APPLICATION OF THE BOUNDARY ELEMENT METHOD TO FATIGUE CRACK GROWTH ANALYSIS

THESIS

Timothy C. Kelley

AFIT/GAE/AA/88S-1

Approved for public release; distribution unlimited
APPLICATION OF THE BOUNDARY ELEMENT METHOD TO FATIGUE CRACK GROWTH ANALYSIS

THESIS

Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air University In Partial Fulfillment of the Requirements for a Degree of Master of Science in Aeronautical Engineering

Timothy C. Kelley, B.S.

September 1988

Approved for public release; distribution unlimited
Preface

The purpose of this study was to apply the boundary element method (BEM) to two dimensional fracture mechanics problems, and to use the BEM to analyze the interference effects of holes on cracks through a parametric study of a two hole tension strip. The study analyzed the effect of hole diameter, pitch and crack length. The results of the study were to be applied to a sample crack growth analysis to display the use of the boundary element method in conventional aircraft damage tolerance analysis.

The analysis of classical fracture problems showed excellent results, and the comparisons to different finite element methods were also very good.

I could not have performed this study without the assistance, guidance and "long term" support of my faculty advisor Dr. Anthony N. Palazotto. I would also like to thank the department chairman Dr. Peter J. Torvik for his support in enabling me to complete this thesis.

I wish to especially thank my wife, Teri, and my two children, Matthew and Kevin, for their love and support during the evenings and weekends that this thesis was completed in.

Timothy C. Kelley

VAX 8800: All-IN-ONE/LN03 Laser Printer.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>ii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iii</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>iv</td>
</tr>
<tr>
<td>List of Figures</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>vi</td>
</tr>
<tr>
<td>Abstract</td>
<td>vii</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. Theoretical Discussion</td>
<td>5</td>
</tr>
<tr>
<td>A. Fictitious Stress Method</td>
<td>5</td>
</tr>
<tr>
<td>B. Numerical Algorithm</td>
<td>15</td>
</tr>
<tr>
<td>C. Co-ordinate Transformation</td>
<td>18</td>
</tr>
<tr>
<td>D. Influence Coefficient</td>
<td>22</td>
</tr>
<tr>
<td>E. Modeling Considerations</td>
<td>27</td>
</tr>
<tr>
<td>III. Boundary Element vs Finite Element</td>
<td>32</td>
</tr>
<tr>
<td>A. Finite Element Method</td>
<td>32</td>
</tr>
<tr>
<td>B. Boundary Element Method</td>
<td>36</td>
</tr>
<tr>
<td>C. Comparisons</td>
<td>36</td>
</tr>
<tr>
<td>IV. Boundary Element vs p-Version Finite Element</td>
<td>42</td>
</tr>
<tr>
<td>V. Boundary Element vs Bowie Solution</td>
<td>48</td>
</tr>
<tr>
<td>VI. Boundary Element Method vs Shivakumar Solution</td>
<td>54</td>
</tr>
<tr>
<td>VII. Two Hole Tension Strip Parametric Study</td>
<td>57</td>
</tr>
<tr>
<td>VIII. Parametric Study Application</td>
<td>73</td>
</tr>
<tr>
<td>IX. Conclusions</td>
<td>80</td>
</tr>
<tr>
<td>Appendix A: Computer Implementation</td>
<td>83</td>
</tr>
<tr>
<td>Appendix B: Computer Program TWOFS99</td>
<td>90</td>
</tr>
<tr>
<td>Appendix C: Computer Program CHOLE</td>
<td>102</td>
</tr>
<tr>
<td>Appendix D: Computer Program TWOFS99 EX</td>
<td>105</td>
</tr>
<tr>
<td>Appendix E: Fitting NASA/FLAGRO Crack Growth Output</td>
<td>109</td>
</tr>
<tr>
<td>Appendix F: Comparison of Regression Fit Analysis</td>
<td>115</td>
</tr>
<tr>
<td>Bibliography</td>
<td>120</td>
</tr>
<tr>
<td>Vita</td>
<td>123</td>
</tr>
</tbody>
</table>
List of Symbols

a - crack length
\(\lambda \) - element inclination angle
\(\beta \) - normalized stress intensity factor
\(\gamma \) - relative element inclination (\(\lambda_i - \lambda_j \))
\(ijc_{sn} \) - influence coefficient
\(ijA_{ns} \) - boundary coefficient
\(F_x \) - x direction of applied force
G - shear modulus
E - Young's modulus
\(\nu \) - Poisson's ratio
N - number of elements
\(K_I \) - Mode I stress intensity factor
\(g_{,x} \) - partial derivative of \(g \) with respect to \(x \)
\(P_y \) - y applied traction stress
\[\sum_{j=1}^{N} \] - summation over \(j \) from 1 to \(N \)
\(\sigma_{xx} \) - x component of stress
\(i\sigma_n \) - normal stress component at element \(i \)
\(u_y \) - y component of displacement
\(j\upsilon_s \) - shear displacement at element \(j \)
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kelvin's Problem</td>
<td>6</td>
</tr>
<tr>
<td>2. Integration of Kelvin's Problem</td>
<td>9</td>
</tr>
<tr>
<td>3. Boundary Element Geometry</td>
<td>12</td>
</tr>
<tr>
<td>4. Boundary Element Line Crack</td>
<td>16</td>
</tr>
<tr>
<td>5. Numerical Method</td>
<td>18</td>
</tr>
<tr>
<td>6. Line Segment of Arbitrary Orientation</td>
<td>21</td>
</tr>
<tr>
<td>7. Local Element Co-ordinate Systems</td>
<td>26</td>
</tr>
<tr>
<td>8. Tension Strip Problem</td>
<td>33</td>
</tr>
<tr>
<td>9. Baseline MSC/NASTRAN Finite Element Model</td>
<td>35</td>
</tr>
<tr>
<td>10. Boundary Element Model</td>
<td>37</td>
</tr>
<tr>
<td>11. PROBE Two Hole Tension Strip Problem</td>
<td>44</td>
</tr>
<tr>
<td>12. GD Model of PROBE Problem</td>
<td>45</td>
</tr>
<tr>
<td>13. PROBE model of PROBE Problem</td>
<td>46</td>
</tr>
<tr>
<td>14. Boundary Element Model of PROBE Problem</td>
<td>47</td>
</tr>
<tr>
<td>15. Crack From a Hole in an Infinite Plate</td>
<td>49</td>
</tr>
<tr>
<td>16. Boundary Element Model of Hole with Crack</td>
<td>50</td>
</tr>
<tr>
<td>17. Infinite Domain BEM Crack Modeling Technique</td>
<td>52</td>
</tr>
<tr>
<td>18. Boundary Element Model of Shivakumar Problem</td>
<td>55</td>
</tr>
<tr>
<td>19. Two Hole Tension Strip Parametric Study</td>
<td>58</td>
</tr>
<tr>
<td>20. K_I vs Crack Ratio for Hole Diameter = 0.25</td>
<td>61</td>
</tr>
<tr>
<td>21. K_I vs Crack Ratio for Hole Diameter = 0.33</td>
<td>62</td>
</tr>
<tr>
<td>22. K_I vs Crack Ratio for Hole Diameter = 0.50</td>
<td>63</td>
</tr>
<tr>
<td>23. β Factor vs Crack Ratio</td>
<td>65</td>
</tr>
<tr>
<td>24. β Factor vs Crack Ratio for Hole Diameter=0.25</td>
<td>66</td>
</tr>
<tr>
<td>25. β and β_{net} Factors vs Crack Ratio</td>
<td>68</td>
</tr>
<tr>
<td>26. Example Analysis Fatigue Crack Growth Curves</td>
<td>78</td>
</tr>
<tr>
<td>27. K_I vs Radius (Crack Ratio=0.1)</td>
<td>116</td>
</tr>
<tr>
<td>28. K_I vs Radius2 (Crack Ratio=0.1)</td>
<td>117</td>
</tr>
<tr>
<td>29. K_I vs Radius (Crack Ratio=0.9)</td>
<td>118</td>
</tr>
<tr>
<td>30. K_I vs Radius2 (Crack Ratio=0.9)</td>
<td>119</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. MSC/NASTRAN VS BEM Tension Strip Results</td>
<td>41</td>
</tr>
<tr>
<td>II. Parametric Study β Factors for Pitch Ratio=3 Dia</td>
<td>70</td>
</tr>
<tr>
<td>III. Parametric Study β Factors for Pitch Ratio=4 Dia</td>
<td>71</td>
</tr>
<tr>
<td>IV. Parametric Study β Factors for Pitch Ratio=5 Dia</td>
<td>72</td>
</tr>
</tbody>
</table>
Abstract

This investigation analyzes a crack emanating from one hole, and approaching a second hole, in a two hole tension strip with finite boundaries using the Boundary Element Method. The study included the effects of varying the hole diameter, hole separation and the length of crack. The final results were plotted as a function of the geometric correction factor β, which can be presented as a family of curves. An example damage tolerance analysis is presented with the β curves being incorporated into a β look-up table as used in the NASA/FLAGRO fatigue crack growth program. This technique is acceptable in most fatigue crack growth programs now used in the aircraft industry to ensure aircraft structural integrity.

Several classic fracture mechanics problems are analyzed, and computational efficiency as compared to conventional finite element techniques is investigated. Agreement with analytic solutions as well as other numerical methods (finite element) is excellent. The computation efficiency was shown to an improvement over existing methods.
I. Introduction

The present day acceptance of a fracture mechanics based aircraft damage tolerance criteria is based on the work done in the late sixties and early seventies, credited to Mr Charles Tiffany and Dr John Lincoln [16]. Dr Lincoln gives an excellent review of the Air Force Damage Tolerance experience in reference [25]. Within the last decade, the Air Force has placed increased emphasis on the fracture mechanics life-cycle structural integrity of its' manned aircraft systems [6]. The original implementation of an Aircraft Structural Integrity Program (ASIP) was in 1959 and the catastrophic events leading up to it are well documented [2]. The most significant event being the B-47 fatigue failures which crippled the Strategic Air Command at a time of extreme world tension. The B-47 showed that modern aircraft could no longer be designed solely for static strength. This 1959 ASIP involved the "Safe-Life" concept revolving around classical "Fatigue" analysis. To account for the significant "scatter factor" associated with fatigue testing, a scatter factor of "four" was established whereby an aircraft designed for a 4000 hour service life must be analyzed and tested for 16000 hours of service life. The F-111 was such an aircraft and was tested successfully for 16000 hours. However, in December of
1969 an F-111 with approximately 100 flight hours crashed at Nellis AFB, Utah.

The cause of this crash was a manufacturing defect in the wing pivot fitting that was undetected by inspections. Also, the KC-135 aircraft was judged to have a Safe-Life of 13000 hours, yet service experience had detected fourteen cases of unstable cracking in the lower wing skins at flight times ranging from 1800 to 5000 hours. An F-5 which was judged to have a Safe-Life of 4000 hours was lost at Williams AFB, Arizona, with approximately 1900 hours. From these and other cases it was apparent that the Safe-Life methodology had not precluded the use of "brittle" materials and "rogue" manufacturing or service induced defects that could lead to premature failure. The result was the implementation of a "Fracture Mechanics" based "Damage Tolerance" approach to structural integrity [5].

The Damage Tolerance approach relies on fatigue crack growth calculations to establish the time interval required to grow a crack from an initial size (usually the maximum flaw undetectable with current NDI techniques) to the critical crack length which denotes the onset of unstable crack growth. The crack growth equations are a function of the local change in Stress Intensity, \(K \), as a stress cycle is applied. All of the current fatigue crack growth codes in use by industry have "canned" subroutines to calculate \(K \) for classical crack configurations. However, the practicing
engineer is frequently faced with design details which are not represented by the conventional solutions. In this case the solution for K must be analyzed independently of the crack growth code, with the results placed in a look-up table as a function of crack length.

The most common method of independent analysis of Stress Intensity Factors is the finite element method. This numerical technique is extremely flexible in its' ability to analyze a wide range of problems. However, finite element models require the descretization of the body being studied, with a gradual refinement towards the crack tip. This is very expensive in both computer time and man hours. Alternative solution techniques are always being sought to increase the efficiency of these Stress Intensity Factor analyses, and this thesis will investigate the possible advantages of using the Boundary Element Technique.

The Boundary Element Method is based on a singular solution which represents the analysis of a segment of the boundary of the body being analyzed. The values of the boundary conditions are known, and the solution calculates the results for the rest of the body. The singular solution will satisfy the governing differential equations exactly, and the user will approximate the boundary conditions.

Some of the earliest uses of BEM were in 1963 by Jaswon and Ponter [10], Jaswon [9], and Symm [22] concerning potential problems. The first elasticity application was in
1967 by Rizzo [17]. Since then the method has been used in a wide variety of applications as documented by Mackerle and Andersson [12]. Examples of the BEM applied to fracture mechanics can be found in papers by Snyder and Cruse [20] and Rizzo and Shippy [18].

The purpose of this research is to investigate a crack emanating from a hole towards another hole in a two hole tension strip with finite boundaries. The basic BEM technique will be verified on similar problems, either classical or by finite element methods. A parametric case study of the two hole tension strip was conducted varying the hole diameter, hole separation and crack length to create a family of Stress Intensity Factor data curves suitable for fatigue crack growth analysis. A sample damage tolerance analysis using the results of the parametric stress intensity study is shown.

After a theoretical development of the Fictitious Stress BEM technique, comparison solutions to a few classic fracture problems are presented, as well as a comparison to finite element solutions. The solutions to the two hole tension strip parametric study are presented, followed by the example damage tolerance analysis.
II. Theoretical Discussion

The analytical method used for this study was the Boundary Element Method. This method relies on a singular solution representing the analysis of a segment of the boundary of the body being analyzed. The boundary conditions are known, and the solution analyzes the impact on the remainder of the body. The complete solution requires all of the boundary segments be solved simultaneously and include the effects of the boundary segments on each other. The technique used in the analysis performed here is the "Fictitious Stress" method as outlined by Crouch and Starfield [4].

A. Fictitious Stress Method

The Fictitious Stress method utilizes the plane strain version of Kelvin's problem [21] as the basic singular solution. Kelvin's problem is a point load in an infinite domain while the plane strain version is a line of concentrated force.

As shown in Figure 1, the plane strain version of Kelvin's problem will involve a line of force \(F \) along the \(z \) direction. The components \(F_x \) and \(F_y \) have units of force per unit depth. Kelvin showed that a harmonic function \(g(x,y) \) was a solution to the biharmonic equation \(\nabla^2 g = 0 \) such that
\[g(x,y) = -1/(4\pi (1-v^2)) \ln(x^2 + y^2)^{v^2} \]

\[g_x = \frac{dg}{dx} \quad g_y = \frac{dg}{dy} \]

Figure 1. Kelvin's Problem
\[g(x,y) = [-\ln(x^2 + y^2)^{1/2}] / [4\pi(1-\nu)] \]

where \(\nu \) is Poisson's ratio.

Kelvins solution for displacements components, \(u_x \) and \(u_y \), are expressed as

\[u_x = (F_x/2G)[(3-4\nu)g - xg_x] + (F_y/2G)[-yg_y] \]
\[u_y = (F_y/2G)[(3-4\nu)g - yg_y] + (F_x/2G)[-xg_x] \]

where \(F_x \) and \(F_y \) are the components of the applied point load \(F \), and \(G \) is the material shear modulus, and

\[g = g(x,y) \]
\[g_x = [-1/4\pi(1-\nu)]x / (x^2 + y^2)^2 \]
\[g_y = [-1/4\pi(1-\nu)]y / (x^2 + y^2)^2 \]
\[g_{xy} = [1/4\pi(1-\nu)]2xy / (x^2 + y^2)^2 \]
\[g_{xx} = -g_{yy} = [1/4\pi(1-\nu)](x^2 - y^2) / (x^2 + y^2)^2 \]

where \(g_y \) denotes the partial differentiation of the function \(g(x,y) \) with respect to \(y \) \((\partial g/\partial y) \) and \(g_x \) denotes the partial differentiation of \(g \) with respect to \(x \) \((\partial g/\partial x) \). Using the stress-strain relations produces the stress results as
\[
\begin{align*}
\sigma_{xx} &= F_x[2(1-v)g_x - xg_{xx}] + F_y[2vg_y - yg_{xx}] \\
\sigma_{yy} &= F_y[2(1-v)g_y - yg_{yy}] + F_x[2vg_x - xg_{yy}] \\
\sigma_{xy} &= F_x[(1-2v)g_y - xg_{xy}] + F_y[(1-2v)g_x - yg_{xy}] \\
\end{align*}
\] (4)

where \(\sigma_{xx}, \sigma_{yy}\) are the components of stress in the \(x\) and \(y\) directions and \(\sigma_{xy}\) is the shear stress. The stresses in Eq (4) satisfy the equations of equilibrium, and are singular at the point \(x=y=0\). Timoshenko and Goodier showed that these stresses correspond to a line of concentrated force at the origin [24].

To facilitate the transition of Kelvin's solution into a form usable in a numerical technique, we consider the problem of tractions \(t_x = P_x\) and \(t_y = P_y\) applied to a line segment \(|x| \leq a, y=0\) in an infinite elastic solid. Kelvin's solution is integrated over a line segment of length \(2a\) as shown in Figure 2. If we consider a small segment of the line, \(dx\), the force \(F\) becomes

\[
F_i(x) = P_i dx \\
i=x,y \\
\] (5)

We will assume a constant traction thus the new harmonic function to satisfy the biharmonic equation, \(f(x,y)\), as shown in [4], can be expressed in terms of \(g(x,y)\) as
Figure 2. Integration of Kelvin's Problem
\[f(x,y) = -a \int_{\varepsilon} g(x-\varepsilon,y) d\varepsilon \hspace{1cm} (6) \]

\[
\begin{align*}
&= \left[-\frac{1}{4\pi(1-\nu)}\right] y \left[\arctan\left(\frac{y}{x-a} \right) - \arctan\left(\frac{y}{x+a} \right) \right] \\
&\quad + (x+a) \ln\left\{ (x+a)^2 + y^2 \right\}^{1/2} \\
&\quad - (x-a) \ln\left\{ (x-a)^2 + y^2 \right\}^{1/2}
\end{align*}
\]

Following the procedure outlined previously in the presentation of Kelvin's problem, the displacements due to the line of concentrated force per unit depth, \(F_i(\varepsilon) \), are

\[
\begin{align*}
u_x &= \left(\frac{P_x}{2G} \right) \left((3-4\nu)f + yf_y \right) + \left(\frac{P_y}{2G} \right) \left(-yf_x \right) \\
u_y &= \left(\frac{P_y}{2G} \right) \left((3-4\nu)f + yf_y \right) + \left(\frac{P_x}{2G} \right) \left(-yf_x \right) \hspace{1cm} (7)
\end{align*}
\]

and the stresses become

\[
\begin{align*}
\sigma_{xx} &= P_x \left[(3-2\nu)f_{,x} + yf_{,xy} \right] + P_y \left[2\nu f_{,y} + yf_{,yy} \right] \\
\sigma_{yy} &= P_x \left[-1(1-2\nu)f_{,x} - yf_{,xy} \right] + P_y \left[2(1-\nu)f_{,y} + yf_{,yy} \right] \\
\sigma_{xy} &= P_x \left[2(1-\nu)f_{,y} + yf_{,xy} \right] + P_y \left[(1-2\nu)f_{,x} + yf_{,xy} \right] \hspace{1cm} (8)
\end{align*}
\]

The derivatives of \(f \) are given as

\[
\begin{align*}
f_{,x} &= \frac{1}{4\pi(1-\nu)} \left[\ln\left\{ (x-a)^2 + y^2 \right\}^{1/2} \\
&\quad - \ln\left\{ (x+a)^2 + y^2 \right\}^{1/2} \right] \\
f_{,y} &= \frac{-1}{4\pi(1-\nu)} \left[\arctan\left(\frac{y}{x-a} \right) - \arctan\left(\frac{y}{x+a} \right) \right] \\
f_{,xy} &= \frac{1}{4\pi(1-\nu)} \left[y \left/ \left\{ (x-a)^2 + y^2 \right\} \right. \right. \\
&\quad - \left. \left/ \left\{ (x+a)^2 + y^2 \right\} \right. \right]
\end{align*}
\]
\[f_{xx} = -f_{yy} \]
\[= \frac{1}{4\pi(1-v)} \frac{(x-a)/((x-a)^2 + y^2)}{(x+a)/((x+a)^2 + y^2)} \]

It is important to note that the stress solutions are not defined for \(x=\pm a \), or \(y=0 \). To investigate this further, it is necessary to consider the stress tensor along the line \(y=0 \). Evaluating Eqs (8) and (9) for \(y=0 \) yields the stresses

\[\sigma_{xx} = -(3-2v)/(8\pi(1-v)) P x \lim_{y \to 0^\pm} \ln((x+a)/(x-a))^2 \]
\[- 2v/(4\pi(1-v)) P y \lim_{y \to 0^\pm} \arctan(y/(x-a)) \]
\[- \arctan(y/(x+a)) \]
\[\sigma_{yy} = (1-2v)/(8\pi(1-v)) P x \lim_{y \to 0^\pm} \ln((x+a)/(x-a))^2 \]
\[- 1/(2\pi) P y \lim_{y \to 0^\pm} \arctan(y/(x-a)) \]
\[- \arctan(y/(x+a)) \]
\[\sigma_{xy} = -1/(2\pi) P x \lim_{y \to 0^\pm} \arctan(y/(x-a)) \]
\[- \arctan(y/(x+a)) \]
\[- (1-2v)/(8\pi(1-v)) P y \lim_{y \to 0^\pm} \ln((x+a)/(x-a))^2 \]

where the limits on \(y \) are necessary as the arctan function is multivalued. The arctan functions in Eq (10) are interpreted to represent the angles, \(\theta_1 \) and \(\theta_2 \), from the ends of the line segment, to an arbitrary point \((x,y) \), as shown in Figure 3. The values of \(\theta_1 \) and \(\theta_2 \) are seen to be

\[\theta_1 = \arctan(y/(x-a)) \]
\[\theta_1 = \arctan\left(\frac{y}{x-a}\right) \]

\[\theta_2 = \arctan\left(\frac{y}{x+a}\right) \]

Figure 3. Boundary Element Geometry
\[\theta_2 = \arctan \left(\frac{y}{x+a} \right) \]

When \(y=0 \), it can be seen that \(\theta \) can be \(-\pi, 0, \) or \(+\pi\). By examining the limit expression in Eq (10), we see that the three possible solutions are

\[
\lim_{y \to 0} \left[\arctan \left(\frac{y}{x-a} \right) - \arctan \left(\frac{y}{x+a} \right) \right] \quad (12)
\]

\[
= 0 \quad |x|>a, \ y=0_+ \text{ or } y=0_-
\]
\[
= +\pi \quad |x|<a, \ y=0_+
\]
\[
= -\pi \quad |x|<a, \ y=0_-
\]

Examining the last two values of Eq (12), it can be seen the stress tensor is discontinuous across the line segment at \(y=0 \). It is instructive to examine the magnitude of the difference in the stress tensor across \(y=0 \) for \(|x|<a \). The change in \(\sigma_{xx} \) is

\[
\sigma_{xx}(x,0_-) = -\frac{(3-2v)}{[8\pi(1-v)]}P_x \ln \left[\frac{(x+a)/(x-a)}{2} \right]
\]

\[
+ \frac{P_yv}{[2(1-v)]} \quad (13)
\]

\[
\sigma_{xx}(x,0_+) = -\frac{(3-2v)}{[8\pi(1-v)]}P_x \ln \left[\frac{(x+a)/(x-a)}{2} \right]
\]

\[
- \frac{P_yv}{[2(1-v)]} \quad (13a)
\]

\[
\sigma_{xx}(x,0_-) - \sigma_{xx}(x,0_+) = \frac{P_yv}{(1-v)} \quad (13b)
\]
the change in σ_{yy} is

$$
\sigma_{yy}(x,0_+) = \frac{(1-2v)}{8\pi(1-v)} P_x \ln\left(\frac{x+a}{x-a} \right) - \frac{P_y}{2} + \frac{P_y}{2}
$$

(14a)

$$
\sigma_{yy}(x,0_-) = \frac{(1-2v)}{8\pi(1-v)} P_x \ln\left(\frac{x+a}{x-a} \right)^2
$$

and the change in σ_{xy} is

$$
\sigma_{xy}(x,0_+) = -\frac{(1-2v)}{8\pi(1-v)} P_x \ln\left(\frac{x+a}{x-a} \right) + \frac{P_x}{2} + \frac{P_x}{2}
$$

(15a)

$$
\sigma_{xy}(x,0_-) = -\frac{(1-2v)}{8\pi(1-v)} P_x \ln\left(\frac{x+a}{x-a} \right)^2 - \frac{P_x}{2}
$$

(15b)

It can be seen that Eqs (14b) and (15b) indicate that the stresses P_x and P_y are the constant discontinuities in σ_{xy} and σ_{yy} respectively. Crouch and Starfield [4] showed that the physical significance of the stresses P_x and P_y could be interpreted as imagining the line segment $|x| \leq 0$, $y=0$ as a
crack in an infinite elastic solid. As shown in Figure 4, the outward normal to the positive side of the crack \(y = 0^+ \) has components \(n_i = (0, -1) \), and the outward normal to the negative side \(y = 0^- \) has components \(n_i = (0, 1) \). With the tractions \(t_i \) defined as,

\[
t_i = \sigma_{ji} n_j
\]

the tractions on the two surfaces become,

\[
\begin{align*}
t_x(x, 0^+) &= -\sigma_{xy}(x, 0^+) \\
t_y(x, 0^+) &= -\sigma_{yy}(x, 0^+) \\
t_x(x, 0^-) &= \sigma_{xy}(x, 0^-) \\
t_y(x, 0^-) &= \sigma_{yy}(x, 0^-)
\end{align*}
\]

The resultant stresses obtained by adding the traction components \(t_i \) on both sides of the crack. Substituting the values of \(\sigma_{yy} \) from Eq (14b) and \(\sigma_{xy} \) from Eq (15b) into Eq (17) yields,

\[
\begin{align*}
t_x(x, 0) &= P_x \\
t_y(x, 0) &= P_y
\end{align*}
\]

Thus, the stresses \(P_x \) and \(P_y \) represent the constant resultant tractions across the line segment \(|x| \leq a, \ y=0 \).
Figure 4. Boundary Element Line Crack
B. Numerical Algorithm

To apply the fictitious stress method to a general problem, it is instructive to consider the case of a hole with a boundary C in an infinite plate. We will let the hole be loaded by an outward pressure (p) load as depicted in Figure 5.(a). As the hole boundary is otherwise traction free, it is assumed the shear stress is zero, therefore, the known boundary conditions relative to the normal (n) tangential or shear (s) directions are

\[\sigma_n = -p \]
\[\sigma_s = 0 \] \hspace{1cm} (19)

We now create a system of N line segments, joined end to end, along a boundary C' as depicted in Figure 5.(b) that represents the boundary C of the hole in Figure 5.(a). Each line segment i is individually formulated with the fictitious stress solution for a stress \(P_i \). Each line segment in this example will be of a uniform length 2a. If the length 2a is small enough the boundary C will be quite closely modeled by C'. The local coordinates n and s as depicted in Figure 5.(a) are relative to C so they will change depending on the location of the point desired. The local coordinates n and s in Figure 5.(b) will be relative to each line segment i. It
Physical Boundary

BEM Line Segments

Figure 5. Numerical Method
will then be important to order the line segments such that
the local coordinates for C and C' correspond.

It is now important to remember that the line segments
are based on Kelvin's solution for a point load in an
infinite solid. So each line segment, or boundary element, is
in fact a line of constant local stresses in an infinite
elastic body, which happen to coincide with the boundary C.
Each element will have its' own applied stress, P_i, but each
element will be affected by all of the other elements. Using
the theory of superposition, if we were to calculate the
stress at a point in the body, we would have to sum all of
the solutions for that point due to all of the elements i,
each element with an applied stress P_i. So to calculate the
final stresses $i \sigma_s$ and $i \sigma_n$ at each element i, at its'
midpoint, requires a summation of the form

\begin{align*}
\sigma_s &= \sum_{j=1}^{N} \left[i<j_{ss} \cdot P_s \right] + \sum_{j=1}^{N} \left[i<j_{sn} \cdot P_n \right] \quad i=1 \text{ to } N \\
\sigma_n &= \sum_{j=1}^{N} \left[i<j_{ns} \cdot P_s \right] + \sum_{j=1}^{N} \left[i<j_{nn} \cdot P_n \right] \quad i=1 \text{ to } N
\end{align*}

where $i<j_{ss}$, $i<j_{sn}$, $i<j_{ns}$, and $i<j_{nn}$ are the boundary
coefficients. As an example, $i<j_{nn}$ gives the actual normal
stress at the midpoint of element i ($i \sigma_n$) due to the
application of a unit normal stress to element j ($j P_n=1$).

Since the values of $i \sigma_s$ and $i \sigma_n$ are known from the
boundary conditions of the original problem, it remains for
the system of applied stresses $i P_s$ and $i P_n$ to be solved

19
for by assembling a system of $2N$ simultaneously linear algebraic equations in as many unknowns.

\[0 = \sum_{j=1}^{N} [iA_{ss}^j j_p^s] + \sum_{j=1}^{N} [iA_{sn}^j j_p^n] \quad i=1 \text{ to } N \quad (21) \]

\[-p = \sum_{j=1}^{N} [iA_{ns}^j j_p^s] + \sum_{j=1}^{N} [iA_{nn}^j j_p^n] \quad i=1 \text{ to } N \]

As described in [4], it is important to realize that the stresses j_p^s and j_p^n are fictitious, and do not really exist. They are merely the system of stresses applied to each individual element along C' such that the simultaneous system of integrated Kelvin's solutions result in the calculation of the actual boundary conditions of the problem being analyzed.

C. Co-ordinate Transformation

The equations for the transformation of each individual elements local influence coefficients into a common "global" system is described in detail by Crouch and Starfield [4]. By examining Figure 6, we will label the local co-ordinate system for an arbitrary element as x' and y'. The element is defined as $|x'| \leq a$, $y'=0$. The stresses applied to this element are $P_{x'}$ and $P_{y'}$.

The local co-ordinate system is produced with a translation of c_x in the global x direction, c_y in the global y direction, and a rotation λ about the global z axis (positive direction being counterclockwise). The co-ordinate
Figure 6. Line Segment of Arbitrary Orientation
transformation is then as follows:

\[x' = (x - c_x) \cos \lambda + (y - c_y) \sin \lambda \quad (22) \]
\[y' = -(x - c_x) \sin \lambda + (y - c_y) \cos \lambda \]

Substituting (22) and (9) into (7) and (8) produces:

\[u_x' = \frac{P_x}{(2G)}[(3-4\nu)F_1 + y'F_3] + \frac{P_y}{(2G)}[-y'F_2] \quad (23) \]
\[u_y' = \frac{P_y}{(2G)}[(3-4\nu)F_1 - y'F_3] + \frac{P_x}{(2G)}[-y'F_2] \]

and

\[\sigma_{x'x'} = \frac{P_x}{(2G)}[(3-2\nu)F_2 + y'F_4] + \frac{P_y}{(2G)}[2\nu F_3 - y'F_5] \quad (24) \]
\[\sigma_{y'y'} = \frac{P_x}{(2G)}[-(1-2\nu)F_2 - y'F_4] + \frac{P_y}{(2G)}[2(1-\nu)F_3 + y'F_5] \]
\[\sigma_{x'y'} = \frac{P_x}{(2G)}[2(1-\nu)F_3 - y'F_5] + \frac{P_y}{(2G)}[(1-2\nu)F_2 - y'F_4] \]

where the functions \(F_1 \ldots F_5 \) are defined as:

\[F_1 = f(x',y') \quad (25) \]
\[= -1/[4\pi(1-\nu)] \{y'[\arctan(y'/(x'-a))] - \arctan(y'/(x'+a))] - (x'-a)\ln[((x'-a)^2 + y^2)]^{1/2} + (x'+a)\ln[((x'+a)^2 + y^2)]^{1/2} \} \]

\[F_2 = f,x' \]
\[= 1/[4\pi(1-\nu)] \{\ln[(x'-a)^2 + y'^2]^{1/2} - \ln[(x'+a)^2 + y'^2]^{1/2} \} \]
To calculate the displacements and stresses at a particular element midpoint, it is necessary to calculate x' and y' as coordinates relative to the local element location and orientation. The calculated displacements and stresses from Eqs (22) and (23) are also in the local $x'y'$ system. Since this is not convenient, one more transformation to Eqs (22) and (23) to compute the resulting displacements and stresses in the global xy coordinate system. The relations between the xy global system and the $x'y'$ local system are

\[
\begin{align*}
 u_x &= u'_x \cos \lambda - u'_y \sin \lambda \\
 u_y &= u'_x \cos \lambda - u'_y \sin \lambda
\end{align*}
\]

(26)

\[
\begin{align*}
 \sigma_{xx} &= \sigma_{x'x'} \cos^2 \lambda - 2 \sigma_{x'y'} \sin \lambda \cos \lambda + \sigma_{y'y'} \sin^2 \lambda \\
 \sigma_{yy} &= \sigma_{y'y'} \cos^2 \lambda - 2 \sigma_{x'y'} \sin \lambda \cos \lambda + \sigma_{x'x'} \sin^2 \lambda
\end{align*}
\]

(27)

\[
F_3 = f'_{x'y'}
= -1/[4 \pi (1-\nu)] \{ \arctan[y'/(x'-a)] - \arctan[y'/(x'+a)] \}
\]

\[
F_4 = f'_{x'y'}
= 1/[4 \pi (1-\nu)][y'/[(x'-a)^2+y'^2] - y'/[(x'+a)^2+y'^2]]
\]

\[
F_5 = f'_{x'x'}
= -f'_{y'y'}
= 1/[4 \pi (1-\nu)][(x'-a)/[(x'-a)^2+y'^2] - (x'+a)/[(x'+a)^2+y'^2]]
\]
\[\sigma_{xy} = (\sigma_{x',x'} - \sigma_{y',y'}) \sin \lambda \cos \lambda + \sigma_{x',y'} (\cos^2 \lambda - \sin^2 \lambda) \]

Substituting Eqs (26) and (27) into Eqs (22) and (23) yields

\[u_x = \frac{P_x}{(2G)}[(3-4\nu)F_1 \cos \lambda + y'(F_2 \sin \lambda + F_3 \cos \lambda)] \]
\[+ \frac{P_y}{(2G)}[-(3-4\nu)F_1 \sin \lambda - y'(F_2 \cos \lambda - F_3 \sin \lambda)] \]

\[u_y = \frac{P_x}{(2G)}[(3-4\nu)F_1 \sin \lambda - y'(F_2 \cos \lambda - F_3 \sin \lambda)] \]
\[+ \frac{P_y}{(2G)}[-(3-4\nu)F_1 \cos \lambda - y'(F_2 \sin \lambda + F_3 \cos \lambda)] \]

\[\sigma_{xx} = \frac{P_x}{(2G)[(2-4\nu)(F_2 \cos \lambda - F_3 \sin \lambda) + y'(F_4 \cos 2\lambda + F_5 \sin 2\lambda)]} \]
\[+ \frac{P_y}{(2G)}[-(2-4\nu)(F_2 \sin \lambda + F_3 \cos \lambda) + y'(F_4 \sin 2\lambda = F_5 \cos 2\lambda)] \]

\[\sigma_{yy} = \frac{P_x}{(2G)[(2-4\nu)(F_2 \cos \lambda - F_3 \sin \lambda) - y'(F_4 \cos 2\lambda + F_5 \sin 2\lambda)]} \]
\[+ \frac{P_y}{(2G)}[(2-4\nu)(F_2 \sin \lambda + F_3 \cos \lambda) - y'(F_4 \sin 2\lambda - F_5 \cos 2\lambda)] \]

As can be seen, Eqs (28) and (29) facilitate the computation of influence coefficients to express displacements and stresses in terms of \(P_x \) and \(P_y \).
D. Influence Coefficients

To calculate the final influence coefficients, one final transformation of Eqs (28) and (29) are necessary. Eqs (28) and (29) calculate the stresses and displacements at the i'th element in the global coordinate system. We are interested in displacements and stresses at the midpoint of the i'th element in i'th elements local coordinate system, \bar{x}', \bar{y}', as shown in Figure 7. The final transform is

\begin{align*}
\bar{x}' &= x'\cos{\gamma} + y'\sin{\gamma} \\
\bar{y}' &= -x'\sin{\gamma} + y'\cos{\gamma}
\end{align*}

where $\gamma = \lambda_i - \lambda_j$. Therefore,

\begin{align*}
^i u_x', &= ^i u_x'\cos{\gamma} + ^i u_y'\sin{\gamma} \\
^i u_y', &= -^i u_x'\sin{\gamma} + ^i u_y'\cos{\gamma}
\end{align*}

and

\begin{align*}
^i \sigma_x', &= ^i \sigma_x'\cos^2{\gamma} + 2^i \sigma_{x'y'}\sin{\gamma}\cos{\gamma} + ^i \sigma_{y'y'}\sin^2{\gamma} \\
^i \sigma_y', &= ^i \sigma_y'\sin^2{\gamma} - 2^i \sigma_{x'y'}\sin{\gamma}\cos{\gamma} + ^i \sigma_{y'y'}\cos^2{\gamma} \\
^i \sigma_{x'y'}, &= (^i \sigma_x' - ^i \sigma_{y'y'})\sin{\gamma}\cos{\gamma} + ^i \sigma_{y'y'}(\cos^2{\gamma} - \sin^2{\gamma})
\end{align*}
Figure 7. Local Element Co-ordinate Systems
By realizing that

\[j_{ps} = j_{px}', \quad (33) \]
\[j_{pn} = j_{py}', \quad (34) \]
\[i_{us} = i_{ux}', \quad (35) \]
\[i_{un} = i_{uy}', \quad (36) \]

and substituting Eqs (31) and (32) into Eqs (23) and (24) produces

\[i_{us} = \frac{j_{ps}}{2G}[(3-4\nu)F1\cos\gamma + y'(F2\sin\gamma - F3\cos\gamma)] + \frac{j_{pn}}{2G}[(3-4\nu)F1\sin\gamma - y'(F2\cos\gamma + F3\sin\gamma)] \]

\[i_{un} = \frac{j_{ps}}{2G}[-(3-4\nu)F1\sin\gamma - y'(F2\cos\gamma + F3\sin\gamma)] + \frac{j_{pn}}{2G}[(3-4\nu)F1\cos\gamma + y'(F2\sin\gamma - F3\cos\gamma)] \]

and

\[i_{\sigma s} = \frac{j_{ps}}{2G}[-2(1-\nu)(F2\sin2\gamma - F3\cos2\gamma) - y'(F4\sin2\gamma + F5\cos2\gamma)] + \frac{j_{pn}}{2G}[(1-2\nu)(F2\cos2\gamma + F3\sin2\gamma) - y'(F4\cos2\gamma - F5\sin2\gamma)] \]
\[i_{\sigma_n} = j_{P_S} [F_2 - 2(1-\nu)(F_2\cos2\gamma + F_3\sin2\gamma) \\
- y'(F_4\cos2\gamma - F_5\sin2\gamma)] \\
+ j_{P_n} [F_3 - (1-2\nu)(F_2\sin2\gamma - F_3\cos2\gamma) \\
+ y'(F_4\sin2\gamma + F_5\cos2\gamma)] \]

Thus Eqs (35) and (36) can be expressed as

\[\begin{align*}
 i_{u_s} &= \mathcal{L}^N \sum_{j=1}^{N} i_{Bss} j_{P_S} + \mathcal{L}^N \sum_{j=1}^{N} i_{Bsn} j_{P_n} \\
 i_{u_n} &= \mathcal{L}^N \sum_{j=1}^{N} i_{Bns} j_{P_S} + \mathcal{L}^N \sum_{j=1}^{N} i_{Bnn} j_{P_n}
\end{align*} \] (38)

and

\[\begin{align*}
 i_{\sigma_s} &= \mathcal{L}^N \sum_{j=1}^{N} i_{Ass} j_{P_S} + \mathcal{L}^N \sum_{j=1}^{N} i_{Asn} j_{P_n} \\
 i_{\sigma_n} &= \mathcal{L}^N \sum_{j=1}^{N} i_{Ann} j_{P_S} + \mathcal{L}^N \sum_{j=1}^{N} i_{Azn} j_{P_n}
\end{align*} \] (39)

where \(i_{Bss}, i_{Ass}, \text{etc.} \), are the final influence coefficients.

The final matrix includes two sets of 2N equations in 2N variables, one for displacements, one for stresses. However, both sets of equations have the fictitious stresses \(j_{P_S} \) and \(j_{P_n} \) as the unknowns. Therefore, to create a solvable system of 2N equations, of the four boundary conditions for an element \(i \) (\(i_{u_s}, i_{u_n}, i_{\sigma_s}, \text{and} i_{\sigma_n} \)), only two need be known (one shear, one normal). The final matrix of influence coefficients (2N by 2N) will consist of A's and B's as determined by the type of boundary condition given for each.
element. Once the quantities j_{ps} and j_{pn} are known, Eqs (37) and (38) can be used to calculate the remaining unknown boundary conditions, and influence coefficients can be calculated to analyze displacements and stresses at any other point in the body.

It should be noted that the resulting $2N$ by $2N$ matrix of influence coefficients is fully populated, as every element effects all other elements as well as itself [4]. This is in contrast to the banded stiffness matrix produced by the finite element method. Though it will be shown in this study that the boundary element method can analyze certain types of problems in far less degrees of freedom than the finite element method, the boundary element method cannot take advantage of a banded matrix so much of the computational advantages are lost.

Another point of interest is each elements "self effects". By examining Eq (6) we see that the value of the integrated Kelvin's solution decreases with increasing distance from the midpoint of an element. Therefore, the maximum value for an influence coefficient must be for an elements influence on itself. Crouch and Starfield [4] show that the values of all elements self effects are

\[
\begin{align*}
ii_{A_{ss}} &= ii_{A_{nn}} = \pm 0.5 \text{ for } y' = 0_{\pm} \\
ii_{B_{ss}} &= ii_{B_{nn}} = -(3-4\nu)/[4\pi G(1-\nu)](i_a)\ln(i_a)
\end{align*}
\]
As can be seen from Eqs (14) and (15), the stresses are discontinuous across an element. The convention established by Crouch and Starfield dictates that "the boundary of a finite body is transversed in the clockwise sense, whereas the boundary of a cavity is traversed in the counterclockwise sense". This allows $ii_{A_{ss}}$ and $ii_{A_{nn}}$ to be equal to 0.5 always.

E. Modeling Considerations

As has historically been the case with the finite element method, an engineers ability to "model" a problem correctly plays as much a role in the value of the final results, as does the accuracy of the method being used. The boundary element method also shares this characteristic. Of particular interest is the fact that the user should not calculate displacements or stresses for a point "too close" to an elements midpoint [4]. The reason is that it has been found empirically that the numerical solution is generally unreliable at points within a circle of radius equal to one element length $(2a)$ centered at the midpoint of a boundary element, except at the midpoint itself. Therefore, to obtain data close to a boundary, the user is forced to refine the lengths of the boundary elements in a gradual fashion as the area of interest is approached. F.R. Harris [8] developed a
modeling technique for a crack of length "a" that can be incorporated into the work done herein. His method can be stated as follows: The crack length is divided into .50a, .25a, .125a and .125a segments. The first segment, or the .50a length segment is divided into three equal length boundary elements (element length = .1667a). The second segment, or the .25a length segment, is divided into three equal length boundary elements, (element length = .0833a). The third segment is divided into three equal length boundary elements (element length = .04167a). The last segment is divided into 25 equal length boundary elements (element length = .005a). By using this method of gradual refinement, stresses can be computed with reasonable accuracy near the area of the singularity at the crack tip.

To model the problems in this study, each body was modeled with a line of symmetry along the line of the crack. The entire line of symmetry was modeled with boundary elements. The crack itself is modeled with the F.R. Harris method of refinement [8] outlined above. The refinement scheme is mirrored at the crack tip both along the crack itself, and along the uncracked material directly in the path of the crack. The elements along the non-cracked boundary utilized enforced displacement conditions (u_n = 0) normal to the line of the crack and stress conditions tangential to the crack (σ_s = 0). The crack surface itself was modeled as being stress free (σ_n = σ_s = 0).
III. Boundary Element vs Finite Element

An initial configuration of a two hole tension strip was analyzed with both the boundary element method described in this study, and with the MSC/NASTRAN finite element code. Both methods were used in order to compare the relative strengths and weaknesses. Both method only modeled the top half of the tension strip using symmetry conditions as enforced through restrained vertical displacement along the line of symmetry.

The geometry and material properties of the problem are illustrated in Figure 8. The tension strip has two holes of 0.25 inch diameter. The holes are separated by one inch. The edge distances to the holes are three diameters for all four sides. The initial crack length is 0.1 inch, and it is emerging from one hole and oriented towards the second hole. The far field tension stress is 46 KSI.

A. Finite Element Method

There were three MSC/NASTRAN models constructed. This was to provide convergence data. The baseline model consisted of 13,858 degrees of freedom. The other two models had respectively 8,610 and 15842 degrees of freedom. Needless to say all of the models were constructed with a graphic pre-processor/model generator (PDA/PATRAN). The baseline
\[\text{dia} = 0.25 \text{ in.} \]
\[\text{pitch} = 4d \]
\[e/d = 0.10 \text{ in.} \]
\[a = 0.10 \text{ in.} \]
\[S = 46 \text{ KSI} \]
\[E = 10300 \text{ KSI} \]
\[\nu = 0.33 \]

Figure 8. Tension Strip Problem
model is shown in Figure 9. The course model (8,610 DOF) and the fine model (15,842 DOF) look identical to the baseline model only differing in the density of the mesh in the immediate vicinity of the crack tip.

All three models consisted of a mesh of eight noded quadratic isoparametric quad elements in the crack area. The eight noded quad (CQUAD8) mesh then transitions into a four noded quad (CQUAD4) element mesh to complete the model. A handful of six noded triangles (CTRIA6) were required in the transition region.

The entire models were declared "Surfaces" as described in the MSC/NASTRAN Users Manual [14] and interpolated stresses were output at all corner grid points. The model used the MSC/NASTRAN "topological" option for grid point stress calculation [14]. This method assumes stresses are continuous across connecting elements. Following the stress intensity factor calculation technique described in the computer implementation section, only those stress grid points along the line of the crack, and at a distance of five to ten percent of the cracks’ length ahead of the crack were used in the stress intensity factor determination. The baseline model stress grid points in the crack tip area were only .001 inches apart allowing five grid points in the K_I calculations. The courser finite element model (8,610 DOF) had only two stress points in the calculation zone, while the fine model (15,842 DOF) had nine grids in the calculation of K_I.
Figure 9. Baseline MSC/NASTRAN Finite Element Model
B. Boundary Element Method

The boundary element model constructed consisted of 287 elements resulting in 574 degrees of freedom. The model is pictured in Figure 10. The crack is discretized with F.R. Harris's refinement technique [8] resulting in elements at the crack tip with a length of 0.0005 inches. The model is restrained from rigid body movement by fixing both displacement boundary conditions for the far right element on the line of symmetry. The boundary element model had five element midpoints in the allowable zone for K_I calculation.

C. Comparisons

Stress Intensity Factor calculations were completed on all three finite element models and the boundary element model using the stress extrapolation method

\[K_I = \lim_{r \to 0} \left(\sigma_y \left(2\pi r \right)^{1/2} \right) \] \hspace{1cm} (43)

The values of K_I were plotted against r and r^2 to graphically determine K_I at $r=0$. Linear regression fits were made for both fits. As was discussed in the computer implementation section (Appendix A), the r^2 method was necessary for cases where the crack length approaches the second hole as the r method yields poor curve fits. For this case, it was not
Line of Symmetry

fixed displacement B.C.

TIP REGION

EL = ELEMENT LENGTH

EL = .0005
EL = .0042
EL = .0083
EL = .017

287 ELEMENT BEM MODEL

TIP REGION

Figure 10. Boundary Element Model
deemed necessary as the crack length is relatively short, but was still done for comparison purposes. Final calculations for K_I for the r fit and the r^2 fit are given in Table I. It can be seen that both fits gave essentially the same answers, as was expected for this case. Also, the boundary element K_I prediction was within two to three percent of the baseline finite element K_I predictions.

The agreement between the boundary element model and the baseline finite element model is encouraging considering the difference in degrees of freedom (13858 to 574). From this simple statement the reader would conclude that the boundary element method is 24 times more efficient. But the user must remember that the boundary element model was a "full" matrix without the banded symmetry common to the finite element method. A highly optimized finite element code, such as MSC/NASTRAN, has a built in nodal resequencer to optimize the stiffness matrix automatically. The VAX computer operates with a "virtual memory" scheme. Matrix storage is handled by writing to scratch files that are erased upon program completion. This makes it difficult to compare storage requirements for both FEM and BEM. Therefore, it is instructive to examine the CPU times required to run all four models as listed in Table 1. All of the CPU times are for a Digital VAX 8350 computer. It can be seen that in comparing the boundary element model to the baseline MSC/NASTRAN model, it ran 2.2 times as long even though the
MSC/NASTRAN model used 24 times as many degrees of freedom. The boundary element model barely ran faster than the 8,610 DOF course MSC/NASTRAN model.

The reason for the CPU time results lie in the relationship between matrix size, fullness and the CPU time to invert and solve it. The MSC/NASTRAN Handbook for Linear Static Analysis [13] outlines a relationship between problem size and computer time. Basically the three elements of computer time are; overhead cost, which is dependent on problem type but not on problem size; initial matrix set up costs, which involve computation of the influence or stiffness matrices; and finally results costs which involve solving the matrices for final computations. The results cost are the one that increases rapidly with an increase in problem size. Reference [13] states that for a finite element model with approximately 100 to 200 grids, all three costs are the same. It is obvious that this study has far more than 200 grids, so will be dominated by the results costs. Reference [13] goes on to give explicit formulas for CPU estimation, but the CPU formulas are proportional to the number of degrees of freedom multiplied by the average (RMS) number of active columns squared. The baseline MSC/NASTRAN output yielded a RMS value for active columns after resequencing of approximately ninety columns. A full BEM matrix of 574 by 574 has a RMS column width of 332.
Therefore:

$\text{CPU}_{\text{BEM}} = (574 \text{ DOF})(332 \text{ columns RMS})^2 = 63268576 \quad (44)$

$\text{CPU}_{\text{FEM}} = (13858 \text{ DOF})(90 \text{ columns RMS})^2 = 112249800$

The ratio of CPU_{FEM} over CPU_{BEM} is 1.7. This indicates that a preliminary comparison of the boundary element model to the baseline MSC/NASTRAN model should have predicted a run time for the MSC/NASTRAN model of 1.7 times the boundary element model, not 24 times. (Actual CPU time ratio was 2.2) Indeed, the cost of a fully populated matrix is very high.
<table>
<thead>
<tr>
<th>Model</th>
<th>DOF</th>
<th>$K_I (r \text{ fit})$</th>
<th>$K_I (r^2 \text{ fit})$</th>
<th>CPU (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse FEM</td>
<td>8610</td>
<td>37.9</td>
<td>36.3</td>
<td>96</td>
</tr>
<tr>
<td>Baseline FEM</td>
<td>13858</td>
<td>39.6</td>
<td>38.9</td>
<td>183</td>
</tr>
<tr>
<td>Fine FEM</td>
<td>15842</td>
<td>39.5</td>
<td>38.9</td>
<td>255</td>
</tr>
<tr>
<td>BEM</td>
<td>574</td>
<td>40.4</td>
<td>40.1</td>
<td>83</td>
</tr>
</tbody>
</table>
IV. Boundary Element vs p-Version Finite Element

PROBE is a commercial finite element code sold and promoted by Noetic Technologies. The code was first conceived and implemented at Washington University's Center for Computational Mechanics in St. Louis under Dr. Barna A. Szabo. The theoretical aspects of the p-Version of finite elements are explained by Babuska, Szabo and Katz in reference [2]. The implementation of the p-Version into PROBE is given by Szabo in reference [23]. The innovative aspect of PROBE is that it boasts elements based on variable order polynomials. By doing this, the user can create very rough grids in the creation of finite element models. By varying the polynomial order, or p, increased accuracy in the results is obtained. The second advantage of PROBE is that by running multiple p levels for a given model, the user is given an indication of solution convergence.

Noetic Technologies worked with the Fort Worth Division of General Dynamics (GD) on a research grant to study the application of the p-Version to a stress intensity factor analysis, and compare it to a classical finite element solution. A two hole tension strip, as shown in Figure 11, was analyzed by GD with conventional finite element analysis. Noetic Technologies analyzed the same problem with the p-Version PROBE code and published the results in reference [25]. The GD model, shown in Figure 12, involved
approximately 1500 degrees of freedom. The corresponding PROBE model, as shown in Figure 13, has only 29 nodes. However, by varying the value of \(p \) from 1 to 8, the PROBE degrees of freedom varies between 58 and 1623.

A boundary element model was constructed of the problem, as shown in Figure 14, consisting of 220 elements or 440 degrees of freedom. The GD model predicted a \(K_I \) of \(43.4 \text{ KSI(in)}^{1/2} \). The PROBE results for \(p=1 \) to \(p=8 \) were plotted by \(K_I \) versus \(1/\text{DOF} \) on a semi-logarithmic scale, and the resulting straight line extrapolated to predict \(K_I \) at \(p=\infty \). The final PROBE prediction of \(K_I \) at \(p=\infty \) is \(43.1 \text{ KSI(in)}^{1/2} \). The final BEM prediction based on a regression fit on \(r \) was \(42.2 \text{ KSI(in)}^{1/2} \). The final BEM prediction for a regression fit on \(r^2 \) was \(43.2 \text{ KSI(in)}^{1/2} \). Both BEM predictions were close to the GD and PROBE predictions, but the \(r^2 \) fit was better.

It should be noted that the PROBE analysis gave an indication of convergence to the final answer. The BEM model with an \(r^2 \) regression fit was almost exact in its' correlation with the PROBE results.
width = 5.0 in
height = 10 in
dia = 1.0 in
$S = 20$ KSI
pitch = 2.1 in
$a = .55$ in

Figure 11. PROBE Two Hole Tension Strip Problem
Approximately 1500 degrees of freedom

Figure 12. GD Model of PROBE Problem
Approximately 29 nodes

Figure 13. PROBE model of PROBE Problem
Figure 14. Boundary Element Model of PROBE Problem
V. Boundary Element vs Bowie Solution

Bowie [3] studied the problem of a crack growing from a circular hole in an infinite plate as shown in Figure 15. His solution is well published and can be shown in the form,

\[K = \sigma(\pi a)^{1/2} \beta \quad (45) \]

where \(\beta = f(a/r) \). Other individuals, specifically Grandt, Brussat and Newman [1], have employed various technique to improve on Bowies \(\beta \) term. For the example problem, \(\sigma = 46 \text{ KSI} \), \(r = 0.125 \text{ in} \), and \(a/r = 0.5 \). Using the value of \(a/r = 0.5 \), Bowie, Brandt, Brussat and Newman calculate a value of 1.73, 1.735, 1.733 and 1.728 for \(\beta \) respectively [1]. When inserted into Eqn (45), this results in \(K_I \) calculations of 35.26, 35.26, 35.32 and 35.22 KSI(in)\(^{1/2}\).

A boundary element model was created comprising of 72 elements. To model an infinite domain, a different modeling technique is required than for the finite domains. The model is shown in Figure 16. The model is again a representation of the "upper" half of the geometric boundary. As described in the Computer Implementation section, a line of symmetry is assumed along the x axis. Phantom "image" elements are calculated by the TWOFS99 program for the lower half. One problem is the crack itself. Unlike the finite domain problems, the crack elements cannot be on the line of
\(r = \) hole radius = \(0.125 \) in.
\(a = \) crack length = \(0.0625 \) in.
\(S = \) far field tension stress = \(46 \) KSI

Figure 15. Crack from a Hole in an Infinite Plate
Figure 16. Boundary Element Model of Hole with Crack
symmetry as the program could not distinguish the actual elements representing the "upper" face of the crack, from the "image" elements representing the "lower" face of the crack. Therefore the line of elements representing the "upper" face of the crack are modeled with a small crack opening offset as shown in Figure 17. The elements along the crack are arranged in a straight line between the crack opening offset and the crack tip. The "image" elements are therefore calculated with an equal, but opposite, location below the y=0 line of symmetry. The objective is to model the crack opening offset as small as possible to best represent the actual crack, which has no such offset. But the offset must be large enough for the TWOFS99 program to differentiate between the two faces of the crack. This is usually a function of the accuracy of the computer the program is running on. The Bowie model uses an offset of 5.0×10^-6 inches from the y=0 line of symmetry, to the intersection of the "upper" face of the crack with the circumference of the hole. This results in an initial offset five orders of magnitude smaller than the actual y displacement at that point. The crack itself is again modeled with the F.R. Harris refinement technique which concentrates 25 elements in the crack tip area. The model is symmetric about the y=0 axis by imposed symmetry, but the element along the circumference of the hole, opposite from the crack, is restrained from x displacements to prevent rigid body translation.
Figure 17. Infinite Domain BEM Crack Modeling Technique

- $r =$ radius
- $a =$ crack length
- $o =$ crack opening (exaggerated)
Since there are no elements in the area of the stress field used for K_I calculations, points of data calculations must be placed there. As can be seen in Figure 16, eleven data points were placed in the line of the crack, at a distance of 1.05a to 1.10a. The γ stresses were recovered at these points, and used to create stress extrapolation predictions for K_I. As before, both regression fits on r and r^2 were completed.

Based on the 72 element model, the K_I prediction based on a regression fit on r is 35.0 KSI(in)$^{1/2}$. The same model predicted 35.6 KSI(in)$^{1/2}$ based on a r^2 fit. In this instance the r fit was more accurate than the r^2 fit, but the significant observation is that both methods provided a prediction within one percent of the analytical predictions of Bowie, Grandt, Brussat and Newman [1].
VI. Boundary Element vs Shivakumar Solution

The next problem attempted is an extension of the Bowie problem of Section VI. A second hole is added to the Bowie problem to simulate the two hole tension strip problem of Sections IV and V, only the domain is infinite, not finite. Shivakumar and Foreman solved this problem \cite{19} with a series approach based on the Muskhelishvili formulation. The solution is incorporated into the NASA crack growth computer program NASA/FLAGRO \cite{15}. By selecting a far field stress of 46 KSI, crack length of 0.0625 inches, hole diameter of 0.25 inches and a hole separation of 1.0 inch, the analytical prediction of K_I from the NASA/FLAGRO program is 36.03 KSI(in)$^{1/2}$.

The analytical solution assumes a row of holes in an infinite plate. To properly model the geometry with boundary elements, three holes were included in the analysis. This included one hole on either side of the flawed hole. The modeling techniques were identical to the Bowie solution model in Section VI. The model is depicted in Figure 18. The model consisted of 148 elements, or 296 degrees of freedom. The stress data, as before, was fit to both r and r^2. The K_I prediction for r was 35.3 KSI(in)$^{1/2}$ while the prediction for an r^2 fit was 36.0 KSI(in)$^{1/2}$. In this case the r^2 fit more closely approximated the analytical solution. However, both fits were within two percent of the analytical solution with the r^2 fit being only 0.09 percent different.
Figure 18. Boundary Element Model of Shivakumar Problem
It is important to observe again that the analytical solution assumes an infinite row of holes. Obviously the three holes nearest to the crack dominated the solution, but additional refinement could be achieved by including more of the remaining holes.
VII. Two Hole Tension Strip Parametric Study

The final analytical task is a parametric study for a two hole tension strip analysis. The comparisons to conventional finite element analysis for this configuration problem was established with MSC/NASTRAN in Section III, and Noetic PROBE in Section IV. Correlation of the boundary element method and modeling techniques employed in this study were shown with the comparison to the infinite domain problems of the Bowie solution in Section V, and the Shivakumar solution in Section VI. This section is an analysis of a two hole tension strip with the geometry and boundary conditions as shown in Figure 19. The edge distance from the center of the holes to the side, top and bottom edges is established as three hole diameters. All cases will be analyzed for a far field tension stress of 46 KSI. The parameters that are varied in this study are hole diameter, \(d \), hole separation (center to center) \(p \) (expressed as a ratio of hole diameter), and crack length \(a \). This study expressed crack length as a ratio where

\[
\text{crack ratio} = \frac{a}{(P - D)} \tag{46}
\]

where

- \(a \) = crack length (in)
- \(D \) = hole diameter (in)
- \(P \) = hole pitch as a ratio of \(D \) (in)
dia = .25, .33, .50 in
pitch = 3, 4, 5 diameters
e/d = 3 dia
Crack Ratio = a/(pitch - dia)
 = .1, .2, .3, .4, .5, .6, .7, .8, .9
S = 46 KSI

Figure 19. Two Hole Tension Strip Parametric Study
This enables the crack length to be expressed as a fraction of the distance of material available between the two holes. Therefore a crack ratio of zero corresponds to no crack at all, and a crack ratio of one implies the crack has broken through from the first hole into the second hole.

The study included hole diameters of 0.25, 0.33 and 0.50 inches. The pitch was analyzed for 3D, 4D and 5D, and the crack ratio was analyzed for 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. The values for hole diameter, edge distance and hole separation were chosen to represent realistic geometry found in actual applications. The final study involved 81 models of the different configurations listed here, as well as 18 more models for additional work not included in the baseline analysis.

The size of the models varied from 240 to 340 elements. All of the models were created by the same model generator, CHOLE, as documented in Appendix A. The crack tip refinement method was the F.R. Harris technique [8].

The stress field data was collected at a distance five to ten percent of the crack length ahead of the crack tip. This is the same method used throughout this thesis. The stress field is used to predict the mode I crack tip stress intensity factor, K_I, by using the equation

$$K_I = \lim_{r \to 0} \left[\sigma_y (2\pi r)^{1/2} \right]$$

(43)
as documented in Appendix A for the program TWOFS99_EX.

TWOFS99_EX extracted the stress field data for all of the boundary element models, computed the values of K_I and r, and fit the data with a linear regression analysis of K_I vs r^2. Throughout this thesis, K_I predictions based on regression fits of r and r^2 have been presented. The results were for the geometry analyzed. There was no significant difference in which fit was chosen, and neither regression fit was consistently more accurate than the other. However, during the course of this study, it was found that for crack ratios approaching 0.9, due to the influence of the approaching second hole, the K_I vs r curve is decidedly non-linear. Therefore, a linear regression fit was non-representative. The K_I vs r^2 curve was much more linear, and the regression fit of that data was representative. For this reason, all K_I predictions presented in this section are based on a K_I vs r^2 regression fit only. Examples of K_I data plotted against r and r^2 are presented in Appendix F.

The K_I calculations for hole diameters of 0.25, 0.33 and 0.50 inches are presented in Figures 20, 21, and 22 respectively. The calculated K_I values are plotted against the crack ratios and are presented as a family of curves varying by the pitch. The figures show the trend is for increasing values of K_I for increasing crack ratios, and for increasing K_I for increasing hole diameter. The K_I also increased for increasing pitch ratios. If the data were plotted on the same graph, the
Figure 20. K_I vs Crack Ratio for Hole Diameter = 0.25
STRESS INTENSITY FACTOR VS CRACK RATIO
FOR HOLE DIAMETER = 0.33 INCHES

Figure 21. \(K_I \) vs Crack Ratio for Hole Diameter = 0.33
Figure 22. K_I vs Crack Ratio for Hole Diameter = 0.50
presentation would be confusing as the curves would overlap, making interpretation of results difficult. A better way of presenting the data from this study is the Stress Intensity Factor Correction Coefficient, β, as defined by

$$\beta = \frac{K_I}{\sigma(na)^{1/2}}$$

(46)

By "normalizing" the stress intensity factor, the influence of far field stress and crack length are removed, allowing for isolation of the geometric Correction Coefficient (β) of the problem being solved. The β factors are presented in Figure 23. It was found that by plotting β versus the crack ratio, a family of curves varying by the pitch ratio could be produced. Once plotted with these parameters, the variation of β with the hole diameter was found to be invariant. Thus, Figure 23 represents a useful tool in the analysis of the two hole tension strip with the edge constraints presented in the beginning of this section. The values of all computed β factors for all of the models run are presented in Tables II, II, and IV.

It is interesting to note the compression of the β curves at the higher pitch ratios, at crack ratios above 0.5. To analyze this phenomena, for a hole diameter of 0.25 inches, two additional curves with a pitch ratio of 3.5 and 4.5 were created. These curves were plotted with the previous β curves to create Figure 24. This shows that there is a
Figure 23. β Factor vs Crack Ratio
Figure 24. β Factor vs Crack Ratio for Hole Diameter=0.25
compression in the β curves at the location mentioned earlier. It was postulated that this was a "net area" effect relating to the rigid edge distance criteria of the original problem. For a given diameter hole, the pitch was varied as a ratio of the diameter, but the edge distances remained constant at three diameters. Therefore, as the crack ratio grows towards 0.9, the reduction in net area as a percentage of the total original pre-cracked net area, is higher for the higher pitch ratios. The effects of this would be increased as the crack grew in length. To examine this trend, the β factors from Figure 23 were modified to calculate β based on net stress, σ_{net}, instead of far field stress, σ, and then calculate β_{net} as follows

$$\beta_{\text{net}} = K_I / (\sigma_{\text{net}} (\pi a)^{1/2})$$ \hspace{1cm} (47)$$

The results are shown in Figure 25. Both β and β_{net} are plotted against crack ratio. The plot shows that at crack ratios above 0.5, as the β factors based on far field stress began to increase uniformly in value, the β_{net} factors based on net stress cross over as the effects of pitch ratio seem to reverse. It is further postulated by the author, that if the net section effects were subtracted from the final β curves of Figure 23, a family of β curves would thus be created with the same generic trends of Figure 23, but without the collapse of curves at the higher pitch ratios.
Figure 25. β and β_{net} Factors vs Crack Ratio
above a crack ratio of 0.5.

It can be seen from Figure 23 that for crack ratios up to 0.5, the effects of the initial hole are dominate, with the influence of the hole decreasing with increased distance from the hole. At a crack ratio of 0.5, the crack begins to approach the second hole and the value of β now increases with the decrease in distance to the second hole. So all of the items of the initial problem can be seen in the final β curves of Figure 23. The first hole is seen in the high initial values of β, with the effects of the hole decreasing with distance. The β value are at a minimum approximately half way between the holes, with the effects of the second hole seen as the β values increasing with the crack tip approaching the second hole. The effects of the edge distances are seen in the "collapse" of the β curves at high pitch and crack ratios. All of this is in addition to the obvious effects of pitch and crack ratio as a function of hole diameter.
Table II. Parametric Study β Factors for Pitch Ratio = 3 Dia

<table>
<thead>
<tr>
<th>Crack Ratio</th>
<th>$\beta_{\text{dia}=0.50}$</th>
<th>$\beta_{\text{dia}=0.33}$</th>
<th>$\beta_{\text{dia}=0.25}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1</td>
<td>2.07</td>
<td>2.07</td>
<td>2.07</td>
</tr>
<tr>
<td>.2</td>
<td>1.62</td>
<td>1.62</td>
<td>1.62</td>
</tr>
<tr>
<td>.3</td>
<td>1.43</td>
<td>1.43</td>
<td>1.43</td>
</tr>
<tr>
<td>.4</td>
<td>1.34</td>
<td>1.34</td>
<td>1.34</td>
</tr>
<tr>
<td>.5</td>
<td>1.31</td>
<td>1.31</td>
<td>1.31</td>
</tr>
<tr>
<td>.6</td>
<td>1.31</td>
<td>1.31</td>
<td>1.31</td>
</tr>
<tr>
<td>.7</td>
<td>1.34</td>
<td>1.35</td>
<td>1.34</td>
</tr>
<tr>
<td>.8</td>
<td>1.46</td>
<td>1.46</td>
<td>1.48</td>
</tr>
<tr>
<td>.9</td>
<td>1.90</td>
<td>1.90</td>
<td>1.90</td>
</tr>
</tbody>
</table>
Table III. Parametric Study β Factors for Pitch Ratio = 4 Dia

<table>
<thead>
<tr>
<th>Crack Ratio</th>
<th>$\beta_{\text{dia}=0.50}$</th>
<th>$\beta_{\text{dia}=0.33}$</th>
<th>$\beta_{\text{dia}=0.25}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1</td>
<td>1.74</td>
<td>1.74</td>
<td>1.74</td>
</tr>
<tr>
<td>.2</td>
<td>1.38</td>
<td>1.37</td>
<td>1.38</td>
</tr>
<tr>
<td>.3</td>
<td>1.25</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>.4</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>.5</td>
<td>1.19</td>
<td>1.19</td>
<td>1.19</td>
</tr>
<tr>
<td>.6</td>
<td>1.20</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>.7</td>
<td>1.24</td>
<td>1.25</td>
<td>1.24</td>
</tr>
<tr>
<td>.8</td>
<td>1.34</td>
<td>1.35</td>
<td>1.34</td>
</tr>
<tr>
<td>.9</td>
<td>1.70</td>
<td>1.73</td>
<td>1.68</td>
</tr>
</tbody>
</table>
Table IV. Parametric Study β Factors for Pitch Ratio = 5 Dia

<table>
<thead>
<tr>
<th>Crack Ratio</th>
<th>$\beta_{\text{dia}=0.50}$</th>
<th>$\beta_{\text{dia}=0.33}$</th>
<th>$\beta_{\text{dia}=0.25}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.1</td>
<td>1.55</td>
<td>1.55</td>
<td>1.55</td>
</tr>
<tr>
<td>.2</td>
<td>1.26</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>.3</td>
<td>1.17</td>
<td>1.17</td>
<td>1.17</td>
</tr>
<tr>
<td>.4</td>
<td>1.14</td>
<td>1.14</td>
<td>1.14</td>
</tr>
<tr>
<td>.5</td>
<td>1.15</td>
<td>1.15</td>
<td>1.15</td>
</tr>
<tr>
<td>.6</td>
<td>1.18</td>
<td>1.18</td>
<td>1.18</td>
</tr>
<tr>
<td>.7</td>
<td>1.23</td>
<td>1.23</td>
<td>1.26</td>
</tr>
<tr>
<td>.8</td>
<td>1.32</td>
<td>1.32</td>
<td>1.34</td>
</tr>
<tr>
<td>.9</td>
<td>1.58</td>
<td>1.58</td>
<td>1.58</td>
</tr>
</tbody>
</table>
VIII. Parametric Study Application

This section’s purpose is to present an example of how the fracture mechanics engineer in the aircraft industry might apply the results of the parametric study undertaken in the last section. The example outlined here is hypothetical and not intended to limit the potential usage of the stress intensity data in the last section.

It will be assumed that there is a requirement for a particular structure, in this case a machined fitting made out of 7075-T6 aluminum plate (with E=10300 KSI, and v=0.33). The fitting is to have a service life of 500 flight hours. It will be further assumed that the only significant load on the fitting is aircraft pressurization, and therefore the fitting will experience one load cycle per flight. The average flight for this airplane will be one hour.

To establish the Damage Tolerance of this part under current Air Force requirements [7], this analysis will qualify the fitting as being "slow crack growth" structure, and therefore it must be shown that two service lifetimes of slow crack growth exist.

Though fracture mechanics and stress intensity factor calculations are based on theory, fatigue crack growth is empirical. Crack growth for a particular stress cycle is a function of the change in stress intensity and stress ratio (the minimum stress divided by the maximum stress in a cycle).
for a given material. This thesis will not cover the theory of crack growth analysis, nor of material fracture properties. However, it is important for the reader to understand that for a given material, the crack growth increment for a given stress cycle is dependent on the stress intensity at the time of load application.

Many software codes have been written to do fatigue crack growth analysis (CRACKS, CRKGRO, FLAGRO, etc.), and they all share certain traits in common. After input of basic material fracture properties for the material being used, the stress spectrum is input. Then the algorithm to calculate the stress intensity factor throughout the analysis is selected. (The stress intensity factor will vary with the crack length and applied stress) Most crack growth codes have a library of predefined crack stress intensity solutions to choose from. Most codes also allow the user to input a "look-up" table of stress intensity data vs crack length. The look-up data is usually in the form of a β factor, as calculated in the last section. The format of the stress spectrum is usually written as

$$\sigma_{\text{max}}, \sigma_{\text{min}}, \text{cycles}$$

(48)
where

\[
\begin{align*}
\sigma_{\text{max}} &= \text{maximum stress} \\
\sigma_{\text{min}} &= \text{minimum stress} \\
cycles &= \text{number of repetitions}
\end{align*}
\]

The information of equation (48) can be repeated to create layers in a complex stress spectrum. The spectrum applied in this analysis is very simple as it has only one cycle per flight. Stress analysis of the fitting indicated an applied stress of 30 KSI under fully pressurized conditions, with 0 KSI unpressurized. Therefore the stress spectrum for one flight would be

\[
\begin{align*}
\sigma_{\text{max}} &= 30 \text{ KSI} \\
\sigma_{\text{min}} &= 0 \text{ KSI} \\
cycles &= 1
\end{align*}
\]

Most engineers attempt to compile a spectrum into a "block" that would represent many flights, and then repeat the block until the service life requirements are met. This analysis defines 100 flights to be a block, therefore one block represents 100 flight hours of life. Two service lives of slow crack growth must be shown before critical crack length is reached. Critical crack length is either loss of a part, or when the crack length grows to a point where the local stress intensity factor for \(\sigma_{\text{max}} \) exceeds the material fracture
toughness. (This thesis will also not cover the Air Force residual strength requirements) To achieve two lifetimes of slow crack growth, an assumed initial crack must not grow to critical crack length before 1000 flight hours.

In this example, the fatigue crack growth computer program NASA/FLAGRO [15] was used. This was also the source for the calculations of the Shivakumar solution used in section VII. The built in material fracture data for 7075-T6 aluminum, and a constant spectrum of 0 - 30 KSI was used for all versions of this analysis.

Three approaches were taken in the analysis of the fitting. It was assumed the critical crack location was a through the thickness flaw emerging from a fastener hole, with a geometry as shown in Figure 19. The fitting has 0.25 inch fastener holes with a hole separation (pitch) of four diameters (1.0 inch in this case). The initial flaw sizes are dictated by the Air Force, and vary by type and location. The size is determined by the largest "rogue flaw" that could be induced in the fitting during manufacture, assembly, or service use that could not be detected by routine non-destructive inspections (NDI) with a 90 percent probability of detection, and a 95 percent confidence. It was assumed here that the local NDI was not very good, and that an initial through the thickness crack size of 0.075 inches would be used. This is convenient as this translates into a crack ratio of 0.1 (using the definitions of the previous section).
The fitting was analyzed using three different approaches to the calculation of the stress intensity factor as a function of crack length and applied stresses. The first method used the Bowie solution approach to idealize the fitting as a hole in an infinite plate. The spectrum was applied to the initial flaw and grown to a length of 0.75 inches which represents the length required to "break through" into the second hole. The second method used the Shivakumar solution assuming a row of holes in an infinite plate. This analysis also terminated upon the crack reaching the second hole. The last method involved the β factors derived in the last section. The β factors were placed in a β look-up table as a function of crack length. Stress intensity factors were then calculated for a given crack length, a, and a given applied stress, σ, as follows

\[K_I = \sigma (na)^{1/2} \beta \] (50)

The results of the three analysis are shown in Figure 26. It can be seen that the Bowie solution method was the least conservative, as it did not consider the second hole, or the tension strip edge effects. The Shivakumar solution method was the second least conservative as it did not consider the finite edge effects. Both the Bowie and Shivakumar methods grew the crack until it reached the second hole. The last method, or "β look-up" table method was the most conservative. The crack did
FATIGUE CRACK CURVES FOR FITTING ANALYSIS

[Graph showing crack length vs. flight hours]

Legend:
- • BOWIE SOLUTION
- □ SHIVAKUMAR SOLUTION
- ▲ GEM LOOK-UP TABLE
- ▭ MATERIAL BETWEEN HOLES
- ——— TWO SERVICE LIVES

Figure 26. Example Analysis Fatigue Crack Growth Curves
not reach the second hole as the local crack tip stress intensity factor reached the material fracture toughness at a crack length of only 0.66 inches. The β look-up method also was the only one unable to show 1000 hours of slow crack growth, thus not meeting the design requirements.

From this simple example, it can be seen how detailed analysis through the β look-up table method enables an engineer to analyze detailed geometry beyond the scope of the common K_I solutions found in most fatigue crack codes. In this case, it would have been unconservative to ignore the effects of the second hole, and the edge effects. The output from the NASA/FLAGRO program are included in Appendix E.
IX. Conclusions

Application of the Boundary Element Method to structures problems is just beginning to become popular in the aircraft industry. Traditional Finite Element Methods are still the predominate technique used. However, the Finite Element Method is expensive in both manpower and computer costs, and cost saving alternatives are always being sought.

The Fictitious Stress Method, presented in this thesis, is shown to correlate well with both analytical and FEM solutions. The BEM was shown to work well for the parametric study of Section VII. A complicated fracture mechanics problem with no analytical solution was solved for various geometry, with the results displayed as a family of β-curves in Figure 23. These curves in themselves are important as they represent useful Stress Intensity Factor correction factors for the various geometric configurations analyzed in Section VII.

It has been shown herein that BEM is an acceptable method for fracture mechanics analysis and can be used in fatigue crack growth predictions for Air Force Durability and Damage Tolerance Analysis (DADTA). The analysis in Section VIII shows how easily the results of the BEM work in Section VII could be applied to a "real" design problem and prevent unconservative structural life predictions.
One possible source for additional work is in the area of FEM and BEM combined in a single solution. This might prove to be the best of both worlds with a fine grid FEM model near the crack tip, and a coarse BEM definition of the external boundaries of a problem. Additional study should be done to see if the BEM/FEM combined analysis offers advantages in actual applications to each method used separately.

The question of increased efficiency is a more difficult one. Though dramatic reductions in degrees of freedom are shown for comparable accuracy of analysis, final CPU time is not always improved. Since the CPU time is proportional to the square of the Root Mean Square (RMS) number of active columns multiplied by the total degrees of freedom (DOF), the BEM would have a CPU time advantage for smaller problems where the DOF factor would dominate the squared RMS term. This indicates that the BEM is computationally more efficient for problems up to a certain size. Even at problem sizes of 13858 DOF the BEM still has a CPU time advantage of 1.7 (reference Section III).

It should also be noted that the BEM program used in this thesis utilized only single precision accuracy which on the VAX computer provides six significant digits. This helped improve the BEM computer efficiency and still obtain the excellent correlation to the FEM and analytical results documented in this thesis.
It is therefore concluded that for the structural fracture mechanics problems analyzed in this thesis, the BEM accurately derived Stress Intensity Factors for fracture analysis, and produced a minimum computational efficiency improvement of 1.7 over traditional FEM.
Appendix A: Computer Implementation

The source for the computer program used in this study was a FORTRAN program, TWOFS, for the fictitious stress boundary element method published by Crouch and Starfield [4]. The version used in this study was converted to the Microsoft BASIC computer language for ease of implementation on PC class computers. Upon initiation of actual calculations, it was decided to port the program up to a Digital VAX computer for speed purposes, so limited code changes were made to run under VAX BASIC 3.1. Additional small changes were made to facilitate post processing by outputting desired calculations to an external file. The VAX Basic version of TWOFS was labeled TWOFS99. The final work was done on a Digital VAX 8800 running the VMS (V4.7) operating system. The average BEM model consisting of 300 elements (600 by 600 matrix of influence coefficients) took approximately 25 minutes of CPU time. The CPU comparisons made to the MSC/NASTRAN finite element program were done on a Digital VAX 8350 computer as it was the only machine set up to run NASTRAN.

The flow of the program TWOFS99 is identical to the original FORTRAN TWOFS code. The sizes of the matrices were increased to allow larger problems. The TWOFS99 input was modified to allow for the BEM model to be read from a disk
file. This was particularly important as the final tension strip parametric analysis required over one hundred models to be built, run and analyzed. The models were constructed by an independent VAX Basic program, CHOLE, and written to disk in the format required by TWOFS99. Aside from the normal TWOFS output, which was also written to a disk file, a third file was created by TWOFS99 of unlabeled final stress results. A third VAX Basic computer program, TWOFS99_EX, extracted necessary stress data from the post processing file created by TWOFS99 and computed a value for the stress intensity factor based on a regression fit technique. This allowed for a great degree of mechanization in the analysis process.

A. Fictitious Stress Method Program (TWOFS99)

The input file for TWOFS99 defines the geometry of the problem, along with the necessary boundary conditions. The program first reads in values for NUMBS, NUMOS, KSYM, PR and E. NUMBS defines the number of straight line segments which will be input. NUMOS defines the number of additional segments to establish data points for displacement and stress calculations within the body to be analyzed. KSYM is a code to take advantage of any lines of symmetry in a model by calculating image elements as mirrored across the line of symmetry so that their effects are included in the final results. KSYM equal to one implies no symmetry exists, which
was used primarily in this study. $KSYM$ equal to two implies symmetry about the y axis at a line $x=XSYM$. $KSYM$ equal to three implies symmetry about the x axis at a line $y=YSYM$. And $KSYM$ equal to four implies two axis of symmetry about $x=XSYM$, $y=YSYM$. If symmetry is requested, the value of $XSYM$ and, or $YSYM$ is input. PR is the Poison’s Ratio and E is the Young’s Modulus for the material for the problem. The field stresses are next input as PXX, PYY and PXY. All input must be in consistent units. All input is echoed in the output file.

At line 460 in the code, a loop is entered from 1 to $NUMBS$. For each iteration of the loop, values for $ZNUM$, $XBEG$, $YBEG$, $XEND$, $YEND$, $KODE$, BVS and BVN are input. $XBEG$, $YBEG$, $XEND$ and $YEND$ define the x and y co-ordinates for the beginning and end of the current line segment. $ZNUM$ subdivides the current line segment into that many equal length boundary element segments. BVS and BVN are the boundary conditions for all of the boundary elements defined for the current line segment, in the shear and normal local co-ordinates of the elements respectively. $KODE$ defines if BVS and BVN are displacement or stress boundary conditions. Remember, it is allowable to mix them as indicated in [4]. $KODE$ equal to one means both are stresses, two means both are displacements, three means a shear displacement with a normal stress, and four is a shear stress with a normal displacement. Upon completion of the loop, all input of the
data for the definition of the boundary elements and boundary conditions is completed.

At line 690 in the code, a similar loop is entered from 1 to NUMOS. Here the variables EXTERNL(N,i), i=1 to 4, and NUMMTX(N) are read. The data for the interior points are stored in matrices to facilitate changes made to output formats. In order, the XBEG, YBEG, XEND, YEND, and NUMPD are input and placed in the EXTERNL and NUMMTX arrays. XBEG, YBEG, XEND and YEND are as for the boundary element line segment definitions. NUMPD defines the number of straight equally spaced points between and including XBEG, YBEG, XEND, YEND to be included for displacement and stress calculations after the fictitious stresses are solved for.

Lines 1250 through 2000 make various calls to subroutines to calculate the influence coefficients for all of the boundary elements, and assembles them into a matrix C. Line 2020 calls a Gauss Elimination subroutine to solve for the fictitious stresses which are stored in the matrix P. Line 2100 enters a loop to calculate the unknown boundary conditions at all of the boundary element midpoints. And, finally, line 3060 is a loop to calculate influence coefficients and the resulting stresses and displacements at all of the interior data points.

Line 2920 begins a loop to store all stresses computed at boundary element midpoints, along with the x value of the element midpoint. This data is written to a disk.
file for post processing in line 2965. The program TWOFS99 is listed in Appendix B.

B. Boundary Element Generation (CHOLE)

This program was written specifically for the two hole tension strip analysis. The boundary conditions for the study were incorporated into the program. The user inputs a problem title, hole diameter, hole spacing and crack length. The program divides the crack length into boundary elements using the F.R. Harris refinement technique [8], and then creates elements to model the remainder of the tension strip boundary. The final result is a disk file in the format required by TWOFS99 for analysis. The program CHOLE is listed in Appendix D.

C. Stress Intensity Factor Calculation (TWOFS99 EX)

The assumptions used are to calculate the stress intensity factor for a given problem by using the tension stresses, \(\sigma \), normal to the line of the crack. The value of the stress intensity factor is calculated with the tension stresses with the equation

\[
K_I = \sigma (2\pi r)^{1/2}
\]

(42)
file for post processing in line 2965. The program TWOFS99 is listed in Appendix B.

B. Boundary Element Generation (CHOLE)

This program was written specifically for the two hole tension strip analysis. The boundary conditions for the study were incorporated into the program. The user inputs a problem title, hole diameter, hole spacing and crack length. The program divides the crack length into boundary elements using the F.R. Harris refinement technique [8], and then creates elements to model the remainder of the tension strip boundary. The final result is a disk file in the format required by TWOFS99 for analysis. The program CHOLE is listed in Appendix D.

C. Stress Intensity Factor Calculation (TWOFS99 EX)

The assumptions used are to calculate the stress intensity factor for a given problem by using the tension stresses, \(\sigma \), normal to the line of the crack. The value of the stress intensity factor is calculated with the tension stresses with the equation

\[
K_I = \sigma (2\pi r)^{1/2}
\]

(42)
All of the tension strip parametric study results were processed through TWOFS99_EX for K_I calculations, and the results presented in that section of this report. The program TWOFS99_EX is listed in Appendix C.
Appendix B: Computer Program TWOFS99

This appendix contains the listings of the computer program used for the boundary element analysis in this thesis. The boundary element analysis program TWOFS99 was basically extracted from Crouch and Starfield (Reference [4]) with changes to output a post processing file for TWOFS99_EX to do regression analysis for K_I predictions. The source document program was written in FORTRAN, and that was converted into BASIC. Also, the data matrix limits were raised to analyze larger problems. The program TWOFS99 was compiled under VAX BASIC 3.1.

```
10 REM  BOUNDARY ELEMENT PROGRAM TWOFS 5 OCT 85
20 REM  MODIFIED FOR LARGE MODELS FOR VAX
30 REM
32 DIM C(600,600),B(600),P(600)
40 DIM XM(300),YM(300),A(300),
   COSBET(300),SINBET(300),KOD(300)
50 DIM EXTRNL(300,4),NUMMTX(300),OUTPT(300,10)
60 REM
70 REM PRINT"****************************************"  
80 REM PRINT" 
90 REM PRINT" ENTER INPUT FILE NAME ",QIN$  
100 REM PRINT" ENTER OUTPUT FILE NAME ",QOUT$  
110 REM PRINT"****************************************"
120 REM PRINT" 
130 REM PRINT" 
132 REM INPUT "ENTER INPUT FILE NAME ",QIN$  
134 REM INPUT "ENTER OUTPUT FILE NAME ",QOUT$  
136 OPEN "QIN" FOR INPUT AS #1
138 OPEN "QOUT" FOR OUTPUT AS #2
139 OPEN "QMAT" FOR OUTPUT AS #3
140 INPUT #1,TITLE$
150 INPUT #1,NUMBS,NUMOS,KSYM,PR,E  
160 IF KSYM=1 THEN GOTO 200
170 IF KSYM=2 THEN GOTO 210
180 IF KSYM=3 THEN GOTO 240
190 IF KSYM=4 THEN GOTO 260
```
200 GOTO 300
210 INPUT #1,XSYM
220 GOTO 300
240 INPUT #1,YSYM
250 GOTO 300
260 INPUT #1,XSYM
280 INPUT #1,YSYM
290 REM
300 REM
310 INPUT #1,PXX
320 INPUT #1,YYY
330 INPUT #1,PXY
340 REM
360 CNST=1.0/(4.0*PI*(1.0-PR))
370 COND=(1.0+PR)/E
380 PR1=1.0-2.0*PR
390 PR2=2.0*(1.0-PR)
400 PR3=3.0-4.0*PR
410 REM
415 REM PRINT" "
420 REM PRINT" DEFINE LOCATIONS, SIZES, ORIENTATIONS AND
430 REM PRINT" BOUNDARY CONDITIONS "
435 REM PRINT" "
440 REM
450 NUMBE=0
460 FOR N=1 TO NUMBS
470 INPUT #1,ZNUM,XBEG,YBEG,XEND,YEND,KODE,BVS,BVN
480 XD=(XEND-XBEG)/ZNUM
490 YD=(YEND-YBEG)/ZNUM
500 SW=SQR(XD*XD+YD*YD)
510 REM
520 FOR NE=1 TO ZNUM
530 NUMBE=NUMBE+1
540 M=NUMBE
550 XM(M)=XBEG+.5*(2.0*NE-1.0)*XD
560 YM(M)=YBEG+.5*(2.0*NE-1.0)*YD
570 A(M)=.5*SW
580 SINBET(M)=YD/SW
590 COSBET(M)=XD/SW
600 KOD(M)=KODE
610 MN=2*M
620 MS=MN-1
630 B(MS)=BVS
640 B(MN)=BVN
650 NEXT NE
655 NEXT N
660 REM PRINT" "
670 REM PRINT" INPUT OF EXTERNAL ELEMENTS"
680 REM PRINT" "
690 FOR N=1 TO NUMOS
700 INPUT#1,EXTRNL(N,1),EXTRNL(N,2),
EXTRNL(N, 3), EXTRNL(N, 4), NUMMTX(N)

710 NEXT N
720 PRINT #2, TITLE$
730 PRINT #2, "NUMBER OF STRAIGHT LINE SEGMENTS TO DEFINE BOUNDARY », NUMBS
740 PRINT #2, "NUMBER OF NON BOUNDARY POINTS TO CALCULATE RESULTS AT », NUMOS
750 IF KSYM = 1 THEN GOTO 780
760 IF KSYM = 2 THEN GOTO 800
770 IF KSYM = 3 THEN GOTO 820 ELSE GOTO 840
780 PRINT #2, "NO SYMMETRY CONDITIONS IMPOSED"
790 GOTO 850
800 PRINT #2, "THE LINE X = XS = "; XSYM; " IS A LINE OF SYMMETRY"
810 GOTO 850
820 PRINT #2, "THE LINE Y = YS = "; YSYM; " IS A LINE OF SYMMETRY"
830 GOTO 850
840 PRINT #2, "THE LINES X = XS = "; XSYM; " AND Y = YS = "; YSYM; " ARE LINES OF SYMMETRY"
850 REM
860 PRINT #2, "POISSON’S RATIO = "; PR
870 PRINT #2, "YOUNG’S MODULUS = "; E
880 PRINT #2, "XX-COMPONENT OF FIELD STRESS = "; PXX
890 PRINT #2, "YY-COMPONENT OF FIELD STRESS = "; PYY
900 PRINT #2, "XY-COMPONENT OF FIELD STRESS = "; PXY
910 PRINT #2, "BOUNDARY ELEMENT DATA" \ PRINT #2, "ELEMENT", "KODE", "X CENTER", "Y CENTER"
940 FOR I = 1 TO NUMBE
950 PRINT #2, I, KOD(I), XM(I), YM(I)
960 NEXT I
970 PRINT #2, " ",
980 PRINT #2, "ELEMENT", "LENGTH", "ANGLE", "US OR SIGMA-S", "UN OR SIGMA-N"
990 FOR M = 1 TO NUMBE
1000 MSIZE = 2.0 * A(M)
1005 IF COSBET(M) = 0.0 AND SINBET(M) > 0.0 THEN ANGLE = 90 \ GOTO 1020
1007 IF COSBET(M) = 0.0 AND SINBET(M) < 0.0 THEN ANGLE = 270 \ GOTO 1020
1010 ANGLE = 180 * ATN(SINBET(M) / COSBET(M)) / PI
1015 IF ANGLE < 0 THEN ANGLE = ANGLE + 180
1020 PRINT #2, M, MSIZE, ANGLE, B(2 * M - 1), B(2 * M)
1030 NEXT M
1040 REM PRINT" ",
1045 REM PRINT" ADJUST STRESS BOUNDARY VALUES TO ACCOUNT FOR INITIAL STRESSES "
1050 REM PRINT" ",
1060 REM PRINT" ",
1070 FOR N = 1 TO NUMBE
1080 \text{NN}=2 \ast N
1090 \text{NS}=\text{NN}-1
1100 \text{COSB}=\text{COSBET}(N)
1110 \text{SINB}=\text{SINBET}(N)
1120 \text{SIGS}=\text{PY} \ast \text{PXX} \ast \text{SINB} \ast \text{COSB} + \text{PXY} \ast (\text{COSB} \ast \text{COSB} - \text{SINB} \ast \text{SINB})
1130 \text{SIGN}=\text{PXX} \ast \text{SINB} \ast \text{COSB} + 2.0 \ast \text{PXY} \ast \text{SINB} \ast \text{COSB} \ast \text{COSB}
1140 \text{IF KOD}(N)=1 \text{ THEN GOTO } 1170
1150 \text{IF KOD}(N)=2 \text{ THEN GOTO } 1240
1160 \text{IF KOD}(N)=3 \text{ THEN GOTO } 1200 \text{ ELSE GOTO } 1230
1170 \text{B(NS)}=\text{B(NS)}-\text{SIGS}
1180 \text{B(NN)}=\text{B(NN)}-\text{SIGN}
1190 \text{GOTO } 1240
1200 \text{REM}
1210 \text{B(NN)}=\text{B(NN)}-\text{SIGN}
1220 \text{GOTO } 1240
1230 \text{B(NS)}=\text{B(NS)}-\text{SIGS}
1240 \text{NEXT } N
1250 \text{REM PRINT} " "
1260 \text{REM PRINT} "COMPUTE INFLUENCE COEFFICIENTS AND SET UP SYSTEM OF ALGEBRAIC EQUATIONS"
1270 \text{REM PRINT} " "
1280 \text{REM}
1290 \text{FOR } I=1 \text{ TO NUMBE}
1295 \text{REM PRINT} " \text{" REM PRINT} " FOR ELEMENT ";I
1300 \text{IN}=2 \ast I
1310 \text{IS}=\text{IN}-1
1320 \text{XI} \ast \text{XM}(I)
1330 \text{YI} \ast \text{YM}(I)
1340 \text{COSBI}=\text{COSBET}(I)
1350 \text{SINBI}=\text{SINBET}(I)
1360 \text{KODE}=\text{KOD}(I)
1370 \text{REM}
1380 \text{FOR } J=1 \text{ TO NUMBE}
1390 \text{JN}=2 \ast J
1400 \text{JS}=\text{JN}-1
1410 \text{REM CALL INITL}
1415 \text{GOSUB } 10000
1420 \text{XJ} \ast \text{XM}(J)
1430 \text{YJ} \ast \text{YM}(J)
1440 \text{COSBJ}=\text{COSBET}(J)
1450 \text{SINBJ}=\text{SINBET}(J)
1460 \text{AJ}=\text{A}(J)
1470 \text{REM CALL COEFF(XI,YI,XJ,YJ,AJ,COSBJ,SINBJ,+1)}
1480 \text{QXI} \ast \text{XI} \ast \text{QYI} \ast \text{YI} \ast \text{QXJ} \ast \text{XJ} \ast \text{QYJ} \ast \text{YJ} \text{ \ QAJ} \text{=AJ} \\text{ \ QCOS=COSBJ}
1490 \text{Q SIN= SINBJ \ \ QQ=1}
1500 \text{GOSUB } 15000
1510 \text{IF KSYM}=1 \text{ THEN GOTO } 1690
1520 \text{IF KSYM}=2 \text{ THEN GOTO } 1550
1530 \text{IF KSYM}=3 \text{ THEN GOTO } 1580 \text{ ELSE GOTO } 1610
1540 \text{REM}
1550 \text{XJ}=2.0 \ast \text{XSYM} \ast \text{XM}(J)
1560 \text{REM CALL COEFF(XI,YI,XJ,YJ,AJ,COSBJ,-SINBJ,-1)
1562 QXI=XI \ QYI=YI \ QXJ=XJ \ QYJ=YJ \ QAJ=AJ \ QCOS=COSBJ
1564 QSIN=SINBJ \ QQ=-1 \ GOSUB 15000
1570 GOTO 1690
1580 YJ=2.0*YSYM-YM(J)
1590 REM CALL COEFF(XI,YI,XJ,YJ,AJ,-COSBJ,SINBJ,-1)
1592 QXI=XI \ QYI=YI \ QXJ=XJ \ QYJ=YJ \ QAJ=AJ \ QCOS=COSBJ
1594 QSIN=SINBJ \ QQ=-1 \ GOSUB 15000
1600 GOTO 1690
1610 XJ=2.0*XSYM-XM(J)
1620 REM CALL COEFF(XI,YI,XJ,YJ,AJ,COSBJ,-SINBJ,-1)
1622 QXI=XI \ QYI=YI \ QXJ=XJ \ QYJ=YJ \ QAJ=AJ \ QCOS=-COSBJ
1624 QSIN=SINBJ \ QQ=-1 \ GOSUB 15000
1630 XJ=XM(J)
1640 YJ=2.0*YSYM-YM(J)
1650 REM CALL COEFF(XI,YI,XJ,YJ,AJ,-COSBJ,SINBJ,-1)
1652 QXI=XI \ QYI=YI \ QXJ=XJ \ QYJ=YJ \ QAJ=AJ \ QCOS=COSBJ
1654 QSIN=SINBJ \ QQ=-1 \ GOSUB 15000
1660 XJ=2.0*XSYM-XM(J)
1670 REM CALL COEFF(XI,YI,XJ,YJ,AJ,-COSBJ,-SINBJ,+1)
1672 QXI=XI \ QYI=YI \ QXJ=XJ \ QYJ=YJ \ QAJ=AJ \ QCOS=-COSBJ
1674 QSIN=SINBJ \ QQ=-1 \ GOSUB 15000
1680 REM
1690 REM
1700 IF KODE=1 THEN GOTO 1740
1710 IF KODE=2 THEN GOTO 1800
1720 IF KODE=3 THEN GOTO 1860 ELSE GOTO 1920
1730 REM
1740 C(IS,JS)=(SYYS-SXXS)*SINBI*COSBI +SXXS*(COSBI*COSBI-SINBI*SINBI)
1750 C(IS,JN)=(SYYN-SXXN)*SINBI*COSBI +SXXN*(COSBI*COSBI-SINBI*SINBI)
1760 C(IN,JS)=SXXS*SINBI*SINBI -2.0*SXXS*SINBI*COSBI+SYYS*COSBI*COSBI
1770 C(IN,JN)=SXXN*SINBI*SINBI -2.0*SXXN*SINBI*COSBI+SYYN*COSBI*COSBI
1780 GOTO 1970
1790 REM
1800 C(IS,JS)=UXS*COSBI+UYS*SINBI
1810 C(IS,JN)=UXN*COSBI+UYN*SINBI
1820 C(IN,JS)=UXS*SINBI+UYS*COSBI
1830 C(IN,JN)=UXN*SINBI+UYN*COSBI
1840 GOTO 1970
1850 REM
1860 C(IS,JS)=UXS*COSBI+UYS*SINBI
1870 C(IS,JN)=UXN*COSBI+UYN*SINBI
1880 C(IN,JS)=SXXS*SINBI*SINBI -2.0*SXXS*SINBI*COSBI+SYYS*COSBI*COSBI
1890 C(IN,JN)=SXXN*SINBI*SINBI -2.0*SXXN*SINBI*COSBI+SYYN*COSBI*COSBI
1900 GOTO 1970
1910 REM
1920 C(IS,JS)=(SYYS-SXXS)*SINBI*COSBI
+ SXYS*(COSBI*COSBI-SINBI*SINBI)
1930 C(IS,JN)=(SYYN-SXXN)*SINBI*COSBI
+ SXYN*(COSBI*COSBI-SINBI*SINBI)
1940 C(IN,JS)=-UXS*SINBI+UYS*COSBI
1950 C(IN,JN)=-UXN*SINBI+UYN*COSBI
1970 NEXT J
1975 NEXT I
1980 REM PRINT" "
1990 REM PRINT" SOLVE SYSTEM OF ALGEBRAIC EQUATIONS "
2000 REM PRINT" "
2010 N=2*NUMBE
2020 REM CALL SOLVE(N)
2030 GOSUB 20000
2040 REM PRINT"
2050 REM PRINT" COMPUTE BOUNDARY DISPLACEMENTS AND
STRESSES "
2060 REM PRINT"
2069 PRINT #2," "
2070 PRINT #2," DISPLACEMENTS AND STRESSES AT
BOUNDARY ELEMENT MIDPOINTS"
2080 PRINT #2,"
2090 PRINT #2,",UX","UY","US","UN"
2092 PRINT #2,",SIGXX SIGYY SIGXY SIGS
SIGN SIGT"
2100 FOR I=1 TO NUMBE
2110 XI=XM(I)
2120 YI=YM(I)
2130 COSBI=COSBET(I)
2140 SINBI=SINBET(I)
2150 REM
2160 UX=0.0
2170 UY=0.0
2180 SIGXX=PXX
2190 SIGYY=PYY
2200 SIGXY=PXY
2210 REM
2220 FOR J=1 TO NUMBE
2230 JN=2*J
2240 JS=JN-1
2250 REM CALL INITL
2260 GOSUB 10000
2270 XJ=XM(J)
2280 YJ=YM(J)
2290 AJ=A(J)
2300 COSBJ=COSBET(J)
2310 SINBJ=SINBET(J)
2320 REM CALL COEFF(XI,YI,XJ,YJ,AJ,COSBJ,SINBJ,+1)
2330 QX=QI \ QYI=QJ \ QXJ=QJ \ QYJ=QJ \ QAJ=AJ \ QCOS=COSBJ
2340 QSIN=SINBJ \ QQ=1 \ GOSUB 15000
2350 IF KSYM=1 THEN GOTO 2650

95
2360 IF KSYM=2 THEN GOTO 2390
2370 IF KSYM=3 THEN GOTO 2450 ELSE GOTO 2510
2380 REM
2390 XJ=2.0*XSYM-XM(J)
2400 REM CALL COEFF(XI,YI,XJ,YJ,AJ,COSBJ,-SINBJ,-1)
2410 QXI=XI \ QYI=IY \ QXJ=XJ \ QYJ=YJ \ QAJ=AJ \ QCOS=COSBJ
2420 QSIN=-SINBJ \ QQ=-1 \ GOSUB 15000
2430 GOTO 2650
2440 REM
2450 YJ=2.0*YSYM-YM(J)
2460 REM CALL COEFF(XI,YI,XJ,YJ,AJ,-COSBJ,SINBJ,-1)
2470 QXI=IY \ QYI=IY \ QXJ=XJ \ QYJ=YJ \ QAJ=AJ \ QCOS=-COSBJ
2480 QSIN=SINBJ \ QQ=-1 \ QQ=-1 \ GOSUB 15000
2490 GOTO 2650
2500 REM
2510 XJ=2.0*XSYM-XM(J)
2520 REM CALL COEFF(XI,YI,XJ,YJ,AJ,COSBJ,-SINBJ,-1)
2530 QXI=XI \ QYI=IY \ QXJ=XJ \ QYJ=YJ \ QAJ=AJ \ QCOS=COSBJ
2540 QSIN=SINBJ \ QQ=-1 \ GOSUB 15000
2550 XJ=XM(J)
2560 YJ=2.0*YSYM-YM(J)
2570 REM CALL COEFF(XI,YI,XJ,YJ,AJ,-COSBJ,SINBJ,-1)
2580 QXI=XI \ QYI=IY \ QXJ=XJ \ QYJ=YJ \ QAJ=AJ \ QCOS=-COSBJ
2590 QSIN=SINBJ \ QQ=-1 \ GOSUB 15000
2600 XJ=2.0*XSYM-XM(J)
2610 REM CALL COEFF(XI,YI,XJ,YJ,AJ,-COSBJ,-SINBJ,+1)
2620 QXI=XI \ QYI=IY \ QXJ=XJ \ QYJ=YJ \ QAJ=AJ \ QCOS=-COSBJ
2630 QSIN=-SINBJ \ QQ=1 \ GOSUB 15000
2640 REM
2650 REM
2660 REM
2670 UX=UX+UXS*P(JS)+UXN*P(JN)
2680 UY=UY+UYS*P(JS)+UYN*P(JN)
2690 SIGXX=SIGXX+SXXS*P(JS)+SXXN*P(JN)
2700 SIGYY=SIGYY+SYYS*P(JS)+SYYN*P(JN)
2710 SIGXY=SIGXY+SXXS*P(JS)+SYYN*P(JN)
2720 REM
2730 NEXT J
2740 REM
2750 US=UX*COSBI+UY*SINBI
2760 UN=1.0*UX*SINBI+UY*COSBI
2770 SIGS=(SIGYY-SIGXX)*SINBI*COSBI
+SIGXY*(COSBI*COSBI-SINBI*SINBI)
2780 SIGN=SIGXX*SINBI*SINBI
-2.0*SIGXY*SINBI*COSBI+SIGYY*COSBI*COSBI
2790 SIGT=SIGXX*COSBI*COSBI
+2.0*SIGXY*SINBI*COSBI+SIGYY*SINBI*SINBI
2800 REM
2810 OUTPT(I,1)=UX
2820 OUTPT(I,2)=UY
2830 OUTPT(I,3)=US
2840 OUTPT(I,4)=UN
2850 OUTPT(I,5)=SIGXX
2860 OUTPT(I,6)=SIGYY
2870 OUTPT(I,7)=SIGXY
2880 OUTPT(I,8)=SIGS
2890 OUTPT(I,9)=SIGN
2900 OUTPT(I,10)=SIGT
2905 REM PRINT"OUTPUT FOR ELEMENT ";I;" COMPLETE"
2910 NEXT I
2912 A$="#.###^^" \ A$=A$+A$+A$+A$+A$+A$
2920 FOR I=1 TO NUMBE
2930 PRINT #2,I,OUTPT(I,1),OUTPT(1,2),OUTPT(I,3),OUTPT(I,4)
2935 PRINT #2 USING A$;OUTPT(I,5),OUTPT(I,6),OUTPT(I,7),
 OUTPT(I,8),OUTPT(I,9),OUTPT(I,10)
2936 PRINT #2, " ",
2940 NEXT I
2950 REM THIS IS THE BEM ELEMENT DISP-STRESS MATRIX OUTPT TO
 FILE
2960 MAT PRINT #3, OUTPT
2965 MAT PRINT #3, XM \ CLOSE #3
2990 REM PRINT" "
3000 REM PRINT" COMPUTE DISPLACEMENTS AND STRESSES AT
 SPECIFIED POINTS IN THE BODY"
3010 REM PRINT" "
3020 IF NUMOS <= 0 THEN GOTO 3910
3030 PRINT #2," " \ PRINT #2," "
3040 PRINT #2," DISPLACEMENTS AND STRESSES AT SPECIFIED
 POINTS IN THE BODY"
3042 PRINT #2," " \ PRINT #2,"POINT","X COORD","Y
 COORD","UX", "UY"
3045 PRINT #2," ", "SIGXX","SIGYY","SIGXY" \ PRINT #2," "
3050 NPOINT=0
3060 FOR N=1 TO NUMOS
3070 XBEG=EXTRNL(N,1)
3080 YBEG=EXTRNL(N,2)
3090 XEND=EXTRNL(N,3)
3100 YEND=EXTRNL(N,4)
3110 NUMPB=NUMMTX(N)
3120 NUMP=NUMPB+1
3130 DELX=(XEND-XBEG)/NUMP
3140 DELY=(YEND-YBEG)/NUMP
3150 IF NUMPB > 0 THEN NUMP=NUMPB+1
3160 IF (DELX^2+DELY^2) = 0 THEN NUMP=1
3170 REM
3180 FOR NI=1 TO NUMP
3190 XP=XBEG+(NI-1)*DELX
3200 YP=YBEG+(NI-1)*DELY
3210 REM
3220 UX=0.0
3230 UY=0.0
3240 SIGXX=PXX
3250 SIGYY=PYY
3260 SIGXY=XY
3270 REM
3280 FOR J=1 TO NUMBE
3290 JN=2*J
3300 JS=JN-1
3310 REM CALL INITL
3320 GOSUP 10000
3330 XJ=XM(J)
3340 YJ=YM(J)
3350 AJ=A(J)
3360 REM
3370 IF SQRT((XP-XJ)^2+(YP-YJ)^2) < (2.0*AJ) THEN GOTO 3430
3380 REM
3390 COSBJ=COSBET(J)
3400 SINBJ=SINBET(J)
3410 CALL COEFF(XP,YP,XJ,YJ,AJ,COSBJ,SINBJ,+1)
3420 QXI=XP \ QYI=YP \ QXJ=XJ \ QYJ=YJ \ QAJ=AJ \ QCOS=COSBJ
3430 QSIN=SINBJ \ QQ=1 \ GOSUB 15000
3440 GOTO (840,810,820,830),KSYM
3450 IF KSYM=1 THEN GOTO 3520
3460 IF KSYM=2 THEN GOTO 3550
3470 IF KSYM=3 THEN GOTO 3620 ELSE GOTO 3650
3480 REM
3490 XJ=2.0*YSYM-XM(J)
3500 CALL COEFF(XP,YP,XJ,YJ,AJ,COSBJ,-SINBJ,-1)
3510 QXI=XP \ QYI=YP \ QXJ=XJ \ QYJ=YJ \ QAJ=AJ \ QCOS=COSBJ
3520 QSIN=-SINBJ \ QQ=1 \ GOSUB 15000
3530 GOTO 3520
3540 REM
3550 YJ=2.0*YSYM-YM(J)
3560 CALL COEFF(XP,YP,XJ,YJ,AJ,-COSBJ,SINBJ,-1)
3570 QXI=XP \ QYI=YP \ QXJ=XJ \ QYJ=YJ \ QAJ=AJ \ QCOS=COSBJ
3580 QSIN=SINBJ \ QQ=1 \ GOSUB 15000
3590 GOTO 3590
3600 REM
3610 XJ=2.0*YSYM-XM(J)
3620 CALL COEFF(XP,YP,XJ,YJ,AJ,COSBJ,-SINBJ,-1)
3630 QXI=XP \ QYI=YP \ QXJ=XJ \ QYJ=YJ \ QAJ=AJ \ QCOS=COSBJ
3640 QSIN=-SINBJ \ QQ=1 \ GOSUB 15000
3650 XJ=XM(J)
3660 YJ=2.0*YSYM-YM(J)
3670 CALL COEFF(XP,YP,XJ,YJ,AJ,-COSBJ,SINBJ,-1)
3680 QXI=XP \ QYI=YP \ QXJ=XJ \ QYJ=YJ \ QAJ=AJ \ QCOS=COSBJ
3690 QSIN=SINBJ \ QQ=1 \ GOSUB 15000
3700 XJ=2.0*YSYM-XM(J)
3710 CALL COEFF(XP,YP,XJ,YJ,AJ,-COSBJ,-SINBJ,+1)
3720 QXI=XP \ QYI=YP \ QXJ=XJ \ QYJ=YJ \ QAJ=AJ \ QCOS=COSBJ
3730 QSIN=-SINBJ \ QQ=1 \ GOSUB 15000
3740 REM
3750 REM
REM
UX=UX+UXS*P(JS)+UXN*P(JN)
UY=UY+UYS*P(JS)+UYN*P(JN)
SIGXX=SIGXX+SXXS*P(JS)+SXXN*P(JN)
SIGYY=SIGYY+SYYS*P(JS)+SYYN*P(JN)
SIGXY=SIGXY+SXYS*P(JS)+SXYN*P(JN)
REM
NEXT J
REM
NPOINT=NPOINT+1
PRINT #2,NPOINT,XP,YP,UX,UY
"",SIGXX,SIGYY,SIGXY
REM
NEXT NI
NEXT N
REM
SUBROUTINE INITL
REM
SXXS=0.0
SXXN=0.0
SYYS=0.0
SYYN=0.0
SXYS=0.0
SXYS=0.0
SXYN=0.0
REM
UXS=0.0
UXN=0.0
UYS=0.0
UYN=0.0
REM
RETURN
SUBROUTINE COEFF(X,Y,CX,CY,A,COSB,SINB,MSYM)
REM
X=QXI \ Y=QYI \ CX=QXJ \ CY=QYJ \ A=QAJ \ COSB=QCOS
SINB=QSIN \ MSYM=QQ
REM
COS2B=COSB*COSB-SINB*SINB
SIN2B=2.0*SINB*COSB
REM
XB=(X-CX)*COSB+(Y-CY)*SINB
YB=-1.0*(X-CX)*SINB+(Y-CY)*COSB
REM
R1S=(XB-A)*(XB-A)+YB*YB
R2S=(XB+A)*(XB+A)+YB*YB
FL1=.5*LOG(R1S)
FL2=.5*LOG(R2S)
FB2=CNST*(FL1-FL2)
IF YB <> 0 GOTO 15200
FB3 = 0
IF ABS(XB) < A THEN FB3 = CNST*PI
GOTO 15210
FB3 = CNST*(ATN((XB+A)/YB)-ATN((XB-A)/YB))
FB1 = YB*FB3+CNST*((XB-A)*FL1-(XB+A)*FL2)
FB4 = CNST*(YB/R1S-YB/R2S)
FB5 = CNST*((XB-A)/R1S-(XB+A)/R2S)
REM
GOTO 15210
FB1 = YB*FB3+CNST*((XB-A)*FL1-(XB+A)*FL2)
FB4 = CNST*(YB/R1S-YB/R2S)
FB5 = CNST*((XB-A)/R1S-(XB+A)/R2S)
REM
UXPS = COND*(PR3*COSB*FB1+YB*(SINB*FB2+COSB*FB3))
UXPN = COND*(-PR3*SINB*FB1-YB*(COSB*FB2-SINB*FB3))
UYPS = COND*(PR3*SINB*FB1-YB*(COSB*FB2-SINB*FB3))
UYPN = COND*(-PR3*COSB*FB1+YB*(SINB*FB2+COSB*FB3))
REM
UXPS = COND*(PR3*COSB*FB1+YB*(SINB*FB2+COSB*FB3))
UXPN = COND*(-PR3*SINB*FB1-YB*(COSB*FB2-SINB*FB3))
UYPS = COND*(PR3*SINB*FB1-YB*(COSB*FB2-SINB*FB3))
UYPN = COND*(-PR3*COSB*FB1+YB*(SINB*FB2+COSB*FB3))
REM
UXS = UXS+MSYM*UXPS
UXN = UXN+UXPN
UYS = UYS+MSYM*UYPS
UYN = UYN+UYPN
REM
SXXS = SXXS+MSYM*SXXPS
SXXN = SXXN+SXXPN
SYYS = SYYS+MSYM*SYYPS
SYYN = SYYN+SYYPN
SXYS = SXYS+MSYM*SXYPN
SXYN = SXYN+SXYPN
REM
RETURN
SUBROUTINE SOLVE(N)
REM
NB = N-1
FOR J = 1 TO NB
L = J+1
FOR JJ = L TO N
X = C(JJ, J)/C(J, J)
FOR I = J TO N
C(JJ, I) = C(JJ, I) - C(J, I)*XM
NEXT I
B(JJ) = B(JJ) - B(J)*XM
NEXT JJ
NEXT J
REM
RETURN
20130 REM
20140 P(N)=B(N)/C(N,N)
20150 FOR J=1 TO NB
20160 JJ=N-J
20170 L=JJ+1
20180 SUM=0.0
20190 FOR I=L TO N
20200 SUM=SUM+C(JJ,I)*P(I)
20210 NEXT I
20220 P(JJ)=(B(JJ)-SUM)/C(JJ,JJ)
20230 NEXT J
20240 RETURN
25000 REM PRINT"END OF PROCESSING"
25300 CLOSE #1
25400 CLOSE #2
25401 END
Appendix C: Computer Program TWOFS99_EX

This appendix contains the listing for the program TWOFS99_EX. This program used the stress versus x location output from TWOFS99 and computed the stress intensity factor as a function of distance, r, from the crack tip. The equation used was

\[K_I = \lim_{r \to 0} [\sigma_{yy} (2\pi r)^{1/2}] \]

The distribution of \(K_I \) vs r was only taken as valid from a distance five to ten percent of the crack length away from the crack tip. The \(K_I \) data was then fit through linear regression analysis against \(r^2 \). The rational for selecting \(r^2 \) over an r distribution is explained in the main body of the text. The program inputs the name of the source file, the crack length, the hole diameter, and hole pitch. The data that fit in the acceptable distances from the crack tip are printed with calculated \(K_I \) values, and the final regression fit for \(K_I \) at \(r=0 \) is printed. All \(K_I \) values used to create the \(\beta \) factors in the parametric tension strip study were calculated by this program.

The program is written in VAX BASIC 3.1 and run on a VAX 8800.
1 DIM OUTPT(300,10), XM(300), X(300), SIGYY(300), R(300), K(300)
10 PRINT " PROGRAM TWOFS99_EX " \ PRINT " "
20 REM TO EXTRACT DATA FROM OUTPT FILES
30 INPUT " ENTER OUTPT FILE NAME ROOT " ; QIN$
31 INPUT " ENTER PITCH : " ; PITCH
35 INPUT " ENTER CRACK LENGTH A : " ; A
36 INPUT " ENTER HOLE DIA : " ; DIA
37 PRINT " ENTER FILE ROOT: " ; QIN$
38 PRINT " CRACK LENGTH A : " ; A \ PRINT " HOLE DIAMETER : " ; DIA
39 PRINT " PITCH= " ; PITCH
40 QOUT$ = QIN$ + ".OUTPT_EX"
42 QIN$ = QIN$ + ".OUTPT"
50 OPEN QIN$ FOR INPUT AS #1
55 OPEN QOUT$ FOR OUTPUT AS #2
56 PRINT #2," PROGRAM TWOFS99_EX " \ PRINT #2," "
57 PRINT #2," INPUT FILE : " ; QIN$
58 PRINT #2," OUTPUT FILE : " ; QOUT$
59 PRINT #2," " \ PRINT #2," CRACK LENGTH = " ; A
60 PRINT #2," HOLE DIAMETER : " ; DIA \ PRINT #2," PITCH = " ; PITCH
61 FOR I=1 TO 300
62 FOR J=1 TO 10
64 NEXT J
66 NEXT I
70 FOR I=1 TO 300
72 INPUT #1, XM(I)
74 NEXT I
76 XMIN = DIA/2 + A + 0.05*A \ XMAX = XMIN + 0.05*A
78 REM CHECK FOR LONG CRACK PROBLEM
80 IF XMAX < PITCH-(DIA/2) THEN GOTO 83
81 XMAX = PITCH-(DIA/2) \ XMIN = XMEN - (XMEN - DIA/2 - A)/2
82 PRINT#2," LARGE CRACK WARNING"
83 PRINT #2," XMEN (5% A) = " ; XMEN \ PRINT #2," XMEN (10% A) = " ; XMEN
85 KOUNT=0.0
88 PRINT #2," " \ PRINT #2," "
89 PRINT #2," ELEMENT", "X DIM", "TIP RAD", "TIP RAD ^ 2", "SIGMA YY", "KI"
90 FOR I = 2 TO 100
91 REM CHECK BEM 2 TO 100
92 REM CHECK FOR 5% < X < 10% OF A
94 IF XM(I) > XMEN OR XM(I) < XMEN THEN GOTO 180
100 KOUNT=KOUNT + 1
110 X(I) = XM(I) \ SIGYY(I) = OUTPT(I,6)/1000
120 R(I) = X(I) - A - DIA/2.0
125 R2= R(I)^2
130 K(I) = SIGYY(I) * (2 * PI * R(I))^0.5
140 SUMR = SUMR + R2
150 SUMR2 = SUMR2 + R2^2
160 SUMRK = SUMRK + R2*K(I)
170 SUMK = SUMK + K(I)
175 PRINT #2, I, XM(I), R(I), R(I)^2, SIGYY(I), K(I)
180 NEXT I
200 B = (KOUNT * SUMRK - SUMR * SUMK) / (KOUNT * SUMR^2 - (SUMR)^2)
210 KICFIT = (SUMK - B * SUMR) / KOUNT
215 BETA = KICFIT / (46 * SQR(PI * A))
220 PRINT #2, "--"
230 PRINT #2, ""
240 PRINT #2, "KI (REGRESSION FIT R=0.0) = "; KICFIT
245 PRINT #2, " BASED ON R SQUARED "
250 PRINT #2, ""
255 PRINT #2, "BETA (SIG=46) = "; BETA
260 PRINT #2, "--"
Appendix D: Computer Program CHOLE

This appendix contains the listing for the program CHOLE. This program is a model generator for the tension strip parametric study of section VII. The input to the program is hole diameter, pitch, and crack length. The program divides the crack into segments with the F.R. Harris refinement technique [8]. The final model as output is in a format required for TWOFS99 to read in.

All of the models used in the tension strip parametric study were created with CHOLE. CHOLE is a VAX BASIC 3.1 program run on a VAX 8800.

```
20 PRINT "BEM HOLE WITH CRACK MODEL GENERATOR - QUAD FINITE BOUND"
22 print "GRADUATED CRACK ELEMENTS 3-3-3-25 RULE "
30 PRINT ""
35 INPUT"ENTER NAME OF OUTPUT FILE : ";O$
36 OPEN O$ FOR OUTPUT AS #1
40 INPUT"ENTER HOLE DIAMETER";DIA
50 INPUT"ENTER DISTANCE BETWEEN HOLE CENTERS ";PITCH
60 INPUT"ENTER LENGTH OF CRACK ";A
70 PRINT "," TWO HOLES S=46 D=";DIA;" P=";PITCH;" A=";A
80 SXX=0.0 \ SYY=46000. \ SXY=0.0
115 RAD = DIA/2.0
120 CIRCUM= 2 * 3.14159 * RAD
130 REM DIVIDE CRACK BY 20 TO GET ELEMENT LENGTH
140 ELEN = A/12
150 REM CALCULATE HOW MANY ELEMENTS IN HALF CIRCLE (HOLE)
160 CEL =( CIRCUM/ ELEN )/2.0
170 CEL = INT( CEL ) + 1 \ IF CEL < 20 THEN CEL=20
175 REM 4 FOR CRACK 4 FOR PRECRACK 1 FOR INBETWEEN
176 REM 2 CLOSE HORIZON 2 SIDES 1 TOP 1 SPC
185 ELTOT = 2 * CEL + 4 + 4 + 1 + 2 + 2 + 1 + 1
187 IF RAD + A = PITCH/2 THEN ELTOT=ELTOT-1
190 PRINT ", ELTOT;" ,0,1,.3,10.3E6"
220 PRINT ",0.0"
230 PRINT ",0.0"
240 PRINT ",0.0"
242 TS = "1,0,0" \ C$=""
```
244 REM THIS IS THE NON CRACK MATERIAL BETWEEN HOLES
245 IF PITCH > 2 * (A + RAD) THEN GOTO 270
247 LTEMP = PITCH - RAD - RAD - A
248 X1=PITCH - RAD \ X2 = A + RAD + 0.5 * LTEMP
249 PRINT #1, "15,"; X1 ; C$; Y1 ; C$; X2 ; C$; Y2 ; C$; ";"4,0,0"
250 X1=X2 \ X2 = A + RAD + 0.25 * LTEMP
251 PRINT #1, "15,"; X1 ; C$; Y1 ; C$; X2 ; C$; Y2 ; C$; ";"4,0,0"
252 X1=X2 \ X2 = A + RAD + 0.125 * LTEMP
253 PRINT #1, "15,"; X1 ; C$; Y1 ; C$; X2 ; C$; Y2 ; C$; ";"4,0,0"
254 X1=X2 \ X2 = A + RAD
255 PRINT #1, "15,"; X1 ; C$; Y1 ; C$; X2 ; C$; Y2 ; C$; ";"4,0,0"
256 X1=X2 \ X2 = A + RAD - 0.125 * LTEMP
257 PRINT #1, "25,"; X1 ; C$; Y1 ; C$; X2 ; C$; Y2 ; C$; T$
258 X1=X2 \ X2 = A + RAD - 0.25 * LTEMP
259 PRINT #1, "15,"; X1 ; C$; Y1 ; C$; X2 ; C$; Y2 ; C$; T$
260 X1=X2 \ X2 = A + RAD - 0.5 * LTEMP
261 PRINT #1, "15,"; X1 ; C$; Y1 ; C$; X2 ; C$; Y2 ; C$; T$
262 X1=X2 \ X2 = A + RAD - LTEMP
263 PRINT #1, "15,"; X1 ; C$; Y1 ; C$; X2 ; C$; Y2 ; C$; T$
264 IF A+RAD = PITCH/2 THEN GOTO 290
265 LTEMP = X2 - RAD \ LTEMP2 = (X1 - X2)/3
266 LTOT = INT(LTEMP/LTEMP2) + 1
267 X1=X2 \ X2 = RAD \ Y2 = 0. \ Y1 = 0.
268 PRINT #1,LTOT ;"",; X1 ; C$; Y1 ; C$; X2 ; C$; Y2 ; C$; ";"1,0,0"
269 GOTO 290
270 LTEMP = PITCH-RAD -RAD -A -A
271 LTOT = INT (LTEMP/A) +1
272 X1 = PITCH-RAD \ Y1 = 0.0 \ X2 = X1 - LTEMP \ Y2 = Y1
273 PRINT #1,LTOT ;"",; X1 ; C$; Y1 ; C$; X2 ; C$; Y2 ; C$; ";"4,0,0"
274 X1=X2 \ X2 = A + RAD + 0.5 * A
275 PRINT #1, "15,"; X1 ; C$; Y1 ; C$; X2 ; C$; Y2 ; C$; ";"4,0,0"
276 X1=X2 \ X2 = A + RAD + 0.25 * A
277 PRINT #1, "15,"; X1 ; C$; Y1 ; C$; X2 ; C$; Y2 ; C$; ";"4,0,0"
278 X1=X2 \ X2 = A + RAD + 0.125 * A
279 PRINT #1, "15,"; X1 ; C$; Y1 ; C$; X2 ; C$; Y2 ; C$; ";"4,0,0"
280 X1=X2 \ X2 = A + RAD
281 PRINT #1, "25,"; X1 ; C$; Y1 ; C$; X2 ; C$; Y2 ; C$; ";"4,0,0"
282 X1=X2 \ X2 = A + RAD - 0.125 * A

106
283 PRINT #1, "25,"; X1; C$; Y1; C$; X2; C$; Y2; C$; T$
284 X1=X2 \ X2 = A + RAD - 0.25 * A
285 PRINT #1, "3,"; X1; C$; Y1; C$; X2; C$; Y2; C$; T$
286 X1=X2 \ X2 = A + RAD- 0.5 * A
287 PRINT #1, "3,"; X1; C$; Y1; C$; X2; C$; Y2; C$; T$
288 X1=X2 \ X2 = RAD
289 PRINT #1, "3,"; X1; C$; Y1; C$; X2; C$; Y2; C$; T$
290 REM THIS IS THE HOLE CALCULATION SECTION
291 ANGLE = 3.14159 \ DELA = ANGLE/ CEL \ ANGLE=0.0
310 FOR I=1 TO CEL
320 X1 = X2 \ Y1 = Y2
330 ANGLE = ANGLE + DELA
340 X2 = RAD * COS(ANGLE)
350 Y2 = RAD * SIN(ANGLE)
400 PRINT #1,"1,"; X1; C$; Y1; C$; X2; C$; Y2; C$; T$
420 NEXT I
600 REM THIS IS THE SECOND HOLE
605 ANGLE = 3.14159 \ DELA = ANGLE/ CEL \ ANGLE=0.0
607 X2 = RAD + PITCH\ Y2 = 0.0 \ C$="","
610 FOR I=1 TO CEL
620 X1 = X2 \ Y1 = Y2
630 ANGLE = ANGLE + DELA
640 X2 = RAD * COS(ANGLE) + PITCH
650 Y2 = RAD * SIN(ANGLE)
660 PRINT #1,"1,"; X1; C$; Y1; C$; X2; C$; Y2; C$; T$
720 NEXT I
721 REM THIS IS 3-D ON LEFT OF LEFT HOLE
722 DIST=3*DIA \ X1 = -RAD \ X2 = X1 - DIST \ Y1=0.0 \ Y2=0.0
728 PRINT #1,"10,"; X1; C$; Y1; C$; X2; C$; Y2; C$; "4,0,0"
732 REM THIS IS 3-D ON RIGHT OF RIGHT HOLE
734 X1 = PITCH + RAD + DIST \ X2 = X1 - DIST \ Y1=0.0 \ Y2=0.0
738 PRINT #1,"10,"; X1; C$; Y1; C$; X2; C$; Y2; C$; "4,0,0"
750 REM THIS IS THE FINITE (3-DIA) BOUNDARY
752 REM L SIDE
754 X1 = -RAD - DIST \ X2 = X1
756 Y2 = DIST + RAD \ Y1 = 0.0
758 PRINT #1,"10,"; X1; C$; Y1; C$; X2; C$; Y2; C$; "1, 0,";SXX
759 REM TOP
760 DIST = 3 * DIA
765 X1 = -RAD - DIST \ X2 = RAD + PITCH + DIST
770 Y1 = DIST + RAD \ Y2 = Y1
775 PRINT #1,"40,"; X1; C$; Y1; C$; X2; C$; Y2; C$; "1, 0,";SYY
780 REM R SIDE
782 X1 = X2
784 Y1 = DIST + RAD \ Y2 = 0.1
785 PRINT #1,"10," ; X1 ; C$; Y1 ; C$; X2; C$; Y2; C$; "1, 0," ; SXX
790 REM THIS IS THE SPC
800 Y1=Y2 \ Y2 = 0.0
815 PRINT #1,"1," ; X1 ; C$; Y1 ; C$; X2; C$; Y2; C$; "2, 0,0"
900 PRINT "END OF PROCESSING"
910 CLOSE #1
1000 END
Appendix E: Fitting NASA/FLAGRO Crack Growth Output

This appendix contains the output from the NASA/FLAGRO analysis of section VIII. All three of the analysis used the same materials and stress spectrums.

A. Bowi- Solution Analysis

FAIGUE CRACK GROWTH ANALYSIS

U.S. customary units [inches, ksi, ksi sqrt(in)]

PROBLEM TITLE

TEST OF BOWIE SOLUTION ANALYSIS

GEOMETRY

MODEL: TC03-Through crack from hole in plate.
Plate Thickness, t = 0.2500
Width, W = 100.0000
Hole Diameter, D = 0.2500
Distance of Hole Center to Edge, B = 50.0000

FLAW SIZE:
a (init.) = 0.7500E-01

MATERIAL

MATL 1: 7075-T6 AL, L-T
Material Properties:

<table>
<thead>
<tr>
<th>No.</th>
<th>C</th>
<th>n</th>
<th>p</th>
<th>q</th>
<th>DKo</th>
<th>Co</th>
<th>d</th>
<th>DK1</th>
<th>Alpha</th>
<th>Smax</th>
<th>SIGO</th>
</tr>
</thead>
</table>
| 1 | 0.275D-07:2.836:0.50:0.50: 2.50:1.00:1.00: 5.74: 1.75: 0.30:

109
TEST OF BOWIE SOLUTION ANALYSIS
MODEL: TC03

FATIGUE SPECTRUM STRESS TABLE

S : M: NUMBER : S0 : S1 :
T : A: OF :
E : T: FATIGUE : (ksi) : (ksi) :
P : L: CYCLES : t1 : t2 : t1 : t2 :

1: 1: 100 : 0.00: 30.00: 0.00: 0.00:

Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET

TEST OF BOWIE SOLUTION ANALYSIS
MODEL: TC03

ANALYSIS RESULTS:

<table>
<thead>
<tr>
<th>Block</th>
<th>Final Flaw Size a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>0.092832</td>
</tr>
<tr>
<td>2</td>
<td>0.111912</td>
</tr>
<tr>
<td>3</td>
<td>0.132318</td>
</tr>
<tr>
<td>4</td>
<td>0.154225</td>
</tr>
<tr>
<td>5</td>
<td>0.177883</td>
</tr>
<tr>
<td>6</td>
<td>0.203603</td>
</tr>
<tr>
<td>7</td>
<td>0.231775</td>
</tr>
<tr>
<td>8</td>
<td>0.262879</td>
</tr>
<tr>
<td>9</td>
<td>0.297515</td>
</tr>
<tr>
<td>10</td>
<td>0.336449</td>
</tr>
<tr>
<td>11</td>
<td>0.380675</td>
</tr>
<tr>
<td>12</td>
<td>0.431521</td>
</tr>
<tr>
<td>13</td>
<td>0.490817</td>
</tr>
<tr>
<td>14</td>
<td>0.561179</td>
</tr>
<tr>
<td>15</td>
<td>0.646548</td>
</tr>
<tr>
<td>16</td>
<td>0.753263</td>
</tr>
<tr>
<td>17</td>
<td>0.892600</td>
</tr>
<tr>
<td>18</td>
<td>1.088274</td>
</tr>
<tr>
<td>19</td>
<td>1.412186</td>
</tr>
</tbody>
</table>

K max a-tip
23.873066
24.298998
24.740814
25.221426
25.756659
26.360479
26.993177
27.740626
28.528124
29.429157
30.424570
31.576437
32.815969
34.270541
35.996892
38.005786
40.549542
43.766852
48.761760

FINAL RESULTS:
Unstable crack growth, max stress intensity exceeds critical value:
K max = 55.00 K cr = 54.94
at Cycle No. 56 of Load Step No. 1 of Block No. 20
Crack Size a = 1.87187
B. Shivakumar Solution Analysis

FATIGUE CRACK GROWTH ANALYSIS

U.S. customary units [inches, ksi, ksi sqrt(in)]

PROBLEM TITLE

TEST OF SHIVAKUMAR SOLUTION ANALYSIS

GEOMETRY

MODEL: TC05-Through crack from hole in row of holes.
Plate Thickness, t = 0.2500
Hole Diameter, D = 0.2500
Distance between Holes, H = 1.0000
Ratio of Hole Diameter to Edge Distance, D/B = 0.0000
(Ratio of 0.0 denotes a very large edge distance)

FLAW SIZE:
a (init.) = 0.7500E-01

MATERIAL

MATL 1: 7075-T6 AL, L-T

Material Properties:
:Matl : YS : Kle : Klc : Ak : Bk : Thk : Kc : KIscc:
: ---:------:------:------:------:---:-------:---:
: 1 : 65.0 : 42.0 : 27.0 : 0.75 : 1.25 : 0.250 : 54.9 :

:Matl: Crack Growth Eqn Constants (closure) :
: No. : C : n : p : q : DKo : Co : d : DK1 :Alpha : Smax/S:
: ---:------:------:------:------:---:-------:---:
: 1 : 0.275D-07 : 2.836 : 0.50 : 0.50 : 2.50 : 1.00 : 1.00 : 5.74 : 1.75 : 0.30 :
TEST OF SHIVAKUMAR SOLUTION ANALYSIS
MODEL: TC05

FATIGUE SPECTRUM STRESS TABLE

SAWTCOTH 0 - 30 KSI

<table>
<thead>
<tr>
<th>S</th>
<th>M</th>
<th>NUMBER</th>
<th>S0</th>
<th>S1</th>
<th>S2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T : A: OF : (ksi) : (ksi) : (ksi) :
P : L: CYCLES : t1 : t2 : t1 : t2 : t1 : t2 :

1: 1: 100 : 0.00 : 30.00 : 0.00 : 0.00 : 0.00 : 0.00 :

Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET

TEST OF SHIVAKUMAR SOLUTION ANALYSIS
MODEL: TC05

ANALYSIS RESULTS:

ADVISORY: Estimated Net Section Stress > Yield Strength.
at Cycle No. 0. of Load Step No. 1 of Block No. 1
Crack Size a = 0.750000E-01

<table>
<thead>
<tr>
<th>Block</th>
<th>Step</th>
<th>Final Flaw Size</th>
<th>K max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>a-tip</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.094329</td>
<td>24.414055</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.115210</td>
<td>24.922510</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0.137799</td>
<td>25.448033</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0.162406</td>
<td>26.050727</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0.189473</td>
<td>26.739437</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0.219583</td>
<td>27.535714</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0.253507</td>
<td>28.430209</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0.292277</td>
<td>29.476453</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0.337329</td>
<td>30.668877</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0.390770</td>
<td>32.098262</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0.456008</td>
<td>33.810283</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0.539788</td>
<td>36.204720</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0.668205</td>
<td>42.025305</td>
</tr>
</tbody>
</table>

FINAL RESULTS:
Unstable crack growth, max stress intensity exceeds critical value:
K max = 56.32 K cr = 54.94
at Cycle No. 24. of Load Step No. 1 of Block No. 14
Crack Size a = 0.747562
C. **Look-Up Table Analysis**

FATIGUE CRACK GROWTH ANALYSIS

U.S. customary units [inches, ksi, ksi sqrt(in)]

PROBLEM TITLE

TEST OF BOUNDARY ELEMENT LOOK UP TABLE ANALYSIS

GEOMETRY

MODEL: DT01-One-dimensional data table for through crack.

Plate Thickness, \(t = 0.2500 \)

\[
\begin{array}{ll}
a/D & F_0 \\
\hline
0.1000 & 1.7400 \\
0.2000 & 1.3800 \\
0.3000 & 1.2500 \\
0.4000 & 1.2000 \\
0.5000 & 1.1900 \\
0.6000 & 1.2000 \\
0.7000 & 1.2400 \\
0.8000 & 1.3400 \\
0.9000 & 1.6800 \\
\end{array}
\]

where

\(\sigma_0 \): TENSION STRESS

FLAW SIZE:

\(a \) (init.) = 0.7500E-01

MATERIAL

MATL 1: 7075-T6 AL, L-T

Material Properties:

\[
\begin{array}{lllllll}
: \text{Matl:} & \text{YS} & : \text{Kle} & : \text{Klc} & : \text{Ak} & : \text{Bk} & : \text{Thk} & : \text{Kc} & : \text{Kisc}: \\
: \text{No.}: & : & : & : & : & : & : \\
: & 65.0: & 42.0: & 27.0: & 0.75: & 1.25: & 0.250: & 54.9: \\
: \end{array}
\]

\[
\begin{array}{llllllll}
: \text{Matl:} & \text{Crack Growth Eqn Constants (closure)}: \\
: \text{No.}: & C & : n & : p & : q & : \text{DKo} & : \text{Co} & : d & : \text{DK1:Alpha:Smax}/: \\
: & 0.275D-07: & 2.836: & 0.50: & 0.50: & 2.50: & 1.00: & 1.00: & 5.74: & 1.75: & 0.30: \\
\end{array}
\]

113
TEST OF BOUNDARY ELEMENT LOOK UP TABLE ANALYSIS
MODEL: DT01

FATIGUE SPECTRUM INPUT TABLE

SAWTOOTH 0 - 30 KSI

(Note: Stress = Input Value * Stress Factor)
Stress Factor SF0: 1.0

<table>
<thead>
<tr>
<th>S</th>
<th>M</th>
<th>NUMBER</th>
<th>Stress Factor SF0</th>
<th>SF0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S0</td>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>

T : A: OF
E : T: FATIGUE
P : L: CYCLES : t1 : t2 :

Environmental Crack Growth Check for Sustained Stresses
(Kmax less than KIscc): NOT SET

TEST OF BOUNDARY ELEMENT LOOK UP TABLE ANALYSIS
MODEL: DT01

ANALYSIS RESULTS:

<table>
<thead>
<tr>
<th>Block</th>
<th>Final Flaw Size a</th>
<th>Kmax a-tip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.100650</td>
<td>26.642060</td>
</tr>
<tr>
<td>2</td>
<td>0.131098</td>
<td>27.751991</td>
</tr>
<tr>
<td>3</td>
<td>0.166947</td>
<td>29.046889</td>
</tr>
<tr>
<td>4</td>
<td>0.211160</td>
<td>30.923850</td>
</tr>
<tr>
<td>5</td>
<td>0.270492</td>
<td>33.563043</td>
</tr>
<tr>
<td>6</td>
<td>0.361315</td>
<td>38.080432</td>
</tr>
</tbody>
</table>

FINAL RESULTS:
Unstable crack growth, max stress intensity exceeds critical value:
Kmax = 55.11, Kcr = 54.94
at Cycle No. 95 of Load Step No. 1 of Block No. 7
Crack Size a = 0.599436

114
Appendix F: Comparison of Regression Fit Analysis

This appendix shows examples of linear regression fits for large and small crack ratios, for both r (distance from crack tip) and r^2. As was explained in the main text of this thesis, there is insignificant differences for the values of K_I predicted for small crack ratio problems from linear regression fits of K_I vs r or r^2. Figures 27 and 28 show the plots of K_I vs r and r^2 respectively for a small crack ratio problem (crack ratio - 0.1) from the tension strip parametric study of section VII. This data is for hole diameter equal to 0.25 inches and pitch equal to four diameters. Both plots indicate a value of K_I at $r=0$ of approximately 39 KSI(in)$^{1/2}$. However, Figures 29 and 30 show the same plots for a crack ratio of 0.9 (same diameter hole and pitch). While the r^2 regression fit will indicate a K_I value of 112.7 KSI(in)$^{1/2}$, the r fit data will not even predict a positive value of K_I. It is hypothesized that the indicated values of K_I are not linear in r, and the portion of the K_I vs r curve plotted in Figure 29 is quadratic in r. Therefore a linear regression fit is inadequate for the large crack ratios, and was not used for the parametric study of section VII.
Figure 27. Stress Intensity Factor Vs Radius (Crack Ratio=0.1)
Figure 28. Stress Intensity Factor vs Radius^2 (Crack Ratio=0.1)
Figure 29. Stress Intensity Factor Vs Radius (Crack Ratio=0.9)
Figure 30. Stress Intensity Factor Vs Radius^2 (Crack Ratio=0.9)
Bibliography

25. Two Hole Tension Strip with Large Crack Stress Intensity Factor Analysis. PROBE sample problem. Noetic Technologies, St. Louis, MO, (undated)
Vita

Timothy C. Kelley in 1977 attended the University of Maryland from which he received his Bachelor of Science in Aerospace Engineering in May 1982. Upon graduation and commissioning through the R.O.T.C. program, he was stationed at Wright-Patterson AFB, Ohio. At WPAFB, he was assigned to the Aeronautical Systems Division and served as an aircraft static strength engineer. While serving at ASD he took all the courses required for the Master of Science degree as a part-time student. He separated from the Air Force in 1986 and is currently working as a static, durability and damage tolerance engineer at E-Systems Inc., Greenville, Texas.
1. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED

2. SECURITY CLASSIFICATION AUTHORITY

UNCLASSIFIED

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

AFIT/GAE/AA/88S-1

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6. NAME OF PERFORMING ORGANIZATION

School of Engineering

7a. NAME OF MONITORING ORGANIZATION

AFIT/ENY

7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, OH 45433

8a. NAME OF FUNDING/SPONSORING ORGANIZATION

8b. OFFICE SYMBOL (if applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

10. SOURCE OF FUNDING NUMBERS

11. TITLE (Include Security Classification)

See Box 19

12. PERSONAL AUTHOR(S)

Timothy C. Kelley, B.S.

13a. TYPE OF REPORT

MS Thesis

13b. TIME COVERED FROM TO

1988 September

14. DATE OF REPORT (Year, Month, Day)

1988 September

15. PAGE COUNT

131

16. SUPPLEMENTARY NOTATION

17. COSATI CODES

<table>
<thead>
<tr>
<th>FIELD</th>
<th>GROUP</th>
<th>SUB-GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>01</td>
<td></td>
</tr>
</tbody>
</table>

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Boundary Elements, Fracture, Crack

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Title: Application of the Boundary Element Method to Fatigue Crack Growth Analysis

Thesis Chairman: Anthony N. Palazotto
Professor of Aeronautics and Astronautics

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL

Anthony N. Palazotto

22b. TELEPHONE (Include Area Code)

513-255-2998

22c. OFFICE SYMBOL

AFIT/ENY
This investigation analyzes a crack emanating from one hole, and approaching a second hole, in a two hole tension strip with finite boundaries using the Boundary Element Method. The study included the effects of varying the hole diameter, hole separation and the length of crack. The final results were plotted as a function of the geometric correction factor β, which can be presented as a family of curves. An example damage tolerance analysis is presented with the β curves being incorporated into a β look-up table as used in the NASA/FLAGRO fatigue crack growth program. This technique is acceptable in most fatigue crack growth programs now used in the aircraft industry to ensure aircraft structural integrity.

Several classic fracture mechanics problems are analyzed, and computational efficiency as compared to conventional finite element techniques is investigated. Agreement with analytic solutions as well as other numerical methods (finite element) is excellent. The computation efficiency was shown to an improvement over existing methods.

Keywords:

beta

Failure

Fracture

Engineering

Materials

Theses

Sources