EFFECTS OF REDUCED ORDER MODELING ON
THE CONTROL OF A LARGE
SPACE STRUCTURE

by

William J. Preston

September 1988

Thesis Advisor: Jeff B. Burl

Approved for public release; distribution is unlimited
EFFECTS OF REDUCED ORDER MODELING ON THE CONTROL OF A LARGE SPACE STRUCTURE

The motion of a large space structure, such as a space station, is described by a large number of coupled, second order differential equations. To effectively control this structure, a mathematical model is required. Both the mathematical model developed directly from the physics of the structure, and the simplified model developed with modal analysis are of extremely high dimension. A reduced order model is therefore required in order to design a control system for the structure.

A straightforward approach to the control problem is taken by using linear quadratic optimal control techniques to determine the reduced order control solution for the truncated modal model. The effects of reduced order modeling on the control of the space station will be evaluated by observing the response of the closed loop system to several disturbances.

Keywords: space station; mathematical model; modal analysis; reduced order control; modal analysis; discrete/time Riccati equation.
Effects of Reduced Order Modeling on the Control of a Large Space Structure

by

William J. Preston
Major, United States Marine Corps
B.S., Bradley University, 1975

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 1988

Author:

William J. Preston

Approved by:

Jeff B. Burl, Thesis Advisor
H. A. Titus, Second Reader
John P. Powers, Chairman,
Department of Electrical and Computer Engineering

Gordon E. Schacher,
Dean of Science and Engineering
ABSTRACT

The motion of a large space structure, such as a space station, is described by a large number of coupled, second order differential equations. To effectively control this structure, a mathematical model is required. Both the mathematical model developed directly from the physics of the structure, and the simplified model developed with modal analysis are of extremely high dimension. A reduced order model is therefore required in order to design a control system for the structure.

A straightforward approach to the control problem is taken by using linear quadratic optimal control techniques to determine the reduced order control solution for the truncated modal model. The effects of reduced order modeling on the control of the space station will be evaluated by observing the response of the closed loop system to several disturbances.
THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may not have been exercised for all cases of interest. While every effort has been made, within the time available, to ensure that the programs are free of computational and logic errors, they cannot be considered validated. Any application of these programs without additional verification is at the risk of the user.
TABLE OF CONTENTS

I. INTRODUCTION ... 1
 A. BACKGROUND ... 1
 B. PROBLEM STATEMENT 2
 C. ORGANIZATION .. 2

II. THE MATHEMATICAL MODEL 3
 A. INTRODUCTION ... 3
 B. THE MODAL MODEL 3
 C. DISCRETE-TIME MODEL 6

III. THE CONTROL SOLUTION 10
 A. INTRODUCTION ... 10
 B. SYSTEM PERFORMANCE EVALUATION 10
 C. RICCATI SOLUTION 12

IV. SIMULATION AND RESULTS 15
 A. INTRODUCTION ... 15
 B. MODEL DATA ... 15
 C. SIMULATION PROGRAM 16
 D. RESULTS ... 21

V. CONCLUSIONS AND RECOMMENDATIONS 46
 A. CONCLUSIONS .. 46
 B. RECOMMENDATIONS 46

APPENDIX A. SPACE STRUCTURE SIMULATION PROGRAM 47

APPENDIX B. MODAL DATA 61
 A. MODAL SLOPES FOR NODE 69 61
 B. MODAL SLOPES FOR NODE 23 63
 C. MODAL SLOPES FOR NODE 55 65

\[\]
LIST OF REFERENCES .. 67

INITIAL DISTRIBUTION LIST .. 69
LIST OF TABLES

Table 1. NATURAL FREQUENCIES OF THE SYSTEM. 16
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Representation of a Dual Keel Space Station</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Node Location Diagram</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>Sample Output for a Two Mode Model of Reduced Order Control</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>System Energy of a Full Order Model with Reduced Order Control</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>System Energy of a Reduced Order Model with Reduced Order Control</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>Node 55 Response with 5 Controlled Modes</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>Node 55 Response with 10 Controlled Modes</td>
<td>26</td>
</tr>
<tr>
<td>8</td>
<td>Node 55 Response with 15 Controlled Modes</td>
<td>27</td>
</tr>
<tr>
<td>9</td>
<td>Node 55 Response with 20 Controlled Modes</td>
<td>28</td>
</tr>
<tr>
<td>10</td>
<td>Node 55 Response with 25 Controlled Modes</td>
<td>29</td>
</tr>
<tr>
<td>11</td>
<td>Node 55 Response with 30 Controlled Modes</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>Node 55 Response with 35 Controlled Modes</td>
<td>31</td>
</tr>
<tr>
<td>13</td>
<td>Node 55 Response with 40 Controlled Modes</td>
<td>32</td>
</tr>
<tr>
<td>14</td>
<td>Node 55 Response with 45 Controlled Modes</td>
<td>33</td>
</tr>
<tr>
<td>15</td>
<td>Node 55 Response with 50 Controlled Modes</td>
<td>34</td>
</tr>
<tr>
<td>16</td>
<td>Node 23 Response with 5 Controlled Modes</td>
<td>35</td>
</tr>
<tr>
<td>17</td>
<td>Node 23 Response with 10 Controlled Modes</td>
<td>36</td>
</tr>
<tr>
<td>18</td>
<td>Node 23 Response with 15 Controlled Modes</td>
<td>37</td>
</tr>
<tr>
<td>19</td>
<td>Node 23 Response with 20 Controlled Modes</td>
<td>38</td>
</tr>
<tr>
<td>20</td>
<td>Node 23 Response with 25 Controlled Modes</td>
<td>39</td>
</tr>
<tr>
<td>21</td>
<td>Node 23 Response with 30 Controlled Modes</td>
<td>40</td>
</tr>
<tr>
<td>22</td>
<td>Node 23 Response with 35 Controlled Modes</td>
<td>41</td>
</tr>
<tr>
<td>23</td>
<td>Node 23 Response with 40 Controlled Modes</td>
<td>42</td>
</tr>
<tr>
<td>24</td>
<td>Node 23 Response with 45 Controlled Modes</td>
<td>43</td>
</tr>
<tr>
<td>25</td>
<td>Node 23 Response with 50 Controlled Modes</td>
<td>44</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

I would like to express my appreciation to the McDonnell Douglas Astronautics Company of Huntington Beach, California, for providing the dynamic model of a preliminary space station configuration. Also, I would like to thank Professor Alan J. Laub of the University of California at Santa Barbara for the subroutine solution to the discrete-time Riccati equation. This was essential to the completion of this study. Finally, I would like to thank Professor J. B. Burl for his patience and assistance in the completion of this work.

This thesis is dedicated to [redacted]. Without their support this work would not have been possible.
I. INTRODUCTION

A. BACKGROUND

A large space structure, such as a space station, presents numerous control problems to the engineer. One such problem involves the control of unwanted vibrations. These vibrations must be controlled to prevent the disruption of delicate scientific experiments and maintain the stability of the structure.

The lightweight materials used in the construction of the space station and its large size combine to form a flexible, lightly damped structure that will vibrate for a considerable length of time when disturbed. This thesis addresses the problem of actively controlling these vibrations. A representation of a dual keel space station, courtesy of McDonnell Douglas Astronautics, is presented in Figure 1.

![Figure 1. Representation of a Dual Keel Space Station.](image-url)
B. PROBLEM STATEMENT

To solve the vibration control problem, several steps are required. First, a mathematical model must be developed that describes the behavior of the system over time. Modal analysis develops the modal model representing the system as a set of uncoupled, simultaneous, second order differential equations. The order of this model is high, making control design and implementation difficult. A reduced order model can be easily generated by truncating the modal equations.

Second, a control system must be designed using the mathematical model. The control system design is performed using optimal control techniques, that is, a control solution is found that will minimize a performance or cost function of the structure. In this case, the cost function will be the vibrational energy of the structure plus a term representing the control energy. This cost is then minimized through the development of an optimal feedback gain matrix.

Third, the controlled model must be simulated to determine the system response to a disturbance applied to various points on the structure. This simulation will utilize various optimal gain matrices based on a range of reduced order models. The effects of reduced order modeling on the control of the space station will be evaluated by observing the response of the closed loop system to several disturbances.

Finally, conclusions will be presented based on the results, and recommendations will be made for further areas of research.

C. ORGANIZATION

In Chapter II, the model of a space station will be developed. The modal model is developed and discretized to yield the discrete-time state equations used in the simulation. The data for this model was provided by the McDonnell Douglas Astronautics Company.

The desired performance function will be obtained in Chapter III, along with the optimal gain matrix necessary to minimize this function. Together, these provide the basis for the reduced order control solution.

Chapter IV presents the computer simulation of the model and the reduced order control solution. The results of reduced order control on the system will be evaluated.

Conclusions based on the simulation results are presented in Chapter V, as well as recommendations for areas of future investigation.
II. THE MATHEMATICAL MODEL

A. INTRODUCTION

A mathematical model describing the motion of the space station is required for effective control. Because of its size and construction, the space station can be considered to be a lightly damped, vibrating structure which, when disturbed by an external force, may vibrate for a considerable length of time.

The space station can be modeled as a finite number of discrete masses connected by springs and dashpots. This is a complex description of the system's motion and is quite difficult to work with. By expressing the equations of motion in terms of the structure's natural modes of vibration a simpler model will be obtained.

The natural modes of the system will form the basis for the continuous-time mathematical model, developed in section B, expressed in terms of an uncoupled set of second order differential equations. The discrete-time model will be derived in section C from the results of section B.

B. THE MODAL MODEL

The space station is a lightly damped structure consisting of numerous natural modes of vibration. The structure can be modeled as a system of discrete masses connected by springs and dashpots. In mechanical systems, the springs represent the stiffness factor and the dashpots represent the damping factor of the system. The displacement of the masses can be described by a second order matrix differential equation of motion:

\[M \ddot{\mathbf{q}}(t) + \frac{d}{\omega_f} K \dot{\mathbf{q}}(t) + \mathbf{K} \mathbf{q}(t) = F(t) \]

(2.1)

where:

- \(\mathbf{q} \) is the generalized coordinate vector
- \(M \) is the diagonal system mass matrix
- \(\frac{d}{\omega_f} K \) is the structural damping term
- \(d \) is the damping constant
- \(\omega_f \) is the frequency of oscillation of the system
- \(K \) is the symmetric system stiffness matrix
- F(t) is the system forcing function.

This equation represents a system of simultaneous, second order differential equations that are coupled through the K matrix.

Equation (2.1) can be decoupled by expressing q in terms of the natural modes of vibration. This is known as the process of modal analysis. The system is then represented by a set of independent differential equations that can be treated individually. Hurty and Rubinstein [Ref. 1] and Meirovitch [Ref. 2] outline the modal approach that forms the basis for the model developed in this section.

The first step in the model's development is the solution of the undamped, homogeneous form of Equation (2.1):

$$ M \ddot{q}(t) + K q(t) = 0. \quad (2.2) $$

The solution to this equation can be found in any elementary differential equations textbook and can be written as:

$$ q(t) = A x \sin(\omega t + \Theta) \quad (2.3) $$

and

$$ \ddot{q}(t) = -A x \omega^2 \sin(\omega t + \Theta). \quad (2.4) $$

Substituting these expressions into Equation (2.1) and solving:

$$ [K - \omega^2 M] x = 0 \quad (2.5) $$

or

$$ Kx = \omega^2 Mx. \quad (2.6) $$

Equation (2.5) is an eigenequation with n combinations of x and \(\omega \) as solutions. Grouping the individual solutions:

$$ X = [x_1 \ x_2 \ \ldots \ x_n]^T \quad (2.7) $$

$$ \Omega^2 = \text{diag}[\omega_{\phi_1}^2, \omega_{\phi_2}^2, \ldots, \omega_{\phi_n}^2]. \quad (2.8) $$

all solutions can be found by solving the matrix eigenvalue problem:

$$ KX = \Omega^2 MX \quad (2.9) $$
where Ω^2 is the system natural frequency matrix and X is the system eigenvector or modal matrix. The individual elements of Ω are referred to as the natural frequencies, or eigenvalues of the system, and the columns of X are referred to as the natural mode shapes or the eigenvectors. Several properties of the eigenvector matrix are useful and can be developed by premultiplying Equation (2.9) by X^T:

$$X^T KX = \Omega^2 X^T MX.$$ \hfill (2.10)

The eigenvectors can be normalized:

$$X^T MX = I$$ \hfill (2.11)

where I is the identity matrix. From Equation (2.10), it follows:

$$X^T KX = \Omega^2 I - \Omega^2$$ \hfill (2.12)

where Ω^2 is a diagonal matrix.

The equations of motion can be uncoupled through a linear transformation of the coordinate system [Ref. 3):

$$q(t) = X, \eta(t)$$ \hfill (2.13)

where $q(t)$ and $\eta(t)$ are two different sets of generalized coordinate systems and
- X is the modal matrix
- n is the maximum number of degrees of freedom
- $\eta(t)$ is the transformed coordinate vector or the modal amplitude vector.

Applying the transformation to the system results in:

$$M \ddot{X}\eta(t) + \frac{d}{dt} KX\eta(t) + KX\eta(t) = F(t).$$ \hfill (2.14)

Multiplying both sides of Equation (2.14) by X^T:

$$X^T M X\ddot{\eta}(t) + \frac{d}{dt} X^T KX\eta(t) + X^T KX\eta(t) = X^T F(t).$$ \hfill (2.15)

Applying Equations (2.11) and (2.12), noting that for wideband excitation, $\omega \approx \omega_n$:

$$\ddot{\eta} + d\Omega \dot{\eta} + \Omega^2 \eta = X^T F$$ \hfill (2.16)
where Ω has been established as a diagonal matrix. Equation (2.16) is the modal model, representing an uncoupled set of second order differential equations describing the motion of the structure in terms of its natural modes of vibration.

C. DISCRETE-TIME MODEL

The discrete-time, state space model is found by solving the continuous-time equations obtained in Section B. Solving the modal system of equations for the i^{th} solution determines the solution for all the individual second order differential equations of motion. The solution to this single equation will be used in the computer simulation.

The i^{th} equation of motion is expressed as:

$$
\ddot{\eta}(t) + d\omega_d\dot{\eta}(t) + \omega_d^2\eta(t) = x_i^T F(t)
$$

(2.17)

where:
- x_i^T is the transpose of the i^{th} mode shape vector
- $F(t)$ is the torquing force applied at a point.

The homogeneous solution of this second order differential equation is:

$$
\eta(t) = C_1 e^{-\frac{\omega_d t}{2}} \cos(\mu t) + C_2 e^{-\frac{\omega_d t}{2}} \sin(\mu t)
$$

(2.18)

where

$$
\mu = \sqrt{4\omega_d^2 - d^2 \omega_d^2}.
$$

(2.19)

By defining

$$
\gamma = \frac{d\omega_d}{2}
$$

(2.20)

and

$$
\mu = \omega_d = \sqrt{\omega_d^2 - \gamma^2}
$$

(2.21)

then substituting Equations (2.20) and (2.21) into Equation (2.18), the solution can be written:

$$
\eta(t) = C_1 e^{-\gamma t} \cos(\omega_d t) + C_2 e^{-\gamma t} \sin(\omega_d t)
$$

(2.22)

and
\[\dot{\eta}(t) = (C_2 \omega_d - C_1 y)e^{-\gamma t} \cos(\omega_d t) - (C_1 \omega_d + C_2 y)e^{-\gamma t} \sin(\omega_d t). \] (2.23)

At \(t = 0 \), Equations (2.22) and (2.23) become:

\[\eta(0) = C_1 \] (2.24)

and

\[\dot{\eta}(0) = C_2 \omega_d - C_1 y. \] (2.25)

Solving for \(C_1 \) and \(C_2 \):

\[
\begin{bmatrix}
C_1 \\
C_2
\end{bmatrix} =
\begin{bmatrix}
\frac{1}{\omega_d} & 0 \\
\frac{\gamma}{\omega_d} & \frac{1}{\omega_d}
\end{bmatrix}
\begin{bmatrix}
\eta(0) \\
\dot{\eta}(0)
\end{bmatrix}.
\] (2.26)

The homogeneous solution to Equation (2.17) can then be written in terms of \(C_1 \) and \(C_2 \):

\[
\begin{bmatrix}
\eta(t) \\
\dot{\eta}(t)
\end{bmatrix} =
\begin{bmatrix}
e^{-\gamma t} \cos(\omega_d t) & e^{-\gamma t} \sin(\omega_d t) \\
e^{-\gamma t}[g \cos(\omega_d t) + \omega_d \sin(\omega_d t)] & e^{-\gamma t}[\omega_d \cos(\omega_d t) - \gamma \sin(\omega_d t)]
\end{bmatrix}
\begin{bmatrix}
C_1 \\
C_2
\end{bmatrix}.
\] (2.27)

Substituting Equation (2.26) into Equation (2.27), this solution can be written in terms of the initial conditions:

\[
\begin{bmatrix}
\eta(t) \\
\dot{\eta}(t)
\end{bmatrix} =
\begin{bmatrix}
e^{-\gamma t}\left[\cos(\omega_d t) + \frac{\gamma}{\omega_d} \sin(\omega_d t) \right] & \frac{1}{\omega_d} e^{-\gamma t} \sin(\omega_d t) \\
e^{-\gamma t}\left[\cos(\omega_d t) - \frac{\gamma}{\omega_d} \sin(\omega_d t) \right] & e^{-\gamma t}\left[\omega_d \cos(\omega_d t) - \frac{\gamma}{\omega_d} \sin(\omega_d t) \right]
\end{bmatrix}
\begin{bmatrix}
\eta(0) \\
\dot{\eta}(0)
\end{bmatrix}.
\] (2.28)

Letting

\[
Z(t) = \begin{bmatrix} \eta(t) \\ \dot{\eta}(t) \end{bmatrix}
\] (2.29)

and
\[
\Phi_i = \begin{bmatrix}
 e^{-\gamma t} & \frac{1}{\omega_d} e^{-\gamma t} \\
 -\frac{\omega_0^2}{\omega_d} e^{-\gamma t} & e^{-\gamma t} \\
\end{bmatrix}
\]

the solution can be written:

\[
\dot{Z}_i(t) = \Phi_i(t)Z_i(t)
\]

(2.31)

where \(\Phi_i\) is the state transition matrix of the \(i^{th}\) mode. The nonhomogeneous solution is obtained from:

\[
\dot{Z}_i(t) = \Phi_i(t)Z_i(t) + \Gamma_i x_i^T F(t)
\]

(2.32)

where the discrete-time input matrix is given by:

\[
\Gamma_i = \int_0^T \Phi_i(t) B \partial t,
\]

(2.33)

\(B = [0 \ 1]^T\) is the input matrix for the continuous-time system, and \(T\) is the sampling time [Ref. 4: p. 59]. Solving Equation (2.33) yields:

\[
\Gamma_i = \begin{bmatrix}
 \frac{1}{\omega_o} \left[1 - e^{-\gamma T} \cos(\omega_d T) - \frac{\gamma}{\omega_d} e^{-\gamma T} \sin(\omega_d T) \right]
 \\
 \frac{1}{\omega_d} e^{-\gamma T} \sin(\omega_d T)
\end{bmatrix}
\]

(2.34)

The discrete-time state equation for the \(i^{th}\) equation of motion can now be written:

\[
Z_i(kT + 1) = \Phi_i(kT) Z_i(kT) + \Gamma_i(kT) x_i^T F(kT)
\]

(2.35)

where \(\Phi\), and \(\Gamma\), are evaluated at \(t = T\). Summarizing the terms:

- \(Z_i\) is a vector of the \(i^{th}\) modal amplitude and the \(i^{th}\) modal velocity
- \(\Phi_i\) is the \(i^{th}\) state transition matrix
- \(\Gamma_i\) is the \(i^{th}\) input vector
- \(x_i^T\) is the transpose of the \(i^{th}\) mode shape vector
- \(F\) is the control torque force vector applied at a point
- \(T\) is the sampling time
• k is the time index.

Equation (2.35) can be expanded to include a disturbance input:

\[Z(kT + 1) = \Phi(T) Z(kT) + \Gamma(T) x^T \left[F(kT) + w(kT) \right] \] (2.36)

where \(w(kT) \) is the disturbance input. Equation (2.36) is the discrete-time mathematical modal model describing the motion of the space structure in terms of its natural modes of vibration. The computer simulation of Chapter IV will solve the equations of motion by iterating this discrete-time model.
III. THE CONTROL SOLUTION

A. INTRODUCTION

The mathematical model derived in Chapter II represents a system with a control input and a random disturbance input. The problem that must be solved now is the development of the input that will effectively control the structure. The plant order is sufficiently large to preclude all but an optimal approach to the control problem [Ref. 4: p. 337]. Optimal control techniques attempt to find a control law which forces the system to follow a path that minimizes a given performance measure. [Ref. 5: p. 11]

Control system optimization involves the selection of a performance measure that describes a given characteristic, or property, of the system. Minimization of the performance measure is achieved by calculating the control gains and applying them to the system through state feedback. A suitable performance function based on the vibrational energy of the structure will be developed in Section B. This performance function, also referred to as the cost function, will provide a means of comparing various control models. The solution to the discrete-time Riccati equation, providing the necessary feedback gains required for an optimal control scheme, will be presented in Section C. A control system for the space station is then generated by applying the optimal control solution developed in this chapter to either the full order or reduced order model.

B. SYSTEM PERFORMANCE EVALUATION

The system mathematical model has been established. An expression must now be derived that will quantify control system performance and allow for a comparisons between competing systems. Kirk states:

In selecting a performance measure the designer attempts to define a mathematical expression which when minimized indicates that the system is performing in the most desirable manner. Thus, choosing a performance measure is a translation of the systems physical requirements into mathematical terms [Ref. 5: p. 34].

Structural vibration is a physical property of the space station that disrupts the environment within the system. Vibrational energy in the structure can be due to any number of disturbances, for example:

- space shuttle docking
- rotating machinery
- positioning jet reaction
• movement of crew members
• rotation of solar panels.

A reasonable performance function is based on the vibrational energy of the structure. This performance function results in the control forces needed to minimize this vibration.

The performance measure is placed in a precise mathematical framework:

\[J = E[T.E.] + E[u^T R u] \]

(3.1)

where
- \(E[\cdot] \) is the expected value of
- T.E. is the total vibrational energy
- \(u^T R u \) limits the magnitude of the control force.

The total energy consists of the potential and kinetic energies of the structure at any point in time. This can be expressed in matrix form:

\[T.E.(t) = P.E.(t) + K.E.(t) = \frac{1}{2} \left[q^T(t)Kq(t) + q^T(t)Mq(t) \right] \]

(3.2)

Applying the coordinate transformation of Chapter II, the energy equations are written in terms of the modal amplitudes and modal velocities as:

\[P.E.(k) = \frac{1}{2} \sum_{i=1}^{n} \omega_{pi}^2 \eta_i^2(k) \]

(3.3)

and

\[K.E.(k) = \frac{1}{2} \sum_{i=1}^{n} \dot{\eta}_i^2(k). \]

(3.4)

Note that the energy terms are summed over the \(n \) modes of the system. Defining the state weighting matrix \(Q_i \) as:

\[Q_i = \begin{bmatrix} \omega_{pi}^2 & 0 \\ 0 & 1 \end{bmatrix} \]

(3.5)

permits the total energy to be written in terms of the modal state vectors as:
and applying Equation (2.29) results in:

\[
T.E.(k) = \frac{1}{2} \sum_{i=1}^{n} \left[\eta_i(k) \dot{\eta}_i(k) \right] Q \left[\eta_i(k) \right],
\]

(3.6)

and applying Equation (2.29) results in:

\[
T.E.(k) = \frac{1}{2} \sum_{i=1}^{n} \bar{Z}_i^T(k)Q \bar{Z}_i(k).
\]

(3.7)

The cost function of Equation (3.1) can now be written:

\[
J = E \left[\frac{1}{2} \sum_{i=1}^{n} \bar{Z}_i^T(k)Q \bar{Z}_i(k) + u^T(k)Ru(k) \right]
\]

(3.8)

where \(J \) is a quadratic performance measure. A great deal of theory is available concerning the solution of quadratic optimal control problems. [Ref. 6: p. 84]

The system performance will be found by computer simulation and comparisons of various reduced order models will be made. Evaluation of the expected values by monte carlo methods is tedious. An alternative approach is to compute the expected values from the impulse response:

\[
J = \sum_{k=0}^{\infty} \left[\frac{1}{2} \sum_{i=1}^{n} \left[h_{\eta i}(k) \omega_{h_{\eta i}}^2 h_{\eta i}(k) + h_{\eta i}(k) h_{\eta i}(k) + h_{\eta i}(k) R h_{\eta i}(k) \right] \right]
\]

(3.9)

where

- \(h_{\eta i}(k) \) is the impulse response of \(\eta \)
- \(h_{\eta i}(k) \) is the impulse response of \(\dot{\eta} \)
- \(h_{\eta i}(k) \) is the impulse response of \(u \).

This equation can be easily evaluated by computer simulation. [Ref. 6: p. 85]

C. RICCATI SOLUTION

The solution to the quadratic optimal control problem is well known and extensively documented [Ref. 4: p. 338]. The optimal gain matrix must be chosen so Equation (3.8) will be minimized when the feedback loop is closed in Equation (2.36). The optimal control is state feedback:

\[
F(k) = u(k) = L \bar{Z}(k)
\]

(3.10)
where the optimal gain matrix, L, is computed:

$$L = -(R + \Gamma X_c^T \Gamma X_c)^{-1}(\Gamma X_c^T)\Theta$$

(3.11)

and

- S is the steady-state matrix solution of the Riccati equation
- X_f is the mode shape matrix of the control node.

The product of the gain matrix and the time varying state matrix, Z, defines the control torque vector, $u(k)$.

The solution matrix, S, is found by solving the discrete-time Riccati equation:

$$S = \Phi^T S \Phi - \Phi^T \Sigma \Gamma X_c^T (R + (\Gamma X_c^T) \Sigma \Gamma X_c)^{-1}(\Gamma X_c^T) \Theta + Q.$$

(3.12)

The solution to the Riccati equation is achieved by a variation of the Hamiltonian-Eigenvector approach. [Ref. 7,8]

The physical control of the structure is achieved by a system of control moment gyros or torquers. The mode shape vector X_i comprises the six degrees of freedom of the ith mode: three degrees of modal deflection and three degrees of modal slope. For these point torquers, only the modal slopes at the torquer location are of concern in the development of the control input vector. The input matrix can then be simplified:

$$B = \Gamma X_c^T = \Gamma x'_c.$$

(3.13)

where x'_c is the row matrix of the modal slopes at the control moment gyro location.

This simplification can also be applied to the point input disturbance where:

$$BN = \Gamma x'_n.$$

(3.14)

and

- BN is the noise input matrix
- x'_n is the modal slope matrix associated with the disturbance node.

The discrete-time state of Equation (2.36) can now be written as:

1 The subroutine to solve the discrete-time Riccati equation was provided by Prof. Alan J. Laub, University of California, Santa Barbara.
\[Z(k+1) = \Phi Z(k) + B u(k) + BN w(k) \]

(3.15)

where \(w(k) \) is the applied disturbance input.

The space station has now been completely defined. It exists as a discrete-time mathematical model, consisting of a set of \(i \) uncoupled simultaneous differential equations of motion, expressed in terms of the natural modes of vibration. The control system is defined by the performance measure and either the full order or reduced order model. The vibrational energy of the structure is the measure of performance by which the reduced order control system will be judged. Input to the discrete-time Riccati equation consists of the state transition and input matrices of the model as well as the state weighting matrix and the modal slopes. The optimal control torques are based on the solution of this equation. The final product is Equation (3.15) which forms the framework for the simulation of Chapter IV.
IV. SIMULATION AND RESULTS

A. INTRODUCTION

The objective of the simulation is to determine the system response to disturbances applied at various points on the structure. This is accomplished by iterating the discrete-time model developed in Chapter 11.

The process outlined above is covered in three sections. The specifics of the data used to model the space structure are discussed in Section B. An overview of the simulation program is given in Section C, and the specific disturbance used to excite the structure is introduced. The results of the simulation for various control conditions and disturbance locations are presented and discussed in Section D.

B. MODEL DATA

The dynamic model used in the simulation is for a preliminary space station configuration; the phase II dual keel structure. The model consists of the first 100 natural modes, i.e., the natural frequencies for the first 100 modes and a matrix of 100 mode shapes for 114 nodes with six degrees of freedom at each node. The natural frequencies of the structure are shown in Table I. The first six natural frequencies correspond to rigid body modes with the first bending mode beginning at number seven. Development of the reduced order control will be based on these bending modes. The modal amplitude data was normalized for a modal mass of $\frac{1 \text{lb-s}^2}{\text{in}}$, specifying that the units for the simulation be given in the English system.

The system of 114 nodes is quite large, and it would be difficult to observe the response due to disturbances at each node. Therefore, three nodes of particular interest are considered in the simulation. They are the shuttle docking point at node 23, the alpha-joint at node 55, and the location of the control moment gyros at node 69. The relative locations of these nodes on the structure is depicted in Figure 2 on page 17. These particular nodes are singled out for consideration because they are the point locations of either the applied control forces (node 69) or the applied disturbance force.

2 The dynamic model for a preliminary space station configuration is provided courtesy of McDonnell Douglas Astronautics Company, 5301 Bolsa Avenue, Huntington Beach, CA 92647.

3 The alpha-joint is the physical connection between the fixed structure and the rotating solar panels.
The modal slopes associated with these particular nodes are listed in Appendix B.

Table 1. NATURAL FREQUENCIES OF THE SYSTEM.

<table>
<thead>
<tr>
<th>MODE</th>
<th>NATURAL FREQUENCIES (RAD/SEC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-- 4</td>
<td>0.000000 0.000000 0.000000 0.000000</td>
</tr>
<tr>
<td>5-- 8</td>
<td>0.000000 0.000000 0.568990 0.589359</td>
</tr>
<tr>
<td>9-- 12</td>
<td>0.615521 0.617321 0.629436 0.636641</td>
</tr>
<tr>
<td>13-- 16</td>
<td>0.638447 0.644367 0.657092 0.666360</td>
</tr>
<tr>
<td>17-- 20</td>
<td>0.782755 0.872754 1.003968 1.176393</td>
</tr>
<tr>
<td>21-- 24</td>
<td>1.377384 1.368371 1.432527 1.548961</td>
</tr>
<tr>
<td>25-- 28</td>
<td>1.839599 1.938523 2.227364 2.502074</td>
</tr>
<tr>
<td>29-- 32</td>
<td>2.893535 3.237640 3.290682 3.374448</td>
</tr>
<tr>
<td>33-- 36</td>
<td>3.861861 4.025045 4.058060 4.304161</td>
</tr>
<tr>
<td>37-- 40</td>
<td>4.551648 4.912770 5.023232 5.760018</td>
</tr>
<tr>
<td>41-- 44</td>
<td>6.342151 6.616597 6.728905 7.930507</td>
</tr>
<tr>
<td>49-- 52</td>
<td>10.273631 10.86124 11.217507 11.517843</td>
</tr>
<tr>
<td>53-- 56</td>
<td>11.771471 12.086158 13.359929 13.580529</td>
</tr>
<tr>
<td>57-- 60</td>
<td>14.019046 15.184227 15.480412 15.936337</td>
</tr>
<tr>
<td>61-- 64</td>
<td>17.891786 18.626617 20.483673 21.206009</td>
</tr>
<tr>
<td>65-- 68</td>
<td>23.067856 24.457626 25.562012 26.497147</td>
</tr>
<tr>
<td>69-- 72</td>
<td>27.506271 29.056931 30.375656 31.485458</td>
</tr>
<tr>
<td>73-- 76</td>
<td>31.687027 34.245392 35.77115 37.533536</td>
</tr>
<tr>
<td>77-- 80</td>
<td>39.633835 39.815964 40.360901 40.688721</td>
</tr>
<tr>
<td>81-- 84</td>
<td>42.03925 42.76260 44.13909 46.143112</td>
</tr>
<tr>
<td>85-- 88</td>
<td>46.860184 48.904663 49.485962 51.044510</td>
</tr>
<tr>
<td>89-- 92</td>
<td>51.501099 52.48784 55.534714 59.416992</td>
</tr>
<tr>
<td>93-- 96</td>
<td>62.643478 62.981720 65.679138 67.077789</td>
</tr>
<tr>
<td>97--100</td>
<td>67.632050 70.915939 75.197777 78.000229</td>
</tr>
</tbody>
</table>

C. SIMULATION PROGRAM

The Space Structure Simulation Program, listed in Appendix A, is written to simulate the space structure using the discrete mathematical model developed in Chapter II and the applied control developed in Chapter III. It provides the iterative solutions to Equation (3.15) and computes the cost function, Equation (3.8), using the equivalent form, Equation (3.9).

The program is structured in block format with each block providing the major input to the next. The major blocks, or sections, are:

- screen interaction
- establishment of the required matrices
• solution of the discrete-time Riccati equation and calculation of the optimal control gain matrix
• time iteration.

A discussion of these blocks will follow.

Figure 2. Node Location Diagram.

The simulation program begins with an interactive phase. This capability allows the user to select the values of certain parameters that are not fixed by either the program or the input data. The parameters that may be varied are:

• maximum size of the modal model
• number of control modes to be used, i.e., the size of the reduced order model
• node location of the applied disturbance
• axial direction of the applied disturbance
• sampling time
• damping factor
• value of the diagonal elements, \(r \), of the control weighting matrix, \(R \).

The choice of values for these items will fully specify the entire simulation. Several of these values were kept constant in generating the results presented in this thesis. They are:

- initial value of \(r \): \(1 \times 10^{-12} \)
- sampling time: \(1 \times 10^{-2} \)
- damping factor: \(1 \times 10^{-3} \).

The value of \(r \) was picked based on trial and error, and represents a compromise between the control cost and the vibrational energy of the structure. The sampling time was based on the period of the highest frequency of the system. The chosen value represents a sampling frequency that is approximately ten times faster than the highest natural frequency, resulting in a minimal amount of aliasing. The damping factor was chosen to yield a lightly damped structure. This choice is based on previous space station studies that have used values in the range of 0.0001 to 0.005 [Ref. 9,10].

The program proceeds to construct the matrices of Equation (3.15) based on the choice of parameters, the natural frequencies of Table I on page 16, and the modal slopes at the control node and the disturbance node. The state weighting matrix, \(Q \), is formed in accordance with Equation (3.5), and the control weighting matrix, \(R \), is determined by the users selection of an appropriate value \(r \) where:

\[
R = r \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \tag{4.1}
\]

The next section of the program has two functions. The first is to obtain the discrete-time Riccati solution [Ref. 7,8] as given by Equation (3.12). This is accomplished by applying the subroutine, RICDSD, to the appropriate matrices of the previous paragraph. The second function is to apply the solution to obtain the optimal control gain matrix. A sample of this portion of the program is shown in Figure 3 on page 19. This sample includes the Riccati solution matrix, the closed loop eigenvalues of the reduced order model, and the control gain matrix. This information is provided as an output file for any sized reduced order model. At this point, all constant value matrices have been established.
STARTING MODE NUMBER: 7
NUMBER OF MODES SCANNED: 2
LAST CONTROLLED MODE: 8
NOISE INPUT NODE: 55
INITIAL R VALUE: 0.1000E-11
SAMPLING TIME: 0.1000E-01
DAMPING FACTOR: 0.1000E-02
OBSERVATION TIME: 120.0 MINUTES
SIZE OF MODAL MODEL: 100 MODES

THE RICCATI SOLUTION IS:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.593595E+02</td>
<td>0.402677E+01</td>
<td>-2.07784E+01</td>
<td>-3.49359E-01</td>
<td></td>
</tr>
<tr>
<td>0.402677E+01</td>
<td>0.817013E+01</td>
<td>-3.59486E-01</td>
<td>-7.28645E-01</td>
<td></td>
</tr>
<tr>
<td>-2.07784E-01</td>
<td>-3.59486E-01</td>
<td>0.619850E+02</td>
<td>0.485536E+01</td>
<td></td>
</tr>
<tr>
<td>-3.49359E-01</td>
<td>-7.28645E-01</td>
<td>0.485536E+01</td>
<td>0.957929E+01</td>
<td></td>
</tr>
</tbody>
</table>

THE CLOSED LOOP EIGENVALUES ARE:

<table>
<thead>
<tr>
<th>Real</th>
<th>Imaginary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.873338017523096283</td>
<td>0.000000000000000000E+00</td>
</tr>
<tr>
<td>0.89137769206653312</td>
<td>0.000000000000000000E+00</td>
</tr>
<tr>
<td>0.994092984040947231</td>
<td>0.000000000000000000E+00</td>
</tr>
<tr>
<td>0.994306266098994654</td>
<td>0.000000000000000000E+00</td>
</tr>
</tbody>
</table>

THE CONTROL GAIN MATRIX L IS:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-5.02613E+06</td>
<td>-.962951E+06</td>
<td>-.647580E+05</td>
<td>-.121127E+06</td>
<td></td>
</tr>
<tr>
<td>0.321279E+05</td>
<td>0.617015E+05</td>
<td>-1.09143E+06</td>
<td>-2.05384E+06</td>
<td></td>
</tr>
<tr>
<td>0.571026E+05</td>
<td>0.110078E+06</td>
<td>-.509876E+06</td>
<td>-.959351E+06</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3. Sample Output for a Two Mode Model of Reduced Order Control.

The time iterating portion of the simulation comprises the final major block of the simulation. It consists of a number of sub-sections designed to accomplish a specific sequence of tasks. The first sub-section computes the control torques based on the control or feedback gain matrix and the time varying state vector. The control torques form a 3x1 vector and are obtained by the process of Equation (3.10). For the initial conditions at \(k = 0 \), the control is:

\[
\mathbf{u}(0) = \mathbf{LZ}(0) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.
\]
A new torque vector will be computed for each increment of \(k \).

The disturbance input used in the simulation is a unit impulse. The impulse imparts a disturbance, at time \(k = 0 \), to a selected point (node 23, 55, or 69) on the structure, and the system response is then observed for the desired period of time. The disturbance may be applied in the \(x \), \(y \), or \(z \) direction, depending on the users choice during screen interaction. Provisions are also made within the program to obtain an uncontrolled impulse response.

The system cost function comprises the next sub-section of this block. The cost function is computed using Equation (3.9) with the total energy (T.E.) of the structure summed over all \(i \) modes for each \(k \) increment of time. This energy is combined with the control cost, \(u^T R u \), to yield the cost function, \(J \). In addition to the system cost, this section computes the total energy for each mode. The graphical analysis in Section D is based on the tabulated results of this sub-section.

The final sub-section of the block is the update of the discrete state equation. Equation (3.15) is updated over \(i \) modes for each \(k \) time increment and the new state vector \(Z \) results. For time \(k = 0 \), this equation can be written:

\[
Z(1) = \Phi Z(0) + B u(0) + B N \delta(0)
\]

(4.3)

where \(\delta(0) \) is the applied unit impulse. When \(k > 0 \), Equation (4.3) reduces to:

\[
Z(k + 1) = \Phi Z(k) + B u(k).
\]

(4.4)

The program loops back to the beginning of the time-varying block when the update of the state vector is complete. A new torque vector is computed, and the process described above continues until the response of the system has been found over the desired time period.

When the simulation is complete, the user is prompted to choose between running again with a new control weighting matrix, \(R \), or termination of the simulation. The choice of a new weighting matrix reinitiates the simulation process with all parameters remaining the same except for the matrix \(R \).

Output data can be tailored to fit user requirements. The program is written to provide the total system energy, the control cost, and the total energy per mode for a control based on a given reduced order model.
D. RESULTS

The response of the system to a disturbing force is provided by the simulation of Section C. The simulation is used to compute the systems response to a disturbance applied at either the space shuttle docking point, node 23, or the alpha-joint, node 55. These points frequently experience large disturbance inputs.

The simulation provides the energy of the vibrating structure in two formats. First, the total energy of the structure, as defined by Equation (3.8), is obtained. This provides a single value for a given condition of control. Second, the total energy of each mode is obtained. Essentially, this breaks down the single total energy value into 100 components, each representing the total energy of an individual mode. Tabulating the energy per mode will permit a more detailed look at the system response and the transfer of energy between the control system and the structure. Figure 4 on page 22 shows the full order system response due to a disturbance applied at each of the nodes of interest. Observe that the cost of control in terms of energy increases as the size of the reduced order control increases, but then begins to decrease. The important point to note is the size of the reduced order control required to bring the cost back to, and below, the uncontrolled level.

A major drawback arose during the simulation process. To obtain a single data point of Figure 4 on page 22 it required 40 minutes of computer CPU time to simulate the system. If the size of the model could be reduced and a similar response shape obtained, then the system could be simulated more efficiently.

Because high frequencies damp out quicker, the system was truncated at 56 modes; reasoning that the higher modes will die out quickly and contribute little to the cost. This size model would allow for up to 50 modes of control. Combined with the six rigid body modes, the system could then be simulated for full control, something that could not be achieved with a full order model. The model was truncated, and the results are shown in Figure 5 on page 23. The response very closely matches the shape of Figure 4 on page 22 for less than 30 modes of control. Above 30 modes, the comparison is less exact, but is still decreasing in energy. The significance of the truncated model is that it requires one-fifth of the CPU time (eight minutes vs. 40 minutes) to simulate the system for a two hour period. A two hour simulation period is used because this allows observation of the system for two time constants of the lowest natural frequency.

To use the truncated model, the energy content of the higher modes must be negligible. A comparison of the energy plots of both models indicate that the total energy
System Cost Analysis
Full Order Model

LEGEND
Node 55
Node 23

Impulse Applied Along X axis
Elapsed System Time: 120 minutes

Figure 4. System Energy of a Full Order Model with Reduced Order Control.
System Cost Analysis
56th Order Model

LEGEND
Node 55
Node 23

Figure 5. System Energy of a Reduced Order Model with Reduced Order Control.
of both models is nearly zero at 50 modes of control. The full order system still has 44 modes contributing to the energy cost while the reduced order model has none. The conclusion is reached that a good approximation of system response can be made by reducing the order of the model. The savings of computer costs is considerable when a number of control conditions are simulated.

A limitation of the total energy depiction of Figure 4 on page 22 and Figure 5 on page 23 is that an insight to the behavior of each mode is not provided. Figure 6 on page 25 thru Figure 15 on page 34 provide a graphical indication of mode response to an impulse applied at node 55. Each figure is a depiction of the energy in each mode for a given size of reduced order control compared to the uncontrolled system.

These ten figures show that the response of a directly controlled mode is essentially zero. They also show that as the number of controlled modes changes, there are certain groupings of modes that significantly increase their contribution to the cost over the uncontrolled system. These trouble modes appear in the areas of modes 30 to 32, 50 to 52, and 54 to 56. All other modes show little response to a change in the number of controlled modes.

A look at the system response to a disturbance applied at node 23 is shown in Figure 16 on page 35 thru Figure 25 on page 44. Note that the trouble modes of a node 23 response are the same as for a node 55 response. Although the shape of the uncontrolled and the controlled responses differ between the nodes, the offending modes remain the same.

The results indicate that there are certain modes, or groups of modes, that are troublesome. The same modes cause problems irregardless of whether the disturbance is applied to node 23 or node 55. The trouble modes must therefore be modes with large coupling to the control torquers. Two things influence this coupling, the natural frequency of the mode and the modal slope at the torquer location. As the natural frequency goes up the damping goes up proportionally but the spread between frequencies is small so damping is comparable for all modes. The modal slopes for the trouble modes (see Appendix B) indicate larger magnitude than those of the surrounding modes. The effect of these slopes is to increase the influence factor of the torquers. This can lead to a large excitation of the modes by the control system. If this is the case, it may be possible to identify possible trouble modes by comparing natural frequency spread with control node slope magnitude. A combination of a small frequency spread and a large slope magnitude could tag potential problem modes before simulation.
Figure 6. Node 55 Response with 5 Controlled Modes.
Figure 7. Node 55 Response with 10 Controlled Modes.
Figure 8. Node 55 Response with 15 Controlled Modes.
Figure 9. Node 55 Response with 20 Controlled Modes.
Figure 10. Node 55 Response with 25 Controlled Modes.
Figure 11. Node 55 Response with 30 Controlled Modes.
Figure 12. Node 55 Response with 35 Controlled Modes.
Figure 13. Node 55 Response with 40 Controlled Modes.
Node 55 Response
Energy Per Mode

LEGEND
Uncontrolled
45 controlled modes

Figure 14. Node 55 Response with 45 Controlled Modes.
Figure 15. Node 55 Response with 50 Controlled Modes.
Figure 16. Node 23 Response with 5 Controlled Modes.
Node 23 Response
Energy Per Mode

LEGEND
Uncontrolled
10 controlled modes

Figure 17. Node 23 Response with 10 Controlled Modes.
Node 23 Response
Energy Per Mode

LEGEND
Uncontrolled
15 controlled modes

Figure 18. Node 23 Response with 15 Controlled Modes.
Figure 19. Node 23 Response with 20 Controlled Modes.
Node 23 Response
Energy Per Mode

Figure 20. Node 23 Response with 25 Controlled Modes.
Node 23 Response
Energy Per Mode

LEGEND
Uncontrolled
30 controlled modes

Figure 21. Node 23 Response with 30 Controlled Modes.
Node 23 Response
Energy Per Mode

LEGEND
- Uncontrolled
- 35 controlled modes

Figure 22. Node 23 Response with 35 Controlled Modes.
Figure 23. Node 23 Response with 40 Controlled Modes.
Figure 24. Node 23 Response with 45 Controlled Modes.
Figure 25. Node 23 Response with 50 Controlled Modes.
The results, total system energy and total energy per mode, have been presented in a graphical format. Total system energy provides a good indication of total performance, but not much more. Figure 4 on page 22 indicates a large number of modes must be controlled to reduce the energy cost to a level below that of an uncontrolled system. An alternative approach to the control problem would include the control of the trouble modes in the formulation of the cost function, which will result in control gains which do not excite these modes.

A better means of observing the system is achieved by presenting the results in the alternate format of energy per mode. Trouble modes identified themselves in Figure 6 on page 25 thru Figure 25 on page 44. These groups of modes were sensitive to any change in the control structure of the space station, and are major contributors to the energy cost until they become directly controlled. Reaching a desirable energy cost will require a reduced order control system of at least 50 modes. This may be prohibitive with regard to complexity, cost and weight.
V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

A mathematical model of a large space station was developed, several optimal control solutions based on reduced order models were found, and the effects of reduced order modeling on the control of a large space structure have been presented in this thesis. It was shown that a straightforward approach to reduced order control can be achieved for a space station. The negative aspect of this approach is that the number of modes required to reach an acceptable level of control is considered to be excessive from a cost and weight viewpoint.

The existence of certain trouble modes was observed. These mode groups contributed significantly to the cost of control until the control model became large enough to directly control these modes. Also, it was demonstrated that these mode groups remained troublesome regardless of the location of the disturbance.

B. RECOMMENDATIONS

Based on the results of this work, there are several additional areas that may be investigated with respect to the effects of reduced order control on a space structure. Some of these areas are:

- to develop a cost function that considers control of the trouble modes in the optimal gain solution
- to examine the effects of notch filtering to suppress excitation of the trouble modes
- to utilize Karhunen-Loeve expansion methods for reduced order control modeling.

Research in these areas may produce results more favorable to solving the control problems of a large space structure.
APPENDIX A. SPACE STRUCTURE SIMULATION PROGRAM

**
***** SPACE STRUCTURE SIMULATION PROGRAM *****
**

**
***** VARIABLE DECLARATIONS *****
**

EXTERNAL EXCMS,RICDSD
CHARACTER*6 NAM
CHARACTER*1 AGAIN,CORECT,RAGAIN
INTEGER NODE,MODE,KQ,EMODE,SMODE,CTADJ,CT,CF,KX,KM
INTEGER LOOP,PRNT,MODAL,COUNT,PRNTG,NF10,NG,NN,NZ,V
INTEGER IPVS(100),ITYPE(200)

REAL RTOTAL,RMODEN(7:100)
REAL*8 PHI(2,2,100),GAMMA(2,100),EGT,GMA,WN,W1,X1T,X2T
REAL*8 PHI(188,188),B(188,3),BN(188,3),R(3,3),RR(3,3)
REAL*8 RINV(3,3),RRINV(3,3),X1(7:100),X2(7:100),MODEN(7:100)
REAL*8 COSW1T,SINW1T,COSTCNTCST,ENERGY,TOTCST,RM
REAL*8 TCX,TCY,TCZ,DAMP,SAMPT,FI,SUM1,SUM2,SUM3,SUMC
REAL*8 TNX,TNY,TNZ,IMPX,IMPY,IMPZ,IMPLSX,IMPLSY,IMPLSZ
REAL LAMA(100),UGVEX(100,3),RNODE,RMODE,MN,TIME,SAMPTM
REAL UG69(100,3),UG23(100,3),UG55(100,3)
REAL*8 H(100,100),G(100,100),L(3,100),BT(3,100)
REAL*8 Z(200,200),W(200,200),ER(200),F(100,100),EI(200)
REAL*8 SCALE(200),TEMP(100,3),TEMP1(3,100),WORK(100)

**
***** VARIABLE DEFINITIONS *****
**

LAMA = VECTOR OF THE SQUARE OF THE NATURAL FREQUENCIES
UGVEX = NODE POSITIONS AND SLOPES OF THE NODAL POINTS
PHII = TRANSITION MATRICES FOR EACH MODE
PHI = BLOCK DIAGONAL STATE TRANSITION MATRIX CONSISTING OF
THE INDIVIDUAL PHII MATRICES
GAMMA = INPUT TRANSITION MATRIX
B = INPUT MATRIX OF GAMMA AND CONTROL NODE SLOPES
BN = NOISE INPUT MATRIX OF GAMMA AND NOISE NODE SLOPES
DAMP = DAMPING FACTOR
SAMPT = SAMPLING TIME
IMPLSE = IMPULSE INPUT FUNCTION
TCX, TCY, TCZ = CONTROL TORQUE VALUES
IMPX, IMPY, IMPZ = AXIS IMPULSE NOISE VALUES
ENERGY = SYSTEM ENERGY COST VALUE FOR A GIVEN POINT IN TIME
CNTCST = SYSTEM CONTROL COST VALUE FOR A GIVEN POINT IN TIME
C COST = TOTAL SYSTEM COST VALUE FOR A GIVEN POINT IN TIME
TOTCST = SYSTEM COST SUMMED OVER ALL TIME
MIN = NUMBER OF MINUTES SYSTEM WILL BE OBSERVED

********** SAMPLE OF SPACE EXEC FILE **********

THIS FILE MUST BEGIN IN COLUMN 1 AND RUN IN THE FOLLOWING
SEQUENCE FOR THE INITIAL RUN OF THE PROGRAM:

FORTVS SPACE (COMPiles PROGRAM)
SPACE (EXECutes EXEC FILE)
LOAD SPACE (START) (LOADs AND EXECutes PROGRAM)

SUBSEQUENT PROGRAM RUNS CAN ELIMINATE "FORTVS SPACE" IF NO
CHANGES HAVE BEEN MADE TO THE PROGRAM AND CAN ELIMINATE
RUNNING THE EXEC FILE.

FI 4 DISK THESIS INPUT A (PERM
FI 30 DISK X1 OUTPUT A (RECFM F BLOCK 80 PERM
FI 31 DISK MODENGL OUTPUT A (RECFM F BLOCK 80 PERM
FI 32 DISK TORQUE OUTPUT A (RECFM F BLOCK 80 PERM
FI 33 DISK ENERGY OUTPUT A (RECFM F BLOCK 80 PERM
FI 34 DISK MDECST OUTPUT A (RECFM F BLOCK 80 PERM
FI 35 DISK COUNT OUTPUT A (RECFM F BLOCK 80 PERM
FI 40 DISK UTILITY OUTPUT A (RECFM F BLOCK 80 PERM
FI 41 DISK RUN OUTPUT A (RECFM F BLOCK 80 PERM
FI 42 DISK NODE69 INPUT A (RECFM F BLOCK 80 PERM
FI 43 DISK NODE23 INPUT A (RECFM F BLOCK 80 PERM
FI 44 DISK NODE55 INPUT A (RECFM F BLOCK 80 PERM

THE THESIS INPUT FILE CONTAIN THE NATURAL FREQUENCIES OF THE
SYSTEM (LAMA VECTOR). MODAL SLOPES FOR THE DESIRED NODES ARE
CONTAINED IN THE INPUT FILES NODE69, NODE55 AND NODE23. THE
REMAINING FILES IN THE EXEC CAN BE STRUCTURED TO HANDLE OUTPUT
AS DESIRED.

**********PI = 4.0DO * ATAN(1.0DO)**********
SAMP = 0.0
DAMP = 0.0
MODAL = 0
NF = 100
NG = 100
NH = 100
NZ = 200

***** NUMBER OF MINUTES THE SYSTEM WILL BE OBSERVED *****
MIN = 120.0

********** SET LENGTH OF MODAL MODEL **********

CALL EXCMS ('CLRSCRN')
WRITE (6,1008)
WRITE (6,*), 'SET MAXIMUM OPERATING MODE NUMBER'
READ *, RMODE

**
***** READ LAMA MATRIX *****
**

CALL EXCMS ('CLRSCRN')

READ(4,1001) NAM
READ(4,1002) (LAMA(I), I=1,100)

**
***** SCREEN INTERACTION *****
**

500 CALL EXCMS ('CLRSCRN')

************ STARTING MODE NUMBER ************

WRITE (6,1004)
WRITE (6,*), 'ENTER THE STARTING MODE NUMBER(MUST BE 7 OR GREATER +: ' READ *, RMODE
IF(MOD(RMODE,1.0).NE.0) THEN
WRITE (6,*), 'MODE SELECTION MUST BE AN INTEGER VALUE. RE +ENTER'
GOTO 10
ENDIF
SMODE = INT(RMODE)
IF ((SMODE.LT.7).OR.(SMODE.GT.100)) THEN
WRITE (6,*), 'MODE CHOICES ARE LIMITED TO 7 THRU 100! REENTER.'
GOTO 10
ENDIF

****** NUMBER OF MODES USED FOR CONTROL ******

15 WRITE (6,*), 'ENTER THE NUMBER OF MODES FOR CONTROL. THE CHOICE MU +ST BE FROM 1 TO 94: ' READ *, MODE
IF(MOD(RMODE,1.0).NE.0) THEN
WRITE (6,*), 'MODE SELECTION MUST BE AN INTEGER VALUE. RE +ENTER'
GOTO 15
ENDIF
MODE = INT(RMODE)
IF (((MODE.LT.1).OR.(MODE.GT.94)) THEN
WRITE (6,*), 'MODE CHOICES ARE LIMITED TO 1 THRU 94! REENTER.'
GOTO 15
ENDIF
EMODE = SMODE + MODE - 1

************ NOISE INPUT POSITION ************

CALL EXCMS ('CLRSCRN')
WRITE (*,1004)
IMPX = 0.000
IMPY = 0.000
IMPZ = 0.000

20 WRITE (6,*) 'ENTER THE NOISE INPUT LOCATION. THE CHOICES ARE 23, +55 OR 69.
READ *, RNODE
IF(MOD(RNODE,1.0).NE.0) THEN
 WRITE (6,*)' NODE SELECTION MUST BE AN INTEGER VALUE. RE+
+ENTER'
 GOTO 20
ENDIF
NODE = INT(RNODE)
IF ((NODE.LT.1).OR.(NODE.GT.114))THEN
 WRITE (6,*)'NODE CHOICES ARE LIMITED TO 1 THRU 114! REENTER.'
 GOTO 20
ENDIF
WRITE (6,*) 'SELECT THE NUMBER OF THE NOISE INPUT AXIS '
WRITE (6,*) ';'
WRITE (6,*) ' 0 NO NOISE INPUT'
WRITE (6,*) ' 1 X AXIS INPUT '
WRITE (6,*) ' 2 Y AXIS INPUT '
WRITE (6,*) ' 3 Z AXIS INPUT '
WRITE (6,*) ' 4 INPUT ON ALL AXIES '
READ *, AXIS

C *************** R MATRIX VALUE ***************
C CALL EXCMS ('CLRSCRN')
WRITE (6,1004)
WRITE (6,*) 'ENTER YOUR INITIAL R VALUE: '
READ *, RM

C *************** SAMPLING TIME ***************
C 25 WRITE (6,*) 'ENTER SAMPLING TIME (MUST BE EQUAL TO OR LESS THAN 0.
+04 SEC): '
READ *, SAMPT
SAMPTM = ((2.000*PI)/SQRT(LAMA(100)))/2.000
IF (SAMPT.GE.SAMPTM) THEN
 WRITE(6,*)' ERROR: SAMPLING TIME MUST BE LESS THAN OR E+
+QUAL TO'
 WRITE(6,1005) SAMPTM
 GOTO 25
ENDIF
C *************** DAMPING FACTOR ***************
C 30 WRITE (6,*) 'ENTER DAMPING FACTOR D: '
READ *, DAMP
IF ((DAMP.LT.0).OR.(DAMP.GT.1.0))THEN
 WRITE (6,*)'DAMPING FACTOR IS LIMITED TO 0 THRU 1.0 - REENTER'
 GOTO 30
ENDIF

50
VALUES CORRECT ????

CALL EXCMS ('CLRSCRN')
WRITE (6, 1004)
520 WRITE (6, *) 'ARE THESE VALUES CORRECT? (Y/N) *CAPS ONLY'
WRITE (6, *) '
WRITE (6, 706) SMODE
WRITE (6, 707) MODE
WRITE (6, 708) NODE
WRITE (6, 709) RM
WRITE (6, 710) SAMPT
WRITE (6, 711) DAMP
706 FORMAT ('STRTING MODE NUMBER: ', I2)
707 FORMAT ('NUMBER OF MODES SCANNED: ', I2)
708 FORMAT ('NOISE INPUT NODE: ', I3)
709 FORMAT ('INITIAL R VALUE: ', E12.4)
710 FORMAT ('SAMPLING TIME: ', E12.4)
711 FORMAT ('DAMPING FACTOR: ', E12.4)
READ(*, 1010) CORRECT
IF(CORRECT.EQ. 'Y') THEN
GOTO 510
ELSEIF(CORRECT.EQ. 'N') THEN
GOTO 500
ELSE
WRITE(6, *) 'YOU MUST CHOOSE UPPER CASE "Y" OR "N".
+SELECT AGAIN.'
GOTO 520
ENDIF

CALL EXCMS ('CLRSCRN')
WRITE (41, 700) SMODE
WRITE (41, 701) MODE
WRITE (41, 712) EMODE
WRITE (41, 702) NODE
WRITE (41, 703) RM
WRITE (41, 704) SAMPT
WRITE (41, 705) DAMP
WRITE (41, 713) MIN
WRITE (6, 1008)
WRITE (6, '*')

******** NOISE AXIS INPUT AND LOCATION ********

IF(AXIS.EQ. 1) THEN
 IMPX = 1.0D0/SAMPT
ELSEIF(AXIS.EQ. 2) THEN
 IMPY = 1.0D0/SAMPT
ELSEIF(AXIS.EQ. 3) THEN
 IMPZ = 1.0D0/SAMPT
ELSEIF(AXIS.EQ. 4) THEN
 IMPX = 1.0D0/SAMPT
 IMPY = 1.0D0/SAMPT
 IMPZ = 1.0D0/SAMPT
ENDIF

********** PROGRAM RUNNING**********
COUNT = 0

************** INITIALIZE MATRICES **************

DO 40 I = 1,188
 DO 45 J = 1,188
 PHI(I,J) = 0.0
 CONTINUE
45 CONTINUE

DO 40 I = 1,188
 CONTINUE
40 CONTINUE

DO 60 I = 1,188
 DO 65 J = 1,3
 B(I,J) = 0.0
 BN(I,J) = 0.0
 CONTINUE
65 CONTINUE

60 CONTINUE

DO 70 K = 7,100
 X1(K) = 0.0
 X2(K) = 0.0
 MODEN(K) = 0.0
 RMODEN(K) = 0.0
 CONTINUE

70 CONTINUE

DO 75 I = 1,100
 READ(42,1040) (UG69(I,K),K = 1,3)
 READ(43,1040) (UG23(I,K),K = 1,3)
 READ(44,1040) (UG55(I,K),K = 1,3)
 CONTINUE

*************** BEGIN MAIN PROGRAM ***************

************ ESTABLISH PHI1, PHI, B AND BN MATRICES ************

DO 600 I = SMODE, MODAL
 WN = DBLE(SQRT(LAMA(I)))
 GHA = DAMP*WN/2.0
 EGT = DXP(-GHA*SAMPT)
 W1 = DSQRT((WN**2)-(GHA**2))
 COSW1T = DCOS(W1*SAMPT)
 SINW1T = DSIN(W1*SAMPT)
 IF(WN.EQ.0)THEN
 PHII(1,1,I) = EGT*COSW1T
 PHII(1,2,I) = SAMPT
 PHII(2,1,I) = 0
 PHII(2,2,I) = EGT*COSW1T
 ELSE
 GAMMA(1,I) = 0
 GAMMA(2,I) = 0
 END
 PHII(1,1,I) = EGT*(COSW1T + (GHA*(W1**(-1))*SINW1T)
 PHII(1,2,I) = (W1**(-1))*EGT*SINW1T
 PHII(2,1,I) = -(WN**2)*(W1**(-1))*EGT*SINW1T

52
\[PHII(2,2,I) = EGT \times (\cos WT - (\text{GMA} \times (W1 \times (-1)))) \times \sin WT \]

\[\text{GAMMA}(1,I) = (W1 \times (-2)) \times (1.00 - EGT \times (\cos WT + (\text{GMA} / W1) \times \sin WT)) \]

\[\text{GAMMA}(2,I) = (W1 \times (-1)) \times EGT \times \sin WT \]

\[\text{ENDIF} \]

600 CONTINUE

V = 1

DO 610 K = SMODE, MODAL

PHI(V,V) = PHI(1,1,K)
PHI(V,V+1) = PHI(1,2,K)
PHI(V+1,V) = PHI(2,1,K)
PHI(V+1,V+1) = PHI(2,2,K)

B(V,1) = GAMMA(1,K) \times \text{DBLE(UG69(K,1))}
B(V,2) = GAMMA(1,K) \times \text{DBLE(UG69(K,2))}
B(V,3) = GAMMA(1,K) \times \text{DBLE(UG69(K,3))}
B(V+1,1) = GAMMA(2,K) \times \text{DBLE(UG69(K,1))}
B(V+1,2) = GAMMA(2,K) \times \text{DBLE(UG69(K,2))}
B(V+1,3) = GAMMA(2,K) \times \text{DBLE(UG69(K,3))}

V = V+2

610 CONTINUE

DO 605 I = 1,100
UGVEX(I,1) = 0.0
UGVEX(I,2) = 0.0
UGVEX(I,3) = 0.0

IF(NODE.EQ.23) THEN
UGVEX(I,1) = UG23(I,1)
UGVEX(I,2) = UG23(I,2)
UGVEX(I,3) = UG23(I,3)
ELSEIF(NODE.EQ.55) THEN
UGVEX(I,1) = UG55(I,1)
UGVEX(I,2) = UG55(I,2)
UGVEX(I,3) = UG55(I,3)
ELSEIF(NODE.EQ.69) THEN
UGVEX(I,1) = UG69(I,1)
UGVEX(I,2) = UG69(I,2)
UGVEX(I,3) = UG69(I,3)
END IF

605 CONTINUE

V = 1

DO 620 K = SMODE, MODAL

BN(V,1) = GAMMA(1,K) \times \text{DBLE(UGVEX(K,1))}
BN(V,2) = GAMMA(1,K) \times \text{DBLE(UGVEX(K,2))}
BN(V,3) = GAMMA(1,K) \times \text{DBLE(UGVEX(K,3))}
BN(V+1,1) = GAMMA(2,K) \times \text{DBLE(UGVEX(K,1))}
BN(V+1,2) = GAMMA(2,K)*DBLE(UGVEX(K,2))
BN(V+1,3) = GAMMA(2,K)*DBLE(UGVEX(K,3))

C
V = V+2

620 CONTINUE

550 CONTINUE

************** ESTABLISH H, F AND R MATRICES **************

DO 50 I = 1,NH
 DO 55 J = 1,NH
 H(I,J) = 0.0
 F(I,J) = 0.0
 G(I,J) = 0.0
 IF(I.LE.3)THEN
 L(I,J) = 0.0
 ENDIF
 55 CONTINUE
 50 CONTINUE

DO 61 I = 1,3
 DO 66 J = 1,3
 R(I,J) = 0.0
 RINV(I,J) = 0.0
 66 CONTINUE
 61 CONTINUE

KQ = 1
DO 80 K = SMODE,EMODE
 H(KQ,K) = DBLE(LAMA(K))
 H(KQ+1,KQ+1) = 1.0D0
 KQ = KQ+2
80 CONTINUE

K = 0
DO 85 K = 1,3
 R(K,K) = RM
 RINV(K,K) = 1.0D0/RM
85 CONTINUE

DO 88 I = 1,2*MODE
 DO 89 J = 1,2*MODE
 F(I,J) = PHI(I,J)
89 CONTINUE
88 CONTINUE

************** PREPARE G MATRIX FOR RICDSD **************

CALL MATRAN(B,188,2*MODE,3,BT,3)
CALL MATMUL(B,188,2*MODE,3,RINV,3,3,TEMP,NH)
CALL MATMUL(TEMP,NH,2*MODE,3,BT,3,2*MODE,G,NG)

54
BEGIN RICCATI GAIN CALCULATIONS

CALL RICDSD(NF,NG,NH,NZ,2*MODE,4*MODE,F,G,H,Z,W,ER,EI,WORK,
+ SCALE,ITYPE,IPVS)

WRITE (6,*): ' '
WRITE (41,?): ' '
WRITE (41,110)
110 FORMAT (' THE RICCATI SOLUTION IS: ')
DO 120 I = 1,2*MODE
WRITE (41,1050) (H(I,J),J=1,2*MODE)
WRITE (41,*): ' '
120 CONTINUE
WRITE (6,130)
WRITE (41,130)
130 FORMAT (' THE CLOSED LOOP EIGENVALUES ARE: ')
DO 140 I = 1,2*MODE
WRITE (6,*): ER(I),EI(I)
WRITE (41,*): ER(I),EI(I)
140 CONTINUE
WRITE (6,150) WORK(1)
WRITE (41,150) WORK(1)
150 FORMAT (' CONDITION ESTIMATE IS: ',D26.18)

CALL MATHUL(BT,3,3,2*MODE,H,NH,2*MODE,TEMP1,3)
CALL MATHUL(TEMP1,3,3,2*MODE,B,188,3,RR,3)
DO 103 I = 1,3
DO 104 J = 1,3
RR(I,J) = R(I,J) + RR(I,J)
104 CONTINUE
103 CONTINUE
CALL DLIINDS(3,RR,3,RRINV,3)
CALL MATHUL(RRINV,3,3,3,TEMP1,3,2*MODE,BT,3)
CALL MATHUL(BT,3,3,2*MODE,PHI,188,2*MODE,L,3)
WRITE(41,*): ' '
WRITE(41,*): ' GAIN MATRIX L '
WRITE(41,*): ' '
WRITE(41,*): ' ROW 1 ROW 2 ROW 3 '
DO 9155 I = 1,2*MODE
WRITE(41,1040) (L(I,J),J=1,3)
9155 CONTINUE
WRITE(41,*): ' '

********** COMPUTATION OF TORQUES AND COSTS **********
COUNT = 0
TOTCST = 0.0D0
TIME = 0.0

**** SETS LOOP FOR THE NUMBER OF ITERATIONS NECESSARY ****
**** TO OBSERVE THE SYSTEM FOR DESIRED LENGTH OF TIME ****

LOOP = INT((MIN*60.0)/SAMPT)
PRNT = INT(((MIN*60.0)/SAMPT)/100.0)
PRNTG = INT(((MIN*60.0)/SAMPT)/2000.0)

DO 200 N = 0, LOOP
 TIME = DBLE(N)*SAMPT
 IF(N.EQ.0)THEN
 IMPLSX = IMPX
 IMPLSY = IMPY
 IMPLSZ = IMPZ
 ELSE
 IMPLSX = 0.0D0
 IMPLSY = 0.0D0
 IMPLSZ = 0.0D0
 ENDIF

SUM1 = 0.0D0
SUM2 = 0.0D0
SUM3 = 0.0D0

DO 210 CT = 1, MODE
 CTADJ = CT + (SMODE - 1)
 SUM1 = SUM1 + L(1,2*CT-1)*X1(CTADJ) + L(1,2*CT)*X2(CTADJ)
 SUM2 = SUM2 + L(2,2*CT-1)*X1(CTADJ) + L(2,2*CT)*X2(CTADJ)
 SUM3 = SUM3 + L(3,2*CT-1)*X1(CTADJ) + L(3,2*CT)*X2(CTADJ)
210 CONTINUE
TCX = SUM1*(-1.0D0)
TCY = SUM2*(-1.0D0)
TCZ = SUM3*(-1.0D0)

TCX = 0.0D0
TCY = 0.0D0
TCZ = 0.0D0

IF(N.EQ.0)THEN
 WRITE (32,*)'IMPULSE X AXIS, IMPULSE Y AXIS, IMPULSE Z AXIS'
END
WRITE (32, *) ' ',
WRITE (32, 1040) IMPLSX, IMPLSY, IMPLSZ
WRITE (32, *) ' ',
WRITE (32, *) 'CONTROL TORQUES TCX, TCY, TCZ'
WRITE (32, *) ' ',
ENDIF
C
IF (N .LE. 20) THEN
WRITE (32, 2000) TIME, TCX, TCY, TCZ
ENDIF
C
IF (MOD(N, PRNTG).EQ.0) THEN
WRITE(30, 1036) TIME, X1(7), X1(10), X1(30), X1(50), X1(80), X1(100)
WRITE(30, 1036) TIME, X1(7), X1(10), X1(20), X1(30), X1(40), X1(50)
ENDIF
C
**
********** SYSTEM COST FUNCTION CALCULATION **********
**
C
SUMC = 0.0D0
ENERGY = 0.0D0
CNTCST = 0.0D0
COST = 0.0D0
C
DO 230 CF = 7, MODAL
 MODEN(CF) = MODEN(CF) + (X1(CF)**2)*LAMA(CF) + X2(CF)**2
 SUMC = SUMC + (X1(CF)**2)*LAMA(CF) + X2(CF)**2
230 CONTINUE
C
ENERGY = SUMC
CNTCST = (TCX**2)*RM + (TCY**2)*RN + (TCZ**2)*RM
COST = ENERGY + CNTCST
TOTCST = TOTCST + COST
C
IF (MOD(N, PRNTG).EQ.0) THEN
 COUNT = COUNT + 1
 WRITE(33, 2000) TIME, ENERGY, CNTCST, COST
ENDIF
C
**
******** STATE UPDATE EQUATIONS ********
**
C
DO 220 KA = 7, MODAL
 K = KA - 6
C
 X1T = PHI1(1, 1, KA)*X1(KA) + PHI1(1, 2, KA)*X2(KA) + B((2*K-1), 1)*TCX +
 B((2*K-1), 2)*TCY + B((2*K-1), 3)*TCZ + BN((2*K-1), 1)*IMPLSX +
 BN((2*K-1), 2)*IMPLSY + BN((2*K-1), 3)*IMPLSZ
 X2T = PHI1(2, 1, KA)*X1(KA) + PHI1(2, 2, KA)*X2(KA) + B(2*K, 1)*TCX +
 B(2*K, 2)*TCY + B(2*K, 3)*TCZ + BN(2*K, 1)*IMPLSX + BN(2*K, 2)*
 + IMPLSY + BN(2*K, 3)*IMPLSZ
C
 X1(KA) = X1T
57
X2(KA) = X2T
CONTINUE
C
200 CONTINUE
C
WRITE (35,3000) COUNT
RTOTAL = TOTCST
WRITE (34,3002) MODE,RTOTAL
C
DO 235 K = 7, MODAL
 RMODEN(K) = MODEN(K)
 WRITE (31,3002) K, RMODEN(K)
235 CONTINUE
C
666 CONTINUE
C

**** Change the value of R for next run???

C
WRITE (6,1008)
540 WRITE (6,*) 'DO YOU WANT A NEW R VALUE? (Y/N) ' CAPS ONLY'
 READ(*,1010) RAGAIN
 IF(RAGAIN.EQ.'Y') THEN
 WRITE (6,*) 'ENTER NEW R VALUE:'
 READ (6,*) RM
 GOTO 550
 ELSEIF(RAGAIN.EQ.'N') THEN
 GOTO 530
 ELSE
 WRITE(6,*) 'YOU MUST CHOOSE "Y" OR "N", SELECT AGAIN.'
 GOTO 540
 ENDIF
C

**** Run program again or quit??

C
530 WRITE(6,*) 'DO YOU WANT ANOTHER RUN? (Y/N) ' CAPS ONLY'
 READ(*,1010) AGAIN
 IF(AGAIN.EQ.'Y') THEN
 GOTO 500
 ELSEIF(AGAIN.EQ.'N') THEN
 GOTO 599
 ELSE
 WRITE(6,*) 'YOU MUST CHOOSE "Y" OR "N", SELECT AGAIN.'
 GOTO 530
 ENDIF
C

**** Format statements

C
700 FORMAT (',', 'STARTING MODE NUMBER: ', I2)
701 FORMAT (',', 'NUMBER OF MODES SCANNED: ', I2)
702 FORMAT (',', 'NOISE INPUT NODE: ', I3)
703 FORMAT (' ', 'INITIAL R VALUE: ',E12.4)
704 FORMAT (' ', 'SAMPLING TIME: ',E12.4)
705 FORMAT (' ', 'DAMPING FACTOR: ',E12.4)
712 FORMAT (' ', 'LAST CONTROLLED MODE: ',I2)
713 FORMAT (' ', 'OBSERVATION TIME: ',F5.1, ' MINUTES')
1001 FORMAT(1X,6A)
1002 FORMAT(1X,8E15.8)
1004 FORMAT(1X,/)
1005 FORMAT(1X,60X,E11.5)
1008 FORMAT(1X,///)
1010 FORMAT(A1)
1035 FORMAT(' ',*F7.2,2X,5(E12.6,2X))
1036 FORMAT(' ',*F7.2,1X,6(E11.5,1X))
1040 FORMAT(' ',3(E15.8,5X))
1050 FORMAT(' ',4(E12.6,2X))
2000 FORMAT(1X,F7.2,3X,3(E15.8,3X))
2001 FORMAT(' ',T5,E15.8)
3000 FORMAT(I4)
3001 FORMAT(F7.2,2X,E12.5)
3002 FORMAT(I3,2X,E12.5)
C
599 STOP
END
C
**
C
SUBROUTINE TO MATRIX MULTIPLY
**
C
SUBROUTINE MATMUL(M1,LD1,R1,C1,M2,LD2,C2,MP,LD3)
INTEGER R1,C1,C2,LD1,LD2,LD3
REAL*8 M1(LD1,1),M2(LD2,1),MP(LD3,1),SUM
C
DO 650 I = 1,R1
 DO 660 J = 1,C2
 SUM = 0.0D0
 DO 670 K = 1,C1
 SUM = SUM+M1(I,K)*M2(K,J)
 CONTINUE
 CONTINUE
670 MP(I,J) = SUM
660 CONTINUE
650 CONTINUE
RETURN
END
C
**
C
SUBROUTINE TO TRANSPOSE A MATRIX
**
C
SUBROUTINE MATRAN(MX,LDX,R1,CM,MT,LDT)
INTEGER R1,C1,I,J,LDX,LDT
REAL*8 MX(LDX,1),MT(LDT,1)
C
DO 680 I = 1,R1
 DO 690 J = 1,C1

59
MT(J,I) = MX(I,J)

680 CONTINUE

RETURN

END
APPENDIX B. MODAL DATA

A. MODAL SLOPES FOR NODE 69

The modal slopes for the control node are:

<table>
<thead>
<tr>
<th>Mode</th>
<th>x_{69}</th>
<th>x_{69}</th>
<th>x_{69}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.42743E-15</td>
<td>0.710767E-14</td>
<td>0.586281E-15</td>
</tr>
<tr>
<td>2</td>
<td>-1.68348E-14</td>
<td>-1.27912E-15</td>
<td>0.255942E-14</td>
</tr>
<tr>
<td>4</td>
<td>0.20390E-04</td>
<td>-2.64468E-14</td>
<td>0.151293E-15</td>
</tr>
<tr>
<td>5</td>
<td>0.13840E-06</td>
<td>0.311234E-04</td>
<td>-0.397837E-15</td>
</tr>
<tr>
<td>6</td>
<td>0.17874E-06</td>
<td>0.127699E-06</td>
<td>0.254676E-04</td>
</tr>
<tr>
<td>7</td>
<td>0.13488E-04</td>
<td>0.838629E-06</td>
<td>0.142569E-05</td>
</tr>
<tr>
<td>8</td>
<td>0.15304E-05</td>
<td>0.311234E-04</td>
<td>-0.397837E-15</td>
</tr>
<tr>
<td>9</td>
<td>0.81460E-07</td>
<td>-5.78348E-05</td>
<td>0.22256E-06</td>
</tr>
<tr>
<td>10</td>
<td>0.35355E-06</td>
<td>-3.10832E-05</td>
<td>0.758450E-06</td>
</tr>
<tr>
<td>11</td>
<td>0.13199E-05</td>
<td>-1.01384E-06</td>
<td>-3.89093E-07</td>
</tr>
<tr>
<td>12</td>
<td>0.46674E-08</td>
<td>0.544769E-08</td>
<td>-1.85486E-07</td>
</tr>
<tr>
<td>13</td>
<td>0.63728E-07</td>
<td>-7.71111E-07</td>
<td>0.138482E-06</td>
</tr>
<tr>
<td>14</td>
<td>0.48569E-07</td>
<td>0.424607E-06</td>
<td>0.352257E-05</td>
</tr>
<tr>
<td>15</td>
<td>0.82093E-05</td>
<td>-2.66580E-06</td>
<td>-9.07079E-06</td>
</tr>
<tr>
<td>16</td>
<td>-1.64529E-05</td>
<td>-1.60255E-05</td>
<td>-8.14523E-05</td>
</tr>
<tr>
<td>17</td>
<td>-2.82375E-06</td>
<td>-3.00355E-05</td>
<td>-4.00149E-06</td>
</tr>
<tr>
<td>18</td>
<td>-8.13852E-06</td>
<td>0.198735E-04</td>
<td>0.218691E-05</td>
</tr>
<tr>
<td>19</td>
<td>0.37896E-07</td>
<td>0.102157E-04</td>
<td>0.725769E-05</td>
</tr>
<tr>
<td>20</td>
<td>0.93239E-06</td>
<td>0.303955E-05</td>
<td>0.161449E-04</td>
</tr>
<tr>
<td>21</td>
<td>-2.67182E-05</td>
<td>0.312356E-04</td>
<td>0.179908E-05</td>
</tr>
<tr>
<td>22</td>
<td>0.22987E-06</td>
<td>0.223818E-04</td>
<td>0.319076E-05</td>
</tr>
<tr>
<td>23</td>
<td>0.28522E-05</td>
<td>-1.81574E-04</td>
<td>-7.19100E-05</td>
</tr>
<tr>
<td>24</td>
<td>0.41267E-06</td>
<td>0.988285E-05</td>
<td>-9.03574E-05</td>
</tr>
<tr>
<td>25</td>
<td>-6.44907E-05</td>
<td>0.360769E-04</td>
<td>0.150066E-04</td>
</tr>
<tr>
<td>26</td>
<td>-1.89005E-04</td>
<td>0.493369E-05</td>
<td>0.250412E-05</td>
</tr>
<tr>
<td>27</td>
<td>-4.59131E-05</td>
<td>-6.19046E-05</td>
<td>-9.50471E-05</td>
</tr>
<tr>
<td>28</td>
<td>-2.25840E-04</td>
<td>-2.21983E-05</td>
<td>-5.92307E-05</td>
</tr>
<tr>
<td>29</td>
<td>0.10382E-05</td>
<td>-1.88184E-04</td>
<td>-3.13188E-04</td>
</tr>
<tr>
<td>30</td>
<td>-2.63199E-04</td>
<td>-8.05009E-04</td>
<td>-1.46835E-04</td>
</tr>
<tr>
<td>31</td>
<td>0.64813E-05</td>
<td>-2.82148E-04</td>
<td>-4.28264E-05</td>
</tr>
<tr>
<td>32</td>
<td>-2.28027E-06</td>
<td>0.228963E-04</td>
<td>0.633264E-05</td>
</tr>
<tr>
<td>33</td>
<td>-1.2204E-04</td>
<td>0.246497E-05</td>
<td>0.61308E-05</td>
</tr>
<tr>
<td>34</td>
<td>0.10207E-04</td>
<td>-4.31311E-05</td>
<td>-6.11008E-05</td>
</tr>
<tr>
<td>36</td>
<td>0.46075E-04</td>
<td>0.904509E-05</td>
<td>0.504665E-04</td>
</tr>
<tr>
<td>37</td>
<td>-9.02668E-05</td>
<td>0.498229E-05</td>
<td>-1.17348E-04</td>
</tr>
<tr>
<td>38</td>
<td>0.85820E-05</td>
<td>0.431123E-04</td>
<td>0.195920E-04</td>
</tr>
<tr>
<td>39</td>
<td>0.52609E-05</td>
<td>0.650709E-05</td>
<td>0.118511E-04</td>
</tr>
<tr>
<td>40</td>
<td>-5.74919E-05</td>
<td>-2.38999E-05</td>
<td>-5.12316E-05</td>
</tr>
<tr>
<td>41</td>
<td>0.20228E-04</td>
<td>-2.58154E-05</td>
<td>0.525319E-06</td>
</tr>
<tr>
<td>42</td>
<td>-4.34762E-05</td>
<td>0.560747E-05</td>
<td>0.136490E-05</td>
</tr>
<tr>
<td>43</td>
<td>-6.30231E-05</td>
<td>0.58420E-05</td>
<td>0.84387E-05</td>
</tr>
<tr>
<td>44</td>
<td>0.17662E-04</td>
<td>0.361249E-04</td>
<td>-1.34451E-05</td>
</tr>
<tr>
<td></td>
<td>0.569169E-05</td>
<td>0.551343E-04</td>
<td>-0.201197E-04</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>46</td>
<td>-0.117018E-04</td>
<td>0.223794E-04</td>
<td>0.477889E-04</td>
</tr>
<tr>
<td>47</td>
<td>-0.461803E-05</td>
<td>-0.377577E-04</td>
<td>-0.223734E-04</td>
</tr>
<tr>
<td>48</td>
<td>-0.433001E-04</td>
<td>-0.440331E-04</td>
<td>0.412939E-05</td>
</tr>
<tr>
<td>49</td>
<td>-0.446888E-05</td>
<td>-0.449081E-04</td>
<td>0.41417E-04</td>
</tr>
<tr>
<td>50</td>
<td>-0.414528E-04</td>
<td>-0.178550E-04</td>
<td>0.141417E-04</td>
</tr>
<tr>
<td>51</td>
<td>0.184853E-03</td>
<td>0.113767E-03</td>
<td>0.271882E-04</td>
</tr>
<tr>
<td>52</td>
<td>0.854272E-04</td>
<td>-0.281916E-03</td>
<td>-0.348608E-04</td>
</tr>
<tr>
<td>53</td>
<td>-0.461803E-05</td>
<td>-0.449081E-04</td>
<td>0.412939E-05</td>
</tr>
<tr>
<td>54</td>
<td>-0.414528E-04</td>
<td>-0.178550E-04</td>
<td>0.141417E-04</td>
</tr>
<tr>
<td>55</td>
<td>0.184853E-03</td>
<td>0.113767E-03</td>
<td>0.271882E-04</td>
</tr>
<tr>
<td>56</td>
<td>0.854272E-04</td>
<td>-0.281916E-03</td>
<td>-0.348608E-04</td>
</tr>
<tr>
<td>57</td>
<td>-0.461803E-05</td>
<td>-0.449081E-04</td>
<td>0.412939E-05</td>
</tr>
<tr>
<td>58</td>
<td>-0.414528E-04</td>
<td>-0.178550E-04</td>
<td>0.141417E-04</td>
</tr>
<tr>
<td>59</td>
<td>0.184853E-03</td>
<td>0.113767E-03</td>
<td>0.271882E-04</td>
</tr>
<tr>
<td>60</td>
<td>0.854272E-04</td>
<td>-0.281916E-03</td>
<td>-0.348608E-04</td>
</tr>
<tr>
<td>61</td>
<td>-0.461803E-05</td>
<td>-0.449081E-04</td>
<td>0.412939E-05</td>
</tr>
<tr>
<td>62</td>
<td>-0.414528E-04</td>
<td>-0.178550E-04</td>
<td>0.141417E-04</td>
</tr>
<tr>
<td>63</td>
<td>0.184853E-03</td>
<td>0.113767E-03</td>
<td>0.271882E-04</td>
</tr>
<tr>
<td>64</td>
<td>0.854272E-04</td>
<td>-0.281916E-03</td>
<td>-0.348608E-04</td>
</tr>
<tr>
<td>65</td>
<td>-0.461803E-05</td>
<td>-0.449081E-04</td>
<td>0.412939E-05</td>
</tr>
<tr>
<td>66</td>
<td>-0.414528E-04</td>
<td>-0.178550E-04</td>
<td>0.141417E-04</td>
</tr>
<tr>
<td>67</td>
<td>0.184853E-03</td>
<td>0.113767E-03</td>
<td>0.271882E-04</td>
</tr>
<tr>
<td>68</td>
<td>0.854272E-04</td>
<td>-0.281916E-03</td>
<td>-0.348608E-04</td>
</tr>
<tr>
<td>69</td>
<td>-0.461803E-05</td>
<td>-0.449081E-04</td>
<td>0.412939E-05</td>
</tr>
<tr>
<td>70</td>
<td>-0.414528E-04</td>
<td>-0.178550E-04</td>
<td>0.141417E-04</td>
</tr>
<tr>
<td>71</td>
<td>0.184853E-03</td>
<td>0.113767E-03</td>
<td>0.271882E-04</td>
</tr>
<tr>
<td>72</td>
<td>0.854272E-04</td>
<td>-0.281916E-03</td>
<td>-0.348608E-04</td>
</tr>
<tr>
<td>73</td>
<td>-0.461803E-05</td>
<td>-0.449081E-04</td>
<td>0.412939E-05</td>
</tr>
<tr>
<td>74</td>
<td>-0.414528E-04</td>
<td>-0.178550E-04</td>
<td>0.141417E-04</td>
</tr>
<tr>
<td>75</td>
<td>0.184853E-03</td>
<td>0.113767E-03</td>
<td>0.271882E-04</td>
</tr>
<tr>
<td>76</td>
<td>0.854272E-04</td>
<td>-0.281916E-03</td>
<td>-0.348608E-04</td>
</tr>
<tr>
<td>77</td>
<td>-0.461803E-05</td>
<td>-0.449081E-04</td>
<td>0.412939E-05</td>
</tr>
<tr>
<td>78</td>
<td>-0.414528E-04</td>
<td>-0.178550E-04</td>
<td>0.141417E-04</td>
</tr>
<tr>
<td>79</td>
<td>0.184853E-03</td>
<td>0.113767E-03</td>
<td>0.271882E-04</td>
</tr>
<tr>
<td>80</td>
<td>0.854272E-04</td>
<td>-0.281916E-03</td>
<td>-0.348608E-04</td>
</tr>
<tr>
<td>81</td>
<td>-0.461803E-05</td>
<td>-0.449081E-04</td>
<td>0.412939E-05</td>
</tr>
<tr>
<td>82</td>
<td>-0.414528E-04</td>
<td>-0.178550E-04</td>
<td>0.141417E-04</td>
</tr>
<tr>
<td>83</td>
<td>0.184853E-03</td>
<td>0.113767E-03</td>
<td>0.271882E-04</td>
</tr>
<tr>
<td>84</td>
<td>0.854272E-04</td>
<td>-0.281916E-03</td>
<td>-0.348608E-04</td>
</tr>
<tr>
<td>85</td>
<td>-0.461803E-05</td>
<td>-0.449081E-04</td>
<td>0.412939E-05</td>
</tr>
<tr>
<td>86</td>
<td>-0.414528E-04</td>
<td>-0.178550E-04</td>
<td>0.141417E-04</td>
</tr>
<tr>
<td>87</td>
<td>0.184853E-03</td>
<td>0.113767E-03</td>
<td>0.271882E-04</td>
</tr>
<tr>
<td>88</td>
<td>0.854272E-04</td>
<td>-0.281916E-03</td>
<td>-0.348608E-04</td>
</tr>
<tr>
<td>89</td>
<td>-0.461803E-05</td>
<td>-0.449081E-04</td>
<td>0.412939E-05</td>
</tr>
<tr>
<td>90</td>
<td>-0.414528E-04</td>
<td>-0.178550E-04</td>
<td>0.141417E-04</td>
</tr>
<tr>
<td>91</td>
<td>0.184853E-03</td>
<td>0.113767E-03</td>
<td>0.271882E-04</td>
</tr>
<tr>
<td>92</td>
<td>0.854272E-04</td>
<td>-0.281916E-03</td>
<td>-0.348608E-04</td>
</tr>
<tr>
<td>93</td>
<td>-0.461803E-05</td>
<td>-0.449081E-04</td>
<td>0.412939E-05</td>
</tr>
<tr>
<td>94</td>
<td>-0.414528E-04</td>
<td>-0.178550E-04</td>
<td>0.141417E-04</td>
</tr>
<tr>
<td>95</td>
<td>0.184853E-03</td>
<td>0.113767E-03</td>
<td>0.271882E-04</td>
</tr>
<tr>
<td>96</td>
<td>0.854272E-04</td>
<td>-0.281916E-03</td>
<td>-0.348608E-04</td>
</tr>
<tr>
<td>97</td>
<td>-0.461803E-05</td>
<td>-0.449081E-04</td>
<td>0.412939E-05</td>
</tr>
<tr>
<td>98</td>
<td>-0.414528E-04</td>
<td>-0.178550E-04</td>
<td>0.141417E-04</td>
</tr>
<tr>
<td>99</td>
<td>0.184853E-03</td>
<td>0.113767E-03</td>
<td>0.271882E-04</td>
</tr>
<tr>
<td>100</td>
<td>-0.86571E-05</td>
<td>0.443611E-04</td>
<td>-0.185604E-04</td>
</tr>
</tbody>
</table>

62
B. MODAL SLOPES FOR NODE 23

The modal slopes for the shuttle docking point are:

<table>
<thead>
<tr>
<th>Mode</th>
<th>x'_{23}</th>
<th>y'_{23}</th>
<th>z'_{23}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.673765E-16</td>
<td>0.838118E-14</td>
<td>0.323424E-15</td>
</tr>
<tr>
<td>2</td>
<td>-1.147542E-14</td>
<td>0.821245E-16</td>
<td>0.224082E-14</td>
</tr>
<tr>
<td>3</td>
<td>-1.563098E-15</td>
<td>-1.774855E-13</td>
<td>-1.973275E-15</td>
</tr>
<tr>
<td>4</td>
<td>0.203930E-04</td>
<td>-0.838118E-14</td>
<td>0.323424E-15</td>
</tr>
<tr>
<td>5</td>
<td>0.138406E-06</td>
<td>0.311234E-04</td>
<td>-1.795735E-15</td>
</tr>
<tr>
<td>6</td>
<td>0.178740E-06</td>
<td>0.127699E-06</td>
<td>0.254676E-04</td>
</tr>
<tr>
<td>7</td>
<td>-1.297725E-03</td>
<td>0.259121E-05</td>
<td>-1.571056E-06</td>
</tr>
<tr>
<td>8</td>
<td>0.108426E-06</td>
<td>-0.218289E-05</td>
<td>0.188995E-06</td>
</tr>
<tr>
<td>9</td>
<td>0.874741E-06</td>
<td>-0.520435E-06</td>
<td>0.31032E-07</td>
</tr>
<tr>
<td>10</td>
<td>-1.147542E-14</td>
<td>0.106262E-07</td>
<td>-0.663429E-08</td>
</tr>
<tr>
<td>11</td>
<td>0.138406E-06</td>
<td>0.311234E-04</td>
<td>-1.795735E-15</td>
</tr>
<tr>
<td>12</td>
<td>0.203930E-04</td>
<td>-0.838118E-14</td>
<td>0.323424E-15</td>
</tr>
<tr>
<td>13</td>
<td>0.178740E-06</td>
<td>0.127699E-06</td>
<td>0.254676E-04</td>
</tr>
<tr>
<td>14</td>
<td>-1.297725E-03</td>
<td>0.259121E-05</td>
<td>-1.571056E-06</td>
</tr>
<tr>
<td>15</td>
<td>0.108426E-06</td>
<td>-0.218289E-05</td>
<td>0.188995E-06</td>
</tr>
<tr>
<td>16</td>
<td>0.874741E-06</td>
<td>-0.520435E-06</td>
<td>0.31032E-07</td>
</tr>
<tr>
<td>17</td>
<td>-1.147542E-14</td>
<td>0.106262E-07</td>
<td>-0.663429E-08</td>
</tr>
<tr>
<td>18</td>
<td>0.138406E-06</td>
<td>0.311234E-04</td>
<td>-1.795735E-15</td>
</tr>
<tr>
<td>19</td>
<td>0.203930E-04</td>
<td>-0.838118E-14</td>
<td>0.323424E-15</td>
</tr>
<tr>
<td>20</td>
<td>0.178740E-06</td>
<td>0.127699E-06</td>
<td>0.254676E-04</td>
</tr>
<tr>
<td>21</td>
<td>-1.297725E-03</td>
<td>0.259121E-05</td>
<td>-1.571056E-06</td>
</tr>
<tr>
<td>22</td>
<td>0.108426E-06</td>
<td>-0.218289E-05</td>
<td>0.188995E-06</td>
</tr>
<tr>
<td>23</td>
<td>0.874741E-06</td>
<td>-0.520435E-06</td>
<td>0.31032E-07</td>
</tr>
<tr>
<td>24</td>
<td>-1.147542E-14</td>
<td>0.106262E-07</td>
<td>-0.663429E-08</td>
</tr>
<tr>
<td>25</td>
<td>0.138406E-06</td>
<td>0.311234E-04</td>
<td>-1.795735E-15</td>
</tr>
<tr>
<td>26</td>
<td>0.203930E-04</td>
<td>-0.838118E-14</td>
<td>0.323424E-15</td>
</tr>
<tr>
<td>27</td>
<td>0.178740E-06</td>
<td>0.127699E-06</td>
<td>0.254676E-04</td>
</tr>
<tr>
<td>28</td>
<td>-1.297725E-03</td>
<td>0.259121E-05</td>
<td>-1.571056E-06</td>
</tr>
<tr>
<td>29</td>
<td>0.108426E-06</td>
<td>-0.218289E-05</td>
<td>0.188995E-06</td>
</tr>
<tr>
<td>30</td>
<td>0.874741E-06</td>
<td>-0.520435E-06</td>
<td>0.31032E-07</td>
</tr>
<tr>
<td>31</td>
<td>-1.147542E-14</td>
<td>0.106262E-07</td>
<td>-0.663429E-08</td>
</tr>
<tr>
<td>32</td>
<td>0.138406E-06</td>
<td>0.311234E-04</td>
<td>-1.795735E-15</td>
</tr>
<tr>
<td>33</td>
<td>0.203930E-04</td>
<td>-0.838118E-14</td>
<td>0.323424E-15</td>
</tr>
<tr>
<td>34</td>
<td>0.178740E-06</td>
<td>0.127699E-06</td>
<td>0.254676E-04</td>
</tr>
<tr>
<td>35</td>
<td>-1.297725E-03</td>
<td>0.259121E-05</td>
<td>-1.571056E-06</td>
</tr>
<tr>
<td>36</td>
<td>0.108426E-06</td>
<td>-0.218289E-05</td>
<td>0.188995E-06</td>
</tr>
<tr>
<td>37</td>
<td>0.874741E-06</td>
<td>-0.520435E-06</td>
<td>0.31032E-07</td>
</tr>
<tr>
<td>38</td>
<td>-1.147542E-14</td>
<td>0.106262E-07</td>
<td>-0.663429E-08</td>
</tr>
<tr>
<td>39</td>
<td>0.138406E-06</td>
<td>0.311234E-04</td>
<td>-1.795735E-15</td>
</tr>
<tr>
<td>40</td>
<td>0.203930E-04</td>
<td>-0.838118E-14</td>
<td>0.323424E-15</td>
</tr>
<tr>
<td>41</td>
<td>0.178740E-06</td>
<td>0.127699E-06</td>
<td>0.254676E-04</td>
</tr>
<tr>
<td>42</td>
<td>-1.297725E-03</td>
<td>0.259121E-05</td>
<td>-1.571056E-06</td>
</tr>
<tr>
<td>43</td>
<td>0.108426E-06</td>
<td>-0.218289E-05</td>
<td>0.188995E-06</td>
</tr>
<tr>
<td>44</td>
<td>0.874741E-06</td>
<td>-0.520435E-06</td>
<td>0.31032E-07</td>
</tr>
<tr>
<td>45</td>
<td>-1.147542E-14</td>
<td>0.106262E-07</td>
<td>-0.663429E-08</td>
</tr>
<tr>
<td>46</td>
<td>0.138406E-06</td>
<td>0.311234E-04</td>
<td>-1.795735E-15</td>
</tr>
<tr>
<td>47</td>
<td>0.203930E-04</td>
<td>-0.838118E-14</td>
<td>0.323424E-15</td>
</tr>
<tr>
<td>48</td>
<td>0.178740E-06</td>
<td>0.127699E-06</td>
<td>0.254676E-04</td>
</tr>
<tr>
<td>49</td>
<td>-1.297725E-03</td>
<td>0.259121E-05</td>
<td>-1.571056E-06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode</th>
<th>x'_{23}</th>
<th>y'_{23}</th>
<th>z'_{23}</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.109734E-04</td>
<td>0.851673E-05</td>
<td>-1.23184E-04</td>
</tr>
</tbody>
</table>

63
<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.735291E-05</td>
<td>-1.11341E-04</td>
<td>0.610389E-05</td>
<td>0.610389E-05</td>
<td>0.610389E-05</td>
<td>0.610389E-05</td>
</tr>
<tr>
<td>51</td>
<td>-1.196540E-04</td>
<td>0.291705E-05</td>
<td>0.291798E-05</td>
<td>0.291798E-05</td>
<td>0.291798E-05</td>
<td>0.291798E-05</td>
</tr>
<tr>
<td>53</td>
<td>0.224150E-04</td>
<td>0.356713E-05</td>
<td>0.356713E-05</td>
<td>0.356713E-05</td>
<td>0.356713E-05</td>
<td>0.356713E-05</td>
</tr>
<tr>
<td>54</td>
<td>0.104824E-04</td>
<td>0.472468E-05</td>
<td>0.472468E-05</td>
<td>0.472468E-05</td>
<td>0.472468E-05</td>
<td>0.472468E-05</td>
</tr>
<tr>
<td>55</td>
<td>-0.252152E-04</td>
<td>-0.667200E-05</td>
<td>-0.38919E-04</td>
<td>-0.38919E-04</td>
<td>-0.38919E-04</td>
<td>-0.38919E-04</td>
</tr>
<tr>
<td>56</td>
<td>0.466116E-05</td>
<td>0.362378E-05</td>
<td>0.362378E-05</td>
<td>0.362378E-05</td>
<td>0.362378E-05</td>
<td>0.362378E-05</td>
</tr>
<tr>
<td>57</td>
<td>-0.209031E-04</td>
<td>-0.864218E-05</td>
<td>-0.30835E-05</td>
<td>-0.30835E-05</td>
<td>-0.30835E-05</td>
<td>-0.30835E-05</td>
</tr>
<tr>
<td>58</td>
<td>0.644381E-04</td>
<td>0.679948E-05</td>
<td>0.679948E-05</td>
<td>0.679948E-05</td>
<td>0.679948E-05</td>
<td>0.679948E-05</td>
</tr>
<tr>
<td>59</td>
<td>-0.697126E-04</td>
<td>-0.707023E-05</td>
<td>-0.45893E-05</td>
<td>-0.45893E-05</td>
<td>-0.45893E-05</td>
<td>-0.45893E-05</td>
</tr>
<tr>
<td>60</td>
<td>0.332597E-05</td>
<td>-0.687407E-04</td>
<td>-0.320429E-04</td>
<td>-0.320429E-04</td>
<td>-0.320429E-04</td>
<td>-0.320429E-04</td>
</tr>
<tr>
<td>61</td>
<td>0.199743E-04</td>
<td>-0.808300E-04</td>
<td>-0.215716E-04</td>
<td>-0.215716E-04</td>
<td>-0.215716E-04</td>
<td>-0.215716E-04</td>
</tr>
</tbody>
</table>

64
C. MODAL SLOPES FOR NODE 55

The modal slopes for the alpha-joint are:

<table>
<thead>
<tr>
<th>Mode</th>
<th>(x'_{55_1})</th>
<th>(x'_{55_2})</th>
<th>(x'_{55_3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.383728E-15</td>
<td>0.648503E-14</td>
<td>0.259748E-15</td>
</tr>
<tr>
<td>2</td>
<td>-1.84671E-14</td>
<td>0.468119E-15</td>
<td>0.254360E-14</td>
</tr>
<tr>
<td>3</td>
<td>-1.28428E-14</td>
<td>-1.73839E-13</td>
<td>-2.82479E-13</td>
</tr>
<tr>
<td>4</td>
<td>0.203930E-04</td>
<td>-0.206593E-14</td>
<td>0.167872E-15</td>
</tr>
<tr>
<td>5</td>
<td>0.376972E-05</td>
<td>-0.254360E-14</td>
<td>0.259439E-15</td>
</tr>
<tr>
<td>6</td>
<td>-0.128428E-14</td>
<td>-0.173839E-13</td>
<td>-0.282479E-15</td>
</tr>
<tr>
<td>7</td>
<td>0.347220E-04</td>
<td>-0.188394E-05</td>
<td>0.411696E-05</td>
</tr>
<tr>
<td>8</td>
<td>0.376972E-05</td>
<td>-0.138406E-06</td>
<td>0.311234E-04</td>
</tr>
<tr>
<td>9</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>10</td>
<td>-0.128428E-14</td>
<td>-0.173839E-13</td>
<td>-0.282479E-15</td>
</tr>
<tr>
<td>11</td>
<td>0.347220E-04</td>
<td>-0.188394E-05</td>
<td>0.411696E-05</td>
</tr>
<tr>
<td>12</td>
<td>0.376972E-05</td>
<td>-0.138406E-06</td>
<td>0.311234E-04</td>
</tr>
<tr>
<td>13</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>14</td>
<td>0.376972E-05</td>
<td>-0.138406E-06</td>
<td>0.311234E-04</td>
</tr>
<tr>
<td>15</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>16</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>17</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>18</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>19</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>20</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>21</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>22</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>23</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>24</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>25</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>26</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>27</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>28</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>29</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>30</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>31</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>32</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>33</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>34</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>35</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>36</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>37</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>38</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>39</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>40</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>41</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>42</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>43</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>44</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>45</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>46</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>47</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>48</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td>49</td>
<td>0.347220E-04</td>
<td>-0.311234E-04</td>
<td>0.136062E-05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>-1.14981E-04</td>
<td>0.473668E-03</td>
<td>0.486152E-04</td>
</tr>
<tr>
<td>51</td>
<td>-1.623501E-05</td>
<td>0.104797E-03</td>
<td>-1.108402E-04</td>
</tr>
<tr>
<td>52</td>
<td>-2.139015E-05</td>
<td>0.150511E-04</td>
<td>0.508070E-05</td>
</tr>
<tr>
<td>53</td>
<td>0.272268E-04</td>
<td>-9.67355E-03</td>
<td>0.200135E-04</td>
</tr>
<tr>
<td>54</td>
<td>0.113440E-05</td>
<td>0.970653E-04</td>
<td>-7.64966E-05</td>
</tr>
<tr>
<td>55</td>
<td>0.221595E-05</td>
<td>0.486152E-04</td>
<td>-1.17069E-05</td>
</tr>
<tr>
<td>56</td>
<td>0.139864E-05</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>57</td>
<td>0.405844E-06</td>
<td>-7.22733E-05</td>
<td>-6.72783E-05</td>
</tr>
<tr>
<td>58</td>
<td>-0.272268E-04</td>
<td>0.268137E-05</td>
<td>-9.67355E-03</td>
</tr>
<tr>
<td>59</td>
<td>0.112618E-04</td>
<td>-1.08402E-04</td>
<td>0.702179E-05</td>
</tr>
<tr>
<td>60</td>
<td>0.359368E-05</td>
<td>0.308070E-05</td>
<td>-1.08402E-04</td>
</tr>
<tr>
<td>61</td>
<td>0.405844E-06</td>
<td>0.268137E-05</td>
<td>0.988749E-04</td>
</tr>
<tr>
<td>62</td>
<td>0.272268E-04</td>
<td>0.101685E-04</td>
<td>-1.46204E-05</td>
</tr>
<tr>
<td>63</td>
<td>0.112618E-04</td>
<td>0.299313E-05</td>
<td>-7.64966E-05</td>
</tr>
<tr>
<td>64</td>
<td>0.359368E-05</td>
<td>-1.70689E-05</td>
<td>-5.51031E-05</td>
</tr>
<tr>
<td>65</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>-5.51031E-05</td>
</tr>
<tr>
<td>66</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>67</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>68</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>69</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>70</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>71</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>72</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>73</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>74</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>75</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>76</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>77</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>78</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>79</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>80</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>81</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>82</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>83</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>84</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>85</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>86</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>87</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>88</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>89</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>90</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>91</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>92</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>93</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>94</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>95</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>96</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>97</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>98</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>99</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
<tr>
<td>100</td>
<td>0.112618E-04</td>
<td>-4.28632E-05</td>
<td>0.499335E-05</td>
</tr>
</tbody>
</table>
LIST OF REFERENCES

INITIAL DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2</td>
<td>Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145</td>
</tr>
<tr>
<td>2.</td>
<td>2</td>
<td>Library, Code 0142
Naval Postgraduate School
Monterey, CA 93943-5002</td>
</tr>
<tr>
<td>3.</td>
<td>2</td>
<td>Commandant of the Marine Corps
Code TE 06
Headquarters, U.S. Marine Corps
Washington, D.C. 20360-0001</td>
</tr>
<tr>
<td>4.</td>
<td>1</td>
<td>Director
Naval Research Laboratory
Washington, D.C. 20375</td>
</tr>
<tr>
<td>5.</td>
<td>1</td>
<td>Commander
Naval Space Command
Attn: Code N3
Dahlgren, VA 22448-5170</td>
</tr>
<tr>
<td>6.</td>
<td>1</td>
<td>Chairman, Code 62
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943</td>
</tr>
<tr>
<td>7.</td>
<td>1</td>
<td>Prof. R. Panholzer, Code 72
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943</td>
</tr>
<tr>
<td>8.</td>
<td>2</td>
<td>Prof. Jeff B. Burl, Code 62BL
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943</td>
</tr>
<tr>
<td>9.</td>
<td>1</td>
<td>Prof. H. A. Titus, Code 62Ts
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943</td>
</tr>
<tr>
<td>10.</td>
<td>1</td>
<td>Prof. Ramesh Kolar, Code 67Kj
Department of Aeronautics and Astronautics
Naval Postgraduate School
Monterey, CA 93943</td>
</tr>
</tbody>
</table>
11. Prof. L. W. Chang, Code 69Ck
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, CA 93943

12. Prof. Alan J. Laub
Department of Electrical and Computer Engineering
University of California
Santa Barbara, CA 93106

13. Major W. J. Preston
7 Cary Place
Fredericksburg, VA 22405

14. Mr. J. C. Simmons
Space Station Division
McDonnell Douglas Astronautics Company
5301 Bolsa Avenue
Huntington Beach, CA 92647

15. Mr. Dave Burrows
McDonnell Douglas Astronautics Company
M/S 11-3
5301 Bolsa Avenue
Huntington Beach, CA 92647

16. Mr. John Kelley
McDonnell Douglas Astronautics Company
M/S 11-3
5301 Bolsa Avenue
Huntington Beach, CA 92647