TRANSMISSION AND REFLECTION OF PRESSURE WAVES
BY COMPRESSOR AND TURBINE STAGES, BASED ON
AN ACTUATOR-DISK MODEL

W. J. Rae
P. F. Batcho
M. G. Dunn
Calspan Corporation
P.O. Box 400
Buffalo, NY 14225-0400

1 February 1988

Technical Report

CONTRACT No. DNA 001-83-C-0182

Approved for public release:
distribution is unlimited.

THIS WORK WAS SPONSORED BY THE DEFENSE NUCLEAR AGENCY
UNDER RDT&E RMSS CODE B342085466 N99QMXAJ00002 H2590D.

Prepared for
Director
Defense Nuclear Agency
Washington, DC 20305-1000
Destroy this report when it is no longer needed. Do not return to sender.

PLEASE NOTIFY THE DEFENSE NUCLEAR AGENCY, ATTN: STTI, WASHINGTON, DC 20305-1000, IF YOUR ADDRESS IS INCORRECT, IF YOU WISH IT DELETED FROM THE DISTRIBUTION LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION.
DISTRIBUTION LIST UPDATE

This mailer is provided to enable DNA to maintain current distribution lists for reports. We would appreciate your providing the requested information.

- Add the individual listed to your distribution list.
- Delete the cited organization/individual.
- Change of address.

NAME: __

ORGANIZATION: __

<table>
<thead>
<tr>
<th>OLD ADDRESS</th>
<th>CURRENT ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TELEPHONE NUMBER: () ___

SUBJECT AREA(s) OF INTEREST:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DNA OR OTHER GOVERNMENT CONTRACT NUMBER: ____________________________

CERTIFICATION OF NEED-TO-KNOW BY GOVERNMENT SPONSOR (if other than DNA):

SPONSORING ORGANIZATION: ___

CONTRACTING OFFICER OR REPRESENTATIVE: ______________________________

SIGNATURE: ___
Director
Defense Nuclear Agency
ATTN: TITL
Washington, DC 20305-1000
TRANSMISSION AND REFLECTION OF PRESSURE WAVES BY COMPRESSOR AND TURBINE STAGES, BASED ON AN ACTUATOR-DISK MODEL

Rae, W. J.; Batcho, P. F.; Dunn, M. G.

The amplitudes of the pressure waves transmitted and reflected by an actuator disk due to the impingement of an incident pressure wave are calculated. Analytic expressions for the wave amplitudes are derived for the limit where the incident pressure rise is small and these formulas, as well as direct calculations, are used to estimate the effect of multiple wave reflections from a pair of actuator disks. These predictions help to explain a number of phenomena that have been observed in measurements made when shock-tube generated overpressure waves were sent into an operating engine.
PREFACE

The work described in this report was conducted at the Calspan Corporation in Buffalo, New York. The work was performed by Professor W.J. Rae of the State University of New York at Buffalo (Consultant to Calspan) and by Mr. P.F. Batcho and Dr. M.G. Dunn of the Calspan Corporation. At the present time, Mr. Batcho is involved in a PhD program at Princeton University. The work was supported by the Defense Nuclear Agency under Contract No. DNA 001-83-C-0182. The work was performed during the period 1 June 1986 to 1 September 1987. The authors would like to acknowledge the helpful discussions with the technical monitor of this program, Lt. Col. Ronald M. Adams/SPWE.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>iii</td>
</tr>
<tr>
<td>List of Illustrations</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>vi</td>
</tr>
<tr>
<td>1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Actuator-Disk Analysis</td>
</tr>
<tr>
<td>2.1</td>
<td>Analysis</td>
</tr>
<tr>
<td>2.2</td>
<td>Numerical Results</td>
</tr>
<tr>
<td>3</td>
<td>Analytical Solutions for Weak Waves</td>
</tr>
<tr>
<td>4</td>
<td>Multiple Reflections by a Pair of Actuator Disks</td>
</tr>
<tr>
<td>4.1</td>
<td>Comparison with Experiment</td>
</tr>
<tr>
<td>5</td>
<td>Concluding Remarks</td>
</tr>
<tr>
<td>6</td>
<td>Recommendations</td>
</tr>
<tr>
<td>7</td>
<td>List of References</td>
</tr>
</tbody>
</table>

Appendices

<table>
<thead>
<tr>
<th>Appendices</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Fortran Program for Downstream-Propagating Waves</td>
</tr>
<tr>
<td>B</td>
<td>Fortran Program for Upstream-Propagating Waves</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wave diagram for a downstream-propagating wave</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Wave diagram for an upstream-propagating wave</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Actuator-disk solutions for $T_1 = 2.0$, $M_1 = 0.2$, $\gamma = 1.4$ (Downstream propagating waves)</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Actuator-disk solutions for $T_1 = 2.0$, $M_1 = 0.2$, $\gamma = 1.4$ (Upstream propagating waves)</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>Actuator-disk solution for $T_1 = 2.0$</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>Actuator-disk solution for $T_1 = 0.6$</td>
<td>21</td>
</tr>
<tr>
<td>7</td>
<td>Pressure and massflow values during wave reflections by two compressor actuator disks; $M_1 = 0.2$, $\gamma = 1.4$</td>
<td>24</td>
</tr>
<tr>
<td>8</td>
<td>Static-pressure history at a station upstream of a pair of compressive actuator disks</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>Pressure and massflow values during wave reflections by a compressor turbine actuator-disk pair; $M_1 = 0.2$, $\gamma = 1.4$</td>
<td>26</td>
</tr>
<tr>
<td>10</td>
<td>Pressure time histories</td>
<td>27</td>
</tr>
<tr>
<td>11</td>
<td>Pressure waveforms</td>
<td>27</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Numerical solution for</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\mathcal{T} = 2, \ M_1 = 0.2, \ \gamma = 1.4, \ p_2/p_1 = 1.1$</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>$\mathcal{T} = 4, \ M_1 = 0.2, \ \gamma = 1.4, \ p_2/p_1 = 1.1$</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>$\mathcal{T} = 2, \ M_1 = 0.2, \ \gamma = 1.4, \ p_2/p_1 = 1.5$</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>$\mathcal{T} = 2, \ M_1 = 0.4, \ \gamma = 1.4, \ p_2/p_1 = 1.1$</td>
<td>13</td>
</tr>
</tbody>
</table>
SECTION 1
INTRODUCTION

Sharp pressure waves can originate in aircraft gas-turbine engines from a variety of sources, such as the changing inlet conditions due to a sudden maneuver, the ingestion of ordnance exhaust, or the detonation of a nearby explosive. These traveling waves interact with the various components inside the engine (compressor and turbine blade rows, burner assemblies, nozzles and ducts) and the result of the interaction is to produce transmitted and reflected waves. Under certain circumstances, the combined effects of the multiple waves produced by such interaction can cause major transients in the engine operation, such as rotating stall, surge, or extreme excursions in the combustor temperature.

Recent measurements (1-3) provide a detailed, time-resolved data base for several engines under carefully controlled conditions. These measurements show that a pressure wave entering the engine inlet makes its way through the various stages of the machine at approximately the speed of sound relative to the local flow speed, provided the static pressure rise is on the order of ten percent or less of the initial static pressure. However, the amplifications and attenuations of the incident pressure pulse that occur upon passage through the various components have not been explained in a satisfactory manner. The only theoretical tools available for interpreting the measurements are computer codes which attempt to calculate the one-dimensional time-dependent flow through the various stages (4-6). None of the available codes have been applied successfully to the data of References (1-3), and in fact most of them have stability and waveform restrictions which have thus far prevented their application to obtain predictions that would be helpful in understanding the measurements.

The work reported here has made some progress toward the prediction and understanding of the changes in waveform and amplitude that occur, by resorting to an analytic solution for the fundamental problem, namely, each compressor or turbine stage is represented as an actuator disk, and the solution is found for the waves that are transmitted and reflected when a given pressure wave is incident on the disk.

The report is organized as follows: Section 2 contains the actuator-disk analysis and numerical results for a number of typical cases. Section 3 presents the analytical formulas that apply for very weak waves, while Section 4 treats the problem
of multiple reflections between a pair of disks as a means of estimating how an actual engine would respond to a disturbance. Section 4 also contains a comparison with some experimental results, which are more easy to interpret in the light of the present analysis.

The real-engine experiments include a number of features that are not accounted for in this analysis, and the Section 5 presents a discussion of these features and the further research that is now made possible by the results of this work.
SECTION 2
ACTUATOR-DISK ANALYSIS

The data presented in (1-3) include detailed pressure measurements at a variety of points inside operating engines through which shock waves have been sent. Pressure histories were recorded on gages placed in positions upstream and downstream of various engine components: the inlet fan, the core compressor, etc. From these data it is possible to infer how an incident shock wave interacts with each component; the pressure-time records at the various positions reveal a very complex system of compression and expansion waves. Attempts to interpret these complex results have been thwarted in the past because of the absence of a solution for the elemental problem that arises in such a flow, namely the interaction of the shock with a single component. This fundamental problem is the one whose solution is reported herein.

2.1 ANALYSIS.

In order to make the problem manageable, each component is treated as an actuator disk (7), i.e. the axial extent of the component is assumed to be shortened into a sheet of zero thickness, across which the initial and final states are connected by a discontinuity. This approximation is suitable as long as one examines the solution on a time scale that is large compared to the time for a sound wave to pass through the stage. During the latter time, details of the inside of the stage are important; for times large compared to this, however, the action of the stage is adequately represented by its inlet and outlet conditions, considered to take place by a discontinuous jump in a region of vanishing axial extent.

The representation of a turbomachine stage by a disk of zero axial extent across which discontinuous changes in stagnation conditions occur is an excellent approximation whenever details of the flow inside the stage are not important. This approximation has been applied with great success to a number of problems. For example, the propagation of plane waves through ducts has been studied for many years, and solutions are available for the changes that occur when such waves encounter discontinuities of various kinds, such as sudden area changes, flame fronts, and other moving waves (8). Surprisingly, the solution for the case where the discontinuity is an actuator disk appears not to have been studied, although the basic equations applicable to this case are discussed in several papers (9-11).
2.1.1 Qualitative Results.

The present paper contains the solution for the waves that are generated when a pressure wave (either a shock or an expansion) arrives at an actuator disk. The disk is characterized as having a given stagnation pressure ratio, and is assumed to produce this change isentropically. The types of the reflected and transmitted waves are found (i.e., whether they are expansions or compressions), in addition to the magnitudes of the changes they produce relative to that of the incident wave. It is found that a shock wave incident from upstream on a compressor stage reflects as an expansion and is transmitted as a weakened shock. An expansion wave incident from upstream reflects from a compressor stage as a shock, and is transmitted as a weakened expansion.

These results are reversed when the wave is incident from the downstream side of a compressor stage: an incident shock reflects and is transmitted as a shock while an incident expansion produces both a transmitted and reflected expansion. These results are in agreement, both qualitatively and quantitatively, with the measurements of (1-3). The sketch below contains a qualitative summary of the transmission and reflection laws. (There are eight cases, corresponding to two values of the stagnation pressure ratio (compressor or turbine), two signs of the incident pressure rise (shock or expansion wave), and two directions in which the incident wave moves (downstream-moving or upstream-moving)). The sketch contains the wave diagrams for the various cases. The diagrams are shown in a graph whose vertical axis is the time and whose horizontal axis is axial position, in accordance with the conventional methods of one-dimensional gas dynamics (8).

In addition to clarifying the physics of such wave interactions, the present results also provide an important link to recent developments in the understanding of
surge and rotating stall \((10, 11)\). Those developments pertain generally to engine transients of a much longer time scale (the order of the engine length divided by the speed of sound), and make use of unsteady compressor characteristics in the form of instantaneous pressure rise vs. mass flow relations. The present analysis is capable of being extended to incorporate similar characteristics, but now for individual stages rather than for the whole component. Such an application would assist in showing how surge and rotating stall develop within the component.

These analytic results can also be used to simplify the computer codes referred to above, and should be capable of extending their range of applicability. This is because the codes have difficulty in tracking the large numbers of waves that are generated; the ability to describe the locations and amplitudes of these waves analytically may enable significant improvements in the numerical modeling of these events.

2.1.2 Solution Method

Once the actuator-disk approximation is made, the solution of the problem can be carried out directly using the classic techniques of wave-diagram construction \((8)\). The Riemann invariants which form the basis of the solution are the same as those for flow in a duct, and need only be modified for the transitions across the actuator sheet. If one were interested in details of the flow within an engine component, the analysis would have to be generalized to include the effects of angular velocity changes within the component, which would then be referred to as an 'actuator duct'. A brief discussion of these levels of approximation can be found in \((7)\) and \((9)\).

For the actuator-disk, one-dimensional-duct-flow model, the flow can be charted in an axial distance \((x)\) vs time \((t)\) diagram (see Figure 1). (Here the flow quantities are constant in various zones, which are separated by moving waves.) Thus, the vertical axis represents the actuator disk and the time axis and the lines separating regions 1 and 2 or 4 and 5 are the incident and transmitted shock waves. The broken line between regions 5 and 6 is the interface which separates gas that has or has not been affected by the reflected wave that separates regions 2 and 3. The reflected wave is shown as a shock in Figure 1; the results below will show that it is actually an expansion wave. Particle paths are shown as the short dashed lines.
Figure 1. Wave diagram for a downstream-propagating wave.

The actuator disk is assumed to have a given constant stagnation-pressure ratio across it, and to achieve its compression isentropically, i.e.,

\[\frac{P_{0B}}{P_{0A}} = \mathcal{M} \quad \tau = \frac{T_{0B}}{T_{0A}} = \left(\frac{\mathcal{M}}{\gamma} \right) \frac{\gamma - 1}{\gamma} \quad (1) \]

where subscripts A and B denote conditions ahead of and behind the disk, \(P_{0i} \) and \(T_{0i} \) are the stagnation pressure and temperature in region \(i \), \(\gamma \) is the ratio of specific heats (assumed constant), and \(\mathcal{M} \) is a given constant. A second condition across the actuator disk is that the mass flow be constant, i.e.
\[\rho_A u_A = \rho_B u_B \]

(2)

where \(\rho \) and \(u \) denote the density and axial velocity, respectively.

The solution procedure is as follows:

1) The compression ratio \(\gamma \) and specific-heat ratio \(\gamma \) are chosen; the initial inlet Mach number \(M_1 \) is chosen and the strength of the incident wave (as given by the pressure ratio \(p_2/p_1 \)) is chosen. Conditions across the incident wave are given by either the shock-wave or expansion-wave relations. For the shock-wave case, these are:

\[\left(\frac{u_{sAB} - u_A}{a_A} \right)^2 = \frac{(\gamma+1)(\rho_B/\rho_A) + (\gamma-1)}{2\gamma} \]

(3)

\[\left(\frac{u_{sAB} - u_B}{a_B} \right)^2 = \frac{(\gamma-1)(\rho_B/\rho_A) + (\gamma-1)}{(2\gamma)(\rho_B/\rho_A)} \]

(4)

\[\frac{\rho_B}{\rho_A} = \frac{(\gamma+1)(\rho_B/\rho_A) + (\gamma-1)}{(\gamma-1)(\rho_B/\rho_A) + (\gamma+1)}; \quad \frac{T_B}{T_A} = \frac{\rho_B}{\rho_A}; \quad \frac{\rho_A}{\rho_B} \]

(5)

\[\frac{P_{0B}}{P_{0A}} = \left(\frac{\rho_B}{\rho_A} \right)^{\frac{1}{\gamma-1}} \left(\frac{\rho_B}{\rho_A} \right)^{\frac{\gamma}{\gamma-1}} \]

(6)

where \(u_{sAB} \) denotes the velocity of the shock wave connecting regions A and B. The first of these gives the shock velocity, the second the particle velocity.
For the case of an expansion wave incident from the upstream side, the conditions behind the wave are found from the constancy of the Riemann invariant \(Q \) across the wave:

\[
Q = \frac{2}{\gamma - 1} a_B - u_B = \frac{2}{\gamma - 1} a_A - u_A \tag{7}
\]

where the sound speed \(a \) can be found from the isentropic relation

\[
a_B \over a_A = \left(\frac{P_B}{P_A} \right)^{\frac{\gamma - 1}{2\gamma}} \tag{8}
\]

The remaining equations are then:

\[
u_B / a_A = \frac{2}{\gamma - 1} \left[\left(\frac{P_B}{P_A} \right)^{\frac{\gamma - 1}{2\gamma}} - 1 \right] + u_A / a_A \tag{9}
\]

\[
\frac{\rho_B}{\rho_A} = \left(\frac{P_B}{P_A} \right)^{\frac{1}{\gamma}} ; \quad \frac{T_B}{T_A} = \frac{P_B}{\rho_B} \rho_A ; \quad M = \frac{u_B}{a_A} \left(\frac{a_B}{a_A} \right)^{-1} \tag{10}
\]

The leading edge of the expansion wave travels at the speed:

\[
dx/d\tau = u_A + a_A \tag{11}
\]

while its trailing edge travels at the speed \(u_B + a_B \).

2) Conditions behind the actuator disk are found from

\[
C_p T_B + \frac{1}{2} u_B^2 = \tau \left[C_p T_A + \frac{1}{2} u_A^2 \right] \tag{12}
\]

\[
\rho_B u_B = \rho_A u_A
\]

By using the isentropic relation:
\[
\frac{T_B}{T_A} = \left(\frac{\rho_B}{\rho_A} \right)^{\gamma-1} = \left(\frac{u_A}{u_B} \right)^{\gamma-1}
\]

(13)

these can be put into the single equation

\[
\frac{u_B}{u_A} = \left\{ \frac{\gamma \left[1 + \frac{2}{(\gamma - 1) \left(\frac{M_A^2}{\gamma - 1} \right)} \right] - \left(\frac{u_B}{u_A} \right)^2}{\frac{2}{(\gamma - 1) \left(\frac{M_A^2}{\gamma - 1} \right)}} \right\}^{\frac{1}{\gamma - 1}}
\]

(14)

This equation can be solved by successive substitutions, using \(\frac{u_B}{u_A} = 0 \) as an initial guess.

It should be noted that the designations "ahead of" and "behind" are to be interpreted for the actuator disk as referring to a pair of points which lie on the upstream and downstream sides of the disk, at the same instant of time on the wave diagram. When these designations are applied to moving shocks and expansions, they are to be interpreted as denoting points which are at a fixed spatial position and are, respectively, at times less than and greater than the time at which the wave passes the given position.

3) Next, values of \(\frac{p_5}{p_4} \) and \(\frac{p_3}{p_2} \) are chosen, and these are adjusted (by an iteration process described below) until values are found such that \(p_6 = p_5 \) and \(U_6 = U_5 \). The relations between conditions in regions 5 and 4 are given by either the shock- or expansion-wave relations above, with \(A=4 \) and \(B=5 \).

The transition 2-3 may be a reflected shock, in which case the shock relations are used, with \(A=2, B=3 \). Because this wave is moving to the left, care must be taken to choose the appropriate signs; the positive square roots are taken, and the equations for the shock and particle velocity are written as:
\[
\frac{u_A - u_S}{a_A} = + \sqrt{\frac{(\gamma+1) \left(\frac{p_B}{p_A} \right) + (\gamma-1)}{2 \gamma}} \tag{15}
\]

\[
\frac{u_B - u_S}{a_B} = + \sqrt{\frac{(\gamma-1) \left(\frac{p_B}{p_A} \right) + (\gamma+1)}{2 \gamma \left(\frac{p_B}{p_A} \right)}} \tag{16}
\]

In both of these expressions the quantity \(u_S \) is a negative number.

If the transition 2-3 is a (left-running) expansion wave, the solution is given by the constancy of the Riemann invariant \(P \):

\[
P = \frac{2}{\gamma-1} a_A + u_A = \frac{2}{\gamma-1} a_B + u_B ; \quad \frac{a_B}{a_A} = \left(\frac{p_B}{p_A} \right)^{\frac{\gamma-1}{2 \gamma}} \tag{17}
\]

This can be solved explicitly as

\[
\frac{u_B}{u_A} = \frac{2}{\gamma-1} \left(1 - \frac{a_B}{a_A} \right) + \frac{u_A}{a_A} \tag{18}
\]

The speed of this expansion wave varies between the limits:

\[
\frac{d \gamma}{dt} = u_A - a_A \quad \text{and} \quad \frac{d \gamma}{dt} = u_B - a_B \tag{19}
\]

The iteration process used to update the values of \(p_5/p_4 \) and \(p_3/p_2 \) is based on a straight-line extrapolation: the graphs of \(p_5 \) vs \(u_5 \) and \(p_6 \) vs \(u_6 \) found for various values of \(p_5/p_4 \) and \(p_3/p_2 \) are nearly straight lines. Thus, their point of intersection can be readily calculated, and the corresponding values of \(p_5/p_4 \) and \(p_3/p_2 \).
used for the subsequent iteration. These iterations were terminated when successive approximations differed by less than 10^{-4}.

For cases where the incident wave comes from downstream, a few modifications to these relations are required. Figure 2 shows the wave diagram, which now has seven zones. As before, M_1, γ and χ are given, and the relation across the actuator disk between regions 1 and 4 is given by equation 14, with $A=1, B=4$.

![Figure 2. Wave diagram for an upstream-propagating wave.](image)

The incident pressure ratio p_5/p_4 is also given; if it is greater than 1.0, equations 3 and 4 are used, corresponding to an upstream-moving shock; if it is less than 1.0, equations 15 and 16 are used, for an upstream-moving expansion wave.

The transition 5-6 uses the relations for a right-moving shock (equations 3-4) or expansion (equations 7-8), while that between regions 1 and 2 uses the relations for a left-moving shock (equations 15-16) or expansion (equation 17). Regions 2 and 7 are connected by the actuator-disk relation, equation 4, with $A=2, B=7$.

An iteration process similar to that used for waves incident from the upstream side is now used: a series of wave strengths p_6/p_5 produces a graph of u_6 versus p_6, while a series of strengths p_7/p_1 produces a graph of u_7 versus p_7. Linear
fits to these curves are used to find improved values of p_6 and p_2 (the latter requiring a further linear fit to the variation of p_2 versus p_7).

Fortran programs incorporating these formulas are given in Appendices A and B.

2.2 NUMERICAL RESULTS.

Consider first the case of a shock wave incident from the upstream side of a compressor stage. Tables 1-4 present typical results: the first one shown is a baseline case, chosen for its similarity to the first-stage-fan data of (1). The subsequent tables then show the effects of changing, one at a time, the parameters \mathcal{M}, M_1 and p_2/p_1.

Table 1. Numerical solution for $\mathcal{M} = 2, M_1 = 0.2, \chi = 1.4, p_2/p_1 = 1.1$

<table>
<thead>
<tr>
<th>i</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_1/p_1</td>
<td>1.1</td>
<td>1.0494</td>
<td>2.0397</td>
<td>2.1950</td>
<td>2.1951</td>
</tr>
<tr>
<td>\mathcal{M}</td>
<td>1.0704</td>
<td>1.0350</td>
<td>1.6639</td>
<td>1.7534</td>
<td>1.7534</td>
</tr>
<tr>
<td>T_1/T_1</td>
<td>1.2276</td>
<td>1.0139</td>
<td>1.2259</td>
<td>1.2519</td>
<td>1.2519</td>
</tr>
<tr>
<td>a/u_1</td>
<td>.2636</td>
<td>.3025</td>
<td>.1202</td>
<td>.1786</td>
<td>.1786</td>
</tr>
<tr>
<td>M_1</td>
<td>.2649</td>
<td>.3004</td>
<td>.1086</td>
<td>.1396</td>
<td>.1396</td>
</tr>
<tr>
<td>a/u_1</td>
<td>1.0137</td>
<td>1.0069</td>
<td>1.1072</td>
<td>1.1189</td>
<td>1.1189</td>
</tr>
<tr>
<td>p_0/p_{01}</td>
<td>.9999</td>
<td>.9999</td>
<td>2.0</td>
<td>1.9999</td>
<td>1.9998</td>
</tr>
</tbody>
</table>

\mathcal{M}, $u_{1,2}$
Table 2. Numerical solution for $\tau \tau = 4, M_1 = 0.2, \chi = 1.4, p_2/p_1 = 1.1$

<table>
<thead>
<tr>
<th>i</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_1/p_1</td>
<td>1.1</td>
<td>1.0061</td>
<td>4.1029</td>
<td>4.3170</td>
<td>4.3170</td>
</tr>
<tr>
<td>$u/1$</td>
<td>1.0706</td>
<td>1.0043</td>
<td>2.7411</td>
<td>2.8425</td>
<td>2.8424</td>
</tr>
<tr>
<td>T_1/T_1</td>
<td>1.0276</td>
<td>1.0013</td>
<td>1.4968</td>
<td>1.5187</td>
<td>1.5188</td>
</tr>
<tr>
<td>u_1/a_1</td>
<td>.2686</td>
<td>.3327</td>
<td>.0730</td>
<td>.1176</td>
<td>.1176</td>
</tr>
<tr>
<td>M_1</td>
<td>.2649</td>
<td>.3324</td>
<td>.0596</td>
<td>.0934</td>
<td>.0934</td>
</tr>
<tr>
<td>a_1/a_1</td>
<td>1.0157</td>
<td>1.0009</td>
<td>1.2234</td>
<td>1.2324</td>
<td>1.2324</td>
</tr>
<tr>
<td>p_0/p_{01}</td>
<td>.9999</td>
<td>.9999</td>
<td>2.0</td>
<td>3.9999</td>
<td>3.9999</td>
</tr>
</tbody>
</table>

Table 3. Numerical solution for $\tau \tau = 2, M_1 = 0.2, \chi = 1.4, p_2/p_1 = 1.5$

<table>
<thead>
<tr>
<th>i</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_1/p_1</td>
<td>1.5</td>
<td>.9914</td>
<td>2.0397</td>
<td>2.8149</td>
<td>2.8149</td>
</tr>
<tr>
<td>$u/1$</td>
<td>1.3333</td>
<td>.9919</td>
<td>1.6639</td>
<td>2.0923</td>
<td>2.0923</td>
</tr>
<tr>
<td>T_1/T_1</td>
<td>1.1250</td>
<td>.9995</td>
<td>1.2259</td>
<td>1.3454</td>
<td>1.3467</td>
</tr>
<tr>
<td>u_1/a_1</td>
<td>.4933</td>
<td>.8035</td>
<td>.1202</td>
<td>.3813</td>
<td>.3813</td>
</tr>
<tr>
<td>M_1</td>
<td>.4703</td>
<td>.8037</td>
<td>.1086</td>
<td>.3287</td>
<td>.3283</td>
</tr>
<tr>
<td>a_1/a_1</td>
<td>1.0607</td>
<td>.9997</td>
<td>1.1072</td>
<td>1.1599</td>
<td>1.1605</td>
</tr>
<tr>
<td>p_0/p_{01}</td>
<td>.9932</td>
<td>.9932</td>
<td>2.0</td>
<td>1.9932</td>
<td>1.9865</td>
</tr>
</tbody>
</table>

Table 4. Numerical solution for $\tau \tau = 2, M_1 = 0.4, \chi = 1.4, p_2/p_1 = 1.1$

<table>
<thead>
<tr>
<th>i</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_1/p_1</td>
<td>1.1</td>
<td>1.0128</td>
<td>2.1680</td>
<td>2.3374</td>
<td>2.3374</td>
</tr>
<tr>
<td>$u/1$</td>
<td>1.0704</td>
<td>1.0091</td>
<td>1.7380</td>
<td>1.8339</td>
<td>1.8339</td>
</tr>
<tr>
<td>T_1/T_1</td>
<td>1.0276</td>
<td>1.0037</td>
<td>1.2474</td>
<td>1.2746</td>
<td>1.2746</td>
</tr>
<tr>
<td>u_1/a_1</td>
<td>.4686</td>
<td>.5280</td>
<td>.2302</td>
<td>.2903</td>
<td>.2903</td>
</tr>
<tr>
<td>M_1</td>
<td>.4622</td>
<td>.5270</td>
<td>.2061</td>
<td>.2573</td>
<td>.2573</td>
</tr>
<tr>
<td>a_1/a_1</td>
<td>1.0137</td>
<td>1.0018</td>
<td>1.1169</td>
<td>1.1290</td>
<td>1.1290</td>
</tr>
<tr>
<td>p_0/p_{01}</td>
<td>.9999</td>
<td>.9999</td>
<td>2.0</td>
<td>1.9999</td>
<td>1.9998</td>
</tr>
</tbody>
</table>

13
Several items are worthy of note:

1) The reflected wave is an expansion. It might have been expected that the wave reflected from a high-solidity compressor face would be a shock wave, but these results show clearly that it is an expansion wave, for the whole range of cases studied. This finding is also confirmed by the pressure/time traces of (1).

2) The "transmission coefficient", defined as

\[T_{\tau} \equiv \frac{P_5 - P_4}{P_2 - P_1} \]

lies in the range 0.5 to 0.8 of \(\tau \), favoring the 0.8 value when \(\tau \) itself is 2.0. This result compares favorably with the values presented in (1) (see Figs. 19 and 20).

3) The arrival of the incident shock causes a very large change in mass flow rate - on the order of a factor of 1.5 - despite the fact that the incident wave is a relatively weak shock.

4) Other calculations, not shown here, reveal that these qualitative conclusions are not sensitive to variations in the specific-heat ratio.

The agreement between the predicted and observed values of the transmission coefficient is encouraging, while the indication that the reflected wave is an expansion is in qualitative agreement with the results of (1) and (3). The conditions of the latter experiment contain other factors that affect the pressure signals; these are discussed at greater length below. Overall, these results are a useful guide in interpreting the response of individual stages.

The large mass flow perturbation raises the question whether the actuator-disk stagnation-pressure ratio can properly be regarded as constant. While it is true that the engine RPM does not change on the time scale of these wave transits, nevertheless the unsteady compressor characteristics used, for example, in the work of Moore and Greitzer(12,13) indicate that the quantity \(\tau \) should be allowed to vary with \(\mu_3 \). Very little is known at present about the variation of pressure with mass flow on the relatively short time scale of a shock passage through a stage, and it is not clear that the longer-time variations used in the rotating-stall work cited above
are accurate for the present problem. Further investigation of the detailed mass-flow/pressure variations during wave passage through a single stage is needed to resolve this question.

Results of further calculations are given in Figures 3-4 for shocks and expansions which are incident both from upstream and downstream. These figures confirm the general transmission and reflection laws mentioned in the Introduction.

![Figure 3](image)

Figure 3. Actuator-disk solutions for $\pi = 2.0, M_1 = 0.2, \gamma = 1.4$ (Downstream-propagating waves).

![Figure 4](image)

Figure 4. Actuator-disk solutions for $\pi = 2.0, M_1 = 0.2, \gamma = 1.4$ (Upstream-propagating waves).

Similar results have been found for the transmission and reflection of sound waves in turbomachinery components (14-15). The latter studies are somewhat more complex, in that they consider sinusoidal waves and allow for wavefront propagation.
in directions other than parallel to the axis of rotation. For the case of axial
propagation, these papers reach the same conclusions about transmission and reflection
as those derived above. The present results show that there is no qualitative change
in the transmission and reflection laws for finite wave amplitudes.

There are limits to the validity of the present solution, however. The
curves in Figures 3-4 stop at finite limits; for example, in the case of waves incident
from the upstream side, a sufficiently strong reflected shock will stop the flow \(M_3 = 0\),
while a sufficiently strong reflected expansion wave will choke the flow \(M_3 = 1\). Beyond these limits, there is no solution of the type being considered here. It is
interesting to note that these limits are reached for fairly moderate values of the
incident wave strength; for example, an incident expansion wave with a pressure drop
of as little as twenty percent of the initial pressure is sufficient to stop the flow.
SECTION 3
ANALYTICAL SOLUTIONS FOR WEAK WAVES

The incident-wave strengths of interest in many applications have pressure ratios close to one; thus it is useful to examine the analytic forms that the full equations reduce to in this limit.

Consider first the case where the initial disturbance is incident from upstream: \(\frac{p_0}{p_1}, M_1, \) and \(\gamma \) are given. Let the (given) incident wave strength be denoted by

\[
\frac{p_2}{p_1} = 1 + \xi, \quad \xi \ll 1
\]

(21)

It can be expected that the solution will have the form

\[
\frac{p_3}{p_2} = 1 + \delta, \quad \frac{p_5}{p_4} = 1 + \gamma; \quad \delta (\xi) \ll 1, \quad \gamma (\xi) \ll 1
\]

(22)

Where the dependence of \(\delta \) and \(\gamma \) on \(\xi \) is to be found from the usual matching condition

\[
p_6 = p_5, \quad \nu_6 = \nu_5.
\]

The quantities \(\xi \), \(\delta \), and \(\gamma \) can all be positive or negative, with no change in the functional form of the equations, since weak shocks and expansions are indistinguishable to the third order in small disturbances.

The desired equations are found by expanding the exact relations in Taylor series (with the exception of the transition across the actuator disk - see below). In these expansions, the Mach numbers are not assumed to be small, although their numerical contributions will in some cases be negligible.

The pressures in regions 5 and 6, which are required to be equal, are

\[
\frac{p_5}{p_1} = \frac{p_5}{p_4} \frac{p_4}{p_1} = \frac{p_4}{p_1} (1 + \gamma)
\]

(23)
\[
\frac{P_6}{P_1} = \frac{P_6}{P_3} \frac{P_3}{P_2} = \frac{P_6}{P_3} \left(1 + \varepsilon + \varepsilon + \cdots \right) \quad (24)
\]

Thus
\[
\frac{P_4}{P_1} \left(1 + \gamma \right) = \frac{P_6}{P_3} \left(1 + \delta + \xi \right) \quad (25)
\]

The particle velocities in regions 5 and 6 can be written as:
\[
\begin{align*}
\frac{u_5}{a_1} &= \frac{u_5}{u_4} \frac{u_4}{u_1} \frac{u_1}{a_1} = M_1 \frac{u_4}{u_1} \frac{u_5}{u_4} \\
&= M_1 \frac{u_4}{u_1} \left(1 + \frac{\gamma}{\gamma M_4} \right) \\
\frac{u_6}{a_1} &= \frac{u_6}{u_3} \frac{u_3}{a_1} = \frac{u_6}{u_3} \left(M_1 + \frac{\varepsilon - \delta}{\delta} + \cdots \right)
\end{align*} \quad (26)
\]

Equating these two gives
\[
\frac{u_4}{u_1} \left(1 + \frac{\gamma}{\gamma M_4} \right) = \frac{u_6}{u_3} \left(1 + \frac{\varepsilon - \delta}{\delta M_1} \right) \quad (28)
\]

A simultaneous solution of equations 25 and 28 gives:
\[
\frac{p_4}{p_1} \left(\frac{u_6 - u_4}{u_3 - u_1} \right) - \frac{u_4}{u_1} \left(\frac{p_6 - p_4}{p_3 - p_1} \right) x M_4 + \epsilon \left[\frac{1}{x M_1} \frac{p_4}{p_1} \frac{u_6}{u_3} - \frac{1}{x M_4} \frac{p_6}{p_3} \frac{u_4}{u_1} \right] = 0
\]

\[
\frac{1}{x M_1} \frac{p_4}{p_1} \frac{u_6}{u_3} + \frac{1}{x M_4} \frac{p_6}{p_3} \frac{u_4}{u_1}
\]

These equations cannot be solved directly, because the pressure and velocity ratios across regions 3 and 6 require knowledge of \(M_3 \), which in turn depends on \(\epsilon \) and \(\delta \):

\[
M_3 = M_1 + \frac{\epsilon - \delta}{\gamma} - \frac{\gamma - 1}{2 \gamma} M_1 (\delta + \epsilon) + \ldots
\]

In addition, the fact that the actuator-disk transition requires the solution of an implicit equation prevents the derivation of an explicit solution valid for arbitrary stagnation pressure ratios.

However, for the case where \(M_1 \) is small (and of the same order as \(\epsilon \)) a fully analytic solution is possible. In this limit,

\[
\delta = - \frac{M_1 - M_4}{M_1 + M_4} \epsilon, \quad \gamma = \frac{2 M_4}{M_1 + M_4} \epsilon
\]

Moreover, \(M_1 \) and \(M_4 \) are related in this limit, so that the solution takes the simple form

\[
M_4 = M_1 \tilde{M} - \frac{\gamma + 1}{2 \gamma}, \quad \frac{\delta}{\epsilon} = - \frac{1 - \tilde{M}}{\gamma + 1} \frac{\gamma + 1}{2 \gamma}, \quad \frac{\gamma}{\epsilon} = \frac{2 \tilde{M} - \frac{\gamma + 1}{2 \gamma}}{1 + \tilde{M}} \frac{\gamma + 1}{2 \gamma}
\]

These relations contain, qualitatively, the results of the previous section. For a compressor, for example, \(M_4 \) is less than \(M_1 \) thus shocks reflect as expansions and
vice versa, while the transmitted wave is of the same type as the incident wave, with reduced amplitude. For a turbine, \(M_4 \) is greater than \(M_1 \); thus incident shocks and expansions are reflected as shocks and expansions of reduced amplitude, and are transmitted as shocks and expansion of increased amplitude.

The derivation of these results is based on approximating the solution of the (implicit) actuator-disk equation for small values of the upstream Mach number:

\[
\left(\frac{u_B}{u_A} \right)^{(\gamma-1)} = \tau \left[1 + \frac{\gamma-1}{2} M_A^2 \right] - \frac{\gamma-1}{2} M_A^2 \left(\frac{u_B}{u_A} \right)^2 \\
= \tau \left[1 + \frac{\gamma-1}{2} M_A^2 \right] + O\left(M_A^2\right)
\]

Thus

\[
\frac{u_B}{u_A} = \tau^{\gamma - \frac{1}{\gamma-1}} \left[1 + O\left(M_A^2\right) \right] \tag{34}
\]

By substituting this back on the right-hand side of the original equation, it is found that

\[
\frac{u_B}{u_A} = \tau^{\gamma - \frac{1}{\gamma-1}} \left\{ 1 - \frac{M_A^2}{2} \left[1 - \tau^{\gamma + 1} \frac{\gamma+1}{\gamma-1} \right] \right\} + O\left(M_A^4\right) \tag{36}
\]

For a compressor, this equation is valid within three percent over the range \(0 \leq M_A \leq 1 \) for \(\gamma = 1.4 \) and \(\pi = 2 \) (see Figure 5). The approximation is not as accurate for a turbine, where \(\frac{u_B}{u_A} > 1 \); the results in Figure 6 show that it is accurate to a few percent over about two thirds of the allowable range of \(M_A \). This corresponds to the range for which the Mach number downstream of the disk stays less than about 0.75.

This approximate solution can now be used to simplify the small-disturbance solution (eqs. 29 and 30). The pressure ratio is given by

\[
\frac{p_B}{p_A} = \left(\frac{\rho_B}{\rho_A} \right)^{\gamma} \left(\frac{u_A}{u_B} \right)^{\gamma} = \pi \left(1 + \frac{\gamma E}{2} M_A^2 \right) + O\left(M_A^4\right) \tag{37}
\]

\[
E = 1 + \frac{\gamma + 1}{\gamma - 1} = 1 - \frac{\gamma}{\pi} \frac{\gamma+1}{\gamma-1}
\]
When eqs. 29 and 30 are expanded using these equations, it is found that all of the pressure- and velocity-ratio terms cancel, leaving a remainder of order $M_1^2 \varepsilon$, which is of higher order than the terms retained. A number of intermediate solutions can also be found, if certain combinations of terms are retained and the relative orders of M_1 and ε are ignored. Given the simplicity of the numerical solutions themselves, it is recommended that they be used where accuracy is considered important, and that the analytic solutions be used where qualitative information is the primary requirement.

For the case where the incident wave comes from the downstream side, a similar analysis leads to
\[\beta = - \frac{M_4 - M_1}{M_1 + M_4} \alpha \]
\[\mu = \frac{2M_1}{M_1 + M_4} \alpha \]
(38)

where

\[\frac{P_5}{P_4} = 1 + \alpha \] ; \[\frac{P_6}{P_5} = 1 + \beta \] ; \[\frac{P_2}{P_1} = 1 + \mu \] ; \(\alpha \) given \((39) \)

These approximate formulas (eqs. 32 and 38) confirm the transmission and reflection laws summarized in Section 2.
SECTION 4
MULTIPLE REFLECTIONS BY A PAIR OF ACTUATOR DISKS

As will be seen below, the above analysis is in general agreement with the experiments of (1-3), in that the pressure measured upstream of the compressor shows a reflected expansion, following the passage of an incident shock. The detailed waveform of the reflection is not a step function for several reasons, among them the fact that the incident wave is not a step function, as well as the fact that the reflected waveform is affected by multiple reflections from the various stages of the compressor.

In order to shed some light on the latter process, calculations have been done for two pairs of actuator disks: the first pair consists of two stages of compression, while the second consists of a compressor followed by a turbine.

For the first pair, both disks were taken to have stagnation-pressure ratios of 2.0 and an incident shock strength $p_2/p_1 = 1.2$ was used with an initial flow Mach number of 0.2 and specific-heat ratio $\gamma = 1.4$. The main results are shown in Fig. 7, which contains pressure and mass-flow data in the various regions of the x,t diagram.

Before discussing these results, two observations are necessary: the first is that all entropy discontinuities have been ignored. In general, the transmitted waves are followed by interfaces across which the pressure and velocity are matched, but there is a discontinuity in entropy (or, equivalently, in local stagnation conditions) across the interface. Because the wave amplitudes and flow Mach numbers studied in these cases are small, it is legitimate to neglect the waves that would normally be generated by interactions with the interface, and the validity of this assumption is borne out by the fact that the stagnation quantities calculated here are essentially constant throughout the region of multiple reflections.

A second observation is that the wave speeds have all been taken as equal to $\pm a$ in Figures 7 to 9 to simplify the presentation. The actual wave speeds vary by $\pm 20\%$ about this baseline value, and expansion waves diverge as they propagate, but these details are suppressed in the presentation.
Figure 7. Pressure and massflow values during wave reflections by two compressor actuator disks; $M_1 = 0.2$, $\gamma = 1.4$.

The pressures shown in Figure 7 for the two stage compressor case indicate that the inlet pressure returns to its original level after about four reflected waves, and undergoes a slight undershoot during its return. The mass-flow data show a monotonic increase to the post-disturbance value on the upstream side of the compressor, while the values downstream overshoot at first and then subside. After about four reflections, the mass flow rate has been increased by a factor of 2.36. This is the same result (to three significant figures) as would be obtained by a single actuator disk of stagnation pressure ratio equal to 4.0. The fact that the mass flow can be sustained at this level even while the inlet pressure has returned to its pre-disturbance value assumes that the conditions far upstream remain unchanged; i.e., no waves come from upstream after the initial disturbance.

Figure 8 displays the pressure-time history that would be seen at a distance L ahead of the first disk. It bears a qualitative resemblance to the measurements of (3), and serves to emphasize that the reflected system corresponding to a step input will be a series of expansions and compressions. For a multistage compressor, this series will appear to be nearly a continuous variation.
Figure 8. Static-pressure history at a station upstream of a pair of compressive actuator disks.

Results for the compressor/turbine pair of actuator disks are shown in Figure 9, using the same format as above. In this case, there is an overshoot in the inlet mass flow, while the inlet pressure falls at first and then returns to the value generated by the first incident wave. These final values are achieved after about four reflections; further waves have pressure ratios of one. The return of the pressure to the value generated by the first wave is consistent with what would be predicted by collapsing the two actuator disks into a single one: since the product of their stagnation pressure ratios is 1.0, it is as though no disks at all were present, and the long-term solution remains at the values set by the incident wave.
As noted earlier, there are many features of the full-scale experiment (1-3) that are not accounted for in the present analysis. Nevertheless, several of the qualitative features of the measurements are the same as those noted here. Figure 10 shows the pressure-time histories recorded at several stations upstream of the inlet of the TF33 engine. These data are replotted in Figure 11 so as to show the pressure waveforms, at three instants of time. Note first that at 10 milliseconds (zero time corresponds to the instant when the incident wave emerges from the shock tube) the incident wave is not a step function, but rather shows an increasing amplitude with distance from the engine inlet \((x = 0)\). At \(t = 20\) milliseconds, however, the pressure nearest the engine inlet has dropped, and this lower-pressure region appears to have moved through the incident pulse on the 30-millisecond trace.

The fact that the incident wave is not a step function is due to several effects; one of the primary ones is the area change at the shock-tube exit and also that at the engine inlet. It is virtually impossible to maintain a strictly flat pressure profile
Figure 10. Pressure time histories.

Figure 11. Pressure waveforms.
in this experiment, and a rigorous interpretation of the data requires a more detailed calculation in which the evolution of the incident waveform can be followed. Moreover, the details of the reflected waveform must take into account reflections from all of the internal stages, in order to match in complexity the experimental conditions. Thus, while the interpretation of the data shown in Figures 10 and 11 must remain qualitative, it is nevertheless encouraging to find that the overall behavior is consistent with a model which predicts that an incident compression reflects from the inlet as an expansion.
As pointed out above, numerical predictions of the phenomena measured in experiments with real, operating engines require the incorporation of many effects, multiple internal reflections being one of the most important. Unfortunately, present-day computer codes are not adequate to handle this problem. Indeed, the present research was undertaken in an effort to clarify the basic physics of wave transmission and reflection at a compressor or turbine stage. That goal has been achieved: simple reflection and transmission laws have been derived, and are qualitatively in accord with the measurements. Moreover, calculations for multi-stage machines can be done by incorporating the actuator-disk equations as a means of linking adjacent stages.

A key element is missing from current understanding of the physics, however, namely the departure of the mass-flow/pressure-ratio relation from its steady-state value. The results reported here have all been based on the assumption that the stagnation pressure ratio can be specified as a constant, independent of the mass flow rate. The results themselves show clearly that this approximation needs to be improved, since they predict mass flow changes by factors on the order of 1.5 during the passage of a wave. Excursions of this magnitude exceed the limits of many steady-state compressor or turbine maps, and call for improved modeling.

Recent studies of rotating stall and surge (12-13) have enjoyed considerable success, due in part to their use of unsteady stage-performance characteristics, in which the pressure rise ΔP is taken to depend on both the flow rate ϕ and its rate of change $\dot{\phi}$:

$$\frac{\Delta P}{\frac{1}{2} \rho \phi \nu^2} = F(\phi) - \tau(\phi) \dot{\phi}$$

(40)

The time constant τ appearing in this expression is related to the time required to fill the plenum volume downstream of the compressor (the burner inlet, for example) and so this relation is probably not applicable to the present problem, where the mass flow changes occur on a much shorter time scale.
What is needed is a combined experimental and theoretical study, aimed at identifying the instantaneous mass flow/pressure rise relation for a single stage. The experimental apparatus to accomplish this is already available at Calspan; with only slight modifications, it would be possible to send controlled pressure waves through a single stage, which would be specially instrumented to measure the (time-dependent) mass flow and the pressure variations in the transmitted and reflected waves.

In parallel with these experiments, an analytical study would be undertaken to solve for the detailed modifications of the flow that occur when a plane wave passes through a stage. The work required amounts to a calculation of shock propagation through a pair of curved channels, whose total turning angle in the absolute frame of reference is zero. The analogous problem of shock propagation through an area change has been examined by Whitham, Chisnell and Miles (16-18) and has led to extremely simple relations for describing flows through ducts whose cross-sectional area undergoes large changes.

The clarification of the pressure-ratio/mass flow relation at the level of a single stage and on a very short time scale is the key ingredient that prevents current state-of-the-art codes from predicting wave passage through multistage components. Once it is known, these codes can be revised in such a way as to embrace the correct physics at the basic level.

Knowledge of this microscopic relation also holds the key to the relation between these short-duration disturbances and the longer-term problems of surge and rotating stall. Different time scales are involved in blast-generated transients from those of surge and stall, and it is necessary to understand the detailed mechanics of the former phenomena in order to clarify how these disturbances lead into the latter ones.
SECTION 6
RECOMMENDATIONS

In order to make further progress beyond the qualitative understanding described in this report, it is necessary to investigate the detailed relation between pressure ratio and mass flowrate during the passage of a pressure transient. This will require a study of the mechanics of pressure propagation through a rotating stage, on the short time scale given by the stage length divided by the speed of sound.

The basis for this recommendation is as follows: there are two principal mechanisms by which the ingestion of a pressure wave may damage an operating engine:

1) the overpressure may produce structural damage

2) a condition of surge or rotating stall may be induced

In the first case, the results of this report support the general results of previous measurements at Calspan: the transmission coefficients are less than one, which suggests that if the structure ahead of the compressor face can sustain the overpressure, then the remaining components in the flow path will presumably also sustain the transient.

However, there is always the possibility that certain geometries (stage lengths, for example) or incident wave forms might lead to focusing of multiply reflected waves, or that massflow amplification might produce an instantaneous choking that would send a hammer shock upstream. To resolve this question, it is necessary to do a more complete job of linking multiple stages, and this in turn requires an accurate model of the time-dependent pressure/massflow relation for each stage.

For the second mechanism described above, the recommended research is the same. Current studies of rotating stall and surge make extensive use of a time-dependent pressure/massflow relation that is based on experiments and analyses of the much longer transients associated with filling of the plenum chamber downstream of a compressor. In order to close the gap between these models and the results of the present report, it is necessary to derive the comparable relation for propagation of a pressure wave through a single stage.
SECTION 7
LIST OF REFERENCES

APPENDIX A

FORTRAN PROGRAM FOR DOWNSTREAM-PROPAGATING WAVES

C PROGRAM WAVEB - CALCULATES THE TRANSMISSION AND REFLECTION OF
C PRESSURE WAVES AT AN ACTUATOR DISK.
C WAVEB CAN HANDLE INCIDENT EXPANSIONS AND SHOCKS

OPEN(UNIT=2,FILE='WAVEOUT',STATUS='NEW')
1 PRINT*, 'INPUT STAGE PRESSURE RATIO (99. TO STOP), EM1, GAMMA'
READ*, PR, EM1, GM
IF(PR.EQ.99.) GO TO 30
GMINV = 1./GM
GM1 = GM - 1.
GM1INV = 1./GM1
TBGM1 = 2./GM1
GBGM1 = GM/GM1
GPI = GM + 1.
GM1BG = GM1/GM
GM1B2 = GM1/2.
GM1BTG = GM1BG/2.
TAU = PR**GM1BG
WRITE(2,100) PR, EM1, GM, TAU
100 FORMAT(IOX., 'SOLUTION FOR PRESSURE WAVES INCIDENT ON AN ACTUATOR',
* ' DISK',/10X., 'OF STAGNATION-PRESSURE RATIO = ', F5.1, /10X,
* 'INLET MACH NUMBER = ', F5.2, ' SPECIFIC-HEAT RATIO = ', F5.2,
* '/10X., 'STAGNATION-TEMPERATURE RATIO IS', F7.3./)

C FIND CONDITIONS IN REGION 4:
C
EM1SQ = EM1*EM1
TOM = 2./GM1/EM1SQ
OPTOM = 1. + TOM
U4BU1 = 1.
KOUNT = 1
5 CONTINUE
OLD = U4BU1
ARG = (TAU*OPTOM - U4BU1*U4BU1)/TOM
IF(ARG.GT.0.) GO TO 22
PRINT*, 'NEGATIVE ARGUMENT IN U4/U1 ITERATIONS'
GO TO 1
22 U4BU1 = ARG**(-GM1INV)
ERR = ABS(U4BU1-OLD)
IF(ERR.LT.1.E-07) GO TO 6
KOUNT = KOUNT + 1
IF(KOUNT.LE.30) GO TO 5
PRINT*, 'U4/U1 ITERATIONS FAILED TO CONVERGE'
GO TO 1
6 R4BR1 = 1./U4BU1
P4BP1 = R4BR1**GM
T4BT1 = P4BP1/R4BR1
A4BA1 = SQRT(T4BT1)
T1BTO1 = 1./((1. + GM1B2*EM1SQ)
P16P01 = T1BTO1**GBGM1
EM4 = U4BU1*EM1/A4BA1
U4BA1 = EM4*A4BA1
\[P_{48P04} = (1. + \frac{GM1B2*EM4*EM4}{GM}) \cdot GBGM1 \]

PRINT*, 'U4/A1 R4/R1 P4/P1 T4/T1 A4/A1 M4 P04/P01'
PRINT*, U4BA1, R4BR1, P4BP1, T4BT1, A4BA1, EM4, PR
IREG = 4
WRITE(2,101) IREG, U4BA1, R4BR1, P4BP1, T4BT1, A4BA1, EM4, PR
101 FORMAT(1X, 'REGION U4/A1 R4/R1 P4/P1 T4/T1 A4/A1 M4', * P04/P01', /13.3X, 7F7.4)

C CHOOSE P2/P1, AND FIND THE CORRESPONDING CONDITIONS IN REGION 2:
C
PRINT*, 'INPUT P2/P1 (999 TO STOP)'
READ*, P2BP1
IF(P2BP1.EQ.99.) GO TO 30
IF(P2BP1.GE.1.) GO TO 565
C INCIDENT WAVE IS AN EXPANSION:
USIBA1 = 1. + EM1
R2BR1 = P2BP1**GMINV
T2BT1 = P2BP1/R2BR1
A2BA1 = SQRT(T2BT1)
P02B01 = 1.
U2BA1 = TBM1*(A2BA1-1.) + EM1
EM2 = U2BA1/A2BA1
US2BA1 = A2BA1 + U2BA1
GOTO 566
565 USIBA1 = EM1 + SQRT((GP1*P2BP1+GM)/2./GM)
R2BR1 = (GP1*P2BP1 + GM)/(GM*P2BP1 + GP1)
T2BT1 = P2BP1/R2BR1
A2BA1 = SQRT(T2BT1)
P02B01 = (P2BP1**(-GMINV))*R2BR1**GBGM1
EM2 = USIBA1/A2BA1 - SQRT((GM1*P2BP1+GP1)/(2.*GM*P2BP1))
U2BA1 = EM2*A2BA1
566 PRINT*, 'US1/A1 U2/A1 R2/R1 P2/P1 T2/T1 A2/A1 M2 P02/P01'
PRINT*, USIBA1, U2BA1, R2BR1, P2BP1, T2BT1, A2BA1, EM2, P02B01
IREG = 2
WRITE(2,102) IREG, USIBA1, U2BA1, R2BR1, P2BP1, T2BT1, A2BA1, EM2, * P02B01
102 FORMAT(1X, 'REGION US1/A1 U2/A1 R2/R1 P2/P1 T2/T1 A2/A1', * M2 P02/P01', /13.3X, 7F7.4)
IF(US2BA1.NE.0.) WRITE(2,115) US2BA1
115 FORMAT(3X, 'US2/A1 =', F7.4)

C NOW ITERATE ON P5/P4 AND P3/P2 UNTIL PRESSURES AND PARTICLE VELOCITIES IN REGIONS 5 AND 6 ARE MATCHED
C
ITER = 1
KASE = 1
P5BP4 = 1.
P54A = 1.
P54B = P2BP1
P3BP2 = 1.
P32A = 1.
P32B = P2BP1
10 CONTINUE
IF(P2*P1.GT.1.) GO TO 301
C FOR THE CASE OF AN INCIDENT EXPANSION:
R58R4 = P58P4**GM1INV
T58T4 = P58P4/R58R4
US58A4 = SQRT(T58T4)
EM5 = US58A4/A58A4
US58A5 = US58A4/A58A4
GO TO 302
C FOR THE CASE OF AN INCIDENT SHOCK:
301 US58A4 = EM4 + SQRT((GP1*P58P4 + GM1)/2./GM)
R58R4 = (GP1*P58P4+GM1)/(GM1*P58P4+GP1)
T58T4 = P58P4/R58R4
US58A5 = US58A4/A58A4
EM5 = US58A5 - SQRT((GM1*P58P4 + GP1)/2./GM/P58P4)
302 US58A1 = EM5*A58A4*A48A1
T58T1 = T58T4*T48T1
US58A1 = US58A5*A58A1
R58R1 = R58R4*R48R1
P58P1 = P58P4*P48P1
P05801 = P05804*PR
PRINT*, 'US5/AI US5/A1 R5/RI P5/P1 T5/TI A5/AI EM5 P05/P01'
IF(KASE.EQ.2) GO TO 11
X5A = P58P1
Y5A = US58A1
GO TO 63
11 X5B = P58P1
Y5B = US58A1
C CHOOSE P3/P2, AND THE CORRESPONDING CONDITIONS IN REGIONS 3:
C
63 IF(P38P2.GT.0.) GO TO 563
PRINT*, 'P3/P2 NEGATIVE - PRESS RETURN TO CONTINUE'
PAUSE
WRITE(2,110)
110 FORMAT(/5X,'P3/P2 NEGATIVE - GOING TO NEXT CASE',//)
GO TO 1
563 IF(P38P2.LT.1.) GO TO 60
US38A2 = - EM2 + SQRT((GP1*P38P2+GM1)/2./GM)
R38R2 = (GP1*P38P2+GM1)/(GM1*P38P2+GP1)
T38T2 = P38P2/R38R2
US38A3 = US38A2/A38A2
EM3 = - US38A3 + SQRT((GM1*P38P2+GP1)/2./GM/P38P2)
T38T1 = T38T2*T28T1
A38A1 = SQRT(T38T1)
US38A1 = US38A3*A38A1
R38R1 = R38R2*R28R1
P38P1 = P38P2*P28P1

37
P03BO1 = P03B02*P02B01
U3BA1 = EM3*A3BA1
GO TO 66

60 A3BA2 = P3BP2**GM1BTG
A3BA1 = A3BA2*A2BA1
T3BT1 = A3BA1*A3BA1
U3BA1 = TBGM1*(A2BA1-A3BA1) + U2BA1
P3BP1 = P3BP2*P28P1
US3BA1 = -A2BA1
R3BR2 = P3BP2**GM1NV
R3BR1 = R3BR2*R3BR1
EM3 = U3BA1/A3BA1
PO3B01 = P02B01

66 CONTINUE
PRINT*,U3BA1,A3BA1,P3/P1,T3/TS,A3BA1,EM3,P03/P01:
PRINT*,U3BA1,A3BA1,R3BR1,P3BP1,T3BT1,A3BA1,EM3,P03B01

C
NOW DO THE TRANSITION FROM REGION 3 TO REGION 6:
C
P06B01 = PR*PO3B01
EM3SQ = EM3*EM3
TOM = 2./GMI/EMMS
OPTOM = 1. + TOM
U6BU3 = 1.
KOUNT = 1

55 CONTINUE
OLD = U6BU3
ARG = ((TAU*OPTOM - U6BU3*U6BU3)/TOM)
IF(ARG.GT.0.) GO TO 52
PRINT*,NEGAİVE ARGUMENT IN U6/U3 ITERATIONS:
GO TO 1

52 U6BU3 = ARG**(-GM1INV)
ERR = ABS(U6BU3-OLD)
IF(ERR.LT.1.E-07) GO TO 56
KOUNT = KOUNT + 1
IF(KOUNT.LE.30) GO TO 55
PRINT*,U6/U3 ITERATIONS FAILED TO CONVERGE:
GO TO 1

56 R6BR3 = 1./U6BU3
P6BP3 = R6BR3**GM
T6BT3 = P6BP3/R6BR3
A6BA3 = SQRT(T6BT3)
EM6 = U6BU3*EM3/A6BA3
U6BA1 = U6BU3*U3BA1
T6BT1 = T6BT3*T3BT1
A6BA1 = SQRT(T6BT1)
R6BR1 = R6BR3*R3BR1
P6BP1 = P6BP3*P3BP1
PRINT*,U6/A1,R6/R1,P6/P1,T6/T1,A6/A1,M6,P06/P01:
PRINT*,U6BA1,R6BR1,P6BP1,T6BT1,A6BA1,EM6,P06B01
IF(KASE.EQ.2) GO TO 61
X6A = P6BP1
Y6A = U6BA1
DX = X5A - X6A
DY = Y5A - Y6A
DIFA = DX*DX + DY*DY
KASE = 2
P5BP4 = P54B
P3BP2 = P32B
GO TO 10
61 X6B = P6BP1
Y6B = U6BA1
C
C NOW FIND THE NEXT GUESS, AND ITERATE ONE MORE TIME:
C
DX = X5B - X6B
DY = Y5B - Y6B
DIFB = DX*DX + DY*DY
DIF = SQRT(DIFB)
IF(DIF.LT.1.E-04) GO TO 70
ITER = ITER + 1
IF(ITER.LE.30) GO TO 564
PRINT*, 'ITERATIONS ON P3/P2 AND P5/P4 NOT CONVERGING -'
PRINT*, 'PRESS RETURN TO RESTART'
PAUSE
WRITE(2,111)
111 FORMAT(2X,'ITERATIONS ON P3/P2 AND P5/P4 NOT CONVERGENT',/) GO TO 1
564 SLP5 = (Y5B-Y5A)/(X5B-X5A)
B5 = Y5A - SLP5*X5A
SLP6 = (Y6B-Y6A)/(X6B-X6A)
B6 = Y6A - SLP6*X6A
XNEW = -(B5-B6)/(SLP5-SLP6)
P54NEW = P54A + (P54B-P54A)*(XNEW-X5A)/(X5B-X5A)
P32NEW = P32A + (P32B-P32A)*(XNEW-X6A)/(X6B-X6A)
PRINT*, 'ITER P5/P4 P3/P2 DIF'
PRINT*, ITER, P54NEW, P32NEW, DIF
PRINT*, 'ITER, P54NEW, P32NEW, DIF'
IF(U68A..LT.0.) PRINT*, 'NOTE - U6 IS NEGATIVE'
PAUSE
IF(DIFA.LT.DIFB) GO TO 71
X5A = X5B
X6A = X6B
Y5A = Y5B
Y6A = Y6B
P54A = P54B
P32A = P32B
DIFA = DIF*DIF
71 P54B = P54NEW
P32B = P32NEW
P5BP4 = P54B
P3BP2 = P32B
GO TO 10
70 CONTINUE
WRITE(2,112) P5BP4
112 FORMAT(10X,'P5/P4 = ',F7.4)
IREG = 5
WRITE(2,104) IREG, US5BA1, USBA1, R5BR1, P5BP1, T5BT1, A5BA1, EM5, * P05B01
104 FORMAT(1X,'REGION US5/A1 U5/A1 R5/R1 P5/P1 T5/T1 A5/A1', * EM5 P05/P01', /I3,3X,8F7.4)
 IREG = 3
 WRITE(2,105) P3BP2,IREG,US3BA1,U3BA1,R3BR1,P3BP1,T3BT1,A3BA1,
 * EM3,P03B01
105 FORMAT(/10X,'P3/P2 =',F7.4,
 * ' P03/P01',/I3,3X,8F7.4)
 IREG = 6
 WRITE(2,106) IREG,U6BA1,R6BR1,P6BP1,T6BT1,A6BA1,EM6,P06B01
106 FORMAT(/1X,'REGION U6/A1 R6/R1 P6/P1 T6/T1 A6/A1 M6',
 * ' P06/P01',/I3,3X,7F7.4)
 EMDOT1 = EM1
 EMDOT3 = U3BA1*R3BR1
 WRITE(2,108) EMDOT1,EMDOT3
108 FORMAT(10X,'MASSFLOW IN REGIONS 1 AND 4 =',F7.4,
 * /10X,'MASS FLOW IN REGIONS 3,5, AND 6 =',F7.4,/)
GO TO 1
30 CONTINUE
CLOSE(UNIT=2)
STOP
END

APPENDIX B
FORTRAN PROGRAM FOR UPSTREAM-PROPAGATING WAVES

C PROGRAM WAVEC - CALCULATES THE TRANSMISSION AND REFLECTION OF
C PRESSURE WAVES AT AN ACTUATOR DISK.
C WAVEC HANDLES EXPANSIONS AND SHOCKS INCIDENT FROM THE DOWNSTREAM
C SIDE OF THE ACTUATOR DISK

OPEN(UNIT=2, FILE='WAVECOUT', STATUS='NEW')
1 PRINT*, 'INPUT STAGE PRESSURE RATIO (99. TO STOP), EM1, GAMMA'
READ*, PR, EM1, GAMMA
IF(PR.EQ.99.) GO TO 30
GMINV = 1./GM
GM1 = GM - 1.
GM1INV = 1./GM1
TBGM1 = 2./GM1
GBGM1 = GM/GM1
GP1 = GM + 1.
GM1BG = GM1/GM
GM1BG1/2.
GM1BTG = GM1BTG/2.
TAU = PR**GM1BG
WRITE(2,100) PR, EM1, TAU
100 FORMAT(IOX, 'SOLUTION FOR PRESSURE WAVES INCIDENT FROM THE', *
' DISK', ,10X,'OF STAGNATION-PRESSURE RATIO = ', F5.1, ,10X,
'INLET MACH NUMBER = ', F5.2, ' SPECIFIC-HEAT RATIO = ', F5.2, *
' STAGNATION-TEMPERATURE RATIO IS', F7.3, /)

C FIND CONDITIONS IN REGION 4:

EM1SQ = EM1*EM1
TOM = 2./GM1/EM1SQ
OPTOM = 1. + TOM
U4BU1 = 1.
KOUNT = 1
5 CONTINUE
OLD = U4BU1
ARG = (TAU*OPTOM - U4BU1*U4BU1)/TOM
IF(ARG.GT.0.) GO TO 22
PRINT*, 'NEGATIVE ARGUMENT IN U4/UI ITERATIONS'
GO TO 1
22 U4BU1 = ARG**(-GM1INV)
ERR = ABS(U4BU1-OLD)
IF(ERR.LT.1.E-07) GO TO 6
KOUNT = KOUNT + 1
IF(KOUNT.LE.30) GO TO 5
PRINT*, 'U4/UI ITERATIONS FAILED TO CONVERGE'
GO TO 1
6 R4BRI = 1./U4BU1
P4BPI = R4BRI**GM
T4BTI = P4BPI/R4BRI
A4BA1 = SQRT(T4BTI)

41
T1BT01 = 1./(1. + GM1*B2*EM1*SQ)
P1BP01 = T1BT01**GBGM1
EM4 = U4BU1*EM1/A4BA1
U4BA1 = EM4*A4BA1
P4BP04 = (1. + GM1*B2*EM4*EM4)**-GBGM1
PRINT*, 'U4/A1 R4/R1 P4/P1 T4/T1 A4/A1 M4 P04/P01'
PRINT*, U4BA1, R4BR1, P4BP1, T4BT1, A4BA1, EM4, PR
IREG = 4
WRITE(2,101) IREG, U4BA1, R4BR1, P4BP1, T4BT1, A4BA1, EM4, PR
101 FORMAT(1X,'REGION U4/A1 R4/R1 P4/P1 T4/T1 A4/A1 M4',
* ' P04/P01',/I3,3X,7F7.4)
C
C CHOOSE P5/P4, AND FIND THE CORRESPONDING CONDITIONS IN REGION 5:
C
PRINT*, 'INPUT P5/P4 (99. TO STOP)'
READ*, P5BP4
IF(P5BP4.EQ.99.) GO TO 30
IF(P5BP4.GE.1.) GO TO 565
C INCIDENT WAVE IS AN EXPANSION:
US5BA4 = EM4 - 1.
P5BP1 = P5BP4*P4BP1
R5BR4 = P5BP4**GM1INV
R5BR1 = R5BR4*R4BR1
T5BT4 = P5BP4/R5BR4
T5BT1 = T5BT4*T4BT1
A5BA4 = SQRT(T5BT4)
A5BA1 = A5BA4*A4BA1
P05B04 = 1.
P05B01 = PR
US5BA4 = TBGM1*(1.-A5BA4) + EM4
US5BA1 = US5BA4*A4BA1
EM5 = US5BA4/A5BA4
GO TO 566
C INCIDENT WAVE IS A SHOCK:
565 US5BA4 = EM4 - SQRT((GP1*P5BP4*GM1)/2.*GM)
R5BR4 = (GP1*P5BP4 + GM1)/(GM1*P5BP4 + GP1)
R5BR1 = R5BR4*R4BR1
P5BP1 = P5BP4*P4BP1
T5BT4 = P5BP4/R5BR4
T5BT1 = T5BT4*T4BT1
A5BA4 = SQRT(T5BT4)
A5BA1 = A5BA4*A4BA1
P05B04 = (P5BP4**(-GM1INV))*(R5BR4**GBGM1)
P05B01 = P05B04*PR
US5BA5 = US5BA4/A5BA4
EM5 = US5BA5 + SQRT((GM1*P5BP4+GP1)/(2.*GM*P5BP4))
US5BA1 = EM5*A5BA1
566 PRINT*, 'US5/A4 US5/A1 R5/R1 P5/P1 T5/T1 A5/A1 M5 P05/P01'
PRINT*, US5BA4, US5BA1, R5BR1, P5BP1, T5BT1, A5BA1, EM5, P05B01
IREG = 5
WRITE(2,102) IREG, US5BA4, US5BA1, R5BR1, P5BP1, T5BT1, A5BA1, EM5,
* P05B01
* ' M5 P05/P01',/I3,3X,8F7.4)
42
C
C NOW ITERATE ON P2/P1 AND P6/P5 UNTIL PRESSURES AND PARTICLE
C VELOCITIES IN REGIONS 6 AND 7 ARE MATCHED
C
ITER = 1
KASE = 1
P2BP1 = 1.
P21A = 1.
P21B = P5BP4
P6BP5 = 1.
P65A = 1.
P65B = P5BP4
10 CONTINUE
IF(P5BP4.GT.1.) GO TO 301

C FOR THE CASE OF AN INCIDENT EXPANSION:
R2BR1 = P2BP1**GMINV
T2BT1 = P2BP1/R2BR1
A2BA1 = SQRT(T2BT1)
US2BA1 = EM1 - 1.
P02B01 = 1.
U2BA1 = TBGM1*(1.-A2BA1) + EM1
EM2 = U2BA1/A2BA1
US2BA2 = US2BA1/A2BA1
GO TO 302

C FOR THE CASE OF AN INCIDENT SHOCK:
301 US2BA1 = EM1 - SQRT((GP1*P2BP1 + GM1)/2./GM)
R2BR1 = (GP1*P2BP1+GM1)/(GM1*P2BP1+GP1)
T2BT1 = P2BP1/R2BR1
A2BA1 = SQRT(T2BT1)
P02B01 = (P2BP1**(-GM1INV))*(R2BR1**GBGMI)
US2BA2 = US2BA1/A2BA1
EM2 = US2BA2 + SQRT((GM1*P2BP1 + GP1)/2./GM/P2BP1)
302 U2BA1 = EM2*A2BA1
PRINT*,U2/A1 U2/A1 R2/R1 P2/P1 T2/T1 A2/A1 EM2 P02/P01
PRINT*,US2BA1,U2BA1,R2BR1,P2BP1,T2BT1,A2BA1,EM2,P02B01

C NOW DO THE TRANSITION FROM REGION 2 TO REGION 7:
C
P07B01 = PR*P02B01
EM2SQ = EM2*EM2
TOM = 2./GM1/EM2SQ
OPTOM = 1. + TOM
U7BU2 = 1.
KOUNT = 1
55 CONTINUE
OLD = U7BU2
ARG = ((TAU*OPTOM - U7BU2*U7BU2)/TOM)
IF(ARG.GT.0.) GO TO 52
PRINT*,NEGATIVE ARGUMENT IN U7/U2 ITERATIONS' GO TO 1
52 U7BU2 = ARG**(-GM1INV)
ERR = ABS(U7BU2-OLD)
IF(ERR.LT.1.E-07) GO TO 56
KOUNT = KOUNT + 1
IF(KOUNT.LE.30) GO TO 55
PRINT*,U7/U2 ITERATIONS FAILED TO CONVERGE' GO TO 1
GO TO 1

43
56 R78R2 = 1./U7BU2
P7BP2 = R7BR2**GM
T7BT2 = P7BP2/R7BR2
A7BA2 = SQRT(T7BT2)
EM? = U7BU2*EM2/A7BA2
U7BA1 = U7BU2*U2BA1
T7BT1 = T7BT2*T2BT1
A7BA1 = SQRT(T7BT1)
R7BR1 = R7BR2*R2BR1
P7BP1 = P7BP2*P2BP1
PRINT*,'U7/AI R7/R1 P7/P1 T7/T1 A7/A1 M7 P07/P01'
PRINT*,U7BA1,R7BR1,P7BP1,T7BT1,A7BA1,EM7,P07B01
IF(KASE.EQ.2) GO TO 11
X7A = P7BP1
Y7A = U7BA1
X2A = P2BP1
Y2A = U2BA1
GO TO 63
11 X7B = P7BP1
Y7B = U7BA1
X2B = P2BP1
Y2B = U2BA1
C
C CHOOSE P6/P5
C
63 IF(P6BP5.GT.0.) GO TO 563
PRINT*, 'P6/P5 NEGATIVE - PRESS RETURN TO CONTINUE'
PAUSE
WRITE(2,110)
110 FORMAT(/5X,'P6/P5 NEGATIVE - GOING TO NEXT CASE',//)
GO TO 1
563 IF(P6BP5.LT.1.) GO TO 60
US6BA5 = EM5 + SQRT((GP1*P6BP5+GM1)/2./GM)
R6BR5 = (GP1*P6BP5+GM1)/(GM1*P6BP5+GP1)
T6BT5 = P6BP5/R6BR5
A6BA5 = SQRT(T6BT5)
P06B05 = (P6BP5**GM1INV)**(R6BR5**GBGMI)
US6BA6 = US6BA5/A6BA5
EM6 = US6BA6 - SQRT((GM1*P6BP5+GP1)/2./GM/P6BP5)
T6BT1 = T6BT5*T5BT1
A6BA1 = SQRT(T6BT1)
US6BA1 = US6BA6*A6BA1
R6BR1 = R6BR5*R5BR1
P6BP1 = P6BP5*PSBP1
P06B01 = P06B05*P05B01
US6BA1 = EM6*A6BA1
GO TO 66
60 A6BA5 = P6BP5**GM1BTG
A6BA1 = A6BA5*A5BA1
T6BT1 = A6BA1*A6BA1
U6BA1 = TBGM1*(A6BA1-A5BA1) + US6BA1
P6BP1 = P6BP5*PSBP1
US6BA1 = -A5BA1
R6BR5 = P6BP5**GM1INV
R6BR1 = R6BR5*R5BR1
EM6 = U6/B1/A6/B1
P06/B1 = P05/B1

CONTINUE
PRINT*, US6/B1, U6/B1, R6/B1, P6/B1, T6/B1, A6/B1, EM6, P06/B01

IF(KASE.EQ.2) GO TO 61
X6A = P6/B1
Y6A = U6/B1
DX = X6A - X7A
DY = Y6A - Y7A
DIF A = DX*DX + DY*DY
KASE = 2
P2/B1 = P21B
P6/B5 = P65B
GO TO 10

61 X6B = P6/B1
Y6B = U6/B1

C NOW FIND THE NEXT GUESS, AND ITERATE ONE MORE TIME:

DX = X6B - X7B
DY = Y6B - Y7B
DIF B = DX*DX + DY*DY
DIF = SQRT(DIF B)
IF(DIF.LT.1.E-04) GO TO 70
ITER = ITER + 1
IF(ITER.LE.30) GOTO 564
PRINT*, 'ITERATIONS ON P6/P5 AND P2/P1 NOT CONVERGING - '
PRINT*, 'PRESS RETURN TO RESTART'
PAUSE
WRITE(2,111)
111 FORMAT(2X,'ITERATIONS ON P6/P5 AND P2/P1 NOT CONVERGENT',/)
GO TO 1

564 SLP6 = (Y6B-Y6A)/(X6B-X6A)
B6 = Y6A - SLP6*X6A
SLP7 = (Y7B-Y7A)/(X7B-X7A)
B7 = Y7A - SLP7*X7A
XNEW = -(B6-B7)/(SLP6-SLP7)
P21NEW = P21A + (XNEW-X7A)*(P21B-P21A)/(X7B-X7A)
P65NEW = XNEW/P65B
PRINT*, 'ITER P2/P1 P6/P5 DIF'
PRINT*, ITER, P21NEW, P65NEW, DIF
IF(U6/B1.LT.0.) PRINT*, 'NOTE - U6 IS negative'
PAUSE
IF(DIF A.LT.DIF B) GO TO 71

X6A = X6B
X7A = X7B
Y6A = Y6B
Y7A = Y7B
P21A = P21B
P65A = P65B
DIF A = DIF*DIF
71 P21B = P21NEW
P65B = P65NEW
P2BP1 = P21B
P6BP5 = P65B
GO TO 10
70 CONTINUE
WRITE(2,112) P2BP1
112 FORMAT(/10X,'P2/P1 =',F7.4)
IREG = 2
WRITE(2,104) IREG,US2BA1,U2BA1,R2BR1,P2BP1,T2BT1,A2BA1,EM2,
* P02B01
104 FORMAT(1X,'REGION US2/A1 U2/A1 R2/R1 P2/P1 T2/T1 A2/A1',
* ' EM2 P02/P01',/13,3X,8F7.4)
IREG = 6
WRITE(2,105) P6BP5,IREG,US6BA1,U6BA1,R6BR1,P6BP1,T6BT1,A6BA1,
* EM6,P06B01
105 FORMAT(/10X,'P6/P5 =',F7.4,
* ' P06/P01',/13,3X,8F7.4)
IREG = 6
WRITE(2,106) IREG,U6BA1,R6BR1,P6BP1,T6BT1,A6BA1,EM6,P06B01
106 FORMAT(/1X,'REGION U6/A1 R6/R1 P6/P1 T6/T1 A6/A1 M6',
* ' P06/P01',/13,3X,7F7.4)
EMDOT1 = EM1
EMDOT2 = U2BA1*R2BR1
WRITE(2,108) EMDOT1,EMDOT2
108 FORMAT(10X,'MASSFLOW IN REGIONS 1 AND 4 =',F7.4,
* /10X,'MASS FLOW IN REGIONS 2,7, AND 6 =',F7.4,/) GO TO 1
30 CONTINUE
CLOSE(UNIT=2)
STOP
END
DISTRIBUTION LIST
DNA-TR-88-58

DEPARTMENT OF DEFENSE
ASSISTANT TO THE SECRETARY OF DEFENSE
ATOMIC ENERGY
ATTN: EXECUTIVE ASSISTANT
DEFENSE INTELLIGENCE AGENCY
ATTN: V FRATZKE
2 CYS ATTN: RTS-2B
DEFENSE NUCLEAR AGENCY
ATTN: SPWE
4 CYS ATTN: TITL
DEFENSE NUCLEAR AGENCY
ATTN: TDNM-CF
ATTN: TDTT W SUMMA
DEFENSE TECHNICAL INFORMATION CENTER
2 CYS ATTN: OTIC/FDAB
JOIN STRAT TGT PLANNING STAFF
ATTN: JK
UNDER SECRETARY OF DEFENSE
ATTN: LT COL R DAVIS
ATTN: DIR CRUISE MISSILE SYS
ATTN: LTC W RATHGABER
ATTN: STRAT & THEATER NUC FORCES

DEPARTMENT OF THE AIR FORCE
AERONAUTICAL SYSTEMS DIVISION
ATTN: ASD/BlES
ATTN: ASD/ENSS
ATTN: ASD/ENSSS
ATTN: ASD/Y2E
ATTN: ASD/Y2WT
AIR FORCE CTR FOR STUDIES & ANALYSIS
ATTN: AFCSA/SASB
ATTN: AFCSA/SASM
AIR FORCE FLIGHT TEST CENTER
ATTN: 6520 TESTG/TD
AIR FORCE SYSTEMS COMMAND
ATTN: DLAJ
ATTN: DLAWM
ATTN: SDBC
AIR FORCE WEAPONS LABORATORY
ATTN: A SHARP
ATTN: E FRANKLIN
ATTN: NTN(NGCS)
ATTN: SUL
AIR FORCE WRIGHT AERONAUTICAL LAB
ATTN: R DENISON
AIR FORCE WRIGHT AERONAUTICAL LAB
2 CYS ATTN: W ANSPACH
ATTN: M STIBICH
AIR UNIVERSITY LIBRARY
ATTN: AUL-LSE
DEPUTY CHIEF OF STAFF/AF-RDQM
ATTN: SAF/AQQM
DEPUTY CHIEF OF STAFF/AF/RD-L
ATTN: SAF/AQQL
STRATEGIC AIR COMMAND
ATTN: XOBX
ATTN: XPBS
STRATEGIC AIR COMMAND/NRI-STINFO
ATTN: NRI/STINFO
DEPARTMENT OF ENERGY
SANDIA NATIONAL LABORATORIES
ATTN: TECH LIB 3141
OTHER GOVERNMENT
CENTRAL INTELLIGENCE AGENCY
ATTN: OSWR/NED
U S ARMS CONTROL & DISARMAMENT AGCY
ATTN: H COOPER

OF THE DEPUTY CHIEF OF NAVAL OPS
ATTN: OP 654
DEPARTMENT OF DEFENSE CONTRACTORS

AEROSPACE CORP
ATTN: H BLAES

BOEING CO
ATTN: W SCHERER

BOEING HELICOPTERS
ATTN: N CARAVASOS

CALSPAN CORP
2 CYS ATTN: M DUNN
2 CYS ATTN: P BATCHO
2 CYS ATTN: W RAE

DAYTON, UNIVERSITY OF
ATTN: B WILT

GENERAL MOTORS CORPORATION
ATTN: R YORK

GENERAL RESEARCH CORP
ATTN: D MIHORA
ATTN: R CRAWFORD
ATTN: W ADLER

KAMAN SCIENCES CORP
ATTN: D COYNE
ATTN: R RUETENIK
ATTN: W LEE

KAMAN SCIENCES CORP
ATTN: J SOVINSKY

KAMAN SCIENCES CORP
ATTN: E CONRAD

KAMAN SCIENCES CORPORATION
ATTN: DASIAC

KAMAN SCIENCES CORPORATION
ATTN: DASIAC

LOCKHEED AERONAUTICAL SYSTEMS
ATTN: A SCHUETZ
ATTN: B OSBORNE

LOCKHEED CORPORATION
ATTN: R KELLY

MCDONNELL DOUGLAS CORP
ATTN: H SAMS

MCDONNELL DOUGLAS CORP
ATTN: J MCGREW
ATTN: M POTTER

NORTHROP CORP
ATTN: G. CURRY

NORTHROP CORP
ATTN: C GUADAGNINO

PACIFIC-SIERRA RESEARCH CORP
ATTN: H BRODE

R & D ASSOCIATES
ATTN: P RAUSCH
ATTN: T MAZZOLA
ATTN: T PUCIK

ROCKWELL INTERNATIONAL CORP
ATTN: A MUSICMAN
ATTN: P MASON

SCIENCE APPLICATIONS INTL CORP
ATTN: J COCKAYNE

SCIENCE APPLICATIONS INTL CORP
ATTN: A MARTELLUCI

SOUTHERN RESEARCH INSTITUTE
ATTN: C PEARS
ATTN: S CAUSEY

TOYON RESEARCH CORP
ATTN: J CUNNINGHAM

UNITED TECHNOLOGIES CORP
ATTN: R FOULKROD

UNITED TECHNOLOGIES CORP
ATTN: J TARBOX

UNITED TECHNOLOGIES CORP
ATTN: M TATUM

Dist-2