Laser-Induced Metal Deposition on Semiconductors From Liquid Electrolytes

by

L. Nánai, I. Hevesi, F. V. Bunkin, B. S. Luk'yanchuk, M. R. Brook, G. A. Shafeev, Daniel A. Jelski, Z. C. Wu and Thomas F. George

Prepared for Publication

in

Applied Physics Letters

Departments of Chemistry and Physics
State University of New York at Buffalo
Buffalo, New York 14260

December 1988

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release and sale; its distribution is unlimited.
Maskless deposition of gold and copper from electrolyte solutions onto n-doped semiconductors (GaAs, Si) is investigated. The metal deposits are found to have lateral dimensions of about 1 μm and are in barrier contact with the semiconductor. The proposed deposition mechanism is governed by the electric fields resulting from the Dember effect, the p-n junction and the thermal emf.
Maskless deposition of gold and copper from electrolyte solutions onto n-doped semiconductors (GaAs, Si) is investigated. The metal deposits are found to have lateral dimensions of about 1 μm and are in barrier contact with the semiconductor. The proposed deposition mechanism is governed by the electric fields resulting from the Dember effect, the p-n junction and the thermal emf.

PACS: 81.15Lm, 68.55c6, 42.60
I. Introduction

Laser-induced microchemistry is one of the most important alternative methods for the fabrication of different electronic devices.1,2 Maskless laser-induced deposition of metals onto semiconductor surfaces is a field of growing interest because of the necessity to provide well-localized (1 \(\mu \text{m}\)) deposits with good conductivity, and with a controllable type of contact (ohmic or barrier). Deposition from both gaseous3-7 and liquid8-10 phases has advantages and disadvantages, depending on the application.

Until now, two mechanisms for laser-induced metal deposition have been described for electrolytes containing metal salts:

1) photochemical mechanism,11,12

2) thermal decomposition mechanism.13,14

In this paper we present experimental results concerning metal deposition onto semiconductors from liquid electrolytic solutions. The advantage of the present method is that it is a simple technique which produces quality, reproducible results. It is also amenable to theoretical treatment, which will be the subject of a subsequent paper.15

II. Experimental Procedure

The experimental setup is shown schematically in Fig. 1. We used a copper vapor laser in a projection microscopic configuration, which also initiated the deposition.16 This setup permitted the real-time observation of the deposition process on a screen, with linear magnification of about 1000-fold. The laser pulses (\(\lambda = 510.6 \text{ nm, } f = 10 \text{ kHz, } t_{\text{pulse}} = 20 \text{ ns}\)) had an average power 1-5 mW and were focused on the semiconductor wafer surface. The spot size diameters were in the range 1 - 10 \(\mu \text{m}\). The samples (n-Si and n-GaAs
with $n = 10^{18}$ cm$^{-3}$ were put into a dielectric cell filled with the metal salt solution [CuSO_4 or KAu(CN)$_2$ standard electrolyte]. No external electric field was used in our experiments. A computer-driven x-y stage allowed the appropriate scanning and positioning. The samples with deposits were submitted for mechanical, microscopical and electrical investigations.

III. Results

A. Deposition of Gold

Single crystalline n-type GaAs wafers with parallel 100 surfaces and without any precoating were used. Among many possible electrolytes, KAu(CN)$_2$ was found to yield the best results for gold deposition.

The diameter of deposits at the initial stage of the process were found to be much smaller than the laser beam diameter. The main part of the deposit (nearly 80%) appears within 10-50 ms, and with a 1 sec exposure time the deposit diameter reaches that of the laser beam. Thus the deposition rate decreases very dramatically with time.

The morphology of the deposit depends on the laser beam diameter. Deposits with lateral dimensions of about 1 μm appear as a succession of structureless hemispheres, as shown in Fig. 2a. When the laser beam diameter is on the order of a few μm, a well-defined gap forms in the middle of the deposited region (Fig. 2b). For even larger focal points, the middle part of the strip is filled with spherical metal particles.

Energy dispersive analysis by X-rays reveals no contamination, indicating purity to within the 1% accuracy of the instrument (K, L and M lines). The deposits prepared by this method represent rectifying contact
with GaAs with a typical barrier height of 0.9 V. The conductivity of the obtained strips was found to be 2-3 times less than that of bulk gold.

B. Deposition of Copper

Deposition of copper was carried out via the same technique as gold, using CuSO$_4$ in aqueous solution. Figures 2c and 2d show typical results of copper deposits on GaAs and Si, respectively. Copper deposition on silicon was successful provided HF was present in the electrolyte (pH = 1.5). In this case, a uniform copper film adsorbed loosely onto the Si surface even in the absence of laser radiation. Turning on the laser yields an accelerated deposition process with good adhesion (scotch test).

The conductivity of copper deposits on both substrates depends on the scanning speed. At the slowest speed ($v = 20 \mu m/s$) it is half the value of the bulk material. At $v = 100 \mu m/s$ it is one-sixth that of bulk copper. At high scanning speeds the effects of a single laser pulse can be observed. The resulting deposit has a typical height of $0.1 \mu m$ (Cu on GaAs at $P = 5 \text{ mW}$). Formally the deposition speed is $10^6 \mu m/s$, though it decreases after the first shot to $10 \mu m/s$. Finally, the deposition width also depends on the scanning speed, as shown in Fig. 3. At an increasing scan rate, both the height and the volume of the deposit decrease slowly (Fig. 4).

We were unable to deposit either copper or gold on either p-GaAs or p-Si. Only intensive etching was observed in the illuminated area.

IV. Discussion

The photochemical deposition mechanism is known to be successful for metals with a negative electrode potential, such as zinc, cadmium or nickel. This kind of deposition is probably only possible on p-type semiconductor
wafers. For electrodeless deposition, the laser illumination creates a cathodic region in the illuminated area and an anodic region elsewhere. For the p-type semiconductor, the cathodic deposition reaction occurs in the conduction band through the light-produced carriers. Conversely, the anodic metal stripping takes place in the valence band in the dark region.

Considering the experimental conditions for GaAs, it is clear that each laser pulse produces nonequilibrium carriers with energies \(E = h\nu - E_g = 1.7 \) eV. These transmit their energy to the lattice, resulting in a temperature increase of about 20 K, which corresponds to a thermal emf between the heated and non-heated areas of about 80 mV. We note that in the case of n-GaAs the holes remain in the irradiated region; electrons move outside. The potential difference (the Dember photo emf \(U_D \)) due to their different mobilities \(\mu_e/\mu_h = 8 \) for GaAs) is approximately the same order of magnitude as the thermal emf. The value of \(U_D \) depends on the generation rate \(g_s \) and is about 200-300 mV. Its rise time \(t_{rD} = D^{-2}_a \times 2.10 \times 10^{-8} \) s where \(D_a \) is the diffusion coefficient 50 cm²/s) is comparable to the laser pulse duration.

In n-type wafers the thermal emf and \(U_D \) are combined into a p-n junction at the electrolyte-wafer interface. Therefore, in the centers which are enriched in holes, the anodic reaction takes place (semiconductor etching). Outside we have an electron-rich ring-shaped region in which the cathodic reaction takes place. A similar situation occurs for gold deposition from \(KAu(CN)_2 \). After the formation of an initial ring-shaped deposit (with proven barrier contact), the generated carriers are separated by a p-n junction field (1V at a few \(\mu \)m distance) and the deposition process takes place in the center also. Ring-shaped deposits are observed with relatively weak solutions.
(0.04 M CuSO₄). This deposition process can be stopped by imposing an electric field of appropriate polarity, as has been verified experimentally.
Acknowledgments

The European authors are indebted to Dr. S.V. Lavrishev for helpful assistance in studying deposit morphology, and also Prof. Dr. S.V. Gaponov for stimulating the present work. The American authors acknowledge the Office of Naval Research and the Air Force Office of Scientific Research (AFSC), United States Air Force, under Contract F49620-86-C-0009, for support of their research.
References

FIGURE CAPTIONS

Fig. 1. Schema of the experimental apparatus.

Fig. 2. Photos of deposits: (a) Au(nGaAs) "hemispheres"; (b) Au(nGaAs) with a gap in the middle of the deposited strip; (c) Cu(nGaAs) deposit; (d) Cu(nSi) deposit.

Fig. 3. Dependence of the deposit width on scanning speed for Cu(nGaAs); \(P_a = 6 \text{ mW} \), \(P_b = 8 \text{ mW} \) and \(P_c = 10 \text{ mW} \). Similar results obtain for copper deposited on silicon. The curves represent a least squares fit to the data.

Fig. 4. Dependence of the deposit volume on scanning speed for Cu(nGaAs); \(P_a = 6 \text{ mW} \), \(P_b = 8 \text{ mW} \) and \(P_c = 10 \text{ mW} \). The curves are a least squares fit to the data.
$P_{AV} = 1 \text{ mW}$

$f = 10 \text{ kHz}$

$T_p = 20 \text{ ns}$

$\phi \approx 1:5 \mu m$

$\lambda \ (510.5 \text{ nm})$
Cu on (n)GaAs from CuSO₄
Cu on (n)GaAs from CuSO₄

$V \times 10^3 \mu m^3$

$V [mm/s]$
<table>
<thead>
<tr>
<th>Distribution List</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td>2</td>
</tr>
<tr>
<td>Attn: Code 1113</td>
<td></td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22217-5000</td>
<td></td>
</tr>
<tr>
<td>Dr. David Young</td>
<td>1</td>
</tr>
<tr>
<td>Code 334</td>
<td></td>
</tr>
<tr>
<td>NORDA</td>
<td></td>
</tr>
<tr>
<td>NSTL, Mississippi 39529</td>
<td></td>
</tr>
<tr>
<td>Naval Weapons Center</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. Ron Atkins</td>
<td></td>
</tr>
<tr>
<td>Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>China Lake, California 93555</td>
<td></td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko, Code L52</td>
<td></td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
</tr>
<tr>
<td>Scientific Advisor</td>
<td>1</td>
</tr>
<tr>
<td>Commandant of the Marine Corps</td>
<td></td>
</tr>
<tr>
<td>Code RD-1</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20380</td>
<td></td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
</tr>
<tr>
<td>Attn: Dr. H. Singerman</td>
<td></td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. H. Singerman</td>
<td></td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
</tr>
<tr>
<td>Mr. John Boyle</td>
<td>1</td>
</tr>
<tr>
<td>Materials Branch</td>
<td></td>
</tr>
<tr>
<td>Naval Ship Engineering Center</td>
<td></td>
</tr>
<tr>
<td>Philadelphia, Pennsylvania 19112</td>
<td></td>
</tr>
<tr>
<td>Naval Ocean Systems Center</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. S. Yamamoto</td>
<td></td>
</tr>
<tr>
<td>Marine Sciences Division</td>
<td></td>
</tr>
<tr>
<td>San Diego, California 91232</td>
<td></td>
</tr>
<tr>
<td>Dr. David L. Nelson</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Attn: Code 1113</td>
<td></td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. H. Singerman</td>
<td></td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
</tr>
<tr>
<td>Naval Ocean Systems Center</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. S. Yamamoto</td>
<td></td>
</tr>
<tr>
<td>Marine Sciences Division</td>
<td></td>
</tr>
<tr>
<td>San Diego, California 91232</td>
<td></td>
</tr>
<tr>
<td>Dr. David L. Nelson</td>
<td>1</td>
</tr>
<tr>
<td>Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Attn: Code 1113</td>
<td></td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. J. E. Jensen
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. J. H. Weaver
Department of Chemical Engineering and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. A. Reisman
Microelectronics Center of North Carolina
Research Triangle Park, North Carolina 27709

Dr. M. Grunze
Laboratory for Surface Science and Technology
University of Maine
Orono, Maine 04469

Dr. J. Butler
Naval Research Laboratory
Code 6115
Washington D.C. 20375-5000

Dr. L. Interante
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Irvin Heard
Chemistry and Physics Department
Lincoln University
Lincoln University, Pennsylvania 19352

Dr. K.J. Klaubunde
Department of Chemistry
Kansas State University
Manhattan, Kansas 66506

Dr. C. B. Harris
Department of Chemistry
University of California
Berkeley, California 94720

Dr. F. Kutzler
Department of Chemistry
Box 5055
Tennessee Technological University
 Cookeville, Tennessee 38501

Dr. O. DiLella
Chemistry Department
George Washington University
Washington D.C. 20052

Dr. R. Reeves
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Steven M. George
Stanford University
Department of Chemistry
Stanford, CA 94305

Dr. Mark Johnson
Yale University
Department of Chemistry
New Haven, CT 06511-8118

Dr. W. Knauer
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265
Dr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. J. Murday
Naval Research Laboratory
Code 6170
Washington, D.C. 20375-5000

Dr. J. B. Hudson
Materials Division
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Theodore E. Madey
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. M. G. Lagally
Department of Metallurgical and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. R. P. Van Duyne
Chemistry Department
Northwestern University
Evanston, Illinois 60637

Dr. J. M. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. D. E. Harrison
Department of Physics
Naval Postgraduate School
Monterey, California 93940

Dr. R. L. Park
Director, Center of Materials Research
University of Maryland
College Park, Maryland 20742

Dr. W. T. Peria
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. Keith H. Johnson
Department of Metallurgy and Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Arnold Green
Quantum Surface Dynamics Branch
Code 3817
Naval Weapons Center
China Lake, California 93555

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. S. L. Bernasek
Department of Chemistry
Princeton University
Princeton, New Jersey 08544

Dr. W. Kohn
Department of Physics
University of California, San Diego
La Jolla, California 92037
Dr. F. Carter
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Richard Colton
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Dan Pierce
National Bureau of Standards
Optical Physics Division
Washington, D.C. 20234

Dr. R. Stanley Williams
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. R. P. Messmer
Materials Characterization Lab.
General Electric Company
Schenectady, New York 22217

Dr. Robert Gomer
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Ronald Lee
R301
Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910

Dr. Paul Schoen
Code 6190
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. John T. Yates
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Dr. Richard Greene
Code 5230
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. L. Kesmodel
Department of Physics
Indiana University
Bloomington, Indiana 47403

Dr. K. C. Janda
University of Pittsburgh
Chemistry Building
Pittsburg, PA 15260

Dr. E. A. Irene
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton 509 5NH
UNITED KINGDOM

Dr. H. Tachikawa
Chemistry Department
Jackson State University
Jackson, Mississippi 39217

Dr. John W. Wilkins
Cornell University
Laboratory of Atomic and
Solid State Physics
Ithaca, New York 14853
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. R. G. Wallis
Department of Physics
University of California
Irvine, California 92664

Dr. D. Ramaker
Chemistry Department
George Washington University
Washington, D.C. 20052

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717

Dr. T. F. George
Chemistry Department
University of Rochester
Rochester, New York 14627

Dr. G. Rubloff
IBM
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. Horia Metiu
Chemistry Department
University of California
Santa Barbara, California 93106

Dr. W. Goddard
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125

Dr. P. Hansma
Department of Physics
University of California
Santa Barbara, California 93106

Dr. J. T. Keiser
Department of Chemistry
University of Richmond
Richmond, Virginia 23173

Dr. R. W. Plummer
Department of Physics
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 41106

Dr. N. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. Roald Hoffmann
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. A. Stecki
Department of Electrical and Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. G.H. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. J. Baldeschwieler
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125