An Investigation into the Gravity Current Aspects of a Cold Air Outbreak Using Variational Analysis Techniques

Author: Stephen Bond Allen

Type of Report: Thesis

Sponsor: Civilian Institution Programs

Monitored by: AFIT/CI/CIA-88-214

Address: Wright-Patterson AFB OH 45433-6583

Title: An investigation into the Gravity Current Aspects of a Cold Air Outbreak Using Variational Analysis Techniques

Abstract:

An investigation into the Gravity Current Aspects of a Cold Air Outbreak Using Variational Analysis Techniques

Date of Report: 1988

Page Count: 92

Source of Funding Numbers:

Program Element No.:

Element No.:

Task No.:

Work Unit Accession No.:

Security Classification: UNCLASSIFIED

Supplementary Notation:

Approved for Public Release IAW AFR 190-1

Personnel:

Name: ERNEST A. HAYGOOD, 1st Lt, USAF

Office: Executive Officer, Civilian Institution Programs

Address: Wright-Patterson AFB OH 45433-6583

Telephone: (513) 255-2259

Cost Codes:

Subject Terms:

Abstract: (Continue on reverse if necessary and identify by block number)
AN INVESTIGATION INTO THE GRAVITY CURRENT
ASPECTS OF A COLD AIR OUTBREAK
USING VARIATIONAL ANALYSIS TECHNIQUES

A THESIS
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the
degree of
MASTER of SCIENCE
in METEOROLOGY

By
STEPHEN BOND ALLEN
Norman, Oklahoma
1988
AN INVESTIGATION INTO THE GRAVITY CURRENT
ASPECTS OF A COLD AIR OUTBREAK
USING VARIATIONAL ANALYSIS
TECHNIQUES
A THESIS
APPROVED FOR THE SCHOOL OF METEOROLOGY
Acknowledgments

I give my heartfelt thanks to Dr. Yoshi Sasaki for his kind and thought provoking advice. His vision, direction and encouragement were an immense help in this investigation. I thank Dr. Glen Lesins and Dr. Kelvin Droegemeier for their advice and constructive criticism. I thank Dr. L.P. Chiang for his helpful discussions and support and Debbie Hagerman for her help with the data.
TABLE OF CONTENTS

LIST OF TABLES. IV
LIST OF ILLUSTRATIONS. V
ABSTRACT. vii

Chapter
I. INTRODUCTION. 1
II. SYNOPTIC OVERVIEW. 9
III. DATA AND OBJECTIVE ANALYSIS. 28
IV. VARIATIONAL METHOD 24
V. RESULTS 37
VI. CONCLUSIONS 66
VII. FUTURE RESEARCH 70
BIBLIOGRAPHY. 72
APPENDIX A. 74

LIST OF TABLES

Table	Page
1. Vertical grid levels | 22
2. Iteration parameters | 31
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>FIG</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a-b</td>
<td>3</td>
</tr>
<tr>
<td>2a-c</td>
<td>6</td>
</tr>
<tr>
<td>3a-b</td>
<td>10</td>
</tr>
<tr>
<td>4a-b</td>
<td>11</td>
</tr>
<tr>
<td>5a-b</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>13</td>
<td>25</td>
</tr>
<tr>
<td>14a-b</td>
<td>34</td>
</tr>
<tr>
<td>15a-b</td>
<td>35</td>
</tr>
<tr>
<td>16a-b</td>
<td>36</td>
</tr>
<tr>
<td>17</td>
<td>39</td>
</tr>
<tr>
<td>18</td>
<td>41</td>
</tr>
<tr>
<td>19a-b</td>
<td>42</td>
</tr>
<tr>
<td>19c</td>
<td>43</td>
</tr>
<tr>
<td>20a-b</td>
<td>44</td>
</tr>
<tr>
<td>20c</td>
<td>45</td>
</tr>
<tr>
<td>21a-c</td>
<td>47</td>
</tr>
<tr>
<td>22</td>
<td>49</td>
</tr>
<tr>
<td>23</td>
<td>50</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS (continued)

<table>
<thead>
<tr>
<th>FIG</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>24a-b</td>
<td>AGEO hts and winds average c-s</td>
</tr>
<tr>
<td>25a-b</td>
<td>a-D average c-s 00z Jan 27</td>
</tr>
<tr>
<td>26a-b</td>
<td>a-D average c-s 12z Jan 27</td>
</tr>
<tr>
<td>27a-b</td>
<td>a-D average c-s 00z Jan 28</td>
</tr>
<tr>
<td>28</td>
<td>Satellite photo 00z Jan 28</td>
</tr>
<tr>
<td>29a-b</td>
<td>AHVD temperatures average c-s</td>
</tr>
<tr>
<td>29c</td>
<td>AHVD temperatures average c-s</td>
</tr>
<tr>
<td>30a-c</td>
<td>Geostrophic relative vorticity</td>
</tr>
<tr>
<td>31a-c</td>
<td>Geostrophic absolute vorticity</td>
</tr>
</tbody>
</table>
ABSTRACT

An Investigation into the Gravity Current Aspects of a Cold Air Outbreak Using Variational Analysis Techniques.

During the time period of January 27th through January 28th, 1986, the Central and Southeastern U.S. experienced a cold air outbreak. Surface temperatures dropped 363 degrees Fahrenheit in a matter of hours in Central Florida with dramatic drops in dewpoint as well. A method is developed using variational calculus to decompose observed gridded radiosonde data from this period into component fields. Three variational filters are used iteratively to extract the desired components of the observed data. These components are then used in concert with quasi-geostrophic theory to examine the similarities between this cold air outbreak, the gust front associated with an active thunderstorm, and a gravity current. Sensitivity studies of this method with respect to weight factors are shown. Results indicate some of the interactions between synoptic and sub-synoptic forcing in the development and maintenance of such a system.
AN INVESTIGATION INTO THE GRAVITY CURRENT
ASPECTS OF A COLD AIR OUTBREAK
USING VARIATIONAL ANALYSIS TECHNIQUES

CHAPTER I

INTRODUCTION

The formation of atmospheric fronts has been studied extensively over the last twenty years and those associated with the cold air outbreak, hereafter called CAO, have been of special interest. The CAO is common in the Central and Eastern US in winter and is typified by a large accumulation of cold air in Southern Canada that sweeps southeastward. Many times this movement comes in waves as one front forms and moves out to be followed by others in succession.

In order to understand these fronts better one must not only understand the forces responsible for the development of the fronts but also the balance which develops between the frontogenetic and the frontolytic forces. This balance allows the front to be sustained at some quasi-steady intensity over extended periods of time. Williams and Plotkin (1968) showed that much can be learned from the quasi-geostrophic equations of
motion. These approximations are not valid for fronts that already exist, however, where the gradients are strong and the Rossby number is close to unity as in the case of the CAO studied here. Hoskins and Bretherton (1972) used the assumption of geostrophic balance only in the cross-front direction, the semi-geostrophic assumption, to show that a balance could be maintained between the frontogenetic process and frictional dissipation. This results in a more realistic front; however, the lack of some method of limiting the production of vorticity due the stretching of the vortex tubes by the divergence field can allow the vorticity to go to infinity. Orlanski and Ross (1984), hereafter called OR, showed that the primitive equations of motion do allow a feedback mechanism between the divergence field and the ageostrophic vorticity field. The equations listed below are the divergence and vorticity equations derived from primitive equations as used by OR.

\[
\frac{d\zeta}{dt} = \frac{\zeta_0}{C_a} - D^2 - 2\kappa^2 + 2\kappa D + F_d
\]

\[
\frac{d\zeta}{dt} = -D(f+\zeta) + \beta \nu
\]

In this form \(\zeta \) is the relative vorticity, \(\zeta_0 \) is the ageostrophic relative vorticity, \(D \) is the divergence, \(\kappa \) is the geostrophic background deformation, \(F_d \) is the frictional term, \(f \) is the Coriolis parameter and \(\beta = df/dy \). OR hypothesized that as the front becomes stronger the
The ζ_0 term starts to dominate the right hand side of the divergence equation, thus effectively controlling the rate of change of the divergence, and subsequently, the frontogenetic process itself. An inspection of this relationship reveals that when the ζ_0 is in phase with the divergence field at the front, as in Fig 1a, the convergence at the front will grow. This is a frontogenetic process.

![Diagram of frontogenetic and steady state processes](image)

Fig 1a

If the divergence leads the ζ_0 field by some phase shift value, however, this frontogenetic effect will diminish until the effect is reversed and the ζ_0 will become a negative feedback on the divergence field. Thus we see that factors that can influence the strength or location of the divergence and the ζ_0 with respect to the front will be important in controlling the frontogenetic process and therefore be important in forming the balance between the frontogenetic and frontolytic forces required for the front to persist.

The importance of the ageostrophic components in this process required the use of a method for obtaining
the most accurate estimate of the ageostrophic components possible. This requirement led to the use of a variational method developed by Sasaki (1958) which calculates a realistic geostrophic state by allowing both the height field and the wind field to adjust but constrains that state to be as close to the observed state as possible in a least square sense. The resultant ageostrophic fields can then be examined in the light of the relationships stated above. In the process of examining these fields it was found that there were numerous similarities between the CAO and a smaller scale feature, the gravity or density current as exhibited by the gust front from an active thunderstorm. These gravity currents are associated with strong areas of convergence at the leading edge, but are basically irrotational in the horizontal plane. Therefore it is speculated that the interaction of the gravity current effects, such as local convergence at the leading edge, with the synoptic effects, such as the background deformation and vorticity, may to some extent control the longevity and intensity of the CAO by helping to produce a phase shift between the divergence and the vorticity fields. OR speculated that gravity wave effects may be responsible for this phase shift.

In order to examine this hypothesis it is necessary to point out the similarities observed between the CAO and a gravity current. This is done by using information about gravity currents obtained through theoretical
studies such as that by Benjamin (1968) and tank
experiments such as that by Simpson (1972) and also by
relating the features of the CAO to gust front cases that
have been related to gravity currents such as the report
by Charba (1974) and the simulations done by Mitchell
and Havermale (1977) of gust fronts. Some of these
similarities are found in the observed fields; however,
the CAO is a synoptic scale feature and thus the
rotation of the earth can not be ignored as it is
commonly in mesoscale features such as gust fronts.
This difference in scales seems to be at least partially
accounted for in this type of analysis by the fact that
the effects of the rotating earth are largely exhibited in
the geostrophic balance of the heights and winds.
Therefore, it seems plausible that effects observed in
gravity currents or gust fronts which are not on a scale
large enough to exhibit the influence of the rotating
earth should appear in the ageostrophic components of
a synoptic scale feature such as the CAO.

Figs 2a–c are reprinted from Charba (1974) and
depict some of the major features of a thunderstorm
gust front. These features serve as a basis for
comparisons between the CAO and the gust front and
are listed as follows.

1. Fig 2a shows a pressure trace that increases as
the front passes with one or more pressure jumps
followed by a dip and a pressure or density surge. The
final pressure levels off at some value higher than the
Fig 2a Pressure tendency

Fig 2b Stream function analysis

Fig 2c Gust front cross-section

Fig 2a-c Gust front features reprinted from Charba (1974)
original pressure.

The remaining features are depicted in Fig 2c.

2. There is a windshift line in the winds parallel to the front (along-front) which precedes the front by some amount. Just behind this is a minimum in the winds perpendicular to the front (cross-front). The maximum in the cross-front winds occurs somewhat behind the front.

3. There is a thermal ridge located just before the front. This warm area is also indicated in reports from Mitchell and Hovermale (1977), Clarke (1961), Martin (1973), and Shapiro (1984).

4. The shape of the leading edge is curved and may extend forward past the surface position. This protrusion of the front is called the nose.

5. There is an elevated region just behind the front called the head. A roll current is evident in the upper region of the head just behind the front.

6. Behind the head is an area of considerable turbulence and mixing especially in the upper levels.

7. Further behind the head is the tail whose upper extent is somewhat lower than that of the head.

In the descriptions above, the term behind the front indicates a position to the left of the front in these figures. It should also be noted that the horizontal cross-front extent of the gust front depicted here is about 30 km. The propagation speed of this front was about 20 m/s with cross front winds behind the front.
of about 25 m/s. The propagation speed of gravity currents and gust fronts vary significantly due to the different surface friction encountered, the relative depth of the cold air with respect to the total depth of the fluid or atmosphere, and the density difference between the two fluid or air masses. The propagation speed U of a density current is on the order of tens of m/s and is given by the equation

$$U^2 = k \frac{(\Delta \rho)}{\rho} g H \quad \text{(Daly and Pracht, 1968)}$$

where k is the internal Froude number, $\Delta \rho$ is the density difference, ρ is the density of the lighter fluid, g is the gravity and H is the height of the heavier fluid. For gravity currents k is around 1, (Daly and Pracht, 1968) and around .5 for larger scale density surges as shown by Berson (1938). These values are found through scale analysis or empirically set so there is some variability. The ratio of the maximum wind speed behind the front to the frontal speed is given experimentally by Simpson (1969) as 1.3. This value is validated by observational results by Charba (1974) and model results by Mitchell and Hovermale (1977).

It is then the intention of this paper to illustrate these features of a gust front/gravity current as they are exhibited in the CAO, to explore the possibility of these features having a controlling effect on the frontogenetical process as it occurs in the frontal zone of the CAO, and to examine the interactions of these effects with the synoptic forces present.
CHAPTER II

SYNOPTIC OVERVIEW

Figs 3-5 show time series of three surface and 500 mb charts which depict the movement and development of several very intense cold fronts over the Southeastern U.S. during the time period of 00z Jan 27, 1986 through 00z Jan 28, 1986. This corresponds to a strong upper level trough which moves slowly across the Eastern U.S. and a strong surface high pressure system which travels south from Northern Canada to Southern Texas during this period. With the passage of these fronts there are dramatic temperature drops of over 30 degrees F in 12 hours in Northern Florida and equally dramatic drops in dewpoints. Different types of cold fronts can also be differentiated during this time period. The cold front present at 00z Jan 27 was typified by weak temperature gradients and strong wind shifts. The cold front that entered Florida at 12z Jan 27th was marked by very little wind shift and very strong temperature gradients. This seems to be associated with a strong cold air outflow typified by the southward migration of the surface high. It is this front that will be studied in depth in this report. Figs 7-9 are
Fig 3a Surface analysis 00z Jan 27, 1986

Fig 3b 500 mb analysis 00z Jan 27, 1986
Fig 3a-b Isotherms are dashed lines, height contours are solid lines
Fig 4a Surface analysis 12z Jan 27, 1986

Fig 4b 500 mb analysis 12z Jan 27, 1986

Fig 4a-b Isotherms are dashed lines, height contours are solid lines.
Fig 5a Surface analysis 00z Jan 28, 1986

Fig 5b 500 mb analysis 00z Jan 28, 1986
Fig 5a-b Isotherms are dashed lines, height contours are solid lines
the plots of potential temperature (θ) at 850, 700, and 500 mb respectively for 00z Jan 27, 1986, hereafter called 00z27, 12 z Jan 27, 1986, hereafter called 12z27, and 00z Jan 28, 1986, hereafter called 00z28. These plots show a very strong temperature gradient has formed by the second time period. Behind this front a cold pool develops that has its center over the southern tip of Illinois. Over this time period, using Central Kentucky as a reference point, θ at 850 mb drops from 273K to 257K. This is a drop of 16K in 24 hours. At 700 mb θ drops from 278K to 273K in 24 hours, a drop of 5K. Thus the stability of the area has increased. This is due in part to radiational cooling which is strongest at the surface. A significant line of strong gradient of θ is also created during this time period which runs north and south from Minnesota to Alabama. An important feature of this system is the slope of the ridge-trough axis. Fig 6 depicts how a ridge-trough system that slopes westward with height is associated with an area of minimum thickness in the height field. Starting from the hydrostatic equation it can be shown that decreasing

![Diagram of cold pool formation through westward slopeing ridge-trough axis](image)

Fig 6
Fig 7a-c Potential temperature in Kelvin for 00z Jan 27, 1986
Fig 8a 850 mb

Fig 8b 700 mb

Fig 8c 500 mb

Fig 8a–c Potential temperature in Kelvin for 12z Jan 27, 1986
Fig 9a-c Potential temperature in Kelvin for 00z Jan 28, 1986.
thickness implies decreasing temperature.

\[T = \frac{-1}{1/R} \frac{dp}{dlnp} \quad \text{where } \theta = T(p_g/p)^{R/C_p} \]

Thus for a constant \(-dp\) (going up) a decrease in \(d\theta\) means a decrease in \(\theta\). Figs 3-5 indicate the height pattern does indeed slope to the west with height. Figs 10n-c show the geostrophic thickness of the layer from 850 mb to 500 mb for the 24 hour period. Using these values in the above equation one can calculate the change in thickness over Central Kentucky as 119m over the 24 hour period. This corresponds to a change in \(\theta\) of 8.6K. This is actually a little higher than that experienced at the 700 mb level, although it is only half of the change found at the 850 mb level. This can be explained by the differential advection of temperature with height. At 850 mb the wind are northwesterly causing cold advection. The winds veer with height, however, and at 500 mb the winds are advecting warmer temps. Therefore one would expect a greater negative change in \(\theta\) in the lower levels than the upper levels as compared to the average change in the layer as predicted by the hydrostatic equation. It should also be noted that the surface high appears to the west of the coldest air aloft rather than directly beneath it. As the surface high moves southward it stays to the west of the strongest line of \(\theta\) change but to the east of the upper level ridge in accord with the sloping ridge-trough mechanism described above. In the last time period we see that upper level ridge-trough
Fig 10a 00z Jan 27, 1986
Fig 10b 12z Jan 27, 1986
Fig 10c 00z Jan 28, 1986

Fig 10a-c Geostrophic thickness of the layer 850 mb to 500 mb in meters.
system has moved eastward and decreased in intensity while the surface high has moved southeastward and decreased in strength. This implies that the effects of the sloping ridge-trough system in enhancing the cold pool are now dissipating and the effects of advection and radiational cooling will become more important.
CHAPTER III

DATA AND OBJECTIVE ANALYSIS

In order to analyze this case a 25x25 degree grid with 1x1 degree grid spacing was used. The grid has its origin in the lower left hand corner at 25 degrees north latitude and 103 degrees west longitude. Upper air data were collected from 66 stations at 5 levels in and around the grid. Reported data were input at 5 levels, those levels being 1000, 850, 700, 500, and 250 mb. Pressure surface heights were input at all 5 levels while winds were input at the top four and temperature and dewpoints were input at the middle three. In data sparse regions, such as over water, data were hand interpolated from NMC charts. Fig 11 shows the grid and the stations used. Stations with reported data are represented as filled circles while interpolated positions are represented as triangles. Additional sounding data were obtained to help verify station data and fill data sparse regions. The raw data were then analyzed onto the grid at the five input levels using a four pass weighted Cressman analysis scheme described in Appendix A. Temperature and height data were then interpolated onto four intermediate levels. The

20
Fig 11. Input station locations and outline of analysis grid. Reporting locations are filled circles, interpolated locations are triangles, squares are additional sounding locations.
Intermediate levels were set at the average log pressure level of the adjacent input levels. These levels are at 972, 771, 592, and 354 mb. Temperatures were interpolated linearly with the height computed hydrostatically. These intermediate levels are important for a smooth fit for the hydrostatic filter. The grid system is listed by level in Table 1.

<table>
<thead>
<tr>
<th>Level</th>
<th>Press mb</th>
<th>Ln(P) Data present</th>
<th>Filter Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>250</td>
<td>398 U,U,PHI</td>
<td>none</td>
</tr>
<tr>
<td>8</td>
<td>354</td>
<td>298 T,PHI</td>
<td>H C</td>
</tr>
<tr>
<td>7</td>
<td>500</td>
<td>199 U,U,T,TD,PHI</td>
<td>G H C</td>
</tr>
<tr>
<td>6</td>
<td>592</td>
<td>151 T,PHI</td>
<td>H C</td>
</tr>
<tr>
<td>5</td>
<td>700</td>
<td>102 U,U,T,TD,PHI</td>
<td>G H C</td>
</tr>
<tr>
<td>4</td>
<td>771</td>
<td>75 T,PHI</td>
<td>H C</td>
</tr>
<tr>
<td>3</td>
<td>850</td>
<td>47 U,U,T,TD,PHI</td>
<td>G H C</td>
</tr>
<tr>
<td>2</td>
<td>922</td>
<td>23 T,PHI</td>
<td>H C</td>
</tr>
<tr>
<td>1</td>
<td>1080</td>
<td>8 PHI</td>
<td>NONE</td>
</tr>
</tbody>
</table>

U,U Winds in m/s
T,TD Temperature and Dewpoint in Kelvin
PHI Geopotential in m2/m/s2s
G Geostrophic filter
H Hydrostatic filter
C Continuity filter

These gridded data were then checked for consistency against the NMC charts at the input levels to insure that no errors were present. Two other methods were used to check for input errors. As the Cressman analysis proceeds, the gridded data are interpolated back onto the station locations and the residuals, the difference between the input value and the back-interpolated value, are computed and averaged.
over the field. These values should decrease with each successive pass. This also is the basis for deciding what radius of influence to use in the analysis. These values were found to be acceptable at all levels. This is explained further in the explanation of the Cressman analysis scheme in Appendix A. Also, since one of the output fields is the difference field between the geostrophic and observed fields, errors in the observed data sometimes appear as large anomalies in the ageostrophic field. These anomalies were checked for validity also.

There has been no smoothing of any of the input data except for that inherent in the Cressman analysis. Also, although data were interpolated into data sparse regions, these regions were usually at the edge of the grid and the resultant fields were always consistent with NMC portrayals and the supplemental soundings obtained. No input station values were changed where reported data was available.
CHAPTER IV

VARIATIONAL METHOD

The method of using variational filters to extract various components of meteorological fields has been used in initialization schemes successfully and is outlined in continuous form in Haltiner and Williams (1988). Appendix A gives the derivation of the finite difference version of the three filters used in this study. There are several points that deserve special attention and each will be mentioned in the description of the filters.

Fig 12

Each of these filters extracts a specific component from the input field. An example of the filtering process is schematically represented in Fig 12. In this depiction the shaded area is the geostrophic-hydrostatic component while the striped area is the 24
internal-ageostrophic component. In order to insure that the final fields are adjusted correctly to all the conditions it is necessary to iterate through the filter sequence shown in Fig 13. Trial and error has shown that three iterations are sufficient for convergence.

Fig 13
Hydrostatic Filter

The observed height data are computed from the radiosonde temperature and pressure data hydrostatically, but the hydrostatic filter is needed to keep the values in hydrostatic balance during the adjustment process. As stated before, there are height and temperature data at levels 2 through 8 and these are the levels at which the hydrostatic filter adjusts values. The intermediate levels allow for a smoother fit and decrease the error inherent near the boundaries. The adjustment process requires that there be no adjustment at the top and bottom boundaries. Eqn 1 is the finite difference form of the functional for the hydrostatic equation and Eqns 2-5 are the equations for \(T \) and \(\phi \). The derivations of these equations are listed in appendix A.

EQN 1)

\[
J = \sum \left(\alpha(T_{ijk} - T_{oijk})^2 + \beta(0_{ijk} - 0_{oijk})^2 + \lambda_{ijk}(0_{ijk+1} - 0_{ijk-1})/2\Delta P - T_{ijk})/\Delta P \right)
\]

where \(\alpha \) is the error module for \(T \) and \(\beta \) is the error module for \(\phi \). These error modules are also called precision modules or weight factors. \(\lambda \) is the lagrange multiplier for the constraint as explained in HW (1980).

EQN 2)

\[T_{ijk} = \lambda_{ijk}/2\alpha + T_{oijk} \]

EQN 3)

\[\phi_2 = \lambda_2/2\beta\Delta PC + \phi_0 \text{ for } k=2 \]

EQN 4)

\[\phi_k = (\lambda_{k+1} - \lambda_{k-1})/2\beta\Delta PC + \phi_0 \text{ for } k=3,7 \]

EQN 5)

\[\phi_8 = -\lambda_7/2\beta\Delta PC + \phi_0 \text{ for } k=8 \]

The appropriate \(\lambda \)s are found from the following equations depending on the position in the grid at which
the calculation takes place.

For \(k=3,7 \) \hspace{1cm} \text{EQN 7)}

\[
\lambda_k = \frac{[\lambda_{k+2} - 2\beta \Delta P F A P C + \lambda_{k-2} - 2\beta \Delta P B A P C + (\phi_{o_{k+1}} - \phi_{o_{k-1}}) / \Delta P C - T_{o_k}]}{1/2\beta \Delta P F A P C + 1/4\beta \Delta P H B A P C + 1/2\alpha}
\]

For \(k=2 \) \hspace{1cm} \text{EQN 8)}

\[
\lambda_k = \frac{[\lambda_{k+2} - 2\beta \Delta P F A P C + (\phi_{o_{k+1}} - \phi_{o_{k-1}}) / \Delta P C - T_{o_k}]}{1/2\beta \Delta P F A P C + 1/4\beta \Delta P H B A P C + 1/2\alpha}
\]

For \(k=8 \) \hspace{1cm} \text{EQN 9)}

\[
\lambda_k = \frac{[\lambda_{k-2} - 2\beta \Delta P B A P C + (\phi_{o_{k+1}} - \phi_{o_{k-1}}) / \Delta P C - T_{o_k}]}{1/2\beta \Delta P B A P C + 1/4\beta \Delta P H T A P C + 1/2\alpha}
\]

It should be noted that there are several ways to deal with the boundary conditions. In this case it was decided to redefine the finite difference form of the derivatives near the boundaries to forward or backward difference forms with the assumption that \(\lambda \) is zero everywhere on the boundaries and outside the computational domain. The redefined derivatives are indicated in the previous equations by the notation

\[
\Delta P C = P_{k+1} - P_{k-1} \quad \Delta P F = P_{k+2} - P_k \quad \Delta P B = P_k - P_{k-2}
\]

\[
\Delta P H T = P_k - P_{k-1} \quad \Delta P H B = P_{k+1} - P_k
\]

where \(k \) indicates the pressure level. This method has proven to be acceptable as long as the method is consistent throughout. The "adjusted" field of this filter is the hydrostatic (Hereafter called HYD) component while the residual field of this filter is the non-hydrostatic (Hereafter called AHYD) component.
Geostraphic Filter

Eqs 10 and 11 are the finite difference form of the functionals for the geostrophic adjustment of u and v respectively.

EQN 10

\[
J_1 = c \sum (u_{ijk} - u_{ijk}^*)^2 + \beta (\phi_{ijk} - \phi_{ijk}^*)^2 \\
+ \lambda (f \psi + (\phi_{i+1,k} - \phi_{i-1,k})/2 \Delta x) \Delta x \Delta y
\]

EQN 11

\[
J_2 = \sum (u_{ijk} - u_{ijk}^*)^2 + \beta (\phi_{ijk} - \phi_{ijk}^*)^2 \\
+ \lambda (f \psi + (\phi_{i+1,k} - \phi_{i-1,k})/2 \Delta x) \Delta x \Delta y
\]

Eqs 12 and 13 are the equations for u and v and have no problems at the boundaries since all computations are made at the gridpoint.

EQN 12

\[
u_{ij} = v_{ij}(f/\alpha) \lambda u_{ij}
\]

EQN 13

\[
u_{ij} = v_{ij}(f/\alpha) \lambda v_{ij}
\]

Eqs 14–18 are the equations for ϕ.

EQN 14

\[
\phi_{1-1} = \psi^{1/4} (1/\Delta y) \lambda u_{12} + \phi_{1-1} \text{ for } j=1
\]

EQN 15

\[
\phi_{1-2} = \psi^{1/4} (1/\Delta y) \lambda u_{13} + \phi_{1-2} \text{ for } j=2
\]

EQN 16

\[
\phi_{3-1} = -(1/\Delta y) (\lambda u_{3-1} - \lambda u_{2+1}) + \phi_{3-1} \text{ for } j=3, n-2
\]

EQN 17

\[
\phi_{n-1} = -(1/\Delta y) (\lambda u_{n-1} - \lambda u_{n-2}) + \phi_{n-1} \text{ for } j=n-1
\]

EQN 18

\[
\phi_{n-1} = -(1/\Delta y) (\lambda u_{n-1} - \lambda u_{n-2}) + \phi_{n-1} \text{ for } j=n
\]

It should be noted that although equations for ϕ_{1-1} and ϕ_{n-1} are listed, these values are not adjusted and are always equal to the observed values. This is due to the fact that $\lambda=0$ at all points on the lateral boundaries as
well as one gridpoint in from the boundaries.

\[\lambda_{ij} = (2\alpha \beta (2\Delta x)^2) \left[f u_{ij} + \frac{\lambda_{ij+2} - \lambda_{ij-2}}{2\beta (2\Delta y)^2} \right] \\
+ \frac{\phi_{ij+1} - \phi_{ij-1}}{2\Delta y \sqrt{f^2 (2\Delta x)^2 + 2\alpha}} \]

\[\lambda_{ij} = (2\alpha \beta (2\Delta x)^2) \left[f v_{ij} + \frac{\lambda_{ij+2} - \lambda_{ij-2}}{2\beta (2\Delta y)^2} \right] \\
+ \frac{\phi_{ij+1} - \phi_{ij-1}}{2\Delta x \sqrt{f^2 (2\Delta x)^2 + 2\alpha}} \]

This is equivalent to a finite difference form of the continuous Euler-Lagrange equations using centered difference forms of the derivatives spanning \(2\Delta x\) and \(2\Delta y\) instead of \(\Delta x\) and \(\Delta y\). This appears to be a necessity to preclude computational instability in the adjustment process (Sasaki and McGinty, 1975). The geostrophic filter adjusts the observed wind to the geostrophic state with the constraint that the adjusted winds be close to the observed winds in a least square sense. A unique result of this technique is that the the observed heights are adjusted at the same time yielding a geostrophic height field that is also close to the observed height field in a least square sense. This type of dual adjustment would appear to be more realistic than computing geostrophic winds from observed heights and although the latter method may be sufficiently accurate for some treatments it is not accurate enough to yield the finer scale information we need for this type of analysis. The geostrophic filter is executed at the 850, 700, and 500 mb levels independently except for the further filtering by the hydrostatic filter which constrains the fields to be hydrostatic.
External Wave Filter

In this study it is desirable to exclude the effects of the high frequency, fast moving, external gravity waves. Therefore, the continuity equation is used to filter the resultant fields excluding most of the external components. This is done via Eqn 22 which is the finite difference form of the continuity equation functional. Eqns 23, 24, and 25 are the equations for u, v, and λ respectively.

EQN 22) $\Sigma \Sigma \S
each filter are recomputed at each iteration and these values should get very large. We can see in Table 2 that the values do follow this pattern. Iteration 4 was tested, but the values changed very little.

Table 2

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Geostrophic</th>
<th>Hydrostatic</th>
<th>External Wave</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>u residual</td>
<td>T residual</td>
<td>residual</td>
</tr>
<tr>
<td></td>
<td>.19E-3</td>
<td>.79E-1</td>
<td>1.8603333</td>
</tr>
<tr>
<td></td>
<td>.1E+2</td>
<td>.27E+13</td>
<td>1.8603333</td>
</tr>
<tr>
<td></td>
<td>.18E+14</td>
<td>.1E+17</td>
<td>1.8603333</td>
</tr>
</tbody>
</table>

Table 2 is only a representative set showing the progress of the adjustment process for all three filters for 00Z Jan 27 850 mb.

In order to do the second and third iterations meaningfully it was necessary to add the geostrophic-hydrostatic-internal component (GEO) and the ageostrophic-hydrostatic-internal component (AGEO) together and use this as the input field for the next iteration.

Comparison of the final output fields show very good agreement with the expected results. One thing to note is that since no adjustment will occur on the boundaries, the last two grid points next to the boundaries will carry systematic errors and are not plotted in the output field representations. In the
hydrostatic case the systematic errors are confined to one gridpoint in the vertical. Three separate tests were run to check the sensitivity of the results to the boundary conditions. In the first test random values up to \(\pm 3 \) m/s were added to the observed winds on all lateral boundaries. In the second test random values of \(\pm 10 \) m were added to the observed height field on all lateral boundaries. In each test observed values were used at all other gridpoints. The AGEO wind, height, and divergence fields were then compared to the original analysis. In the third test random values of \(\pm 3 \) degrees C were added to all gridpoints on level 2 and 8. The AHYD field was then compared to the original analysis. In all three test no significant changes were found in the resultant fields. By moving the grid several degrees it was determined that the features shown in the output fields were not grid dependent and showed good consistency of position except for a slight tendency to close off features near the edges of the plots.

The weight factors or error modules \(\alpha \) and \(\beta \) in each filter have a definite effect upon the resultant adjustment process. This effect was tested by rerunning the same cases for different values of \(\alpha \) and \(\beta \) to see how the resultant fields changed. Figs 14-16 are representative results of these tests and show the expected results. The ratio of one weight factor to the other in each functional controls the relative amount
that value will be adjusted. In the geostrophic filter this means that if α, the weight factor for winds, is very large compared to β, the weight factor for heights, the heights will be adjusted more than the winds. Therefore in Fig 14 as α becomes very large wrt β, we see that the GEO wind become very similar to the observed wind (the AGEO winds get lighter). Conversely, when β becomes large, as in Fig 15, compared to α we see that the GEO ϕ field becomes similar to the observed field (the AGEO ϕ get smaller). Fig 16 shows the AHVD temperature field for α large compared to β in the hydrostatic filter. Here again we see that in this case the AHVD temperatures get smaller. The crucial thing to note here is that in all the tests run for different weight factors, the basic pattern remained the same. Where there were highs with one set of weights, there were highs in all other sets. The same held true for lows. Therefore, although the absolute value of output fields can be altered by using different weight factors, the relative shape of the fields is not alterable and is consistent throughout. This result is both expected and absolutely necessary for the results of the filtering process to be meaningful.

Other output fields fall under the categories of derived fields and supplemental fields. Derived fields are computed using output from the filtering process such as the kinematic ϕ. Supplemental fields are moisture, frontogenesis, etc. The methods for computing these
Fig 14a Weight test $\alpha_g=1.0$

Fig 14b Weight test $\alpha_g=100.0$

Fig 14a-b Test for geostrophic wind error module α_g. 14a shows ageostrophic winds found with std α_g. 14b shows same with std $\alpha_g=100$.
Fig 15a Weight test $\beta_g=0.01$

Fig 15a-b Test for geostrophic height error module β_g.
15a shows ageostrophic heights found with std β_g. 15b shows same with std $\beta_g \times 1000$
Fig 16a Weight test $\alpha_h=50$.

Fig 16b Weight test $\alpha_h=5000$.

Fig 16a-b Test for hydrostatic temperature error module α_h. 16a shows anhydrostatic temperature found with std α_h. 16b shows same with std $\alpha_h=8100$.
Fields are found in Appendix A.
CHAPTER V

RESULTS

Many of the results shown in this section will be in the form of vertical cross-sections of the analysis grid. These cross-sections represent vertical slices taken along line A-B in Fig 17. There are 15 gridpoints in the horizontal along this line and 10 gridpoints in the vertical extending from 950 mb to 500 mb. Approximate station locations close to line A-B will be shown along the bottom of the plots as well as the approximate surface frontal position. There will be two types of cross-sections shown. The first type, labelled original, includes only data from gridpoints closest to the vertical cross-section. In the second type, labelled average, each gridpoint in the cross-section represents data averaged along the curves shown in Fig 17 at all levels. These curves are positioned to be approximately parallel to the front. The intent of such averaging is to eliminate small deviations present along the front and determine which features are representative of the front as a whole. Deviations are predicted along a density interface by the work of Simpson (1972) whose experiments show the formation of clefts and lobes in the frontal surface.
Fig 17 Horizontal analysis grid showing projection of vertical cross-section line A-B. The curves are used for averaging along the front. The intersection of the curves and line A-B shows horizontal position of gridpoints in vertical cross-section.

Station locations close to vertical cross-section line A-B are listed on cross-section plots as P = Peoria S = Salem
N = Nashville C = Centerville Q = Apalachacola.
of density currents. Tests were made with different length averaging curves with no appreciable change in the results. Fig 18 shows the barograph tracing for West Palm Beach Fl. from Jan 26 to Jan 29, 1986. The three times at which the radiosonde data were analyzed are marked on the time series plot. The passage of the first front is denoted by F1 on the tracing and that of the CAD front is denoted by F2. This passage is preceded by a rise in surface pressure. At frontal passage there is a dip in pressure and then a continued rise to a maximum approximately 18 hours later. This maximum is then followed by a sharp decrease in pressure. This pattern is similar qualitatively to that of the gust front passage pressure tendency shown in Fig 2a.

Figs 19a-c show the potential temperature (Θ) profile along the original line for 00z27, 12z27, and 00z28 respectively. Fig 19a shows clearly the strong horizontal gradient of Θ at the lowest level. The front at this time is near Nashville (BNA). In Fig 19b, 12 hours later, the front is between Centerville (CKL) and Appalachacola (AQQ). The frontal position was determined at the lowest level through examination of these plots and the plots of relative vorticity. From this analysis it was determined that the average propagation speed of the front was approximately 11.6 m/s. In Fig 19b there is evidence of the formation of the intense cold pool at the southern tip of Illinois as there is significant lifting of the isentropes locally in this area. This lifting can be
Fig 18 Barograph tracing from Jan 26-Jan 29, 1986 at West Palm Beach, Fla. 1 hour time increments in inches of mercury.
Figs 19a-b Potential temperature original cross-section in Kelvin for 00z Jan 27 and 12z Jan 27 respectively.
Fig 19c Potential temperature original cross-section in Kelvin for 88z Jan 28
Fig 20a
Figs 20a-b Potential temperature average cross-section in Kelvin for 00z Jan 27 and 12z Jan 27 respectively.
Fig 28c Potential temperature average cross-section in Kelvin for 88z Jan 28
seen by comparing the height of the 276 K isentrope (in bold) from 19a to 19b. Just behind the front in this plot there is an area of instability in the lowest level. In Fig 19c, although the isentropes are still somewhat higher in the Ohio Valley area, the isentropes have lowered in height from their positions at 12z27. Figs 20a-c are the same plots along the average line. The similarity of Figs 19a-c and Figs 20a-c, taking into account the expected smoothing done by the averaging process, suggests that the use of these averaging curves is justified.

The rising of the θ surfaces from θz27 to 12z27 and their subsequent lowering between 12z27 and θz28 suggests that the potential energy of the area may be changing during this period. Figs 21a-c indicate that this is indeed the case. The potential energy was determined by integrating the product of the observed density ρ and geopotential Φ in a vertical column from level 2 through level 8 at each point in the horizontal grid. The maximum value in each plot corresponds roughly with the location of the surface high. Fig 21b shows that a ridge of high potential energy forms in the Ohio Valley as a trough of low potential energy forms along the front. Fig 21c shows that this ridge remains intact at θz28 while the trough is no longer evident. The front at this time has now moved off the grid to the southeast. This increase in potential energy seems to be due to three main causes. The first is the very cold temperatures that form in this area as shown before in
Figs 21a–c Potential energy in vertical column from 922 mb to 354 mb for 00z Jan 27, 12z Jan 27, and 00z Jan 28.
Figs 14-16. The formation of this cold pool was discussed earlier and was largely due to synoptic scale forcing. The second main cause is illustrated in Fig 22 which shows the vertical velocity field at 12z27 computed using the Q-vector form of the quasi-geostrophic omega equation. This plot indicates that this area of rising potential energy was subject to fairly strong synoptic scale lifting apparently due to strong differential advection of cyclonic vorticity. This would tend to increase the potential energy by raising the center of gravity. The third cause is illustrated in Fig 23 which shows the average observed cross-front winds, the component of the average observed winds parallel to line A-B, at 8z27. This plot shows the winds behind the front to be 16 m/s while the frontal speed was 11.6 m/s. The ratio of these values is 1.37 which is in agreement with that found for a density current by Simpson (1969). The resultant convergence can also contribute to the rising motion of the area and thus to the increase in potential energy. It is important to note that although the first two factors described are synoptic in nature and seem to be most effective in the Ohio Valley during all three time periods, the last effect is tied to the position of the front and therefore moves with the front.

The next fields of interest are the AGED heights and AGED winds as described in the variational method section. Figs 24a-b show the average AGED winds as
Fig 22 Quasi-geostrophic ω (dp/dt) calculated at 850 mb 12z Jan 27.
Fig 23 Observed cross front winds for 00z Jan 27 average cross-section in m/s.
Fig 24a Longest vector is 7.3 m/s

Fig 24b Longest vector is 25.8 m/s

Figs 24a-b Contours are ageostrophic heights in meters, barbs are ageostrophic winds for 80z Jan 27 and 12z Jan 27 average cross-section.
barbs superimposed on the plot of the average AGEO heights for 0z27 and 12z 27 respectively. Fig 24a shows a ridge in the AGEO heights at the front with a trough just behind the front and a more pronounced ridge further back. Fig 24b shows that 12 hours later the ridge is still evident behind the front, but the trough has now moved ahead of the front. It is speculated that this strong ridge of AGEO heights is analogous to the head of a gravity current. The smaller ridge which preceded the front may be analogous to the density surge at the leading edge of a gust front. The AGEO winds in Fig 24a show an indirect circulation present at 0z27 with sinking motion on the warm side and rising motion on the cold side. This pattern is recognized as being frontogenetic because it tends to increase the temperature gradient through adiabatic warming on the warm side and adiabatic cooling on the cold side. The AGEO winds in Fig 24b show that at 12z27 the circulation has reversed and now the circulation is direct and frontolytic. The reversal of the AGEO circulation can be explained by the interaction of the AGEO vorticity (ζ_a) with the divergence (D) as discussed in the introduction. Fig 25a is the average cross-section of ζ_a for 00z27 and indicates that since the rate of change of D following the motion of the front is proportional to ζ_a, the resultant forcing of D by ζ_a at 00z27 will create divergence where ζ_a is positive behind the front and will create convergence where ζ_a is negative ahead of the
Figs 25a-b Contours of ageostrophic vorticity and divergence for 802 Jan 27 in average cross-section.
front in the lower levels. Since the ζa pattern is
reversed in the upper levels the resulting divergence
pattern will be reversed also. The circulation forced by
such a divergence-convergence pattern would indeed be
that exhibited in the AGEO winds of 12z27. Therefore it
seems that although in the first time period, the AGEO
winds are acting frontogenetically, the AGEO vorticity
field is acting to reverse the circulation and is thereby
limiting the frontogenetic process. Calculations of the
average geostrophic deformation near the front also
show that the term $f\zeta a$ is at least one to two orders of
magnitude larger than the deformation terms in the
divergence equation at this time. Therefore it seems
possible that ζa may indeed be a controlling factor in
the frontogenetic process. It is further speculated that
the direct circulation found in the AGEO winds of 12z27
is analogous to the roll circulation found in the head of
a gravity current by Simpson (1969) and Charba (1974),
shown in Fig 2c.

Fig 25b is the average cross-section of the
divergence field calculated using the AGEO winds at 8z27
and shows a broad area of convergence through the
layer near the front. Comparison of 25a with 25b shows
that near the front, the divergence field does indeed
lead the ζa field. In the area above 850 mb at BNA the
zero line of ζa runs almost directly through the center
of the convergent area. This is to be expected because
the frontogenetic process is already strong at this time.
and a strong horizontal temperature gradient already exists. According to the hypothesis of OR this phase shift between the two fields would allow an existing front to exist relatively unchanged following its motion with ζa providing just enough influence to counteract the other terms in the divergence equation. In the layer below 850 mb at the front ζa is almost 180 degrees out of phase with D. Here ζa directly opposes the stronger frontogenetic forces present at the front near the surface. Note also that the difference in the wavelengths of D and ζa is much greater at the lower levels than at the upper levels. This suggests that not only the phase shift between these two fields is important, but also their respective wavelengths as well.

Figs 26a-b show the same fields for 12z27. At the front there is a similar pattern with ζa and D far out of phase in the lowest level while closer to 90 degrees out of phase higher up. Note that in all cases the divergence field found in Fig 26b correlates well with ζa from the time before, shown in Fig 25a, following the motion of the front. Behind the front between Peoria (PIA) and Salem (SLO) D is directly in phase with ζa which enhances the development of divergence in this area and enhances convergence just northwest of PIA. Figs 27a-b show the same fields for 8z28. In this time period there is convergent area centered at 650 mb over BNA with the zero line of ζa running directly through it and a divergent center just north of PIA at the same level.
Figs 26a-b Contours of ageostrophic vorticity and divergence for 12Z Jan 27 in average cross-section.
Figs 27a-b Contours of ageostrophic vorticity and divergence for 882 Jan 28 in average cross-section.
Fig 28 Infra-red satellite photo from 0001z Jan 28, 1986 showing high cloud tops near SLO.
with a zero line of ζa running directly through it. This would indicate that after the front has passed, the influence exerted by ζa on D diminishes. This pattern seems to be validated by the satellite photo, Fig 28, from Gz28 which shows an area of high cloud tops over the area of convergence shown in Fig 27b.

Figs 29a-c are the average cross-sections of the AHYD temperatures for Gz27, 12z27, and Gz28 respectively. As stated earlier, the AHYD temperature represents temperatures that are unbalanced with the geostrophic-hydrostatic state. Fig 29a shows a high in front of the front which slopes back over the frontal zone. This feature may be caused by the strong subsidence evident near the front in Fig 24a and subsequent entrainment of this air into the frontal zone. Entrainment of air from the warm side into the frontal zone is predicted by the work of Sanders (1955) and is discussed further in the following section on inertial instability. The presence of the high at the front is also analogous to the thermal ridge reported to accompany gust fronts by Charba (1974) and Mitchell and Hovermale (1977). At the 700 mb level there is a stratified layer of low temperatures capped by a layer of high temperatures. In Fig 30b this pattern is seen to move with the front revealing a break in the layer of low temperatures with a high directly below the break. There seems to be a correlation between the AHYD temps here and the stability of the atmosphere since this break
Figs 29a-b AHYD temperature average cross-section in Celsius for 00z Jan 27 and 12z Jan 27 respectively.
Fig 29c AHYD temperature average cross-section in Celsius for 00z Jan 28
occurs in the area of strong rising motion and high cloud tops. This is also an area in which gravity current studies indicate a mixing zone behind the head as shown in Fig 2c from Charha (1974). This mixing down of the warmer temperatures from above may also be a possible explanation for the break in the layer of low temperatures at the 700 mb level. Fig 30c again shows the pattern to be very persistent as the pattern is almost unchanged following the motion of the front. Further behind the front in Fig 29c the pattern becomes stratified.

Inertial Instability

Holton's reference text on dynamics (1978) states that inertial instability is present when the geostrophic absolute vorticity (\(\zeta_{ab}\)) becomes negative. This inertial instability will result in horizontal mixing until the area is again in a state of inertial stability. This relation is given by the expression

\[
\zeta_{ab} = f + \text{Geostrophic Relative Vorticity (}\zeta_g) \\
\zeta_{ab} = f + (\text{d}u_g/\text{d}x - \text{d}v_g/\text{d}y)
\]

where if

\(\zeta_{ab} > 0\) the atmosphere is inertially stable

\(= 0\) " neutral

\(< 0\) " unstable

where \(f\) is the Coriolis parameter and \(u_g\) and \(v_g\) are the components of the geostrophic wind. Since \(f\) is always positive in the northern hemisphere we can see
Fig 30a 850 mb

Fig 30b 700 mb

Fig 30c 500 mb

Figs 30a-c Geostrophic relative vorticity scaled by $1.0E+05$ in s^{-1} for 00z Jan 27.
Figs 31a–c Geostrophic absolute vorticity scaled by 1.0×10^5 in s$^{-1}$ for 00z Jan 27.
that where the ζg is negative we have the possibility of inertial instability. Figs 30a-c show the plots of the ζg for 8527. Here we see that along the frontal zone at the edge of the cold pool (see Fig 6) ζg is indeed negative and of the same order of magnitude as f. Figs 31a-c are the plots of ζab as described above. Fig 31a shows that at 850 mb there is a broad band of low values of ζab along the frontal zone followed by an area of high values of ζab centered over Eastern Iowa.

From this it is evident that at the 850 mb level, the ζab is nearly an order of magnitude less on the warm side of the front than on the cold side. This pattern is evident in all three levels. Since f is constant in a vertical column, and the geostrophic wind increases along the frontal zone due to the thermal wind relation these maximums and minimums grow more intense with height indicating areas of negative ζab near the front. These plots indicate that the area just to the warm side of the front is inertially unstable causing horizontal mixing and thus entrainment of warm air into the frontal zone. Because this mechanism produces entrainment only on the warm side of the front, these results are in qualitative agreement with those presented by Sanders (1955). These results are also supported by the pattern of high AHVD temperatures extending along the frontal zone in Fig 29a.
CHAPTER VI

CONCLUSIONS

Comparison between the front associated with a CAD and a mesoscale gust front is hampered by the overwhelming difference in scales. The CAD is so obviously dominated by synoptic forcing that it is difficult to see the similarities and perceive the subtle yet important effect the gravity current can have on this feature. A gust front has a spatial and temporal scale that does not allow the effects of the earth's rotation to be manifested to any large degree so its' gravity current aspects can be seen in the observed fields. Thus the head of a gust front is seen as an elevated area of high density air moving behind the front. The head has a roll circulation in it with considerable turbulence and mixing evident in the upper levels just behind the elevated head. In the CAD case it has been shown that behind the front there also exists an elevated area of high density air which exhibits itself as a ridge in the AGEO height field. This ridge also travels with the front keeping the same orientation. It has been shown that a roll circulation forms with the CAD front exhibited in the AGEO winds that moves in the
same sense as the roll circulation in the gust front head. The AHVD temperature field gives evidence of the existence of both an area of mixing behind the head and the presence of a thermal ridge at the leading edge as is evident in the gust front cases presented. In the CAO case these features are evident not in the observed fields as is the case of a gust front, but in the component of the observed fields that is unbalanced with the geostrophic-hydrostatic state.

As stated earlier, Hoskins and Bretherton (1972) showed that a front could be formed using semi-geostrophic theory, but the mechanism for controlling the frontogenetic process was incomplete. OR showed mathematically that the ageostrophic vorticity could control this process through its relative position and strength with respect to the divergence field. The results of this analysis seem to support this theory. OR speculated that gravity waves might have a role in the positioning of the divergence field while the vorticity field may be controlled by the synoptic system. Indeed the oscillatory nature of the divergence field suggests that gravity waves may have an important role here.

If, however, the existence of gravity current effects are presumed, as the evidence suggests, a simpler controlling mechanism may be implied.

As the front forms, it has been shown in this case that the potential energy rises behind the front. This rise in potential energy is due at least to the denser air
behind the front but may also be due in part to synoptic scale lifting and convergence in the lower levels as in this case. A pressure gradient forms due to this denser air which is partially balanced by the coriolis force. As the front gets more intense, the pressure gradient gets stronger which may become unbalanced with the geostrophic state. When this occurs gravity current features form in the geostrophic components as the results here indicate. As this current pushes outward it carries with it the characteristic convergence present at the leading edge of a density current. Since the gravity current cannot influence the vorticity field because it is basically irrotational in the horizontal plane, this convergence then outruns the geostrophic vorticity field causing the phase shift required to balance the frontogenetic process. There is evidence of this overrunning in Figs 24a and 24b which show that although the ridge in the AGEO height field shows no appreciable movement with respect to the front, the trough that was just behind the front in Fig 24a becomes more intense and moves just ahead of the front in Fig 24b 12 hours later. Also the observed phase shift between D and ζ_a is greatest in the lowest levels as one would expect if the gravity current effects were forcing the phase shift.

The idea of a gravity current exhibiting itself in ageostrophic components is one that would be impossible to hold without this type of analysis. Only
through a technique that allows both the heights and winds to adjust to the geostrophic state can an ageostrophic height field be defined. The inclusion of this quantity into our analysis opens up many possibilities for forming and testing hypotheses such as the one presented here. The proof of the existence of such a gravity current is by no means complete in this investigation. A further variational technique would be required for this which will be discussed in the future research section.
CHAPTER VII

FUTURE RESEARCH

In order to more accurately investigate the hypothesis formed during this investigation another filter could be derived using the same variational technique as used here that would extract the gravity current components from the AGEO components already found. This would require the development of a simplified set of equations that could describe this component and then the construction of a functional using these equations. There are several interesting questions that might be answered in this way.

The first most obvious question is that of the exact nature of the gravity current interaction. Without this type of analysis it would be impossible to prove the existence of such effects. Other possible avenues of research would be:

Do these effects occur only in CAO type fronts or are they a significant factor in all fronts?

What is the cause and exact nature and effect of the varying wavelengths found in the divergence and AGEO vorticity field?

Are there sub-synoptic forces which act...
significantly on the AGEO vorticity field, or is it mostly forced by the synoptic system as supposed by OR?

What are the exact physical interpretations of the AGEO and AHVD components? What are the effects of altering the filtering process and/or sequence?

These are only a few of the questions raised by this investigation. Hopefully this project may have stimulated interest in this type of analysis so that more of them may be pursued in the future.
BIBLIOGRAPHY

Martin, H.C., 1973: Some Observations of the
Microstructure of Dry Cold Fronts.
JAM,12,658-663.

Orlanski,I. and Ross,B.,1984:The Evolution of an Observed Cold Front. Part II:Mesoscale Dynamics. JAS,41-10,1669-1703

APPENDIX A

HYDROSTATIC FILTER FINITE DIFFERENCE FORM

The vertical coordinate for the hydrostatic filter is the log pressure. Where R is the gas constant for dry air and PL is the pressure in mb.

\[P = -R \ln(PL/1000) \]

The functional for the hydrostatic equation in finite difference form is

\[J = \sum [\alpha(T_{ijk} - T_{ijk})^2 + \beta(\phi_{ijk} - \phi_{ijk})^2 + \lambda_{ijk}] \]

\[+ \beta(\phi_{ijk+1} - \phi_{ijk-1})/2\Delta P - T_{ijk}) \Delta P \]

where \(\alpha \) is the error module for \(T \) and \(\beta \) is the error module for \(\phi \). These error modules are defined as

\[1/(T_1 - T_0)^2 \]

where \(T_1 \) is the value of \(T \) at this iteration and \(T_0 \) is the value of \(T \) at the last iteration. All error modules are of this form. These error modules are also called weights and are recomputed upon each iteration. The value of these weights can alter the final value after the filtering process. The effect of changing these weights is handled in the text. \(\lambda \) is the lagrange multiplier for the constraint, HW (1980) The subscripts \(i,j,k \) indicate the gridpoint in \(x,y \) and \(P \) respectively.
We want to minimize \(J \), where
\[
\delta J = \delta T J + \delta \phi J + \delta \lambda J
\]
from \(\delta T J = 0 \) we get
\[
2\alpha (T_{ijk} - T_{0ij}) \delta T_{ijk} - \lambda_{ijk} \delta T = 0 \quad \text{but } \delta T \text{ is small and arbitrary but not } = 0
\]
so
\[
\text{EQN 2) } T_{ijk} = \lambda_{ijk}/2\alpha + T_{0ij}
\]
From \(\delta \phi J = 0 \) we get
\[
\Sigma[\beta(\phi_{ijk} + \delta \phi_{ijk} - \phi_{0ijk})^2 + (\lambda_{ijk} + \delta \lambda_{ijk})
\]
\[
(\phi_{ijk+1} + \delta \phi_{ijk+1} - \phi_{ijk-1} - \delta \phi_{ijk-1} - T_{ijk})
\]
\[
-\beta(\phi_{ijk} - \phi_{0ijk})^2 - \lambda_{ijk}(\delta \phi_{ijk+1} - \delta \phi_{ijk-1})/2\Delta P_{-T_{ijk}} \} \Delta P = 0
\]
Combine terms

Neglect terms of order \((\delta)^2\) and use integration by parts to get
\[
2\beta(\phi_{ijk} - \phi_{0ijk}) \delta \phi_{ijk} + \lambda_{ijk}(\delta \phi_{ijk+1} - \delta \phi_{ijk-1})/2\Delta P = 0
\]
Integration by parts gives us the boundary condition that \(\delta \lambda = 0 \) on the boundaries.

Expand this for \(l = 1 \) to 9 and use the fact that \(\delta \phi \) is small and arbitrary but not = 0
\[
2\beta(\phi_{ij1} - \phi_{0ij1}) - \lambda_{ij2}/2\Delta P_{2,1} = 0 \quad k=1
\]
\[
2\beta(\phi_{ij2} - \phi_{0ij2}) + (0 - \lambda_{ij3})/\Delta P_{3,1} = 0 \quad k=2
\]
\[
2\beta(\phi_{ijk} - \phi_{0ijk}) - (\lambda_{ijk+1} - \lambda_{ijk-1})/\Delta P_{k+1,k-1} = 0 \quad k=3,7
\]
\[
(\phi_{ij7} - \phi_{0ij7}) - (0 - \lambda_{ij8})/\Delta P_{9,7} = 0 \quad k=8
\]
\[
(\phi_{ij8} - \phi_{0ij8}) - \lambda_{ij9}/2\Delta P_{9,8} = 0 \quad k=9
\]
Note that the finite difference form forces us to treat the equations differently near the boundaries. From this we get EQN 3) For $k=2$

$$\phi_2 = \lambda_3/2\beta \Delta PC + \phi_0$$

EQN 4) For $k=3,7$

$$\phi_k = (\lambda_{k+1}-\lambda_{k-1})/2\beta \Delta PC + \phi_0$$

EQN 5) For $k=8$

$$\phi_8 = -\lambda_7/2\beta \Delta PC + \phi_0$$

The boundary condition that $\lambda=0$ at level 1 and 9 has been incorporated into these equations.

From $\delta \lambda_i = 0$ we get

EQN 6) $$((\phi_{ijk+1}-\phi_{ijk-1})/2\Delta P-T_{ijk}))\delta \lambda_{ijk}=0$$

The original constraint

For ease of notation we will use

$$\Delta PC = P_{k+1}-P_{k-1}$$
$$\Delta PF = P_{k+2}-P_k$$
$$\Delta PB = P_k-P_{k-2}$$
$$\Delta PHT = P_k-P_{k-1}$$
$$\Delta PHB = P_{k+1}-P_k$$

From these we solve for T and ϕ in terms of T_0 and ϕ_0 and λ to get an expression for λ by substituting EQNS 1-4) into the original constraint EQN 5). We will drop the subscripts i,j since all operations in the following expressions are performed over all i,j.
\[
\begin{align*}
(\lambda_{k+1} - \lambda_k)/2\beta \Delta \text{PF} \Delta \text{PC} &= (\lambda_k - \lambda_{k-2})/2\beta \Delta \text{PB} \Delta \text{PC} \\
+ (\phi o_{k+1} - \phi o_{k-1})/\Delta \text{PC} - \lambda_k/2\alpha - T_o_k &= 0 \quad \text{For } k=3,7 \\
\end{align*}
\]

which simplifies to

For \(k=3,7 \) \quad \text{EQN 7) }

\[
\lambda_k = \frac{[\lambda_{k+2}/2\beta \Delta \text{PF} \Delta \text{PC} + \lambda_{k-2}/2\beta \Delta \text{PB} \Delta \text{PC} + (\phi o_{k+1} - \phi o_{k-1})/\Delta \text{PC} - T_o_k]}{1/2\beta \Delta \text{PF} \Delta \text{PC} + 1/4\beta \Delta \text{PB} \Delta \text{PC} + 1/2\alpha}
\]

For \(k=2 \) \quad \text{EQN 8) }

\[
\lambda_k = \frac{[\lambda_{k+2}/2\beta \Delta \text{PF} \Delta \text{PC} + (\phi o_{k+1} - \phi o_{k-1})/\Delta \text{PC} - T_o_k]}{1/2\beta \Delta \text{PF} \Delta \text{PC} + 1/4\beta \Delta \text{PB} \Delta \text{PC} + 1/2\alpha}
\]

For \(k=8 \) \quad \text{EQN 9) }

\[
\lambda_k = \frac{[\lambda_{k-2}/2\beta \Delta \text{PB} \Delta \text{PC} + (\phi o_{k+1} - \phi o_{k-1})/\Delta \text{PC} - T_o_k]}{1/2\beta \Delta \text{PB} \Delta \text{PC} + 1/4\beta \Delta \text{PH} \Delta \text{PC} + 1/2\alpha}
\]

Once the appropriate \(\lambda \) is found we can calculate \(T \) and \(\phi \) from EQNS 2-5).

GEOSTROPHIC FILTER

There are two functionals for the geostrophic constraint, one in \(u \) and one in \(v \). These functionals are \(J_1 \) in \(u \) and \(J_2 \) in \(v \). \(\alpha \) is the error module of \(u \) and \(v \) and \(\beta \) is the error module of \(\phi \) where

\[
\alpha = 1/(u-u_0)^2 \quad \beta = 1/(\phi - \phi_0)^2
\]
EQN 19

\[J_1 = \sum \sum [\alpha (u_{ij} - u_{0ij})^2 + \beta (\phi_{ij} - \phi_{0ij})^2 + \lambda u_i (f u + (\phi_{i+1} - \phi_{i-1})/2 \Delta \phi)] \Delta x \Delta y \]

EQN 11

\[J_2 = \sum \sum [\alpha (v_{ijk} - v_{0ijk})^2 + \beta (\phi_{ijk} - \phi_{0ijk})^2 + \lambda u_j (f v + (\phi_{i+1jk} - \phi_{i-1jk})/2 \Delta \phi)] \Delta x \Delta y \]

\[\delta J_1 = \delta \phi J_1 + \delta u J_1 + \delta \lambda u J_1 = 0 \]

\[\delta J_2 = \delta \phi J_2 + \delta u J_2 + \delta \lambda u J_2 = 0 \]

so

\[\delta \phi J_1 = \sum \sum [2 \beta (\phi_{ij} - \phi_{0ij}) \delta \phi_{ij} + \lambda u_{ij} (\delta \phi_{ij+1} - \delta \phi_{ij-1})/2 \Delta \phi] \Delta x \Delta y \]

\[\delta \phi J_2 = \sum \sum [2 \beta (\phi_{ijk} - \phi_{0ijk}) \delta \phi_{ijk} + \lambda u_{ijk} (\delta \phi_{i+1jk} - \delta \phi_{i-1jk})/2 \Delta \phi] \Delta x \Delta y \]

\[\delta u_{ij} = \sum \sum [2 \alpha (u_{ij} - u_{0ij}) \delta u_{ij} + \lambda u_{ij} (\delta u_{ij})/2 \Delta \phi] \Delta x \Delta y \]

\[\delta u_{ijk} = \sum \sum [2 \alpha (v_{ijk} - v_{0ijk}) \delta u_{ijk} + \lambda u_{ijk} (\delta u_{ijk})/2 \Delta \phi] \Delta x \Delta y \]

\[\delta \lambda u_{ij} = \sum \sum [\delta \lambda u_{ij} (f u_{ij} + (\phi_{ij+1} - \phi_{ij-1})/2 \Delta \phi)] \Delta x \Delta y \]

\[\delta \lambda u_{ijk} = \sum \sum [\delta \lambda u_{ijk} (f v_{ijk} + (\phi_{i+1jk} - \phi_{i-1jk})/2 \Delta \phi)] \Delta x \Delta y \]

After setting these to zero and expanding each, then recombing terms as we did in the hydrostatic case we get these working equations. Again we have used the fact that all \(\delta \) quantities are small and arbitrary but not = 0.

From \(\delta u_{ij} = 0 \) we get

EQN 12

\[u_{ij} = u_{0ij} - (f/2 \alpha) \lambda u_{ij} \]
and similarly from $\delta_{\nu} J_2 = 0$ we get

\begin{equation}
\nu_{ij} = \nu_{ij} - (\ell/2\alpha) \lambda \nu_{ij}
\end{equation}

These have no boundary problems.

When we do $\delta_{\phi} J_1$ and $\delta_{\phi} J_2$ we must account for the
differences at the boundaries because of the derivative
of ϕ in y and x. To do this we write out the expressions
for $\delta_{\phi} J_1$ for each possible j and solve for ϕ in each case
this gives us 5 possible equations for ϕ depending on
which row we are in.

\begin{align*}
\text{EQN 14)} & \quad \phi_{i1} = +(1/4\beta \Delta y) \lambda u_{i2} + \phi_{i1} \quad \text{for } j=1 \\
\text{EQN 15)} & \quad \phi_{i2} = +(1/4\beta \Delta y) \lambda u_{i3} + \phi_{i2} \quad \text{for } j=2 \\
\text{EQN 16)} & \quad \phi_{i3} = -(1/4\beta \Delta y)(\lambda u_{i-1} - \lambda u_{i+1}) + \phi_{i3} \quad \text{for } j=3,n-2 \\
\text{EQN 17)} & \quad \phi_{i(n-1)} = -(1/4\beta \Delta y) \lambda u_{i(n-2)} + \phi_{i(n-1)} \quad \text{for } j=n-1 \\
\text{EQN 18)} & \quad \phi_{in} = -(1/4\beta \Delta y) \lambda u_{i(n-1)} + \phi_{in} \quad \text{for } j=n \\
\end{align*}

We can do the same operations for $\delta_{\phi} J_2$ to get a similar

equation for ϕ_{ij} for $i=1,m-2$

\begin{equation}
\phi_{ij} = -(1/4\beta \Delta x)(\lambda u_{i+1} - \lambda u_{i-1}) + \phi_{ij}
\end{equation}

Now we plug the equations for u and ϕ into the equation

for $\delta_{\lambda} u J_1 = 0$ which is the geostrophic constraint in u.
\[
\sum_{j} \delta \lambda_{ij} \left[\nabla \cdot \left(\frac{r^2/2\alpha}{\beta} \lambda_{uij} + (-1/4) \Delta u \left[\lambda_{uij} - \lambda_{uij+2} \right] + \phi \right) \\
-1/4 \Delta u \left[-\lambda_{uij-z} + \lambda_{uij} - \phi \right] \right] (1/2 \Delta u) = \theta
\]

\[
\theta = [\nabla \cdot \left(\frac{r^2}{2\alpha} \lambda_{uij} / 2 \Delta u \right) - 1/8 \beta \Delta u^2 (\lambda_{uij} - \lambda_{uij+2} + \lambda_{uij} - \lambda_{uij-2}) + \left(\phi \right) / 2 \Delta u]
\]

We can solve this for \(\lambda_{uij} \) such that

\[
\text{EQN 20) } \lambda_{uij} = \left[2\alpha \beta (2\Delta u)^2 \left[\nabla \cdot \left(\frac{r^2}{2\alpha} \lambda_{uij} + (\lambda_{uij+2} + \lambda_{uij-2}) / 2 \beta (2\Delta u)^2 \\
+ (\phi / 2 \Delta u) / (r^2 (2\Delta u)^2 + 2\alpha) \\
+ (\phi_{i,j+1} - \phi_{i,j-1}) / 2 \Delta x) / (r^2 (2\Delta u)^2 + 2\alpha) \\
\right] \right]
\]

This expression gives \(\lambda_{uij} \) in terms of \(\lambda_{uij} \) at other locations and known quantities. We solve this iteratively using the modified Newton–Rathson method.

The derivation of the equation for \(\lambda_{uij} \) is totally analogous to that of \(\lambda_{uij} \) and yields

\[
\text{EQN 21) } \lambda_{uij} = \left[2\alpha \beta (2\Delta x)^2 \left[\nabla \cdot \left(\frac{r^2}{2\alpha} \lambda_{uij} + (\lambda_{uij+2} + \lambda_{uij-2}) / 2 \beta (2\Delta x)^2 \\
+ (\phi / 2 \Delta u) / (r^2 (2\Delta x)^2 + 2\alpha) \\
\right] \right]
\]

\(\alpha \) and \(\beta \) are recomputed upon each iteration. First \(\lambda u \) and \(\lambda v \) are computed and then \(u, v \) and \(\phi \). The final values after all iterations of \(u, v \) and \(\phi \) are then the geostrophic components of these quantities.

EXTERNAL WAVE FILTER

This program uses the continuity equation to exclude any external gravity waves from the final components. The functional for this filter in finite
difference form is

\[\Sigma_i \Sigma_j \Sigma_k \lambda \Delta \left[(u(u) - u) + (v(v) - v) \right] \Delta P + \]

\[\lambda \Sigma ((u_{i+1,jk} - u_{i,jk})/\Delta x + (v_{ij+1,k} - v_{ij,k})/\Delta y) \Delta P \Delta x \Delta y = 0 \]

I will drop all subscripts except those that are used in finite difference calculations since it is assumed the sums go over all points. Also since the constraint is independent of \(P \) we need to keep the integral in the constraint. If we expand this functional using variational calculus we get

\[\Sigma [(u+\delta u-u) + (v+\delta v-v) + \lambda \Sigma (u_{i-1} - u)/\Delta x + (v_{j+1} - v)/\Delta y) \Delta P = 0 \]

Neglect terms of order \((\delta)^2 \) to get

\[2(u-u)\delta u + 2(v-v)\delta v + \lambda \Sigma [(\delta u_{i+1} - \delta u_{i-1})/\Delta x + (\delta v_{j+1} - \delta v_{j-1})/\Delta y) \Delta P = 0 \]

\[\delta u(\) = 0 \]

\[2(u-u)\delta u + \lambda \Sigma [(\delta u_{i+1} - \delta u_{i-1})/\Delta x + (\delta v_{j+1} - \delta v_{j-1})/\Delta y) \Delta P = 0 \]

If we write these out for all possible i we get

\[2(u-u)\lambda + \lambda \Sigma [(\delta u_{i+1} - \delta u_{i-1})/\Delta x] \delta u_i = 0 \]

\[2(u-u)\lambda + (\lambda - \lambda_3)/\Delta x \delta u_i = 0 \]

\[2(u-u)\lambda + (\lambda - \lambda_i)/\Delta x \delta u_i = 0 \]
From this we get

$$u_i = \frac{(\lambda_{i-1} - \lambda_{i+1})}{4\Delta x} + u_0$$

and similarly we get

$$u_j = \frac{(\lambda_{j-1} - \lambda_{j+1})}{4\Delta y} + u_0$$

We plug these into the constraint equation to get

$$\sum_p \left[\frac{(\lambda_{i} - \lambda_{i+2})}{4\Delta x} + u_{i+1} - \frac{(\lambda_{i-2} + \lambda_{i})}{4\Delta x} - u_{i-1} \right] / 2 \Delta x$$

$$+ \left[\frac{(\lambda_{j} - \lambda_{j+2})}{4\Delta y} + u_{j+1} - \frac{(\lambda_{j-2} + \lambda_{j})}{4\Delta y} - u_{j-1} \right] / 2 \Delta y \Delta P = 0$$

By rearranging terms we can solve for $$\lambda_{ij}$$ in terms of $$\lambda$$ at other positions. Since $$\lambda$$ in this case is not a function of $$P$$ we can remove it from the sum to get

$$\lambda_{ij} = \frac{((\lambda_{i+2} + \lambda_{i-2})\Delta y^2 + (\lambda_{j+2} + \lambda_{j-2})\Delta x^2)}{2(\Delta x^2 + \Delta y^2)}$$

$$- 2/P_s \sum_p \left[\frac{(u_{i+1} - u_{i-1})}{4\Delta x} + (v_{j+1} - v_{j-1}) \right] \Delta x$$

Where $$P_s$$ is $$\sum_p \Delta P$$

Here again we get $$\lambda$$ in terms of known quantities and other $$\lambda$$. We can solve this iteratively as before then compute new values for $$u$$ and $$v$$ at each iteration. Note that although $$\lambda$$ is used as the lagrange multiplier in all three filters, they are different in all three cases and completely independent of each other.

CRESSMAN ANALYSIS

The weighting function is defined
\[W = \frac{R_{OI2} - DK^2}{(R_{OI2} + DK^2)} \quad \text{for } DK < R_{OI2} \]

where

\(R_{OI} = \) ROI squared
\(DK = \) DK squared
\(DK = \) the great circle distance between the gridpoint and the station location.
\(R_{OI} = \) Radius of influence set at 495 km initially and then reduced by 10% on each successive pass. The values of 495 km and 10% were found to be optimal by testing different values and checking the station residuals at each pass. The station residual is the difference between the actual station value and the value found by using the same Cressman scheme to interpolate the gridpoint values back onto the station locations.
If \(DK > R_{OI} \) then the weighting function is set to 0.
Gridpoint values are computed by adding the contributions from each station within the radius of influence by the formula

\[\text{Value} = \frac{\Sigma W \cdot Z}{\Sigma W} \]

Here the summation is over all stations, \(Z \) is the value at each station and \(W \) is the weighting function for that particular gridpoint and station.
This analysis uses four successive passes of the Cressman scheme. The program will not allow the Radius of Influence to be decreased so far that any gridpoint is out of range of all stations. If this occurs, the Cressman scheme is run again with the same radius of influence as
the last pass so that all fields will have the same amount of smoothing inherent in the analysis done to them. This did occur in some cases but never earlier in the process than the fourth pass. The decrease in the station residuals from successive passes was checked in all cases and found to be acceptable.

Kinematic Omega \(\omega \)

\(\omega \) is assumed to be 0 at the lowest level and is found by the equation in finite difference form

\[
\omega_{ij1} = \omega_{ij-1} + \left(\frac{(u_{ij+1}-u_{ij-1})}{2\Delta x} + \frac{(v_{ij+1}-v_{ij-1})}{2\Delta y} \right) \Delta P
\]

and is integrated upwards from the lowest level.

\(\Delta P \) in this case is defined as the depth of the representative layer as such

\begin{align*}
\text{-----------------} & \quad 200 \text{ mb} \\
250 \text{ mb} & \quad 4 \quad \Delta P=175 \text{ mb} \; \text{use div at 250 mb} \\
\text{-----------------} & \quad 375 \text{ mb} \\
500 \text{ mb} & \quad 3 \quad \Delta P=225 \text{ mb} \; \text{use div at 500 mb} \\
\text{-----------------} & \quad 600 \text{ mb} \\
700 \text{ mb} & \quad 2 \quad \Delta P=175 \text{ mb} \; \text{use div at 700 mb} \\
\text{-----------------} & \quad 775 \text{ mb} \\
850 \text{ mb} & \quad 1 \quad \Delta P=225 \text{ mb} \; \text{use div at 850 mb} \\
\text{-----------------} & \quad 1000 \text{ mb} \quad \omega = 0
\end{align*}
Moisture

The moisture field is given as specific humidity q

where

$$q = \frac{\text{mass of water vapor}}{\text{mass of dry air}}$$

also

$$q = \frac{\ell}{1+r}$$

where r = mixing ratio

$$r = \frac{e}{p-e}$$

where e = saturation vapor pressure in Pascals

$e = .622$

p = pressure in Pascals

$e = e_0 \exp \left[L_v/R_v (1/T_0 - 1/T_d) \right]$ from Clausius-Clapyron

where $e_0 = 610.78$ Pascals

$T_0 = 273.78$ K

$L_v = 2.5E+06$ Joules/Kg

$R_v = 461$ Joules/K Kg

so

$$q = \frac{e}{p-e(1-e)}$$

units of Kg/Kg

Moisture calculations were not used in the results of this study, however, runs of the analysis were made using the virtual temperature instead of the observed temperature to check the effect that moisture might have on the results. No significant changes were noted.