Catalytic Reduction of Carbon Dioxide to Methane and Other Species via Formamide Intermediation: Synthesis and Hydrogenation of $\text{HC(O)}\text{NH}_2$ in the Presence of $[\text{Ir(Cz)(CO)(Ph}_3\text{P})_2]$ by

L. Vaska,* Serge Schreiner, Robert A. Felty and James Y. Yu

Prepared for Publication in
Journal of Molecular Catalysis

Clarkson University
Department of Chemistry
Potsdam, NY 13676

October 13, 1988

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited.
Catalytic Reduction of Carbon Dioxide to Methane and Other Species via Formamide Intermediation: Synthesis and Hydrogenation of HCr(ONH)₂ in the Presence of [Ir(Cls)(CO)(Ph3P)]₂

L. Vaska, Serge Schreiner, Robert A. Felty and James Y. Yu

Submitted for publication in Journal of Molecular Catalysis

Abstract

Formamide, HCr(ONH)₂, is catalytically synthesized from CO₂, H₂ and NH₃ in homogeneous toluene or alcohol solutions mediated by [Ir(Cls)(CO)(Ph3P)]₂. The same iridium compound is used in the catalytic hydrogenation of neat formamide which leads to methane and N-methylformamides. The latter overall reaction is complicated due to the concurrent thermal decomposition of formamide yielding carbon black, NH₃, CO, CO₂ and H₂O. The various possible steps in this complex catalytic system are briefly examined.
Catalytic Reduction of Carbon Dioxide to Methane and Other Species via Formamide Intermediation: Synthesis and Hydrogenation of HC(O)NH\textsubscript{2} in the Presence of [Ir(C\textsubscript{1})(CO)(Ph\textsubscript{3}P)\textsubscript{2}]

L. VASKA*, SERGE SCHREINER, ROBERT A. FELTY and JAMES Y. YU

Department of Chemistry, Clarkson University, Potsdam, New York 13676 (U.S.A.)

(Received

Introduction

In search of homogeneous catalytic systems for the hydrogenation/reduction of carbon dioxide, we have discovered a process that utilizes ammonia as a co-catalyst and leads to methane as the final reaction product. Previous studies of CO\textsubscript{2} hydrogenation mediated by metal complexes in solution have been carried out in the presence of secondary amines or alcohols, and these reactions have usually led to alkyl-formamides or formates (eqn. 1) [1-7], that is to say that the CO\textsubscript{2} reduction has terminated at bivalent carbon, C2+ (a notable exception is reported in ref. [7]). These observations raised the possibility that the bulky alkyl groups (R) in HC(O)NR\textsubscript{2} or HC(O)OR (eqn. 1) might be responsible for preventing or suppressing a further reduction - via catalytic hydrogenolysis

*Author to whom correspondence should be addressed.
of the C-N or C-O bond - for steric reasons. It occurred to us, therefore, that the use of ammonia instead of amines (eqn. 1) could possibly circumvent this presumed hindrance. Accordingly, a study was undertaken with the objective of catalytically reducing carbon dioxide beyond the 2+ formal oxidation state of carbon via unsubstituted formamide intermediation. This goal has indeed been achieved, but the work has also produced some complex and unexpected results. In this note we report some observations on the reactions mediated by trans-chlorocarbonylbis(triphenylphosphine)iridium(I).

Experimental

The reactions were carried out in standard 50 (Parr) and 300 ml (Parr and Autoclave Engineers, Inc.) pressure vessels. For typical procedures and analyses of the products, see those of analogous experiments reported in ref. [7].

Results and discussion

We first established that the iridium complex is an effective catalyst precursor for the synthesis of formamide (eqn. 2) [8]. The reactions were

\[
\text{CO}_2 + \text{H}_2 + \text{NH}_3 \xrightarrow{[\text{Ir} (\text{Cl})(\text{CO})(\text{Ph}_3\text{P})_2]} \text{HC(O)NH}_2 + \text{H}_2\text{O}
\]

(2)

carried out in homogeneous toluene or methanol solutions. Some results are summarized in Table 1 (entries 2, 3; 1 is a blank run). The best yields were obtained in methanol where the products included methylformate and methylformamides (entry 3, see eqns. 11, 9, 10 discussed below).

We then proceeded to catalytically hydrogenate neat formamide in the presence of [Ir(Cl)(CO)(Ph3P)2] under conditions similar to those applied
for the catalytic preparation of the amide (eqn. 2). The principal results are given in eqn. 3. Separate experiments at analogous conditions, but

\[\text{HC(O)NH}_2(\ell) + H_2(g) \xrightarrow{\text{[Ir(Cz)(CO)(Ph_3P)_2]}} \text{NH}_3(g) + \text{CO}_2(g) + \text{CO}(g) + C(s)\]

\[+ H_2O(\ell) + \text{HC(O)NH(CH}_3)()] + \text{HC(O)N(CH}_3)2(\ell) + \text{CH}_4(g) \]

without the iridium complex gave the products shown in eqn. 4, i.e., the

\[\text{HC(O)NH}_2(\ell) + H_2(g) \rightarrow \text{NH}_3(g) + \text{CO}_2(g) + \text{CO}(g) + C(s) + H_2O(\ell) \]

blank runs produced five species which were also found among the products of the catalytic experiments (eqn. 3) (there was at least one additional species produced in both sets of experiments).

These surprising results raised the possibility of a catalytic role of the stainless steel components in the pressure reactors used. Thus, additional blank runs were carried out with and without a glass liner (containing the reaction mixture) in the pressure vessel, with and without stainless steel fittings in contact with liquid formamide, and with fittings made of titanium. The results of all these blank experiments were qualitatively identical, i.e., the same products were obtained as given in eqn. 4, and no methane or methylformamides (eqn. 3) were detected. Subsequent studies in all-glass apparatus confirmed that the species produced (eqn. 4) result from a non-catalytic, thermal decomposition of neat formamide [9] (these results will be detailed in another communication.)

In summary, then, the catalytic hydrogenation of formamide mediated by [Ir(Cz)(CO)(Ph_3P)_2] yielded methane, N-methylformamide (MMF), and, as a
minor product, N,N-dimethylformamide (DMF), eqn. 5 (eqn. 3 minus eqn. 4),

\[\text{HC(O)NH}_2(\text{I}) + \text{H}_2(\text{g}) \xrightarrow{[\text{Ir}(\text{Cl})(\text{CO})(\text{Ph}_3\text{P})_2]} \text{CH}_4(\text{g}) + \text{HC(O)NH(CH}_3)(\text{I}) \]

\[+ \text{HC(O)N(CH}_3)_2(\text{I}) \quad (5) \]

Table 1 entries 5, 6; 4 is a blank run.

The most conspicuous result of all of the experiments, catalytic (eqn. 3) and thermal (eqn. 4), was that the reactions produced copious amounts of black material, found in the reactor at the conclusion of the runs. The black solid, present in powdery and colloidal form, was separated from a faint-yellow solution (containing the Ir complex) and was then heated in oxygen atmosphere, eqn. 6. The product of combustion was carbon dioxide,

\[\text{C(s)} + \text{O}_2(\text{g}) \xrightarrow{500 \text{ torr, } 270^\circ \text{C}} \text{CO}_2(\text{g}) \quad (6) \]

indicating that the black precipitate was elemental carbon; collected yields of C(s) (eqns. 3, 4) were in the 20-50 mmol range.

More importantly, and pertinent to the catalytic studies reported in this note, the heat treatment of the black product in oxygen (eqn. 6) left no solid residue, giving negative evidence for a possible presence of metallic iridium or other Ir-containing species, e.g., IrO₂ (derived from the catalyst precursor, [Ir(Cl)(CO)(Ph₃P)₂]), in our catalytic system (eqn. 3).

There are a number of possible routes for the synthesis of the catalytic products from formamide and hydrogen (eqn. 5), and, ultimately, from CO₂, H₂ and NH₃ (eqn. 2). For the latter reaction, the path is likely
to be analogous with that of the catalytic formation of DMF (eqn. 1, R = CH₃), i.e., when, instead of ammonia, dimethylamine is used as a co-reactant [1,2,3,5]. Herein we briefly consider only the second overall phase of the catalytic reduction of carbon dioxide, the hydrogenation of formamide (eqn. 5).

An inquiry into the reaction course leading to methane (eqns. 3, 5) is obviously a complex problem. The thermal decomposition of formamide yields several carbon-containing species (eqn. 4), and these are necessarily produced also in the hydrogenation experiments (eqn. 3). Any one of these products - CO₂, CO and C(s) - could, in principle, serve as a precursor to CH₄. Additionally, the catalytic methanation may proceed through (experimentally undetectable) intermediates such as HCOH, HCOOH, CH₃OH and/or CH₃NH₂. Separate experiments are under way to test all these possibilities. At present, one can only summarize the overall stoichiometry of carbon dioxide methanation, formulated in eqns. 2, 7 and 8. It is seen

\[\text{CO}_2 + \text{H}_2 + \text{NH}_3 \xrightarrow{[\text{Ir}(\text{Cp})(\text{CO})(\text{Ph}_3\text{P})_2]} \text{HCOH} + \text{H}_2\text{O} \quad (2) \]

\[\text{HCOH} + 3\text{H}_2 \xrightarrow{[\text{Ir}(\text{Cp})(\text{CO})(\text{Ph}_3\text{P})_2]} \text{CH}_4 + \text{H}_2\text{O} + \text{NH}_3 \quad (7) \]

\[\text{CO}_2 + 4\text{H}_2 \xrightarrow{[\text{Ir}(\text{Cp})(\text{CO})(\text{Ph}_3\text{P})_2], \text{NH}_3} \text{CH}_4 + 2\text{H}_2\text{O} \quad (2) + (7) = (8) \]

that ammonia emerges as a co-catalyst for this particular process.

Regarding the formation of methylformamides (eqn. 5), we first note that the yield of DMF is only a few percent of that of MMF (Table 1, entries 5, 6). Limited and fragmentary data also indicate that in extended
runs (not detailed here) the formation of MMF occurs initially and then ceases, while a moderate build-up of DMF continues. These observations suggest that DMF is a secondary product and a successor of MMF. We thus propose that N-methylformamide results by the reaction of formamide with a methyl-containing intermediate, CH₃R (eqn. 9), produced by the catalytic hydrogenation of HC(O)NH₂ or one or more of its decomposition products (eqn. 3), and that DMF is formed subsequently from MMF by reaction with probably the same intermediary species, eqn. 10. Although neither methanol

$$\text{HC(O)NH}_2 + \text{CH}_3\text{R} \rightarrow \text{HC(O)NH(CH}_3) + \text{RH}, \text{ R} = \text{OH or NH}_2$$

(eqn. 9)

nor methylamine (eqns. 9, 10) were detected in our reaction mixtures, both alcohols [10] and amines [11] are known to react with formamide thermally to yield alkylformamides, and both have been implicated as intermediates in the catalytic synthesis of substituted formamides from CO/H₂/NH₃ [12].

Circumstantial evidence for the possibility of CH₃OH intermediation (eqns. 9, 10, R = OH) in our system is found in the catalytic synthesis of formamide (eqn. 2): in methanol solvent the products included methylformate (MF) and methylformamides (Table 1, entry 3), but these species were absent in toluene (entry 2). While the formation of MF represents a well-known catalysis, eqn. 11 [4,5,6], the production of MMF and DMF under these

$$\text{CO}_2 + \text{H}_2 + \text{CH}_3\text{OH} \xrightarrow{\text{metal complex}} \text{HC(O)OCH}_3 + \text{H}_2\text{O}$$

(eqn. 11)
conditions implies that they result by reactions 9 and 10, respectively
(R = OH).

It should be finally noted that all experiments involving carbon
dioxide and ammonia as reactants (eqn. 2) or products (eqns. 3, 4) yield
ammonium carbamate, eqn. 12 [13]. The equilibrium of this reaction is very

\[\text{CO}_2(\text{g}) + 2\text{NH}_3(\text{g}) \rightleftharpoons [\text{NH}_4]^+[\text{H}_2\text{NC}(\text{O})\text{O}]^- (\text{cr}) \] (12)

sensitive to temperature-pressure variations, and a possible intermediary
role of the carbamate in reactions 2, 3 and 4 is unknown.

Acknowledgements

We thank P. Baltusis, J. Hartikainen and P.B. Kaufman for experimental
assistance. This work was supported in part by the Office of Naval Research
and the Petroleum Research Fund, administered by the American Chemical
Society.
TABLE 1
Catalytic synthesis (eqn. 2) and hydrogenation (eqn. 5) of formamide mediated by
\[\text{[Ir(C\equiv C)(CO)(Ph_3P)_2]} (0.94-1.93 \times 10^{-4} \text{ mol}) \text{ in solution (50-100 ml)} \]

<table>
<thead>
<tr>
<th>Entry<sup>b</sup></th>
<th>Cat</th>
<th>Reactants</th>
<th>p<sup>c</sup> atm</th>
<th>Solvent</th>
<th>Temp °C</th>
<th>Time days<sup>d</sup></th>
<th>Product yield per [Ir]<sup>e,f</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FA</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>CO₂ + H₂ + NH₃</td>
<td>91</td>
<td>tol</td>
<td>125</td>
<td>1</td>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td>2</td>
<td>[Ir]</td>
<td>CO₂ + H₂ + NH₃</td>
<td>86</td>
<td>tol</td>
<td>125</td>
<td>1</td>
<td>14 0 0 0 0 0</td>
</tr>
<tr>
<td>3a</td>
<td>[Ir]</td>
<td>CO₂ + H₂ + NH₃</td>
<td>122</td>
<td>MeOH</td>
<td>125</td>
<td>2</td>
<td>594 9 0.2 7</td>
</tr>
<tr>
<td>3b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 1145 0 123 3 33</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>H₂ + FA</td>
<td>109</td>
<td>FA</td>
<td>150</td>
<td>1</td>
<td>0 0.4 0 0 0</td>
</tr>
<tr>
<td>5a</td>
<td>[Ir]</td>
<td>H₂ + FA</td>
<td>151</td>
<td>FA</td>
<td>100</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>147 125 2 0</td>
<td></td>
</tr>
<tr>
<td>5c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>167 150 3 10 93 0 0</td>
<td></td>
</tr>
<tr>
<td>5d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>164 150 4 37 108 4 0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>109 150 1 9 36 0.6 0</td>
<td></td>
</tr>
</tbody>
</table>
Footnotes to TABLE 1

\(^a \) Abbreviations: Cat = catalyst precursor; \([\text{Ir}]= [\text{Ir(C}3\text{(CO)(Ph}_3\text{P)}_2]]; \)
\(^{tol} \) = toluene; \(\text{FA} = \text{HC(O)NH}_2; \) \(\text{MF} = \text{HC(O)N(CH}_3\text{)}_2; \)
\(\text{DMF} = \text{HC(O)N(CH}_3\text{)}_2; \)
\(\text{MF} = \text{HC(O)OCH}_3. \)

\(^b \) Each number refers to a separate experiment, the letters \((a,b,c,...)\) refer to sequential data obtained within that experiment.

\(^c \text{P} = \text{total pressure at reaction temperature (125-150}^\circ\text{C). Initial partial pressures of the reactants applied at 25}^\circ\text{C: entries 1-3: CO}_2, 13-17; \text{H}_2, 50-68; \text{NH}_3, 1-4; \) entries 4-6: \(\text{H}_2, 79-124 \) atm.

\(^d \) 24-h reaction period at reaction temperature.

\(^e \) Total cumulative yield of product (mol) per \([\text{Ir(C}3\text{(CO)(Ph}_3\text{P)}_2] (\text{mol, introduced initially}), \pm 10-15\%. \)

\(^f \) Only the catalytic products (eqns. 2, 5 and text) are shown, i.e., carbamate (eqn. 12) and other thermally produced species (eqns. 3, 4) are not included.
References

11 S. Schreiner and L. Vaska, unpublished results \((\text{HC(O)}\text{NH}_2 + \text{CH}_3\text{NH}_2 \rightarrow \text{HC(O)}\text{NH(CH}_3\text{)} + \text{NH}_3\text{, 25°C, instantaneous})\).

TECHNICAL REPORT DISTRIBUTION LIST, GEN

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td>2</td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td>NORDA</td>
</tr>
<tr>
<td>Arlington, Virginia 22217-5000</td>
<td>NSTL, Mississippi 39529</td>
</tr>
<tr>
<td>Dr. Bernard Douda</td>
<td>1</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td>Attn: Dr. Ron Atkins</td>
</tr>
<tr>
<td>Code 50C</td>
<td>Chemistry Division</td>
</tr>
<tr>
<td>Crane, Indiana 47522-5050</td>
<td>China Lake, California 93555</td>
</tr>
<tr>
<td>Dr. R. W. Drisko, Code L52</td>
<td>1</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td>Code RD-1</td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td>Attn: CRD-AA-IP</td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td>high quality</td>
<td>Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. H. Singerman</td>
<td>Materials Branch</td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td>Philadelphia, Pennsylvania 19112</td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>1</td>
</tr>
<tr>
<td>Superintendent</td>
<td>Attn: Dr. S. Yamamoto</td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td>San Diego, California 91232</td>
</tr>
<tr>
<td>Washington, D.C. 20375-5000</td>
<td></td>
</tr>
</tbody>
</table>

α/113/87/2