t=1}^{n} (\Sigma_t \otimes v_{t-1} - z'_t) \xrightarrow{p} 0, \quad s = 1, 2, \ldots.
\]

then

\[
\sqrt{n} \text{vec} (B_n - B_n \Delta_n - \Delta) \xrightarrow{L} N \left[\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \left(\begin{pmatrix} Q \\ L' \end{pmatrix} \begin{pmatrix} M_0 \\ \Sigma \end{pmatrix} \right)^{-1} \right].
\]
and (2.32) holds under the further assumption that the inverse matrix in (4.11) exists.

Proof. Because the roots of B are less than 1 in absolute value, the sum in (4.6) converges (by use of the Cauchy–Schwarz inequality). From (4.1) we obtain

$$(4.12) \quad x_{t-1} = \sum_{s=0}^{t-2} B^s v_{t-1-s} + B^{t-1} x_0 + \sum_{s=0}^{t-2} B^s \Delta z_{t-1-s}$$

$$= \sum_{s=0}^{k} B^s v_{t-1-s} + \sum_{s=k+1}^{\infty} B^s v_{t-1-s} + B^{t-1} x_0$$

$$+ \sum_{s=0}^{k} B^s \Delta z_{t-1-s} + \sum_{s=k+1}^{\infty} B^s \Delta z_{t-1-s}.$$

where $v_0 = v_{-1} = \cdots = 0$ and $z_0 = z_{-1} = \cdots = 0$. Then

$$(4.13) \quad \frac{1}{n} \sum_{t=1}^{n} x_{t-1} z_t' = \frac{1}{n} \sum_{t=1}^{n} \sum_{s=0}^{k} B^s (v_{t-1-s} + \Delta z_{t-1-s}) z_t'$$

$$+ \frac{1}{n} \sum_{t=1}^{n} \left[B^{t-1} x_0 z_t' + \sum_{s=k+1}^{\infty} B^s (v_{t-1-s} + \Delta z_{t-1-s}) z_t' \right].$$

We calculate by use of Lemma 7

$$(4.14) \quad \left| \frac{1}{n} \sum_{t=1}^{n} \sum_{s=k+1}^{\infty} B^s v_{t-1-s} z_t' \right| \leq \frac{1}{n} \sum_{t=1}^{n} \sum_{s=k+1}^{\infty} \lambda^s s^{p-1} q^{**} (\|v_{t-1-s}\|^2 + \|z_t\|^2)$$

$$\leq q^{**} \sum_{s=k+1}^{\infty} \lambda^s s^{p-1} \frac{1}{n} \sum_{t=1}^{n} (\|v_t\|^2 + \|z_t\|^2).$$

Since $\sum_{s=0}^{\infty} \lambda^s s^{p-1}$ converges and $\sum_{t=1}^{n} \|z_t\|^2 / n \overset{P}{\to} \text{tr} \ M_0$, we can choose k sufficiently large to make the right-hand side of (4.14) arbitrarily small with arbitrarily high probability. Similarly the other two terms in the second sum in (4.13) can be made small. Then

$$(4.15) \quad \frac{1}{n} \sum_{s=0}^{k} B^s (v_{t-1-s} + \Delta z_{t-1-s}) z_t' \overset{P}{\to} \frac{1}{n} \sum_{s=0}^{k} B^s \Delta M_{-k}.$$

That leads to (4.7).

From (4.1) we have

$$(4.16) \quad \frac{1}{n} \sum_{t=1}^{n} v_t v_t' = \frac{1}{n} \sum_{t=1}^{n} \left[x_t x_t' - B x_{t-1} x_t' - \Delta z_t x_t' \right].$$
\[-x_t z_t' \Delta' + B x_{t-1} z_t' \Delta' + \Delta z_t z_t' \Delta' \]

\[\xrightarrow{P} \Sigma. \]

\[(4.17) \quad \frac{1}{n} \sum_{t=1}^{n} v_t x_{t-1}' = \frac{1}{n} \sum_{t=1}^{n} \left[x_t x_{t-1}' - B x_{t-1} x_{t-1}' - \Delta z_t x_{t-1}' \right]. \]

\[(4.18) \quad \frac{1}{n} \sum_{t=1}^{n} v_t z_t' = \frac{1}{n} \sum_{t=1}^{n} \left[x_t z_t' - B x_{t-1} z_t' - \Delta z_t z_t' \right] \xrightarrow{P} 0. \]

If \((4.17) \xrightarrow{P} 0 \), then from (4.16), (4.17), and (4.18) we obtain

\[(4.19) \quad \frac{1}{n} \sum_{t=1}^{n} \left(x_t x_t' - B x_{t-1} x_{t-1}' B' \right) \]

\[= \frac{1}{n} \left[\sum_{t=1}^{n} (x_t x_t' - B x_t x_t' B') + B x_n x_n' B' - B x_0 x_0' B' \right] \xrightarrow{P} \Sigma + BL \Delta' + \Delta L' B' + \Delta M_0 \Delta'. \]

If \((1/n)x_n' x_n \xrightarrow{P} 0 \), then (4.8) follows from (4.19). Thus

\[(4.20) \quad \frac{1}{n} \sum_{t=1}^{n} \left(\frac{x_{t-1}}{z_t}, \frac{x_t'}{z_t'} \right) \xrightarrow{P} \left(\begin{array}{c} Q \\ L' \\ M_0 \end{array} \right). \]

Now we consider

\[(4.21) \quad \frac{1}{n} \sum_{t=1}^{n} \left(\Sigma_t \otimes x_{t-1} x_{t-1}' \right) \]

\[= \frac{1}{n} \sum_{t=1}^{n} \left[\Sigma_t \otimes \sum_{r,s=0}^{\infty} B^r(\Delta, I) \left(\begin{array}{c} z_{t-1-s} \\ v_{t-1-s} \end{array} \right) (z_{t-1-s}', v_{t-1-s}') \left(\begin{array}{c} \Delta' \\ I \end{array} \right)^s \right]. \]

If the sums in (4.21) on \(r, s \) run from \(k + 1 \) to \(\infty \), the trace converges to an arbitrarily small quantity by taking \(k \) sufficiently large. Then

\[(4.22) \quad \frac{1}{n} \sum_{t=1}^{n} \left[\Sigma_t \otimes \sum_{r,s=0}^{k} B^r(\Delta, I) \left(\begin{array}{c} z_{t-1-s} \\ v_{t-1-s} \end{array} \right) (z_{t-1-s}', v_{t-1-s}') \left(\begin{array}{c} \Delta' \\ I \end{array} \right)^s \right] \xrightarrow{P} \Sigma \otimes \sum_{r,s=0}^{k} B^r [\Delta M_{s-r} \Delta' + \delta_{r,s} \Sigma] (B')^s. \]
Thus
\[
(4.23) \quad \frac{1}{n} \sum_{t=1}^{n} (\Sigma_t \otimes x_{t-1} x_{t-1}') \xrightarrow{P} \Sigma \otimes \left[\sum_{r,s=0}^{\infty} B'' \Delta M_{s-r} \Delta'(B')^s + \sum_{s=0}^{\infty} B^s \Sigma(B')^s \right] = \Sigma \otimes Q.
\]

By similar means we can complete the proof of
\[
(4.24) \quad \frac{1}{n} \sum_{t=1}^{n} \left[\Sigma_t \otimes \left(\frac{x_{t-1}}{z_t} \right) (x_{t-1}', z_t') \right] \xrightarrow{P} \left(\begin{array}{c} Q \\ L \\ M_0 \end{array} \right).
\]

Theorem 1 can then be applied with \(z_t \) in Theorem 1 replaced by \((x_{t-1}', z_t)' \) to obtain (4.11), and (2.33) follows.

To apply Theorem 1 we also need
\[
(4.25) \quad \frac{1}{n} \max_{t=1, \ldots, n} \| x_{t-1}' \|^2 \xrightarrow{P} 0.
\]

To prove this we need only consider
\[
(4.26) \quad x_{t-1}' = \sum_{s=0}^{t-2} B^s (v_{t-1-s} + \Delta z_{t-1-s}).
\]

Then
\[
(4.27) \quad x_{t-1}' x_{t-1}' = \left\| \sum_{s=0}^{t-2} B^s (v_{t-1-s} + \Delta z_{t-1-s}) \right\|^2 \
\leq 2 \left\| \sum_{s=2}^{t-2} B^s v_{t-1-s} \right\|^2 + 2 \left\| \sum_{s=0}^{t-2} B^s \Delta z_{t-1-s} \right\|^2.
\]

By (3.4) the first term on the right-hand side of (4.27) is less than or equal to
\[
(4.28) \quad 4 \sum_{r,s=0}^{t-2} \lambda^{r+s} q r^{p-1} s^{p-1} \| v_{t-1-s} \|^2 \leq 4 \sum_{r,s=0}^{t-2} \lambda^{r+s} q r^{p-1} s^{p-1} \max_{t=1, \ldots, n} \| v_t \|^2.
\]

Since \(\| \Delta z_{t-1-s} \|^2 \leq \text{const} \| z_{t-1-s} \|^2 \), we obtain
\[
(4.29) \quad \| x_{t-1}' \|^2 \leq 4 \sum_{r,s=0}^{t-2} \lambda^{r+s} r^{p-1} s^{p-1} \left(q \max_{t=1, \ldots, n} \| v_t \|^2 + q \max_{t=1, \ldots, n} \| z_t \|^2 \right).
\]
which implies (4.25) and \(\|x_n\|^2/n \xrightarrow{p} 0 \).

Now we want to show that

\[
\frac{1}{n} \sum_{t=1}^{n} x_{t-1} v_t' \xrightarrow{p} 0. \tag{4.30}
\]

From (4.12) we have

\[
\frac{1}{n} \sum_{t=1}^{n} x_{t-1} v_t' = \frac{1}{n} \sum_{t=1}^{n} \sum_{s=0}^{t-2} B^s \Delta z_{t-s-1} v_t' + \frac{1}{n} \sum_{t=1}^{n} \sum_{s=0}^{t-2} B^s \Delta z_{t-s-1} v_t'.
\tag{4.31}
\]

It was shown in Section 3 that the first two terms on the right-hand side of (4.31) converge to 0 in probability as \(n \to \infty \).

Define \(v_{nt} \) by (3.10) and \(z_{nt} \) by

\[
\frac{1}{n} \sum_{t=1}^{n} \sum_{s=0}^{t-2} B^s \Delta z_{t-s-1} v_t' = \frac{1}{n} \sum_{t=1}^{n} \sum_{s=0}^{t-2} B^s \Delta z_{n,t-s-1} v_{nt}. \tag{4.32}
\]

Then

\[
\Pr \left\{ \frac{1}{n} \sum_{t=1}^{n} \sum_{s=0}^{t-2} B^s \Delta z_{n,t-s-1} v_{nt}' = \frac{1}{n} \sum_{t=1}^{n} \sum_{s=0}^{t-2} B^s \Delta z_{n,t-s-1} v_{nt} \right\} \to 1. \tag{4.33}
\]

Consider

\[
\mathcal{E} \text{ tr} \left(\frac{1}{n} \sum_{t=1}^{n} \sum_{s=0}^{t-2} B^s \Delta z_{n,t-s-1} v_{nt}' \right)' \left(\frac{1}{n} \sum_{t=1}^{n} \sum_{s=0}^{t-2} B^r \Delta z_{n,t-r-1} v_{nt}' \right)
\tag{4.34}
\]

\[
= \frac{1}{n^2} \mathcal{E} \left[\sum_{t=1}^{n} \left(\sum_{s=0}^{t-2} B^s \Delta z_{n,t-s-1} \right)' \left(\sum_{r=0}^{t-2} B^r \Delta z_{n,t-r-1} \right) \mathcal{E} \left(v_{nt}' v_{nt} | \mathcal{F}_{t-1} \right) \right]
\]

\[
= \frac{1}{n^2} \mathcal{E} \sum_{t=1}^{n} \left\| \sum_{s=0}^{t-2} B^s \Delta z_{n,t-s-1} \right\|^2 \mathcal{E} \left(v_{nt}' v_{nt} | \mathcal{F}_{t-1} \right)
\]

\[
\leq \frac{1}{n} \mathcal{E} \max_{s=1, \ldots, n} \|z_{ns}\|^2 \sum_{s=0}^{n-1} \text{tr} \Delta'(B')^s B^s \Delta \mathcal{E} \left(v_{nt}' v_{nt} | \mathcal{F}_{t-1} \right)
\]

\[
\to 0
\]

because \(\|z_{ns}\|^2/n \xrightarrow{p} 0 \) and \(\|z_{ns}\|^2 \) is bounded and \(\Sigma_t \xrightarrow{p} \Sigma \) and \(\|v_{nt}\|^2 \) is bounded.

This proves (4.20) and the theorem.

25
Lemma 6. If assumptions of Theorem 7 hold and if Σ and M_0 are positive definite, then (4.24) is positive definite.

Proof.

\begin{align*}
(c', d') \begin{pmatrix} Q & L \\ L' & M_0 \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} &= \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} (c' x_{t-1} + d' z_t)^2 \\
&= \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} \left[(c' v_{t-1})^2 + (c' B x_{t-1} + c' \Delta z_{t-1} + d' z_t)^2 \\
&\quad + 2c' v_{t-1} (x'_{t-2} B' c + z'_{t-1} \Delta' c + z'_{t} d) \right] \\
&= c' \Sigma c + \lim_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} (c' B x_{t-1} + c' \Delta z_{t-1} + d' z_t)^2 \\
&\geq c' \Sigma c
\end{align*}

by (4.3) and (4.30). If the left-hand side of (4.35) is 0, then $c = 0$ because Σ is positive definite. In that case the left-hand side of (4.35) is $d' M_0 d = 0$; since M_0 is positive definite, $d = 0$.

A special case of the mixed model is $z_t = 1$. Then (4.1) is

\begin{align*}
(4.36) \quad x_t &= B x_{t-1} + \gamma + v_t,
\end{align*}

where $\gamma = \Delta$ or

\begin{align*}
(4.37) \quad x_t - \mu &= B (x_{t-1} - \mu) + v_t,
\end{align*}

where $\gamma = (I - B) \mu$. In this case (2.41), (4.4) and (4.5) are automatically satisfied, and condition (4.10) reduces to

\begin{align*}
(4.38) \quad \frac{1}{n} \sum_{t=1}^{n} (\Sigma_t \otimes v_{t-1-s}) &\xrightarrow{p} 0. \quad s = 0, 1, \ldots.
\end{align*}

The matrix L is

\begin{align*}
(4.39) \quad L &= \sum_{s=0}^{\infty} B^s \gamma = (I - B)^{-1} \gamma,
\end{align*}
and the matrix Q is

\begin{equation}
Q = \Gamma + (I - B)^{-1}\gamma\gamma'(I - B')^{-1}.
\end{equation}

In this case

\begin{equation}
\hat{B}_n = \left(\sum_{t=1}^{n} \frac{x_t x'_{t-1} - \frac{1}{n} \sum_{i=1}^{n} x_t \sum_{i=1}^{n} x'_{i-1}}{\left(\sum_{i=1}^{n} x_{t-1} x'_{i-1} - \frac{1}{n} \sum_{i=1}^{n} x_{t-1} \sum_{i=1}^{n} x'_{i-1} \right)^{-1}} \right)
\end{equation}

and $\hat{\mu}_n = (I - \hat{B}_n)\hat{\gamma}_n$, which is approximately $(1/n)\sum_{t=1}^{n} x_t$. The limiting covariance matrix of $\sqrt{n}\left[(1/n)\sum_{t=1}^{n} x_t - \mu\right]$ is

\begin{equation}
(I - B)^{-1}\Gamma + \Gamma(I - B')^{-1} - \Gamma.
\end{equation}

The condition (4.5) suggests a kind of lack of correlation between z_{t+h} and v_t which is plausible if \{z_t\} and \{v_t\} are independent; that is, if the z_t's are exogenous.

Acknowledgements. The authors are indebted to T. L. Lai for helpful suggestions. The research of the first author was supported by U.S. Army Research Office Contract DAAL03-89-K-0033; the research of the second author was supported by Grant-in-Aid 01301075 of the Ministry of Education at the Faculty of Economics, University of Tokyo, Japan.
Lemma 7. Let the largest absolute value of the characteristic roots of B of order p be $\lambda < 1$. Then for any vectors u and v

(A.1) \[|u'(B')^r B^s v| \leq \lambda^{r+s} q r^{p-1} s^{p-1} (\|u\|^2 + \|v\|^2) \]

for a suitable constant q.

Proof. There exists a matrix P such that $B = P^{-1} H P$, where

(A.2) \[
H = \begin{bmatrix}
H_1 & 0 & \ldots & 0 \\
0 & H_2 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & H_K
\end{bmatrix}
\]

the $p_k \times p_k$ matrix $H_k = \lambda_k I + L_k$, λ_k is a characteristic root of B, and

(A.3) \[
L_k = \begin{pmatrix}
0 & 0 & 0 & \ldots & 0 & 0 \\
1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & 0
\end{pmatrix}
\]

Then

(A.4) \[u'(B')^r B^s v = u' P'(H')^r (PP')^{-1} H^r P v. \]

Let

(A.5) \[
(P P')^{-1} = G = \begin{bmatrix}
G_{11} & G_{12} & \cdots & G_{1K} \\
G_{21} & G_{22} & \cdots & G_{2K} \\
\vdots & \vdots & \ddots & \vdots \\
G_{K1} & G_{K2} & \cdots & G_{KK}
\end{bmatrix}
\]

For $s \geq p_k - 1$ we have

(A.6) \[
H_k^s = \lambda_k^s I + \lambda_k^{s-1} \begin{pmatrix} s \\ 1 \end{pmatrix} L_k + \cdots + \lambda_k^{s-(p_k-1)} \begin{pmatrix} s \\ p_k - 1 \end{pmatrix} L_k^{p_k-1}
\]

\[
= \lambda_k^s \left[I + \lambda_k \begin{pmatrix} s \\ 1 \end{pmatrix} L_k + \cdots + \lambda_k^{-(p_k-1)} \begin{pmatrix} s \\ p_k - 1 \end{pmatrix} L_k^{p_k-1} \right].
\]
Let $Pu = x$, $Pv = y$ and

\[
Q(r, s) = \begin{bmatrix}
Q_{11}(r, s) & Q_{12}(r, s) & \cdots & Q_{1K}(r, s) \\
Q_{21}(r, s) & Q_{22}(r, s) & \cdots & Q_{2K}(r, s) \\
\vdots & \vdots & & \vdots \\
Q_{K1}(r, s) & Q_{K2}(r, s) & \cdots & Q_{KK}(r, s)
\end{bmatrix}
\]

Then

\[
|w' \lambda^{r+s} Q(r, s)y| \leq \lambda^{r+s} \sum_{i,j=1}^{p} |q_{ij}(r, s)||x_i||y_j|
\]

\[
\leq \lambda^{r+s} \sum_{i,j=1}^{p} \frac{|q_{ij}(r, s)|}{2} (x_i^2 + y_i^2)
\]

\[
\leq p \lambda^{r+s} \max_{i,j=1,\ldots,p} \frac{|q_{ij}(r, s)|}{2} (\|x\|^2 + \|y\|^2).
\]

Let

\[
q_{ij}(r, s) = \sum_{g,h=0}^{p-1} q_{ij}^{gh} r^gs^h.
\]

Then

\[
\max_{i,j=1,\ldots,p} |q_{ij}(r, s)| \leq \max_{i,j=1,\ldots,p} \sum_{g,h=0}^{p-1} |q_{ij}^{gh}| r^{p-1}s^{p-1}
\]

and $\|x\|^2 \leq \|u\|^2$ times the maximum characteristic root of PP' and similarly for $\|y\|^2$.

The lemma follows.
Lemma 8. (3.28).

Proof. The left-hand side of (3.28) is positive semidefinite. Its trace is

\[
\frac{1}{n} \sum_{t=1}^{n} \text{tr} \, \Sigma_{t} \text{tr} \, x_{0}'(B')^{t-1} B'^{-1} x_{0} \leq \frac{1}{n} \sum_{t=1}^{n} \text{tr} \, \Sigma_{t} \lambda^{2t-2} t^{2p-2} q^{*} \|x_{0}\|^{2}.
\]

We can take \(t_{0} \) large enough so that for \(t > t_{0} \) and arbitrary \(\epsilon > 0, \delta > 0 \)

\[
\Pr\{\lambda^{2t-2} t^{2p-2} q^{*} \|x_{0}\|^{2} < \epsilon\} > 1 - \delta.
\]

Then the right-hand side of (A.12) is with probability greater than 1 - \(\delta \) not greater than

\[
\frac{1}{n} \sum_{t=1}^{n} \text{tr} \, \Sigma_{t} \lambda^{2t-2} t^{2p-2} q^{*} \|x_{0}\|^{2} + \epsilon \frac{1}{n} \sum_{t=n_{0}}^{n} \text{tr} \, \Sigma_{t} \xrightarrow{P} \epsilon \, \text{tr} \, \Sigma
\]
as \(n \to \infty \).

Comments on Condition (2.5)

A key assumption is

\[
\sup_{t=1,2,...} \text{tr} \, v_{t}' v_{t} I(v_{t}' v_{t} > a)|\mathcal{F}_{t-1}] \xrightarrow{P} 0
\]
as \(a \to \infty \); that is, given \(\epsilon > 0, \delta > 0 \) there exists \(a_{0} \) such that for \(a > a_{0} \)

\[
\Pr \left\{ \sup_{t=1,2,...} \text{tr} \, v_{t}' v_{t} I(v_{t}' v_{t} > a)|\mathcal{F}_{t-1}] \leq \epsilon \right\} \geq 1 - \delta.
\]

Let \(W_{t}(a) = \text{tr} \, v_{t}' v_{t} I(v_{t}' v_{t} > a)|\mathcal{F}_{t-1}] \). The above event for fixed \(a \) is

\[
\bigcap_{t=1}^{\infty} \{W_{t}(a) \leq \epsilon\},
\]

which is measurable. The random variable

\[
X_{n}(a) = \max_{t=1,...,n} W_{t}(a)
\]
has the property

\[
X_{n+1}(a) = \max \left[X_{n}(a), W_{n+1}(a) \right].
\]

Note that for given \(a \) \(X_{n}(a) \) is nondecreasing in \(n \). The event (A.17) is

\[
\left\{ \lim_{n \to \infty} X_{n}(a) \leq \epsilon \right\} = \bigcap_{n=1}^{\infty} \{X_{n}(a) \leq \epsilon\}.
\]

Note that since \(X_{n}(a) \) can be defined by (A.19), it is a one-dimensional variable; that is, the condition is a weak condition, not a strong condition. It is a condition on the cdf's of \(X_{n}(a) \).
References

Technical Reports
U.S. Army Research Office
Contracts DAAG29-82-K-0156, DAAG29-85-K-0239, and DAAL03-89-K-0033

