Immune response of humans to the circumsporozoite protein of Plasmodium falciparum: limited T cell response to the immunodominant central repeat region

Title: Immune response of humans to the circumsporozoite protein of Plasmodium falciparum: limited T cell response to the immunodominant central repeat region

Personal Authors: Campbell JR, Paleologo FP, Franke ED, Ratikayanto S, Hadiputroto H, Kurniawan L, Wistar R Jr., Hoffman SL, Annis BA, Wasserman G, Laughlin LW

IMMUNE RESPONSE OF HUMANS TO THE CIRCUMSPOROZOITE PROTEIN OF *PLASMODIUM FALCIPARUM*: LIMITED T CELL RESPONSE TO THE IMMUNODOMINANT CENTRAL REPEAT REGION

JAMES R. CAMPBELL,* FRED P. PALEOLOGO,† EILEEN D. FRANKE,† SUTANTI RATIWAYANTO,† HILDA HADIPUTRANTO,† LILIANA KURNIAWANTO,† RICHARD WISTAR, JR.,* STEPHEN L. HOFFMAN,* BARRY A. ANNIS,‡ GAIL WASSERMAN,§ AND LARRY W. LAUGHLIN

*Infectious Diseases Department, Naval Medical Research Institute, Bethesda, Maryland 20814-5055, †U.S. Naval Medical Research Unit No. 2, Jakarta Detachment, APO San Francisco, California 96326, ‡Department of Immunology, Ministry of Health Research and Development, Jakarta, Indonesia, §Smith, Kline and French Laboratories, Philadelphia, Pennsylvania 19101, and ¶U.S. Naval Medical Research Unit No. 2, Manila, APO San Francisco, California 96528

Abstract. Most adults in highly malarious areas have antibodies to the repeat region of the circumsporozoite protein of *Plasmodium falciparum*. To determine if a T cell epitope on the repeat region stimulated T cell help for this antibody, we used R32tet3, a recombinant construct derived from the repeat region of the circumsporozoite protein of *P. falciparum*, to stimulate in vitro mononuclear cells from residents of an area hyperendemic for malaria. Three groups differing in the length of time they had resided in a malarial area were studied. The percentage of individuals in each group who had positive antibody responses to R32tet3 increased with increased exposure to malaria. However, antibody positivity was not correlated with in vitro lymphocyte proliferation responses to the antigen. Lymphocytes from 79% of the individuals showing serum antibodies to R32tet3 failed to respond in a lymphocyte transformation assay, suggesting that T cell helper activity in these individuals was based upon the recognition of a T cell epitope not located within this peptide.

Humans naturally exposed to malaria make antibodies to the repeat region of the circumsporozoite (CS) protein. A recombinant DNA and a synthetic peptide subunit vaccine derived from the CS protein of *Plasmodium falciparum* have shown promise in the protection against experimental, sporozoite induced malaria in humans. They both include Asn-Ala-Asn-Pro (NANP), the predominant tetrapeptide repeat on the CS protein. However, human antibody response to immunization with these vaccines has been inconsistent. It is known that the murine T helper cell response to (NANP), is severely restricted genetically and that at least one additional epitope on the CS protein carboxyterminal to the repeat region can stimulate T cells to provide help for the production of the antibody to (NANP),. A possible explanation for the inconsistent response of humans immunized with these vaccines is that there is some genetic restriction of the human T cell response to (NANP),. To investigate this possibility, we studied adults living in malarious areas of Indonesia. Although we found a high prevalence of serum antibodies to (NANP),, our results suggest that T lymphocyte response to this antigen is restricted, and that other epitopes on the CS protein or on sporozoites are important to the induction of T cell help for the production of antibodies to (NANP),.

MATERIALS AND METHODS

Study populations

Volunteers in the study were adult residents of three villages on the Indonesian island of Irian Jaya. The villages of Mapurujaya and Kwamki Lama are located in highly malarious areas of the coastal lowlands. The village of Tembaga pura is located in a mountainous area where ma-
laria transmission has never been demonstrated; however, the residents do travel occasionally to the malarious lowlands. Giemsa stained thick blood smears from all volunteers were screened for malaria infections. Controls included 1 Indonesian and 7 American volunteers who had no history of malaria.

Blood sampling and processing

For each volunteer, a sample of blood was obtained for serum. Sera were separated by centrifugation and immediately frozen in liquid nitrogen. Another sample of blood was drawn into heparin, diluted into an equal volume of RPMI 1640 with NaHCO₃, and carried 12--14 hr at ambient temperature to a central laboratory for immediate processing. Peripheral blood mononuclear cells (PBMC) were purified on Ficoll Hypaque. Trypan blue staining, as well as concanavalin A (Con A) and pokeweed mitogen (PWM) stimulation were employed for all samples to confirm cell viability and function.

Cellular proliferation studies

The recombinant DNA construct, R32tet, was purified by ammonium sulfate precipitation, dialfiltration, ion exchange chromatography, and reversed phase chromatography. Cellular responses to this antigen were studied by lymphocyte transformation assay (LTA). Purified PBMC were suspended in RPMI 1640 at a concentration of 2.5 × 10⁶/ml and triplicate 100 μl volumes were placed in flat-bottomed, 96-well tissue culture plates (Linbro Chemical Co., Hamden, CT). Cells were stimulated with Con A (Sigma, St. Louis, MO) at 5 μg/ml, PWM (Gibco, Grand Island, NY) at a dilution of 1:100 and R32tet, at final concentrations from 5 ng/ml to 5 μg/ml, added in 100 μl volumes of RPMI. Incubation was carried out in a humidified 37°C chamber with 5% CO₂. One μCi of 'H-thymidine (New England Nuclear, Boston, MA) was added after 72 hr of culture for Con A and 120 hr for PWM and R32tet. The cells were harvested using a multiple automated sample harvester 18 hr after adding the thymidine, and counted in a Packard TriCarb scintillation counter. For each volunteer, stimulation indices were calculated by dividing the cpm of stimulated cells by the cpm of the same individual’s cells cultured without antigen. A stimulation index ≥ 2 SD above the mean control value was considered positive.

Detection of antibodies

For each volunteer whose cells were tested by LTA, a paired serum was screened by ELISA for the presence of IgG class antibody against R32tet. Control sera were from the same controls as in the LTA procedure. The ELISA was done using 96-well round-bottomed plates coated with R32tet (2.0 μg/ml), provided by R. Wirtz, Walter Reed Army Institute for Research. Coated plates were blocked with 0.5% BSA, and incubated with 100 μl of sera (1:100 in PBS/Tween) overnight at 4°C. Plates were washed and treated with 100 μl of goat antisera to human IgG (1:1,000) (Tago, Burlingame, CA) for 2 hr at 37°C. The plates were then washed and 100 μl of peroxidase conjugated rabbit anti-goat IgG (1:1,000) (KPL, Gaithersburg, MD) was added for 2 hr at 37°C. Color was developed with o-phenylenediamine. The color reaction was stopped at 30 min, and an OD₆₅₀ ≥ 2 SD above the mean value in American and Indonesian controls was considered positive. All ELISA values represent the mean of duplicate runs of triplicate well measurements.

RESULTS

Antibody to the R32tet antigen was found in the sera of 27/39 (69%) of the volunteers from Mapurujaya and 23/40 (58%) of those from Kwamki Lama. Volunteers from Tembagapura, whose exposure to malaria was much less, showed an antibody positivity rate of 9/38 (24%). The comparison of ELISA results with LTA results revealed no correlation between serum antibody positivity and cell mediated responses to the R32tet antigen. Fifty-seven of the antibody-positive individuals were studied by LTA. Lymphocytes from 12 of these individuals (21%) were
Volunteers showing both positive cellular and humoral responses to R32tet31 in vitro

<table>
<thead>
<tr>
<th>Location</th>
<th>Volunteer</th>
<th>Cont.</th>
<th>cpm*</th>
<th>SI</th>
<th>O/D</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapurujaya</td>
<td>1103</td>
<td>402</td>
<td>890</td>
<td>488</td>
<td>2.21</td>
<td>0.194</td>
</tr>
<tr>
<td></td>
<td>1118</td>
<td>1,308</td>
<td>3,209</td>
<td>1,901</td>
<td>2.45</td>
<td>0.054</td>
</tr>
<tr>
<td></td>
<td>1157</td>
<td>4,208</td>
<td>10,939</td>
<td>6,731</td>
<td>2.60</td>
<td>0.051</td>
</tr>
<tr>
<td></td>
<td>3032</td>
<td>199</td>
<td>1,555</td>
<td>1,356</td>
<td>7.80</td>
<td>0.181</td>
</tr>
<tr>
<td></td>
<td>3052</td>
<td>105</td>
<td>6,431</td>
<td>6,326</td>
<td>61.25</td>
<td>0.060</td>
</tr>
<tr>
<td></td>
<td>3109</td>
<td>134</td>
<td>559</td>
<td>425</td>
<td>4.17</td>
<td>0.207</td>
</tr>
<tr>
<td></td>
<td>3222</td>
<td>307</td>
<td>1,185</td>
<td>878</td>
<td>3.86</td>
<td>0.059</td>
</tr>
<tr>
<td></td>
<td>3327</td>
<td>586</td>
<td>1,865</td>
<td>1,279</td>
<td>3.18</td>
<td>0.069</td>
</tr>
<tr>
<td></td>
<td>3382</td>
<td>762</td>
<td>2,039</td>
<td>1,277</td>
<td>2.68</td>
<td>0.073</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.02</td>
<td>0.105</td>
<td></td>
</tr>
<tr>
<td>Kwamki Lama</td>
<td>5155</td>
<td>336</td>
<td>2,470</td>
<td>2,134</td>
<td>7.35</td>
<td>0.101</td>
</tr>
<tr>
<td>Tembagapura</td>
<td>D.M.</td>
<td>211</td>
<td>692</td>
<td>481</td>
<td>3.28</td>
<td>0.097</td>
</tr>
<tr>
<td></td>
<td>J.M.</td>
<td>188</td>
<td>682</td>
<td>494</td>
<td>3.63</td>
<td>0.052</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.46</td>
<td>0.075</td>
<td></td>
</tr>
</tbody>
</table>

* = Cont = incorporation of 3H-thymidine, cells cultured without antigen. R32 = highest cpm, cells cultured with 5 ng-5 μg/ml R32tet31, Δ = R32 - cont.; SI = R32/cont.

ODs = ELISA O/D, reading for IgG antibodies that recognize R32tet31, 1:100 serum dilution. Positive serum = O/D > 0.041.

stimulated to proliferate in vitro by 5 days of culture with the antigen (Table 1). The 45 non-responders showed a stimulation index (SI) of 1.38 ± 0.36 (mean ± SD). Ten of these 57 individuals were found to be positive for P. falciparum infections at the time of sampling, and in no case did cells from blood smear-positive individuals proliferate in response to R32tet31. Lymphocytes from nonimmune Indonesian and American controls failed to respond to in vitro stimulation with R32tet31, at any of the concentrations tested (SI = 1.23 ± 0.41). Cells from all 5 of these individuals as well as from all controls showed strong in vitro mitogenic responses, and the 7-day cytotoxicity test using R32tet31 antigen revealed no significant difference in the percentage of viable cells remaining.

DISCUSSION

Evidence presented in this paper clearly indicates that although residents of an area endemic for P. falciparum produced IgG class antibodies to the central repeat region of the P. falciparum CS protein, in vitro cellular proliferation responses to this antigen were not correlated with antibody positivity. Lymphocyte proliferation to R32tet31 was observed in only 12 of 57 individuals who had antibodies to R32tet31. There are several possible explanations for this disparity. The immunosuppression known to be associated with P. falciparum infections*10 may have limited the response. None of the 10 individuals with documented falciparum parasitemia had a positive blastogenic response to R32tet31 but these observations may have been due to chance. It is possible that others had undetected low grade parasitemia which led to specific malaria immunosuppression. However, all 10 of these individuals showed strong responses to Con A and PWM in vitro, responses that were not different from those shown by volunteers from the same group who were negative for P. falciparum. An alternate explanation for these observations is that a positive lymphocyte proliferative response to R32tet31 represents an in vitro correlate of an in vivo cellular immune response that lowers the incidence of malaria.

It is also possible that the antigen concentrations may have been above or below the optimum range for this assay. Although in vitro proliferation responses were noted with lymphocytes from different individuals at all antigen concentrations from 5 ng-5 μg, other nonresponders might have responded to concentrations outside of this range.

However, the most likely explanation is that T cell epitopes outside the repeat domain provide T cell help for production of CS protein antibody to the repeat region, as in mice.17 If this is the case in humans, P. falciparum sporozoite vaccines that incorporate such epitopes may prove to be more immunogenic than the first generation repeat region vaccines.
T CELL RESPONSE TO SPOROZOITE VACCINE

ACKNOWLEDGMENTS

The R32tet13 antigen was generously provided by J. Young of Smith, Kline and French Laboratories. We acknowledge Michael Good for critically reviewing the work.

The views of the authors do not purport to reflect the positions of the U.S. Navy Department or the naval service at large, or the Indonesian Ministry of Health. This work was supported by the U.S. Naval Medical Research and Development Command work unit 62770A3M162770A870AN124.

REFERENCES